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Abstract We review results on the existence and uniqueness for a surface growth model
with or without space–time white noise. If the surface is a graph, then this model has strik-
ing similarities to the three dimensional Navier-Stokes equations in terms of energy esti-
mates and scaling properties, and in both models the question of uniqueness of global weak
solutions remains open.

In the physically relevant dimension d = 2 and with the physically relevant space–time
white noise driving the equation, the direct fixed-point argument for mild solutions fails,
as there is not sufficient regularity for the stochastic forcing. The situation is the simplest
case where the method of regularity structures introduced by Martin Hairer can be applied,
although we follow here a significantly simpler approach to highlight the key problems.
Using spectral Galerkin method or any other type of regularization of the noise, one can
give a rigorous meaning to the stochastic PDE and show existence and uniqueness of local
solutions in that setting. Moreover, several types of regularization seem to yield all the same
solution.

We finally comment briefly on possible blow up phenomena and show with a simple ar-
gument that many complex-valued solutions actually do blow up in finite time. This shows
that energy estimates alone are not enough to verify global uniqueness of solutions. Re-
sults in this direction are known already for the 3D-Navier Stokes by Li and Sinai, treating
complex valued solutions, and more recently by Tao by constructing an equation of Navier-
Stokes type with blow up.
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1 Introduction

The analysis of mathematical models for the study of surface growth phenomena has at-
tracted attention in recent years from both the physical and the mathematical communities.
In this paper we focus on one special 4-th order equations with quadratic nonlinearity that
does not allow for maximum principle or gradient flow structures and has striking simi-
larities to the Navier-Stokes equation in dimension 3 and the Kadar-Parisi-Zhang (KPZ)
equation.

The equation is of the type

∂th =−∆
2h−∆ |∇h|2 +ξ

where h(t, ·) is the graph of the surface at time t > 0 over a d-dimensional domain (with
d = 1,2), and ξ is space-time white noise. Here ∆ denotes the Laplacian and ∇ the gradient
of h.

In Section 2 we give a brief introduction to stochastic partial differential equations
(SPDEs) and space-time white noise. For the whole paper we focus on the relatively simple
setting of additive noise only, which is present in most of the applications.

1.1 Physical Model

Let us first discuss physical properties of the model. For mathematical details on the model
see the exposition in Section 1.3. For additional references see [88,23,81,80,46,89,87,104]
or Da Prato & Zabczyk [32, Sec. 13.14]. For general surveys on surface growth processes
and molecular beam epitaxy see the classical references by Barabási & Stanley [3] or Halpin-
Healy & Zhang [56].

Equation (1), which is sometimes referred to as a mass-conservative version of the KPZ
model, arises in several models for surface growth. The two–dimensional version was for
example suggested in [87,89,88] as a phenomenological model for the growth of an amor-
phous surface (Zr65Al7,5Cu27,5). But similar equations appear also in the formation of sand
or snow ripples. Later the equation has also become a model for ion-sputtering, where a
surface is eroded by a ion-beam, see Cuerno & Barabási [27], Castro et al. [23] or [81,80].
The one-dimensional equation appeared also as a model for the boundaries of terraces in the
epitaxy of Silicon [46]. Further details on the model can be found in [68,110,117,104].
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Derivation of the model. In the literature there are two possible methods suggested for the
derivation of our model. The first one is a symmetry argument. One assumes that on Rd

the equation only contains terms that are invariant under all symmetry operations, which do
not change the growth process. These are for example rotations of the underlying domain,
reflections xi 7→ −xi, or translations in both x and h. Furthermore, the equation should con-
serve mass, as the model is supposed to be in a moving frame following the average growth
rate of the surface. So the right-hand side needs to be a divergence.

There are only two linear and two quadratic terms that satisfy all these requirements.
Higher order terms are usually neglected in the physics literature, for example by consid-
ering a small gradient expansion of the nonlinearity. Two terms are already present in our
equation, which are−∆ 2h and−∆ |∇h|2. The missing linear term−∆u is of lower order and
usually associated with the formation of hills. The other quadratic term is the determinant
of the Hessian of h, which has a completely different nature than the term studied here. We
comment on both terms in more detail in Section 1.3.

Another approach that leads to models of these type is more geometric in nature. First
consider motion on the surface by surface diffusion, which leads in a linearisation to the
−∆ 2. The nonlinear term then arises by the more complicated geometric argument that
particles are attracted to the surface and not fall down vertically. This leads to an effective
uphill current of mass, depending on the slope of the surface, which in first order gives−∆u
and in second order the non-linearity considered here.

Surface Roughness. The typical physical quantity of interest is the roughness of the surface.
This is measured as the averaged quadratic deviation from the spatial mean of the surface.
As one considers a moving frame, this is usually just the expectation of the squared L2-norm.

The question is now to determine characteristic exponents α , β , and z, also determining
the so called universality class of the model, such that for a system size of order L

mean surface roughness∼
{

tβ : t� Lz

Lα : t� Lz

Unfortunately our mathematical analysis of the problem is at an earlier stage and does not
allow yet to give rigorous conclusions on these questions. For analytic estimates see for
example [14], or we refer the reader to the rich physics literature.

Hill formation and coarsening. Characteristic of all these models with an additional lower
order linearity is the formation of parabola shaped hills, with sharp, almost corner like,
valleys in between. See Figure 1 for a one-dimensional numerical calculation. But also in
several two dimensional experiments, due to an initial linear instability of the flat surface, the
solution exhibits many paraboloid hills with sharp valleys in between. Over time these hills
tend to coarsen, when larger hills just bury the smaller ones. See [84] for a reduced model in
one dimension given by the position of the interfaces. In none of the numerical or real world
experiments chaotic or irregular behaviour was observed, which is on the contrast to many
other well-known and quite similar models of surface growth like Kuramoto-Sivashinsky,
which models the propagation of flame fronts. There the surface usually exhibits quite com-
plicated dynamics.
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1.2 Obstacles and difficulties in the mathematical analysis of the model

A crucial mathematical open problem for our model equation, with or without random per-
turbations, is the uniqueness of global solutions. Indeed, in one space dimension it is possible
to show existence of locally unique and smooth solutions, as well as of global weak solu-
tions, but unfortunately there is a gap in the regularity requirements for the initial condition
for the two types of solutions. As such the problem is reminiscent of the celebrated mil-
lennium problem of existence of global smooth solutions for the Navier–Stokes equations.
Here in two spatial dimensions the problem is even harder, at least at the level of existence
of weak solutions, due to some a–priori estimates that fail to be true in dimension higher
than one.

In two dimension, for the stochastic PDE, there is an additional difficulty: the driving
force, which is space–time white noise, is a rough forcing and in principle, even in a weak
formulation, the solution does not acquire enough regularity to give a meaning to the non-
linearity. In the following, we shall discuss all these points in more detail.

Local solutions. Local existence and uniqueness of solutions can be straightforwardly proved
by a fixed point theorem, both with and without noise perturbations. A preliminary result
on local uniqueness of W 1,4-valued solutions for the stochastic PDE in dimension d = 1,2
can be found in [10]. The existence and uniqueness of a regularized problem with a cut-off
in the nonlinearity in dimension d = 2 has been studied in Hoppe, Linz & Litvinov [58]. In
[16] in the one dimensional case the uniqueness of local solutions was established with ini-
tial values in the critical Hilbert space H1/2 (see Section 3.1 for more details on the scaling
invariance of the equation and quantities critical for the scaling, namely quantities invariant
by scaling).

Another approach for local uniqueness and global existence based on Galerkin approx-
imations combined with local monotonicity and generalized coercivity conditions is estab-
lished by the application of an abstract result by Röckner et al. [74,91]. But this is, at least
in terms of initial conditions, not yet optimal, as it needs initial conditions with two spatial
derivatives, i.e. in H2.

Existence and uniqueness in the largest possible critical space can be achieved using
the ideas introduced by Koch & Tataru [65] for the Navier–Stokes equation. It has been
implemented for the surface growth equation in [17], and we summarize it in Section 3.
The result yields that the largest critical space of initial conditions where local existence and
uniqueness holds, is equivalent to the homogeneous Besov space Ḃ0,∞

∞ . This space contains
for example the critical spaces C0 of continuous functions as well as the Hilbert-space Hd/2

with d/2 fractional derivatives that are still square integrable. But, as we will see, there still
remains a wide gap of regularity from the largest critical space to the global a-priori bounds
in L2 for d = 1 and H−1 for d = 2 that are used to show global existence of weak solutions.

Weak solutions. For d = 1 existence of global weak solutions follows by an a–priori esti-
mate of the the mean squared height of the surface (see Section 1.5) and by standard com-
pactness methods. For the stochastic PDE this can be extended to compactness in spaces
of probability measures. The existence of global weak solutions on bounded domains has
been first studied for our equation in [12] (see also the references therein), based on spectral
Galerkin methods. See also the discussion of the improved results in [9] below.

Unfortunately the estimate fails to hold in larger spatial dimensions. Without noise, Stein
& Winkler [108] used Rothe’s method, which is a fully implicit discretization of the time-
derivative, in order to verify the existence of a global weak solution that is only uniformly
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bounded in a weak topology given by the H−1-norm. This result has been extended by
Winkler [120] to the two–dimensional case, using energy type estimates for the Lyapunov
functional

∫
eh dx (cf. Section 1.6). Existence of weak solutions of the stochastic PDE in the

physical dimension two is, so far, an open problem, which should be solvable by combining
the stochastic approach with the results of [108,120].

Convergence to equilibrium. Existence of weak solutions for the stochastic PDE has been
significantly improved in [9] using the method developed by Flandoli & Romito [42,44]
(see also the related results [43,92,94,96]) in order to verify the existence of a solution that
defines a Markov process. We review this in Section 5. For related results see [30,35] and
[49]. The method allows to define a Markov evolution associated to the equation and thus to
introduce invariant measures. These are random initial distributions that are invariant under
the dynamics. It turns out that for any Markov process that defines a solution the invariant
measures are stable enough that there is relaxation to the unique equilibrium.

Blow–up and singularities. Our analysis shows that local solutions are smooth, although
we do not control the lifespan of the solution. The mathematical results known so far do
not rule out the emergence of singularities. This question is wide open, but some analytic
results show that there are quite strong limitations on the type of blow up. We conjecture
that if there is a blow up, most likely it will be a logarithmic pole in the sharp valleys.

In contrast, many numerical experiments do not report any problems of blow up, see
Hoppe & Nash [60,59] or [89,87]. Numerical experiments from Blömker, Gugg & Raible [12]
furthermore indicate a fast convergence of spectral Galerkin methods for statistical quanti-
ties like the averaged surface roughness for the stochastic PDE.

There are also unpublished numerical results by Michael Winkler that seem to indi-
cate blow–up behaviour for the deterministic equations with an additional strong linear in-
stability, that is a lower order term which should not influence the question of existence
and uniqueness. On the contrary Nolde et al. [15] are working on numerical verification
of uniqueness, and their preliminary results look promising. These are based on Robinson
et al. [24,34] or related results by Morosi & Pizzocchero [76–78]. The method though only
works for given fixed initial conditions or a fixed small ball of initial conditions. There are
strong hints, see [97] for a general result and heuristic considerations, that additive noise
should not be effective in preventing blow–up when this already happens in the determinis-
tic equation.

Energy estimates are not sufficient to prevent blow-up. Recently, there has been interest
in finding solutions for modified Navier-Stokes equations that do blow up by failing to be
regular. Tao [113] constructed a modified nonlinearity that exhibits the same energy estimate
than 3D-Navier-Stokes, but does admit solutions that blow up in finite time. A different
approach in that spirit was presented by Li & Sinai [71,72]. They constructed complex
valued solutions of the Navier-Stokes equation that remain bounded in L2 but blow up in
finite time. The key idea in all these approaches is that due to the structure of the nonlinearity
in Fourier space the mass is transported faster to higher Fourier modes than it is absorbed by
dissipation. Thus leading to a blow up of regularity, when a non-trivial portion of the mass
reaches infinity in finite time. In Section 7 we present a simplified result for our equation,
proving that many complex-valued solutions blow up in finite time. This is somewhat not
surprising, as the standard L2-energy estimate fails to be true for complex valued solutions,
however the lower bound derived in the proof of this result does not blow up in L2.
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The randomly forced problem in the physical dimension two. When we consider the prob-
lem in dimension two, the regularity of initial conditions is not the only issue, as the weak
regularity of the forcing starts playing a crucial role. Thus the difficulty due to the presence
of noise is the lack of regularity of solutions. In dimension d = 1 this is not an issue, as we
expect solutions of the stochastic PDE to be continuously differentiable with respect to space
and continuous in time, but in d = 2 the solution fails to be that regular. As a consequence
the square of the gradient |∇h|2 in the nonlinearity is not defined directly.

A general solution is to rely on the the concept of regularity structures introduced by
Martin Hairer [53], which was awarded the Fields medal recently, or the significantly sim-
pler but less powerful approach of paraproducts and controlled distributions introduced by
Gubinelli, Imkeller & Perkowski [50]. In order to highlight the key problems we present in
Section 4 the results of [18], based on results in [29], that apply similar ideas to our equation.
This is the simplest case of the approach of Hairer [52], or Gubinelli et al. is effective. Here
we do need to give sense of the quadratic nonlinearity for Gaussian random variables that
are not regular enough to define the nonlinearity directly. On the other hand the other terms
appearing in the proof are regular enough so that there is no trouble in their definition.

1.3 The model

Let us give more details about the model under consideration. We study the following equa-
tion for the graph of a growing surface

∂th =−∆
2h−∆ |∇h|2 +ξ (1)

subject to periodic boundary conditions on the domain [0,L]d (i.e., h and all its derivatives
are L-periodic). The function h(t, ·) models a height profile at time t > 0, so d = 1 and d = 2
are the physically relevant dimensions. The noise ξ models always space-time white noise,
for instance due to fluctuations in the incoming gas of particles. We comment later in more
detail on the mathematical model of the noise, which is given by the generalized derivative
of a suitable Wiener process in Hilbert-space.

The equation is simplified here in the sense that lower order terms are left out, which
do not present any obstacle in the theory of local existence and uniqueness, although some
might cause problems for global estimates in the proof of global existence. We will discuss
on possible additional terms in more detail in the next section.

Also for simplicity of presentation we consider only the rescaled version with non-
dimensional length-scales. We can rescale the variables t, x, and h in order to move all
relevant physical constants into the length of the domain L.

Remark 1 (Mass conservation) Due to the fact that the integral over a Laplacian vanishes
for periodic boundary conditions, the deterministic equation conserves the total mass. Thus
we always assume a moving frame condition∫

[0,L]d
h(t,x)dx = 0.

To be more precise, the mean of h for solutions of (1) decouples from the equation and
the spatial average of the solution is just the spatial average of the noise, which behaves
like a Brownian motion. Thus for simplicity we always consider a moving frame and mass-
conservative noise by just subtracting the spatial mean of the noise in (1). Moreover, by a
similar transformation one removes any constant growth rate of the surface from the equa-
tion.
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Fig. 1 Four snapshot at time 0.2, 0.3, 0,4, and 0.7 of a numerical solution of the surface growth equation on
[0,2π] with additional linear instability −10∂ 2

x h. The hills look like parabolas with sharp valleys in between.

Remark 2 (Boundary Conditions) Although the surface is in experiments not periodic, these
boundary conditions together with the assumption of a moving frame became the standard
conditions in the physics literature for models of this type, as the effect of boundary condi-
tion is usually neglected in experiments. The surface is grown on large domains, and only
small interior regions of almost periodic pattern are then measured. Sometimes the model
has been considered also on the whole real line without decay condition at infinity, never-
theless we do not examine this case here in detail, as space-time white noise would make
the solution at any time unbounded for |x| → ∞.

From a mathematical point of view Neumann boundary conditions are quite similar for
the problem (1) studied here, as they allow for similar energy estimates.

1.4 Related Models

In our presentation we ignore lower order terms, as we are after possible uniqueness or non-
uniqueness. The main terms for questions about existence and regularity are the dominant
fourth order linear operator ∆ 2h and the quadratic non-linearity ∆ |∇h|2.

Examples of lower order terms present in the models are the Kuramoto-Sivashinsky term
|∇h|2, which seems to be responsible for a saturation of hill sizes during coarsening, or a
linear instability given by −∆h, which triggers an initial instability of a flat surface leading
the the formation of hills. Both lower order terms are quite important for the dynamical
behaviour, but not for questions regarding regularity and blow up. Moreover, the presence
of these terms complicates calculations significantly (see [12] for an example).
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In order to take into account −∆h in bounds uniform in time that yield global existence
in d = 1, gauge functions have to be used, as in Blömker & Hairer [13]. See also Collet et al.
[26], or Temam [115]. These yield estimates relative to a fixed surface (the gauge function)
and its translations. But this is quite technical and up to now in our model it is only applied to
Neumann boundary conditions. For periodic boundary conditions this question is still open.

There is also the choice of adding an additional cubic term ∇ · (|∇h|2∇h) that does not
change the scaling properties of the equation and that, equipped with the right sign, gives
additional L4([0,T ],W 1,4) regularity in a-priori estimates and even simplifies the proof of
existence and uniqueness of global solutions. See for example Agélas [2].

An interesting nonlinearity that obeys the same symmetries as the terms present in (1) is
det(Hess(h)). This nonlinearity allows for a gradient flow structure for the equation [37,36]

∂th =−∆h−det(Hess(h))

with energy of the type
∫

∆h|∇h|2dx, which is not bounded from below. Here Escudero,
Gazzola & Peral [36] showed that this nonlinearity alone leads to a blow up in finite time.
Thus the conjecture is that adding additive noise will eventually always lead to a blow up, see
[97] for related ideas. The combination of both nonlinearities destroys the gradient structure
and nothing is known about the dynamics.

Let us briefly comment on some well studied related models:

1. The Kadar-Parisi-Zhang (KPZ) equation is [62]

∂th = ∆h+ |∇h|2 +ξ .

For the deterministic equation, there is no problem with existence and uniqueness and
via the Cole-Hopf transform u = eh one can transform it to a linear heat equation. The
stochastic equation is the toy-model for the theory of regularity structures [52,53], as
already in d = 1 solutions are not regular enough to define the nonlinearity in a trivial
way. Here a renormalized nonlinearity has to be taken into account that takes care of
divergent constants. This is different from the nonlinearity in (1), as here the infinite
constant of the renormalization is eliminated by the additional Laplacian.

2. The Kuramoto-Sivashinsky equation is

∂th =−∆
2h−∆h+ |∇h|2 +ξ .

The deterministic equation (as well as the stochastic equation) for d = 1 has no problem
with local and global existence and uniqueness although the dynamics seems to be much
richer than for (1). But for d = 2 there is a lack of global estimates that would ensure
global existence. Moreover, for the stochastic equation for d = 2 the noise is too rough,
and one needs to consider regularity structures and a renormalized nonlinearity, in order
to define the equation.

3. Of course also the Navier-Stokes equation has many similarities, and many methods that
work for the other equations were originally developed for Navier-Stokes. But as the
type of equation is different, we do do give it in full details here.

1.5 A-priori Estimates (1D-deterministic)

As already pointed out, for global existence we heavily rely on the availability of an energy
estimate. The key point for d = 1 is a suitable cancellation of the non-linearity, namely using



Existence and uniqueness for surface growth with noise 9

integration by parts ∫ L

0
h∂

2
x (∂xh)2 dx =

1
3

∫ L

0
∂x(∂xh)3 dx = 0 . (2)

This is the main (and probably only) ingredient to derive useful a-priori estimates. Unfortu-
nately, it already fails for d = 2. Formally multiplying the deterministic equation by h and
integrating with respect to x, we obtain using (2),

∂t‖h(t)‖2
L2 +2‖∂ 2

x h(s)‖2
L2 ≤ 0 and ‖h(t)‖2

L2 +2
∫ t

0
‖∂ 2

x h(s)‖2
L2 ds≤ ‖h(0)‖2

L2 . (3)

Thus, by Poincaré inequality and Gronwall’s Lemma,

‖h(t)‖L2 ≤ e−ct ‖h(0)‖2
L2 and

∫
∞

0
‖h(t)‖2

H2 dt ≤ ‖h(0)‖2
L2 .

As explained before this estimate is only valid for smooth local solutions up to a possible
blow up, or one could use a spectral Galerkin approximation to verify it for global solutions.
Note that the regularity implied by this estimate is enough for proving existence of solutions
(see Section 5), but is lower than the critical regularity, that is, the minimal amount of reg-
ularity that would ensure uniqueness (see Section 3). In other words, the above regularity
properties are super–critical with respect to the scaling invariance of the equation.

These estimates extend to the stochastic equation by a standard transformation. See
Section 2.4 below for details. Let us remark that for the stochastic case it is even possible to
bound exponential moments of the L2-norm. See [38,106].

1.6 A Lyapunov-type functional

There is another a-priori estimate for smooth local solutions, which was helpful for d = 2,
but unfortunately it does not hold for spectral Galerkin method or any other approximation
using projections,

1
α2

d
dt

∫ L

0
eαh dx =

∫ L

0
eαh hxhxxx dx+2

∫ L

0
eαh h2

xhxx dx

=−
∫ L

0
eαh h2

xx dx+(2−α)
∫ L

0
eαh h2

xhxx dx

=−
∫ L

0
eαh h2

xx dx− 1
3 (2−α)α

∫ L

0
eαh h4

x dx.

Thus, for α ∈ (0,2), ∫ L

0
eαh(t) dx≤

∫ L

0
eαh(0) dx for all t > 0

and
(2−α)

3 α
3
∫

∞

0

∫ L

0
eαh h4

x dxdt +α
2
∫

∞

0

∫ L

0
eαh h2

xx dxdt ≤
∫ L

0
eαh(0) dx.

With some more effort (see Stein & Winkler [108]) one can see that these terms are bounded
independently of h(0) for large t.
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The positive part h+ = max{0,h} now has much more regularity than the negative part
h− = max{0,h}, so a possible blow up seems to be more likely to −∞ than to +∞. Unfor-
tunately, this regularity is still not sufficient for uniqueness of solutions. It is just below the
critical B0,∞

∞ -regularity. See Section 3.
Nevertheless, this estimate was the key in [120] to prove the existence of global solutions

in dimension d = 2 using a discretization in time as the approximation method.

1.7 Notation

Let us finish the introduction by introducing some notation and properties used throughout
the paper. We denote by ∆per the Laplacian subject to periodic boundary conditions, and by
A=−∆ 2

per the biharmonic operator. Its analytic semigroup is denoted by S(t) = etA for t ≥ 0.
Let D∞ be the space of infinitely differentiable L-periodic functions on R with zero

mean in [0,L]d . Likewise denote by Ck
per the space of L-periodic functions with zero mean

that are k-times continuously differentiable. Define for p ∈ [1,∞]

L p =
{

h ∈ Lp([0,L]d) :
∫
[0,L]d

h(x)dx = 0
}
.

with the standard Lp-norm. Here L 2 is a Hilbert-space with norm and scalar product

‖ f‖2
L 2 =

∫
[0,L]d
| f (x)|2 dx and 〈 f ,g〉L 2 =

∫
[0,L]d

f (x)g(x)dx .

Let (ek)k∈Nd
?

be the orthonormal basis of H = L 2 given by products of the trigonometric
functions sin(2miπxi/L) and cos(2miπxi/L) with m ∈ Nd

? = Nd \ {0}, and let λk be the
eigenvalues of A such that

Aek = λkek.

Notice that λk ∼−|k|4. With a slight abuse of notation, we also denote the complex basis by
(ek)k∈Zd

?
, which is given by the normalized ei2πk·x/L for k ∈ Zd

? = Zd \{0}.
The Sobolev spaces H γ for γ ∈ R are defined as the domains of fractional powers of

−A, which are equivalent to standard Sobolev spaces (up to the zero–mean constraint). See
for example Henry [57], Pazy [83], or Lunardi [75]. Here we use the explicit expansions of
norms in term of Fourier series

H γ =
{

u = ∑
k∈Nd

?

αkek : ‖u‖2
H γ = ∑

k∈Nd
?

α
2
k |λk|γ/2 < ∞

}
.

This is equivalent to saying that H γ consist of all functions h in Hγ

loc(R
d) which are L-

periodic and satisfy
∫
[0,L]d h(x)dx = 0. Furthermore, the standard Hγ([0,L]d)-norm is an

equivalent norm on H γ . We also use the space

W 1,4 := {u ∈H 1 : ‖u‖W 1,4 = ‖u‖L 4 +‖∇u‖L 4 < ∞}.

Note that all usual Sobolev embeddings, such as for d = 1 for example H 1 ⊂C0([0,L]) or
H 2 ⊂W 1,4 still hold. See [99] or [1] for details on Sobolev spaces.

The nonlinearity is throughout the paper denoted by

B(u,v) = ∆(∇u ·∇v) .

This is a bilinear map, which is defined for all u,v ∈ H 1 with values in a H γ with γ

sufficiently negative. We have the following bounds for d = 1,2:
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Lemma 1 If α,β ,γ ≥ 0 and α +β + γ ≥ d/2 (with strict inequality if at least one of the
numbers is equal to d/2), then B maps H 1+α ×H 1+β continuously into H −2−γ . In par-
ticular, there exists c = c(α,β ,γ) such that

‖B(u1,u2)‖H −2−γ ≤ c‖u1‖H 1+α ‖u2‖H 1+β .

Proof Explicit calculation using Fourier series or abstract H δ bounds on products of H α

and H β in the space H −γ [99]. For d = 2 see [18, Lemma A.1] for d = 1 see [19]. ut

The following Lemma is necessary for d = 2 when one argument in B fails to have a gradient.

Lemma 2 Fix dimension d = 2. Let ε ∈ (0,1) and γ > 0. For every α ∈ (0,1) and q > 2
such that 1−α + 2

q < ε ∧ γ , there is a constant c > 0 such that

‖B(u1,u2)‖H −2−γ ≤ c‖u1‖W α,q‖u2‖H 1+ε , for every u1 ∈W α,q and u2 ∈H 1+ε .

Proof Straightforward. See [18, Corollary A.3] or Sobolev space bounds for products of
distributions and regular functions in [99]. ut

Note that the conditions on α , γ , and ε in the Lemma above are sufficient for the results
presented here, but could be relaxed by using the paracontrolled approach.

2 Brief introduction to SPDE

Here we give a brief self-contained introduction to SPDEs treating only the case of additive
noise needed for our model. For details on stochastic partial differential equations (SPDEs)
we refer to [31,25,73,51,85,116], the recent second edition of DaPrato & Zabczyk [32], or
the review article [106].

In a formal way (using ξ = ∂tW and multiplying by dt) we can rewrite (1) as an abstract
stochastic evolution equation

dh = (Ah+B(h,h))dt +dW, (4)

where W is a suitable Q-Wiener process, which we define below. Moreover, we need to give
a rigorous meaning to the formal Equation (4).

Let us remark that for stochastic PDEs on unbounded domains one can use the formu-
lation of Walsh [118], although one has to consider that for space–time white noise both
the stochastic convolution Z(t,x) and its derivative ∇Z(t,x) (if it exists) are unbounded for
|x| → ∞. We avoid these technicalities here, by considering periodic boundary conditions
only.

Let us first give the abstract definition of a Q-Wiener process W and later give an ex-
plicit representation in terms of Fourier series. Fix for the whole paper a probability space
(Ω ,A ,P).

Definition 1 (Q-Wiener process) Given a symmetric, non-negative, and continuous op-
erator Q on H , we call a H -valued stochastic process {W (t)}t≥0 a Q-Wiener process,
if

– W (0) = 0 (P-almost sure)

– W has (P-almost sure) continuous trajectories (or paths):
{
[0,∞) → H

t 7→ W (t)
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– The increments of W are stochastically independent, i.e. the random variables

W (t1), W (t2)−W (t1), . . . , W (tn)−W (tn−1)

are independent for any choice of n ∈ N and 0≤ t1 ≤ t2 ≤ . . .≤ tn
– The increments are Gaussian with W (t)−W (s)∼N (0,(t− s)Q) for all 0≤ s≤ t

Note that in case H =R the covariance operator Q = 1 is just a number, and the Wiener
process is a real-valued standard Brownian motion. See [101,79,63] for properties.

In the definition above we used the notation X ∼ N (0,Σ) for a H -valued random
variable X and a non-negative symmetric operator Σ on H , which means that for all test-
functions ϕ in H the real-valued random variable 〈X ,ϕ〉 is Gaussian (i.e. normal) dis-
tributed with

expectation E〈X ,ϕ〉= 0 and variance E〈X ,ϕ〉2 = 〈Σϕ,ϕ〉 .

Moreover, we have the covariance

E〈X ,ϕ〉〈X ,ψ〉= 〈Σϕ,ψ〉 for all ϕ,ψ ∈H .

In the following we will always consider Q : L 2 → L 2 to be a bounded symmetric
linear operator such that

Qek = α
2
k ek, k ∈ Nd

? ,

so that Q is non-negative. This is sufficient to model all kinds of spatially homogeneous
Gaussian noise ξ = ∂tW such that formally

Eξ (t,x) = 0 and Eξ (t,x)ξ (s,y) = δ (t− s)q(x− y) ,

where q is the the spatial correlation function (or distribution). Now Q = q?, which is the
convolution operator with q. For details see [8], the references therein, and also [32, Sec.
4.15].

Note that mass-conservation is already built into the model of the noise by the choice of
H .

Remark 3 A Wiener process is not uniquely defined. From the definition it is easy to check,
that it exhibits self-similarity and shift invariance:

– δ{W (δ−2t)}t≥0 is a Q-Wiener process for all δ > 0.
– {W (t + s)−W (s)}t≥0 is a Q-Wiener process for all s > 0.

We call an I-Wiener process a standard cylindrical Wiener-process. Obviously, this exists
only in a generalized sense, as W (t) 6∈H . This follows from the fact that for any Q-Wiener
process a direct calculation shows E‖W (t)‖2 = trace(Q), together with Fernique’s theorem
([32, Sec. 2.21]) stating that H -valued Gaussian random variables have all and especially
second moments.

For a cylindrical Wiener process, one can show from the definition that for any or-
thonormal basis { fk}k∈N of smooth functions the random variables 〈W (·), fk〉 are a family
Brownian motions. Additionally, one can show that they are stochastically independent [32,
Prop. 4.3]. Moreover,

〈W (t),ϕ〉=
∞

∑
k=1
〈W (t), fk〉〈ϕ, fk〉

is a well defined real-valued Gaussian with mean 0 variance ‖ϕ‖2 and covariance 〈ϕ,ψ〉.
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Example 1 For a sequence of independent identically distributed (i.i.d.) standard Brown-
ian motions {βk}k∈N, an orthonormal basis { fk}k∈N of H , and {αk}k∈N ⊂ R such that
∑k∈N α2

k < ∞ define
W (t) = ∑

k∈N
αkβk(t) fk .

Then W is a Q-Wiener process with Qek = α2
k fk.

Conversely, any Q-Wiener process can be written in this series expansion [32, Prop. 4.3],
where fk is an orthonormal basis of eigenfunctions of Q with corresponding eigenvalues αk.
Moreover, if the αk are only bounded, we obtain a cylindrical Wiener process.

Remark 4 One could assume in the Definition that the Wiener-process is Hölder continuous
in time for any exponent below 1

2 , but we do not need this here.

2.1 Regularity of the stochastic convolution

We consider a standard cylindrical Wiener process and expand it with respect to the eigen-
functions {ek}k∈Nd

?
, taking into account the mass-conservation, i.e. for a family of i.i.d.

standard Brownian motions {βk}k∈Nd
?

we have

W (t) = ∑
k∈Nd

?

βk(t)ek . (5)

Define the corresponding Ornstein-Uhlenbeck process for t > 0 as the following Itō-integral:

Z(t) =
∫ t

0
e(t−s)A dW = ∑

k∈N

∫ t

0
e(t−s)λk dβk(t)ek . (6)

This can be defined path-wise without Itō-calculus using the integration by parts formula:

Z(t) =W (t)+A
∫ t

0
e(t−s)A W (s)ds .

Note that Z solves formally

∂tZ +∆
2Z = ∂tW with Z(0) = 0 .

Let us first show that Z is not too regular in space:

Lemma 3 For every t > 0,
E[‖Z(t)‖2

H 2−d/2 ] = ∞

and Z 6∈H 2−d/2 for all times, almost surely.

Proof Using the explicit representation of Z in Fourier series and Itō-isometry, yields

E[‖Z(t)‖2
H 2−d/2 ] = ∑

k∈Nd
?

|k|4−d
∫ t

0
e2λk(t−s) ds≤C ∑

k∈Nd
?

1
2|k|d

(1− e2λkt) = ∞ .

The almost sure statement follows from Gaussianity. See for example [20, Theorem 2.5.5].
The key point is due to Fernique’s theorem: The probability of Z being in a given Banach
space is positive if and only if Z has some exponential moments in this space. ut
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Lemma 3 above shows for example that for d = 2 the gradient of Z is not defined as a
function. On the other hand, Z has a “fractional” derivative of all orders smaller than 2−d/2
not only in L2 but also in all Lp.

Proposition 1 For every p≥ 1 and s ∈ (0,2−d/2),

sup
t>0

E
[
‖Z(t)‖p

W s,p
]
< ∞.

Proof We rely on the explicit representation of the norm [99, Subsec. 2.2.4 & 2.4.4] for
s ∈ (0,1). For d = 1 and s ∈ (1, 3

2 ) we need to consider the regularity of ∂xZ(t) in W s,p.

‖z‖p
W s,p = ‖z‖p

L p +
∫
[0,L]d

∫
[0,L]d

|z(x)− z(y)|p

|x− y|d+sp dx dy .

Use the Fourier representation of Z with Zk = 〈Z,ek〉 to get,

E[|Z(t,x)−Z(t,y)|2]≤ c ∑
k∈Nd

?

E[|Zk(t)|2]|ek(x)− ek(y)|2 ≤ c ∑
k∈Nd

?

1∧|k · (x− y)|2

|k|4

Now for any γ ∈ (s,min{1,2−d/2}) we find a constant such that

E[|Z(t,x)−Z(t,y)|2]≤ c ∑
k∈Nd

?

|k|2γ−4|x− y|2γ ≤C|x− y|2γ

By Gaussianity, for every p≥ 1, E[|Z(t,x)−Z(t,y)|p]≤ cp|x− y|pγ . Therefore,

E
[∫∫ |Z(t,x)−Z(t,y)|p

|x− y|2+sp dxdy
]
≤C

∫∫
|x− y|−d+p(γ−s) dxdy < ∞.

The missing cases and the L p-norm are bounded in a similar way. ut

Remark 5 (Continuity in time) The regularity in time from the previous proposition is only
Lp, but we can improve this, with standard arguments, to L∞ (using the factorization method)
or even Hölder continuity (using also fractional norms in time). For details we refer to the
methods introduced in [31], see for example [28].

2.2 Mild formulation

As solutions of SPDEs are usually not regular enough to give a meaning to (4), the solution
is interpreted in some weaker sense. One possibility is the mild formulation given by the
variation of constants formula:

Definition 2 (Mild Solution) We call a continuous stochastic process h ∈C0([0,τ∗),H ζ )
for some almost sure positive stopping time τ∗ > 0 a mild solution of (4) with initial condi-
tion h0 if

h(t) = etA h0 +
∫ t

0
e(t−s)A B(h(s),h(s))ds+Z(t)

for all t ∈ (0,τ∗) P-almost surely.
We call a mild solution (strongly) unique, if for a given h0 and fixed process Z any two

mild solutions coincide up to the minimum of their stopping times.
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Now the main problem in this setting is to determine the regularity of Z, which can be
read in terms of the covariance of the driving noise. Once we know this, we can solve the
equation using Banach’s fixed point argument.

Clearly mild solutions can be defined on different spaces than C0([0,τ∗),H ζ ), espe-
cially with weaker regularity at t = 0. The definition given above can be easily modified for
these different settings without serious difficulties, so we will not provide further details and
will keep using the notion of “mild solution”.

2.3 Weak formulation

Another concept of solutions is the weak formulation, where (4) is integrated against smooth
functions. Recall first the following result, an easy consequence of the Poincaré inequality,
which ensures that all integrals in (7) are well defined.

Lemma 4 If u is a distribution on Rd such that ∇u∈L2
loc([0,∞),L 2), then u∈L2

loc([0,∞),L 2)
and thus u ∈ L2

loc([0,∞),H 1).

A weak solution for (1) with initial condition h0 ∈ L 1 is any distribution h with locally
square integrable gradient ∇h ∈ L2

loc([0,∞),L 2) such that for every smooth function φ ,
which is compactly supported in time and L-periodic in space, i.e. φ ∈C∞

c ([0,∞),D∞),

∫
∞

0

∫
[0,L]d

h(t,x)∂tφ(t,x)dxdt

−
∫

∞

0

∫
[0,L]d

[h(t,x)∆ 2
φ(t,x)+ |∇h(t,x)|2∆φ(t,x)]dxdt

=−
∫
[0,L]d

h0(x)φ(0,x)dx+
∫

∞

0

∫
[0,L]d

W (t,x)∂tφ dxdt . (7)

Lemma 4 ensures that all terms in the formula above are well defined. Moreover, the solution
is only defined up to constants.

There are many other definitions of a weak solution imposing additional regularity or
using test-functions only in space as in the following Proposition.

Proposition 2 (mild implies weak) Assume Z is well defined in H . Let h be a mild solution
in H as in Definition 2 with 〈B(u,u),ϕ〉 ∈ L1([0,τ?]) for all ϕ ∈ D(A), then u is a weak
solution. This means that for any ϕ ∈ D(A) we have

〈h(t)−h0−W (t),ϕ〉H =
∫ t

0
〈h(s),Aϕ〉+ 〈B(h(s),h(s)),ϕ〉ds

Proof (Idea of Proof) The key idea of proof is to note that 〈etA u,Aϕ〉 = ∂t〈etA u,ϕ〉. Then
one needs to check that due to the additional regularity assumption all terms are well-defined
and one can integrate by parts. ut

We remark, that the mild formulation in Proposition 2 is not the same as in (7), but one
can derive (7) by considering first elementary step functions with values in C∞

per([0,L]
d) and

then approximate φ .
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2.4 Transformation to a random PDE

Indeed, using the standard method of looking at the difference v= h−Z between the solution
and the stochastic convolution, the stochastic PDE can be transformed into a random PDE.

∂tv = Av+B(v,v)+2B(v,Z)+B(Z,Z) . (8)

If the stochastic convolution Z is sufficiently regular, then for each instance of chance the
path-wise solvability for the SPDE is completely analogous to the deterministic results and
one only needs to consider the two additional lower order terms B(v,Z) and B(Z,Z).

This covers many examples like our equation with d = 1, but for the surface growth
equation in d = 2 the OU-process Z is no longer regular enough to define B(Z,Z). Moreover,
we need more regularity of v, in order to define the product of ∇v with the distribution ∇Z
in B(Z,Z). See Section 4.

3 Local Uniqueness

In this section, following the technique introduced in the remarkable paper by Koch & Tataru
[65] on the Navier–Stokes equations, we review the results of [17] on local existence and
uniqueness of solutions with initial data in the largest possible critical space where weak
solutions make sense. This space contains all previous spaces where analogous results were
proved. Let us remark that the same method has been applied to other fourth order problems
[66,119].

Our main motivation to study (1) in the largest possible space actually comes from the
stochastically perturbed equation, where, due to noise, solutions are not regular enough, and
we intend to use as least regularity as possible. However, for dimension d = 2 this approach
does not work. We comment later in Section 4 on this. In view of the transformation of
Section 2.4 we consider first only the deterministic equation, and add sufficiently smooth
noise later. Thus consider

∂th = Ah+B(h,h) , h(0) = h0 . (9)

At least for dimension d ≤ 3 the largest critical space of initial conditions introduced by
Koch & Tataru is in our setting equivalent to the homogeneous Besov space Ḃ0,∞

∞ . This space
is much simpler to work with, and it simplifies the results on existence and uniqueness.
Moreover, we see in Section 3.6 that all such solutions are smooth in the space and time
variable for t > 0.

Remark 6 (Smooth initial conditions) For regular initial conditions, for example in H 1 for
d = 1, standard arguments using a fixed point theorem in C0([0,T ],H 1) assure uniqueness
of local solutions. Moreover, one can continue the solution in H 1 until the norm blows up
in that space. One can also verify that small initial conditions lead to the global existence of
a small smooth solution for all times. Here we can go below that regularity for uniqueness
of solutions. But we are still far from being able to prove uniqueness of global solutions in
the general case, as they are bounded for d = 1 only in L 2.

Let us remark that global existence and uniqueness for small initial conditions was also
established in [91] for multiplicative noise, at least with high probability.
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3.1 Notion of critical spaces

An account on the scaling heuristic for the Navier-Stokes equations can be found for ex-
ample in Cannone [22], such arguments are the basis of the celebrated result on partial
regularity of Caffarelli, Kohn, & Nirenberg [21].

The rationale behind the method is the following. First, notice that (9) is on the whole
Rd invariant under the scaling transformation

h(t,x)−→ hλ (t,x) = h(λ 4t,λx). (10)

If X is a functional space for h (for example L∞(0,∞;L2(Rd)) or time-independent like
H1(Rd)), we can consider how the norm of X scales with respect to the transformation (10)
above. If

‖hλ‖X = λ
−α‖h‖X ,

then we can distinguish the three cases:

α < 0, sub-critical – α = 0, critical – α > 0, super-critical.

The super–critical case corresponds to small-scales behaviour and is related to low regular-
ity, typically to topologies where possibly existence of weak solutions can be proved, but no
regularity or uniqueness. In the super–critical case we can think of the nonlinearity of the
problem as a non–negligible perturbation of the linear equation.

In the sub–critical case with sufficiently high regularity, it is possible to give good
bounds on the nonlinearity and thus proceed with a fixed-point argument yielding unique-
ness and existence at least locally. This is due to the fact that in this regime the nonlinearity
of the problem is a perturbation of order smaller than the order of the linear part.

Due to scaling we can decrease the size of the initial conditions in the sub-critical case,
thus we can rely on a result of the type: Small data implies global existence. Hence, the
critical cases are the most interesting ones.

Consider spaces X (depending on the space variable) and YT (depending on both vari-
ables, with t up to T > 0), then in order to have a regularity criterion based on YT , the
following statements must hold,

1. there is a unique local solution for every initial condition in X ,
2. the unique local solution we have found is regular, and
3. the unique local solution can be continued up to time T , as long as its norm in YT stays

bounded.

The above analysis has been extensively carried out in numerous papers for the three di-
mensional Navier-Stokes equations (see for examples references in Cannone [22]). The first
paper dealing with such aims were Prodi [86] and Serrin [103], see also Beale, Kato &
Majda [7].

We want to point out though that the scaling heuristic is an oversimplification where
we look at the nonlinearity of the problem only in terms of its size. Tao [113] for instance
considers a large class of problems that “look like” the Navier–Stokes equations in terms of
their scaling and their continuity properties, and that develop singularities in finite time. On
the other hand Barbato et al. [4] show global existence and uniqueness in the super–critical
regime for the viscous dyadic Navier Stokes model. We finally notice, see [112,5,6], that at
the critical level one can still allow for a super–critical logarithmic correction.
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3.2 Setting

As outlined in the previous section, the interesting norms are the critical ones that do not
change under rescaling. Thus we consider our periodic solutions extended to Rd and use the
scaling invariant version (under (10)) of the L2

loc-space for the gradient ∇h, defined by the
following norm:

‖h‖X 0 :=
(

sup
x∈Rd ,R>0

{ 1
Rd+2

∫ R4

0

∫
BR(x)
|∇h|2 dydt

}) 1
2
.

This definition follows the ideas of [65] and is the largest critical space in which weak
solutions still are defined, as we need a locally square integrable gradient, in order to have
the weak formulation in (7) defined. Our first aim is to state a simpler representation of the
bi-caloric extension (see below) in this space.

Define therefore the linear space X of functions such that

‖k‖X = sup
t>0

{
t

1
4 ‖∇k(t)‖∞

}
< ∞.

A local in time version of this space can be defined for any R > 0 by

‖k‖XR := sup
t≤R4

(
t

1
4 ‖∇k(t)‖∞

)
.

Note that we always identify functions that differ only by a constant. This is motivated by
the fact that the equation is mass-conservative.

For an L-periodic function, we denote etA k as the bi-caloric extension of k. Note that the
semigroup extended on the whole Rd is also given by the convolution with the Greens func-
tion G(t,x), which has the Fourier transform (with respect to the space variable) Ĝ(t,ξ ) =
et|ξ |4 .

Denote by B the homogeneous Besov space Ḃ0,∞
∞ , where the dot denotes mass-conservation.

We use an equivalent norm on B given by the bi-caloric extension

‖k‖B := ‖etA k‖X .

See for instance [69] for a characterization of Besov spaces in terms of heat kernels. Here we
use the bi-Laplace operator A, which changes the scaling. We define similarly local versions
BR.

The following proposition shows that the space B is actually equivalent to the caloric
extension in the scale-invariant space X 0.

Proposition 3 (Proposition 2.2. of [17]) Assume d ≤ 3. Then etA k ∈ X 0 if and only if
k ∈B and the norm in B is equivalent to the norm defined by the bi-caloric extension in
X 0.

This means, that there are constants c1, c2 > 0 such that

c1‖k‖B ≤ ‖etA k‖X 0 ≤ c2‖k‖B . (11)

Proof (Idea of Proof) The key point is to prove (11). The inequality on the right holds in any
dimension d ≥ 1 since it is straightforward to check that ‖ · ‖X 0 is bounded by ‖ · ‖X . For
the inequality on the left, one can use the explicit representation of the semigroup in terms of
the Greens function. Moreover, by scaling and translations invariance, it is sufficient to show
a bound on t

1
4 (∇etA k)(x) for t = 1 and x = 0, only. This is then technically quite involved.

For details see [17, p. 369]. ut
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3.3 Examples

The Besov space B is well understood, it contains for example the space BMO of functions
of bounded mean oscillations. In view of the fixed point argument of Theorem 1 we wish to
recall the discussion of [17], that is for which initial conditions it is possible to find R > 0
such that the initial condition is small in the BR norm. For this aim define

Z = {k : Rd → R : ‖k‖BR → 0 as R ↓ 0}.

Functions in Z correspond to initial conditions where it is possible to solve the (9) locally in
BR. In this section we give a few examples of subspaces of Z . Then we show that bounded
functions in L∞(Rd), although contained in B, are not contained in Z . Hence the method
of proof for local uniqueness presented here fails for initial conditions in L∞(Rd) with large
norm.

Lemma 5 The following statements hold,

– if k : Rd → R is bounded and uniformly continuous, then k ∈Z , i.e. the periodic exten-
sion of the space D∞ is in Z

– if k : Rd → R has bounded gradient on Rd , then k ∈Z ,
– the periodic extension of H d/2 is in Z .

The proof of this Lemma is established by direct calculations using the representation of the
norms and the Greens function. See Lemma 3.1 of [17] for more details.

In the following we only give an example on the whole Rd , but it is easy to extend this
to the periodic case. Since the Green’s function tensorizes, it is enough to find examples for
d = 1.

Example 2 There are functions in L∞(Rd) not belonging to Z . Define k(x) = 1[−1,1](x),
then using the Green’s function one can show ‖k‖BR ≥ G(1,0)> 0.

Example 3 The space Z contains unbounded functions, which are not in B. Define for α >

0, kα(x) = |x|α . Now one can show ‖t 1
4 ∂x(etA kα)‖∞ = t

α
4 ‖∂x(eA kα)‖∞. Hence, ‖kα‖BR→ 0

for R→ 0 but ‖kα‖B = ∞.

Example 4 Consider the case d = 1, then k(x) = log(|x|) is (pointwise, away from the pole)
a stationary solution for problem (9). See Remark 14 or [16] for more examples like the
periodic log(sin(x)). Nevertheless, this function is neither a weak nor a mild solution, as ∇k
is not locally square summable.

Now it is possible to show that k ∈B but k 6∈Z , as ‖k‖B is finite, but ‖k‖BR is inde-
pendent of R and does not converge to 0. For this one needs to verify by using the properties
of the Greens function that ‖t 1

4 (∂x etA k)‖∞ = ‖∂x eA k‖∞.

3.4 Remark on non-uniqueness in dimension 4

Example 4 becomes more interesting if one turns to higher dimension. Let k(x) =αd log(|x|)
for x ∈ Rd with αd ∈ R. As in Example 4 k ∈B, but k 6∈Z . The function k is not a weak
solution for d = 2 and all αd 6= 0. But as the weak derivative ∇k ∈ L2

loc in dimension d ≥ 3,
it is straightforward to check explicitly that both the weak formulation (7) and the mild
formulation are satisfied with αd = 2−d.
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A special case is dimension d = 4, where k is a stationary weak solution for any αd ∈R.
But in that case the B-norm of k can be made arbitrarily small with αd → 0, and thus by
Theorem 1 and results in Section 3.6 below there is also a smooth mild solution starting at
k.

In conclusion this example shows the non-uniqueness and lack of smoothness of mild
solutions, at least in dimension d = 4. Nevertheless there is no contradiction with our The-
orem 1, since this states uniqueness in X but k 6∈X , if considered as a function of time.

3.5 The fixed point argument

Define the map

V (h,k)(t) =−
∫ t

0
∆ e(t−s)A

∇h(s) ·∇k(s)ds =
∫ t

0
e(t−s)A B(h(s),k(s))ds .

Here we use the slightly modified concept of a mild solution. The main difference is that in
contrast to Definition 2, we do not assume continuity in t. This needs to be established in an
additional step.

Definition 3 We say that h ∈X solves (9) with initial condition h0 ∈B, if for all t > 0

h(t) = etA h0 +V (h,h)(t) . (12)

We call h ∈XR a local mild solution, if (12) holds only on t ∈ [0,R4] for some R > 0.

The following Lemma is crucial for the proof of uniqueness and existence. It verifies that
the nonlinear part is locally Lipschitz continuous both in X and XR.

Lemma 6 The map V is bi-linear and continuous from X ×X to X and from XR×XR
to XR, for all R > 0 such that

‖V (h,k)‖X ≤ c4‖k‖X ‖h‖X and ‖V (h,k)‖XR ≤ c4‖k‖XR‖h‖XR .

Proof (Idea of proof) The bilinearity is obvious by the bilinearity of B. For the boundedness
one uses ‖∇h ·∇k‖∞ ≤ t−1/2‖k‖X ‖h‖X together with an L∞ bound on ∆ etA given by an
explicit calculation in terms of the Greens-function. For more details see [17, Lemma 4.2].

ut

Using the previous Lemma, we can now state and prove our main result [17, Theorem 4.3]
on global existence and local existence of unique solutions. Recall that ‖h0‖BR → 0 is true
for R→ 0 for all h0 ∈Z .

Theorem 1 For any d ≥ 1. Fix 0 < δ < 1/4c4, with c4 from Lemma 6.
If ‖h0‖B ≤ δ , then there exists a unique (global) solution in X of (9).
Moreover, if ‖h0‖BR ≤ δ , then there is a unique local solution in XR of (9) on [0,R4].
Finally, if h0 is periodic and satisfies one of the bounds above, then the solution is also
periodic.
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Proof The proof is based on a standard fixed point iteration argument. Choose K such that

1−
√

1−4c4δ ≤ 2c4K < 1 .

Define the iteration
H0 = 0, Hn+1 = etA h0 +V (Hn,Hn),

then ‖H1‖X = ‖h0‖B ≤ δ . Now by Lemma 6 ‖Hn+1‖X ≤ δ +c4‖Hn‖2
X . Thus by induction

and the choice of δ and K, it follows that ‖Hn‖X ≤ K for all n. Then

‖Hn+1−Hn‖X = ‖B(Hn,Hn)−B(Hn−1,Hn−1)‖X ≤ 2c4K‖Hn−Hn−1‖X

and so (Hn)n∈N is convergent in X to a fixed point of (12).
The same proof works for local spaces, since all constants do not depend on R. The final

statement of periodicity follows by translation invariance of (9) and uniqueness. ut

Remark 7 We remark without proof, that the solution of Theorem 1 is a mild solution in the
sense of Definition 2 in the space B. But the uniqueness is only verified in X or XR.

3.6 Remark on smoothness of solutions

In this section we state without proof the result that solutions granted by Theorem 1 are
smooth in space and time for t > 0. One approach is to follow the same methods of [48] and
use for m≥ 1 the space

X m = {k : Rd → R : ‖k‖X m := max
0≤ j≤m

‖k‖X , j < ∞},

with the corresponding local version X m
R . Here the norm is

‖k‖X ,m := sup
t>0

{
t

m+1
4 ∑
|α|=m+1

‖Dα k‖∞

}
where ‖·‖XR,m is the corresponding local version, with α =(α1, . . . ,αd) and Dα = ∂

α1
x1 . . .∂

αd
xd

and |α|= α1 + · · ·+αd .
In order to go to higher regularity we repeat inductively the fixed-point argument in the

space X m or X m
R to obtain the following proposition.

Proposition 4 (Proposition 6.3 of [17]) There exists δ > 0 such that if ‖h0‖B < δ (or
‖h0‖BR < δ ), then the solution to (9) granted by Theorem 1 is in X m (or X m

R ) for all
m≥ 1.

An immediate corollary is the following result on smoothness in space. Smoothness in
time then follows from the PDE by a standard bootstrapping argument.

Corollary 1 Let h be a solution of (9) in XR, with 0 < R≤ ∞. Then h(t) ∈C∞
b (R

d) for all
t ∈ (0,R).

Remark 8 A more careful analysis would show that the solutions are analytic in space. We
point out that Koch & Lamm [66] have a more elegant proof of analyticity (in a different
context). An advantage of the method used here is to provide the behaviour at t = 0 of
solutions through the spaces X m and X m

R .
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3.7 Local existence for the stochastic problem

In this section we outline the basic idea of the proof of local existence for the stochastic PDE.
Based on Section 2.4 we consider (8) instead of (9). The two additional terms are on one
hand a linear term B(Z,v) and a forcing term B(Z,Z). Both are random due to the stochastic
convolution Z, but for any fixed realization they are easily included in the deterministic
fixed-point argument of Theorem 1, provided Z is sufficiently regular.

For instance, in the case of bounded intervals (i.e. d = 1) with periodic boundary condi-
tions and space–time white noise, we have that the stochastic convolution Z and its deriva-
tive ∂xZ are continuous in both space and time. Compare to Proposition 1 for the spatial
regularity and Remark 5 for time regularity.

Thus we can conclude that almost surely ‖Z‖XR → 0 for R→ 0. Hence the equation can
be uniquely solved in XR, for a random R > 0.

An interesting question appears in the case of periodic boundary conditions and d = 2,
since for space-time white noise the convolution Z just fails to be differentiable in space (see
Proposition 3), and thus all results of this section are not applicable. In the next section we
give details how to attack this problem.

Let us finally remark that for d = 2 the stochastic convolution Z will be differentiable if
we consider slightly more regular noise. In that case all the machinery of this section again
applies.

4 Rough Noise - Not enough Regularity

In this section we address the problem of proving the existence of local solutions for (1) in
dimension d = 2 where the regularity of solutions is too weak for the non–linear term. Fix
for the whole section for simplicity of presentation L = 2π .

We follow an approach similar to the one used in [29] for a similar singular two-
dimensional problem with space-time white noise. Recently, there is a high interest in the
analysis of non-linear PDEs that, like the one presented here, are forced by rough noise so
that the non-linear term in principle is not well-defined. The meaning of the non-linearity
is then recovered through probability. We refer to [52,54]. Two recent papers [50,53] have
proposed general and powerful methods that would both apply to our equation (1) as well
as to more difficult problems, where for instance the re–normalized infinite constant shows
up in the equation. See also [121,47,55].

The method we use here, based on Fourier expansion, works very well for our problem
(1) and we believe it is, at least for this problem, neat and simple. It illustrates already the
key problems one is facing.

The idea is to decompose the solution in a rough part having the low regularity dictated
by the forcing and a remainder, slightly smoother. The non–linearity for the rough term is
then defined as the limit of cut–offs via spectral Galerkin methods, thanks to the underlying
Gaussian nature of the processes involved. This, roughly speaking, corresponds to a re–
normalization of the non–linearity, but here without any additional term, due to the fact that
the Laplace in front of the gradient squared kills an infinite renormalization-constant, that
would appear, as in KPZ [52], to compensate the divergence in the non–linearity.

The method works even for rougher noise at the price of a lower level of regularity. For
even rougher noise the remainder fails to be regular enough, and then we need an additional
term in the expansion of the solution, which would then lead to the method proposed in [50].
Here many terms are added in the expansion, and we discuss briefly on this in Section 4.4.
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Also the theory of regularity structures [53] uses a kind of Taylor expansion in terms of
singular, noise dependent, terms and more regular parts, but this is on a level of greater
generality.

4.1 Setting and main result

Here we use again the standard transformation h = Z + v (cf. Section 2.4). We already saw
that the stochastic convolution Z is continuous in space and time, but it fails to have a deriva-
tive.

Since it turns out that v is regular enough, the mixed product B(v,Z) is well defined
(cf. Lemma 2), by standard Sobolev theory, and we do not need to define this using the
paracontrolled theory of [50], which allows to define the product for less regular functions.
In the abstract theory of regularity structures these products are always defined.

The problems here originate only from the “squared distribution” |∇Z|2 in B(Z,Z). Once
this term is properly defined as a limit of spectral approximations, for instance, we can work
out a fixed point argument similar to [45] (see also [16] or Section 3).

In conclusion a mild solution h of (1) is in this section a random process such that
v = h−Z is a solution of

v(t) = S(t)h0 +
∫ t

0
S(t− s)B(v,v)ds+

∫ t

0
S(t− s)

(
B̃(Z,Z)+2B(Z,v)

)
ds, (13)

where B̃(Z,Z) is the suitably modified product.
As in Section 3 we introduce time-weighted spaces, but now we use a Hilbert-space

setting, in order to say more about norms of Fourier-series expansions of B(Z,Z), which is
not that easy in the space X . Similar arguments are also possible in a Besov-space setting,
but for simplicity of presentation, we restrict ourselves to the Hilbert-space setting only.

Given ρ > 0, ε > 0 and T > 0, define

‖u‖ε,T := sup
t≤T

t
ε
4 ‖u(t)‖H1+ε .

We will find a solution of (13) by means of a fixed point argument for suitable ρ and T in
the space

X (ε,ρ,T ) := {v ∈C([0,T ];L 2) : ‖v‖ε,T ≤ ρ} .

Theorem 2 Let h0 ∈H 1 and ε ∈ (0, 1
2 ). There exist a stopping time τh0 and a solution

h of the mild formulation (cf. (13)) defined on [0,τh0), such that h ∈ C([0,τh0);L
2) and

h−Z ∈C((0,τh0);H
1+ε). Moreover, P[τh0 > 0] = 1.

We will not give a detailed proof of this theorem, as it is in principle very similar to the
proof in Section 3.5). Again the additional terms do not cause problems, provided they are
sufficiently regular. For details see [18, Theorem 2.10]. For the mixed term we use Lemma 2
and the square of the Gaussian is defined in the next section.

Note that solutions are unique up to the minimum of both their stopping times in the
space X (ε,ρ,T ). Moreover, by standard methods one can continue uniquely the solution
as continuous H 1+ε -valued solutions, until they blow up.

Remark 9 With some effort one can show that v is as regular as
∫ t

0 S(t− s)B̃(Z,Z)ds. Here
it is sufficiently regular to proceed with the fixed-point argument. If this is not the case, then
additional expansions will be necessary (see Section 4.4).
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If this integral fails to be more regular than Z alone, which might be the case for very
rough noise or higher dimension, then there seems to be no way this method or any other
like [50] or even regularity structures will work.

4.2 Additional regularity for powers of Gaussian

Here we discuss the key point in all the theory, which is the definition of the nonlinearity
evaluated at Gaussian random variables that are not regular enough. The stochastic convo-
lution Z can be expanded in the complex Fourier basis (see (6)),

Z(t) = ∑
k∈Z2

?

zk(t)ek, zk(t) =
∫ t

0
e−|k|

4(t−s) dβk(s),

where βk = 〈W (t),ek〉, β−k = β̄k, and (βk)k∈Z2
+

is a sequence of independent complex–
valued standard Brownian motions.

We saw in Lemma 3 that Z is not sufficiently regular to define the non-linear term. But
it turns out that, suitably defined, the term B(Z,Z) does make sense.

If u=∑k∈Z2 ukek and v=∑k∈Z2 vkek are real valued, the non-linear term can be formally
written in terms of the Fourier coefficients as

B(u,v) = ∑
k∈Z2

?

|k|2
(

∑
m+n=k

m ·n umvn

)
ek.

Consider the stochastic convolution Z and set for every k ∈ Z2,

Jk(t) = ∑
m+n=k

m ·n zm(t)zn(t). (14)

Formally, B(Z,Z) = ∑k |k|2Jkek, but Lemma 3 immediately tells us that

J0(t) =−‖∇Z(t)‖2
L2 = ∞ almost surely.

Likewise, we obtain, that the series in (14) is not absolutely convergent.
Following [29], we resum the terms Jk(t) in a suitable way, in order to rely on cancella-

tions, based on the fact that the zm are centred Gaussians. The term J0(t) should at first sight
be the most problematic, since there is no hope to exploit any cancellation. But it is constant
in space and thus cancelled by the Laplacian.

Given N ≥ 1, let HN be the linear sub–space of L 2 spanned by (ek)0<|k|≤N . Let πN be
the projection of L 2 onto HN and define

BN(u,v) = B(πNu,πNv).

We define the operator B̃(Z,Z) as the limit of the sequence (BN(Z,Z))N≥1.

Lemma 7 The approximation (BN(Z,Z))N≥1 γ > 0. Thus the limit B̃(Z,Z) is almost-surely
well-defined as an element of H −2−γ .

As the cancellation property used in this proof is essential for the whole theory, we repeat
the proof of [18, Lemma 3.4].
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Proof Let JN
k be the term analogous to Jk for the projection πNZ. If N ≤ N′, then

E[|JN
k (t)− JN′

k (t)|2] =
N↔N′

∑
m1+n1=k

N↔N′

∑
m2+n2=k

m1 ·n1 m2 ·n2E[zm1 zn1 z̄m2 z̄n2 ] ,

where by the symbol N ↔ N′ in the sum over m,n we mean that the sum is extended only
over those indices m,n that satisfy N < |m|∨ |n| ≤ N′.

The sequence (zm)m∈Z2
+

is a family of independent centred Gaussian random variables.
Moreover z̄m = z−m. Using that odd moments of Gaussians are zero we can show that

E[zm1 zn1 z̄m2 z̄n2 ] 6= 0
{

only if m1 = m2 and n1 = n2,
or if m1 = n2 and m2 = n1 .

Therefore,

E[|JN
k (t)− JN′

k (t)|2] = 2
N↔N′

∑
m+n=k

(m ·n)2E[|zm|2|zn|2]≤

≤ c
N↔N′

∑
m+n=k

(m ·n)2

|m|4|n|4
(1− e−2|m|4t)(1− e−2|n|4t)≤ c

N↔N′

∑
m+n=k

1
|m|2|n|2

.

The last series above can be estimated explicitly (see for example [19, Lemma 2.3] for
details). Indeed since |m|∨ |n| ≥ N,

N↔N′

∑
m+n=k

1
|m|2|n|2

≤ 2
Nγ

N↔N′

∑
m+n=k
|n|≤|m|

1
|m|2−γ |n|2

≤ 2
Nγ

N↔N′

∑
m+n=k

1
|m|2−γ |n|2

≤ c
Nγ |k|2−γ

.

In conclusion,

E[‖B̃N(z,z)− B̃N′(z,z)‖2
H−2−γ ] = ∑

k∈Z2
?

|k|−2γE[|JN
k − JN′

k |2]≤
c

Nγ ∑
k∈Z2

?

1
|k|2+γ

,

and the term on the right hand side converges to zero as N,N′→ ∞. ut

We shall need higher moments of B̃(z,z) for our considerations on the non-linear prob-
lem. We shall derive the claim from hyper-contractivity of Gaussian measures [82,105]. For
Gaussian random variables it is well-known that all their moments are bounded by the sec-
ond. By hyper-contractivity (Nelsons theorem) the same statements extends to polynomials
of Gaussian random variables.

Proposition 5 Given γ > 0 and p > 1,

sup
t>0

E
[
‖B̃(Z(t),Z(t))‖p

H −2−γ

]
< ∞ .

From this result we obtain that B̃(Z,Z) ∈ Lp(0,T,H −2−γ) for all p > 1. Higher regularity
in time like continuity is possible, but not necessary for the fixed point argument.
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Proof For the second moment we can proceed as in the previous lemma,

E[|JN
k |2] = ∑

m+n=k
|m|,|n|≤N

(m ·n)2E[|zm|2|zn|2]≤ c ∑
m+n=k

1
|m|2|n|2

≤ c
|k|2

log(1+ |k|) .

And thus

E
[
‖BN(z(t),z(t))‖2

H−2−γ

]
≤∑

k
|k|−2γE[|JN

k |2]≤ c∑
k

log(1+ |k|)
|k|2+2γ

< ∞ .

To prove that all higher moments are finite, as outlined before we can rely on Theorem I.22
of [105]. We skip the proof here. ut

4.3 Other regularizations

Here we consider one regularizing method different from the spectral Galerkin method used
to define B̃(Z,Z). In principle all approximations may lead to a different renormalization B̃,
but it turns out that in numerous cases they are all the same, and thus the solution of the
renormalized problem (13) is always the same. For an abstract result of different regulariza-
tions see [18, Thm. 2.3 & 2.4].

Here we only give one example of such regularizations using a convolution operator.
Consider a regularizing operator ΦN acting on the process Z, or equivalently on W , as the
convolution commutes with the semigroup. In the previous section we discussed the case
ΦN = πN of spectral Galerkin projections.

Example 5 (Convolution operator) Given a non-negative smooth function q with support
contained in a small neighbourhood of the origin and such that

∫
q(x)dx = 1, let qN be the

2π-periodic extension on the flat torus [0,2π]2 of z 7→ q(Nz). Define

ΦN f (x) =
∫
[0,2π]2

N2qN(x− y) f (y)dy

The operators ΦN are self-adjoint and diagonal in the Fourier basis. Denote by φ N
k the eigen-

values of ΦN . These are (up to constant) given by the Fourier coefficients of z 7→ N2q(Nz).
We need some decay condition, in order for ΦN to have a regularizing effect that is

strong enough. Here is is sufficient that |φ N
k | . |k|−η for some η > 0, which is assured by

q ∈ Hη for some η > 0.
In order to have the regularization disappear in the limit, we need φ N

k → 1 as N → ∞.
This can be checked using the fact that q is supported around 0,

qN
k = N2

∫
[−π,π]2

qN(x)e−k(x)dx =
∫
[−π,π]2

q(z)e−k/N(z)dz−→ 1 for N→ ∞ .

4.4 Rougher noise

As it is apparent by the previous sections, space–time white noise is the borderline case be-
tween the standard theory for mild solutions in Section 3.7 and the additional work presented
in Theorem 2.
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Nevertheless, it is possible to consider rougher noise than space-time. In view of the
computations needed to define B̃(Z,Z) (Lemma 7) it is reasonable to consider a simplified
case, namely when the covariance operator of the driving Wiener process is diagonal in the
Fourier basis. This is the somewhat opposite case of Example 5, when we consider kernels
q given by a distribution instead of a function.

Consider a bounded linear operator Φ on L 2 and assume for the rest of this section the
following properties,

– Φ ek = φkek for every k ∈ Z2
?,

– there is β > 0 such that |φk|2 ≤ c|k|β for every k ∈ Z2
?.

The value β = 0 corresponds to noise probably as bad as space-time white noise. More-
over, the definition of B̃(Z,Z) imposes a structural restriction that limits the range of possible
values of β to β < 1. The main problem of β > 1 is that E[|Jk(t)|2] might no longer con-
verge, and our simple renormalization is not good enough to handle this case. Additional
renormalization seems to be necessary.

Consider now the SPDE with rougher noise

dh = (Ah+B(h,h))dt +dΦW , (15)

and the OU-process

Z(t) =
∫ t

0
S(t− s)ΦdW (s) . (16)

The same ideas presented earlier in Section 4, when slightly modified to take into ac-
count the parameter β , lead to the following result. See [18, Theorem 2.9].

Theorem 3 Assume β ∈ (0, 2
3 ) and let h0 ∈H 1 and ε ∈ ( β

2 ,(1−β )∧ 1
2 ).

Given the covariance operator Φ , there exist a stopping time τh0 and a solution h of
(15) understood as h = v+Z with Z from (16), where v satisfies the mild formulation (13)
on [0,τh0). Moreover, h ∈ C([0,τh0);L

2), h− z ∈ C((0,τh0);H
1+ε), and P[τh0 > 0] = 1.

Finally, two such solutions are unique up to the minimum of their stopping time.

It is not obvious, but the restriction β < 2
3 appears due to the term B(v,Z) in the mild for-

mulation (13). When the noise is too rough, the auxiliary function v is not enough regular
to ensure that the product B(v,Z) is well-defined. We could either use the paracontrolled
approach in [50] in order to define the product of two not sufficiently regular functions, or
immediately go to higher terms in the expansions.

To overcome the difficulty for β ∈ [ 2
3 ,1) in the decomposition of h, namely h = u+ζ +

Z, where

ζ (t) =
∫ t

0
S(t− s)B̃(Z(s),Z(s))ds , (17)

and from (13) we see that u = v−ζ is a solution of the mild formulation

u(t) = S(t)h0 +
∫ t

0
S(t− s)[B(u,u)+2B(u,Z)+2B(u,ζ )+2B̃(ζ ,Z)+ B̃(ζ ,ζ )]ds . (18)

We now hope that u is sufficiently regular that B(u,Z) and also B(u,ζ ) are defined.
Moreover, we need to suitably define the products B̃(ζ ,z) and B(ζ ,ζ ). We can proceed

as we did for B̃(z,z) in Section 4.2, by exploiting the cancellations in the expectations of
these processes. Even if we would have enough regularity, in order to define the products
directly, these Gaussian cancellations yield better regularity of the products.

We are able then to state the following result from [18, Theorem 2.10].
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Theorem 4 Assume β ∈ (0,1) and let h0 ∈H 1 and ε ∈ ( β

2 ,
1
2 ). Given the covariance oper-

ator Φ , there exist a stopping time τh0 and a solution h of (15) understood as h = u+ζ +Z,
where Z is given by (16), ζ by (17) and u = h− z−ζ satisfies the mild formulation (18) on
[0,τh0). Moreover, h ∈C([0,τh0);L

2), u ∈C((0,τh0);H
1+ε) and P[τh0 > 0] = 1. Finally,

two such solutions are unique up to the minimum of their stopping time.

In principle, if a suitable regularization of B̃ would allow for even less regular noise with
higher values of β , we could go to even higher terms in the expansion.

5 Global existence

In this section we first focus on the one-dimensional case on the interval [0,L], as only here
we have useful uniform global a-priori estimates for the spectral Galerkin-approximation.
See (3). We comment on the case d = 2 in detail later in this section.

There are two standard ways of treating the global existence of solutions. The first one
relies on the fixed point argument, which was explained in Section 3. Here the result is that
small initial data yields global existence for all times. But in general one can only show that
local solutions are smooth and continue until a possible blow up, which we discuss later in
Section 6.

The other approach relies on an approximation like the spectral Galerkin method, for
example, and uses the following steps:

– Energy type / a-priori estimates for the approximation, like (3) for instance.
– Compactness of the approximating sequence (by using uniform bounds) yields a con-

vergent subsequence
– Passage to the limit in the approximation. The key problem here is usually the continuity

of the nonlinear term in the weak topology provided by the compactness result.

This program was carried out for many models in numerous publications. For our model
and d = 1 it was implemented by [108], and for the stochastically perturbed equation in [11,
13,9]. See also [74,91]. In all cases global solutions are only bounded uniformly in L 2,
which is not enough to ensure uniqueness provided for instance by the fixed-point argument.

A serious difficulty arises for SPDEs, if one only repeats path–wise the deterministic
result, as the choice of the subsequence will depend on the realization under consideration,
and thus in general the limit will no longer be a measurable random variable. This only
works with stochastic equations that admit a strong (in terms of probability) solution. On
the other hand we may consider a weaker (again in terms of probability) notion of solution,
characterized only by the law. In this case for the approximations we consider compactness
of the corresponding probability measures (Prokhorov’s theorem), to obtain a subsequence
independent of the realizations. The price one needs to pay is that the convergence is too
weak to pass to the limit in the nonlinearity. But one can rely on the Skorokhod represen-
tation theorem in order to obtain, on a different probability space and with different input
data (with the same distributions though), an almost surely convergent subsequence, which
is sufficient for the passage to the limit. This procedure only yields a so called Martingale
solution. See for instance [32,40].

Here we we intend to solve the equation for all initial conditions on the same probability
space and follow the results of [9] that use the method developed by Flandoli & Romito [42]
and [44] in order to establish the existence of weak solutions having the Markov property.
For the precise formulation of the concept of solution see Definitions 5 and 6 below.
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The method is essentially based on showing a multi-valued version of the Markov prop-
erty for sets of all possible solutions and then applying a clever selection principle (Theo-
rem 5). The original idea is due to Krylov [67] (see also Stroock & Varadhan [109, Chapter
12]).

A key point in this analysis is the definition of weak martingale solutions. The selection
procedure needs to handle solutions which incorporate all the necessary bounds on the solu-
tion of the SPDE. These bounds must be compatible with the underlying Markov structure.

5.1 Setting

Let Ω =C([0,∞);H −4) and let B be the σ -algebra of Borel subsets of Ω . Let ξ : [0,∞)×
Ω →H −4 be the canonical process on Ω , defined as ξ (t,ω) = ω(t).

For each t ≥ 0, let Bt = σ [ξ (s) : 0 ≤ s ≤ t] be the σ -field of events up to time t
and Bt = σ [ξ (s) : s ≥ t] be the σ -field of events after time t. The σ -field Bt can be
seen as the Borel σ -field of Ωt = C([0, t];H −4) and, similarly, Bt as the Borel σ -field of
Ω t = C([t,∞];H −4). Notice that both Ωt and Ω t can be seen as Borel subsets of Ω (by
restriction to corresponding sub-intervals). Define finally the forward shift Φt : Ω → Ω t ,
defined as

Φt(ω)(s) = ω(s− t), s≥ t.

Given a probability measure P on (Ω ,B) and t > 0, we shall denote by ω 7→ P|ωBt
:

Ω → Ω t a regular conditional probability distribution of P given Bt . Notice that Ω is a
Polish space and Bt is countably generated, so a regular conditional probability distribution
does exist and is unique, up to P-null sets.

In particular, P|ωBt
[ω ′ : ξ (t,ω ′) = ω(t)] = 1 and, if A ∈Bt and B ∈Bt , then

P[A∩B] =
∫

A
P|ωBt

[B]P(dω).

One can see the probability measures (P|ωBt
)ω∈Ω as measures on Ω such that P|ωBt

[ω ′ ∈
Ω : ω ′(s) = ω(s), for all s ∈ [0, t]] = 1 for all ω in a Bt -measurable P-full set. We finally
define the reconstruction of probability measures (details on this can be found in Stroock &
Varadhan [109, Chapter 6]).

Definition 4 Given a probability measure P on (Ω ,B), t > 0 and a Bt -measurable map
Q : Ω → Pr(Ω t) such that Qω [ξt = ω(t)] = 1 for all ω ∈Ω , P⊗t Q is the unique probability
measure on (Ω ,B) such that

1. P⊗t Q agrees with P on Bt ,
2. (Qω)ω∈Ω is a regular conditional probability distribution of P⊗t Q, given Bt .

For shorthand notation denote by Pr(X) the set of all probability measures on the space X
equipped with the Borel-σ -algebra.

5.2 The martingale problem

We state the weak formulation of (1) in terms of measures.

Definition 5 (weak martingale solution) Given µ0 ∈ Pr(L 2), a probability measure P on
(Ω ,B) is a solution, starting at µ0, to the martingale problem associated to equation (1) if



30 Blömker & Romito

[W1] P[L2
loc([0,∞);H 1)] = 1,

[W2] for every ϕ ∈D∞, the process (Mϕ

t ,Bt ,P)t≥0, defined P-a. s. on (Ω ,B) as

Mϕ

t = 〈ξ (t)−ξ (0),ϕ〉L 2 +
∫ t

0
〈ξ (s),∂ 4

x ϕ〉L 2 ds+
∫ t

0
〈(∂xξ (s))2,∂ 2

x ϕ〉L 2 ds

is a Brownian motion with variance t‖ϕ‖2
L 2 ,

[W3] the marginal at time 0 of P is µ0

Remark 10 It is not difficult to prove that the definition of weak martingale solution given
above coincides with the usual definition given in terms of existence of an underlying proba-
bility space and a Wiener process. This equivalence is proved in Flandoli [40] for the Navier-
Stokes equations and one can proceed similarly in this case, but we do not focus on this here.

Given all the Mϕ

t one can rely on the Kolmogorov extension theorem, in order to show that
there is a Wiener-process W such that Mϕ

t = 〈W (t),ϕ〉, but here we can proceed in a simpler
way, and define W directly. Define, for every k ∈ N, the process βk(t) = Mek

t . Under any
weak martingale solution P, the (βk)k∈N are a sequence of independent one-dimensional
standard Brownian motions. By definition, one only needs to show the independence, which
is also immediate. Let us only show that they are uncorrelated and neglect all other technical
difficulties. By Definition 5

2E[βk(t)β`(t)] = 2E[Mek
t Me`

t ] = E[Mek+e`
t ]2−E[Mek

t ]2−E[Me`
t ]2 = 0 .

Define now the Wiener process W by (5) and the Ornstein-Uhlenbeck process Z by (6),
both as random variables on Ω . Recall that the process Z can be defined path-wise, without
relying on Itō-calculus. In the following lemma we summarise all the regularity result for Z
that we shall use for our result here. See also Section 2.1, where these properties are partly
derived.

Lemma 8 Given a weak martingale solution P, let Z be the corresponding OU-process
defined in (6). Then

1. For every p≥ 1 and T > 0, Z ∈ Lp(Ω × (0,T );W 1,4). Moreover there is λ > 0,

sup
T>0

1
T
EP[∫ T

0
exp{λ |Z(t)|2W 1,4}dt

]
< ∞.

2. For every p≥ 1 and γ ∈ [0, 3
2 ), Z ∈ Lp(Ω ;L∞

loc([0,∞),H γ)).
3. Z is P–a. s. weakly continuous with values in H γ , for every γ ∈ [0, 3

2 ).

Note that we carefully need to check that these properties are really true for any weak mar-
tingale solution P. We are not allowed to use versions of the process Z. Thus continuity in
time is not a property we can rely on.

Definition 6 (energy martingale solution) Given µ0 ∈ Pr(L 2), a probability measure P
on (Ω ,B) is an energy martingale solution to equation (1) starting at µ0 if

[E1] P is a weak martingale solution starting at µ0,
[E2] P[V ∈ L∞

loc([0,∞);L 2)∩L2
loc([0,∞);H 2)] = 1,

[E3] there is a set TP ⊂ (0,∞) of null Lebesgue measure such that

for all s 6∈ TP and all t ≥ s , P[Et(V,Z)≤ Es(V,Z)] = 1,
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where we used the standard transformation V (t,ω) = ξ (t,ω)−Z(t,ω), for t ≥ 0, and the
energy functional E is defined as

Et(v,z) =
1
2
‖v(t)‖2

L 2 +
∫ t

0
(‖v‖2

H 2 −〈2∂xv ·∂xz+(∂xz)2,∂ 2
x v〉L 2)ds

for v ∈ L∞([0, t];L 2)∩L2([0, t];H 2) and z ∈ L4([0, t];W 1,4)∩L∞([0, t];H 1).

Remark 11 (The equation for V ) Let P be an energy martingale solution, then it is easy to
see (cf. Section 2.4) that V is a weak solution to the equation,

∂tV +∂
4
x V =−∂

2
x [(∂xV +∂xZ)2] , V (0) = ξ (0) .

Remark 12 (Finiteness of the energy) Given an energy martingale solution P, then the en-
ergy Et is almost surely finite under P. Indeed, by [E2], it follows that V (t) is P-a. s. weakly
continuous in L 2 (see for example Lemma 3.1.4 of Temam [114]), and so the function
t 7→ ‖V (t)‖2

L 2 is defined point-wise in the energy estimate. Similarly, the other terms are
also P-a. s. finite by [E2] and the regularity properties of Z under P.

Remark 13 We remark that property [E3] is quite strong and that the energy inequality is an
intrinsic regularity property of the solution to the original problem (1), and does not depend
on the splitting V +Z. Similar estimates follow from [E3] for any other transformation ξ =
V +Zα , where Zα(t) solves dZα = −[∂ 4

x Z−αZα ]dt + dW . A similar result was discussed
in [93] for the Navier-Stokes equations.

5.3 Existence of Markov solutions

This section is devoted to the existence of Markov solutions for equation (1). To such aim,
define for each f ∈L 2,

C ( f ) = {P : P is an energy martingale solution starting at δ f }.

We state the main theorem of this section on existence of global solutions.

Theorem 5 There exists a family (Pf ) f∈L 2 of probability measures on (Ω ,B) such that for
each f ∈L 2, Pf is an energy martingale solution with initial distribution δ f , and the a. s.
Markov property holds: there is a set TP ⊂ (0,∞) with null Lebesgue measure such that for
all s 6∈ TP, all t ≥ s and all bounded measurable φ : L 2→ R,

EP[φ(ξt)|Bt ] = EPξs [φ(ξt−s)].

Once the existence of at least one Markov family of solutions is ensured, the analysis
of such solutions goes further. Indeed, the selection principle provides a family of solutions
whose dependence with respect to the initial conditions is just measurability. By slightly
restricting the set of initial condition, this dependence can be improved to continuity in the
total variation norm (or strong Feller in terms of the corresponding transition semigroup).
We do not study this in detail here, but this is crucial, if we want to study long term dynamics
in terms of invariant measures.

Proof (Idea of proof) We follow [9, Theorem 3.1]. It is sufficient to show that the family
(C (x))x∈L 2 defined above is an almost sure pre-Markov family. We recall now the various
properties of an a. s. pre-Markov family, which we need to verify in order to prove the
theorem (see also Definition 2.5 of Flandoli & Romito [44]).
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1. Each C (x) is non-empty, compact and convex, and the map x→ C (x) is measurable
with respect to the Borel σ -fields of the space of compact subsets of Pr(Ω) (endowed
with the Hausdorff measure).

2. For each x ∈L 2 and all P ∈ C (x), P[C([0,∞);L 2
weak)] = 1, where L 2

weak is the space L 2

with the weak topology.
3. For each x ∈L 2 and P ∈ C (x) there is a set T ⊂ (0,∞) with null Lebesgue measure,

such that for all t 6∈ T the following properties hold:
(a) (disintegration) there exists N ∈Bt with P(N) = 0 such that for all ω 6∈ N

ω(t) ∈L 2 and P|ωBt
∈ΦtC (ω(t));

(b) (reconstruction) for each Bt -measurable map ω 7→Qω : Ω→ Pr(Ω t) such that there
is N ∈Bt with P(N) = 0 and for all ω 6∈ N

ω(t) ∈L 2 and Qω ∈ΦtC (ω(t)),
we have that P⊗t Q ∈ C (x).

The validity of these properties is verified [9]. Property (1) is verified by spectral Galerkin
methods and compactness of probability measures (see [11]). Property (2) is a weak regular-
ity property, while the main work is in property (3). From the almost sure pre-Markov family
using the selection principle of Krylov [67] (see also Stroock & Varadhan [109, Chapter 12])
the existence of an almost sure Markov process follows. ut

5.4 Remarks on invariant measures

Let us discuss the long time behaviour of the model. We are able to show that any Markov
solution has a unique invariant measure whose support covers the whole state space. In
principle the existence of stationary states has been already proved by Blömker and Hairer
[13] using spectral Galerkin approximation. But this is not useful in this framework, as we
have a transition semigroup that depends on the generic selection under analysis, which is
in general not obtained by a suitable limit of Galerkin approximations.

We finally remark that, even though our results show that every Markov solution is
strong Feller and converges to its own invariant measure, well posedness is still an open
problem for this model and these result essentially do not improve our knowledge on the
problem. Even the invariant measures are different, as they depend from different Markov
semigroups.

Let us remark that provided one can show that all possible invariant measures for all
Markov-selections are the same, then the energy martingale solution is unique, see [92]. See
also [38,106] for some results loosely in the same direction.

5.5 A comparison with previous results on the Markov property

There are several mathematical interests in this model, in comparison with the theory de-
veloped in Flandoli & Romito [42,44] for the Navier-Stokes equations. Essentially, in this
model we have been able to find the natural space for the Markov dynamics, thus show-
ing the existence of the (unique) invariant measure. The corresponding result for Markov
selections of the Navier–Stokes equations with noise can be found in [92], see also [98,95].

Another challenge of this model has concerned the analysis of the energy inequality.
Here the physics of the model requires a noise white in time and space, while the analysis
developed in the above cited papers has been based on a trace-class noise with quite regular
trajectories.
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Finally, we remark that there is a different approach to handle the existence of solutions
with the Markov property, based on spectral Galerkin methods, which has been developed
by Da Prato and Debussche [30] (see also Debussche & Odasso [35]) for the Navier-Stokes
equations. These techniques are not yet applied for the model analysed here.

5.6 Remarks about 2D

In order to complete the same program for the (physically relevant) two–dimensional case
d = 2, which is still open, there are several problems that need to be faced.

– When dealing with space–time white noise it turns out that the expected smoothness
of the solution is not enough to define the non–linear term. This is discussed in Sec-
tion 4. Here we would need to take into account that we need to define B̃ for any given
Martingale-solution, but the equation defining the Martingale-solution already contains
B̃. But with slightly more regular Z or W this whole problem does not appear.

– In contrast with the one–dimensional case, existence of global weak solutions is harder,
due to the lack of reasonable energy estimates in L 2. Existence of weak solutions with-
out noise has been proved in [120], using a–priori bounds derived from the estimate of∫

eh dx, which cannot be used for any approximation by Galerkin methods. They rely
on Roethe’s method, a fully implicit discretization of the time derivative.

– Our proof of continuity of the laws in total variation [44,43,9] relies on the weak–
strong uniqueness principle, namely uniqueness of local solutions in the class of weak
solutions. The principle fails in two dimensions, and this a serious obstacle for the proof
of unique ergodicity.

6 Blow-Up Criteria and Regularity

In this section we focus on the deterministic equation in dimension d = 1 and study possible
singularities and a possible blow up, which existence is still wide open. These are usually
standard results for PDEs of this type, and some are well known for instance for 3D-Navier
Stokes.

Based on energy-type estimates, we state standard Leray type estimates for lower bounds
on blow up in terms of H α -norms. Moreover, we give a few examples for the fact that a
blow up would lead to blow up of all critical norms. Finally, we state a well known result
for an upper bound on the Hausdorff-dimension of the set of singularities in time.

All results for regularity and Leray type estimates are based on energy estimates. Many
are optimal in the sense that they also hold for complex valued solutions. We will see in
Section 7 that some complex valued solutions will blow up in finite time.

6.1 Blow up profile

In this section we discuss some properties of a possible blow up. First, from the concept of
critical scaling one expects that all norms with higher regularity than the critical norm will
also blow up, in particular all H s-norms with s > 1/2 should blow up.

Let us first give examples of blow-up profiles v = h(τ) possible at the blow-up time τ .
For simplicity of presentation we only discuss H s-norms, as they are easier to compute.
But one should also look at the spaces B or Z from Section 3.
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– If v exhibits a jump like sign(x), then the Fourier-coefficients decay like 1/k, and thus v
is in Hs if and only if s < 1

2 .
– If v exhibits a logarithmic pole like log(|x|), then the Fourier-coefficients decay like 1/k,

and thus v is in Hs if and only if s < 1
2 . See also Example 4.

– If v exhibits a cusp like |x|α for α ∈ (0,1), then the Fourier-coefficients decay like
|k|−(1+α), and thus v is in H1/2+ε , and not a possible blow up. It admits a unique solution
that would continue the solution.

Remark 14 (Stationary solutions) The L 2 estimates (3) show that the only possible station-
ary solution is h ≡ 0, as for global smooth solutions ‖h(t)‖L 2 → 0 for t ↑ ∞. On the other
hand the problem is one-dimensional, so we can try to solve the equation for stationary
solutions ∂ 4

x h+∂ 2
x (|∂xh|2) = 0, explicitly. By direct computations, we get all solutions

h(x) = c1 + log |1+ c2x|,

h(x) = c1 + log |coshbx+
c2

b
sinhbx|,

h(x) = c1 + log |bcosbx+ c2 sinbx| .

We remark that the singularities are log-like profile, and some of them also satisfy periodic
boundary conditions. But none of them is sufficiently regular, to be a mild or weak solution.
Nevertheless, they are exactly at the borderline of regularity, where the local uniqueness
results of Section 3 fail. See also Example 4.

6.2 Regularity Criteria

In principle the following should be true:

Meta-theorem. If a solution is bounded in a critical space, then it is unique, and does not
have a blow up. This means that the unique local solution exists as long as at least one
(hence all, as the solution is then proved to be regular) of the critical norms is finite over the
time horizon.

The main obstruction to the application of the meta-theorem is the boundedness of crit-
ical quantities. While there are cases (the Navier-Stokes equations in dimension two, for
instance) where the a-priori estimates provide such bounds, this does not happen, as far as
we know, in the problem studied here.

For simplicity, in the rest of the section we focus only on examples in a simple setting
and consider solutions with sufficiently smooth initial condition, in order to have simple en-
ergy type estimates for the H s-norms without any trouble at t = 0. The standing assumption
of this section is:

Assumption 6 Let h0 ∈C∞ and h = h(·,h0) be the unique local solution of the deterministic
equation with d = 1 started at h0. Furthermore let τ(h0) be the maximal time of h, and
suppose τ(h0)< ∞ implies limsupt→τ ‖h(t)‖H s = ∞ for one s. Moreover, by regularity h is
C∞ in space and time for t ∈ [0,τ(h0)).

Theorem 7 Under Assumption 6 with s = 1, i.e. the subcritical norm of L∞([0,τ),H 1) is
infinite. If τ(h0)< ∞, then for for every α ∈ ( 1

2 ,
9
2 ) the following critical norms are infinite

∫
τ(h0)

0
‖h(s)‖

8
2α−1
Hα ds = ∞.
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Remark 15 As it is used several times in the proofs, we state the following elementary
interpolation inequality. For γ > α and β ∈ [α,γ],

‖h‖β ≤C‖h‖
γ−β

γ−α

α ‖h‖
β−α

γ−α

γ . (19)

Note that for short-hand notation, we abbreviate ‖ · ‖s = ‖ · ‖H s = ‖Ds · ‖L 2 with Ds =
(−∆)s/2.

Proof Fix α ∈ ( 1
2 ,

9
2 ), then by integration by parts and the Sobolev embedding H

1
6 ⊂ L3,

∂t‖h‖2
1 +2‖h‖2

3 =−2
〈
∂xh,∂ 3

x
(
|∂xh|2

)〉
L2 = 2

∫ L

0
(∂ 2

x h)3 dx≤ c‖h‖3
13
6
.

By interpolation (19) using Young’s inequality,

∂t‖h‖2
1 +2‖h‖2

3 ≤ ‖h‖2
3 + c‖h‖

8
2α−1
α ‖h‖2

1.

Finally, by Gronwall’s lemma, the proof is complete. ut

Remark 16 Note that we can prove the same statement for the Lp([0,τ(h0)],Y ) norm of any
other space Y provided

‖h‖3
13
6
≤ ‖h‖2

3 + c‖h‖p
Y‖h‖

2
1.

Thus as example we also obtain under the assumptions of Theorem 7 that also the following
critical norms are infinite:∫

τ(h0)

0
‖h(s)‖16/3

W 1,4 ds = ∞ and
∫

τ(h0)

0
‖h(s)‖4

C1 ds = ∞ .

Moreover, we can consider derivatives of other H s-norms. Thus in principle we can obtain
any critical space with this approach.

6.3 Blow up below criticality

In this section we will study the blow up in a space below criticality, i.e. in some H s with
s < 1

2 . This is a slight generalisation of Theorem 7 and prepares the results of Leray type
shown later. For 1

4 ≤ s≤ 1 we obtain:

∂t‖h‖2
s ≤−c‖h‖2

2+s +4
∫ L

0
D2s

∂xh ·∂xh∂
2
x hdx

≤−c‖h‖2
2+s +C‖h‖1+2s‖h‖ 9

4
‖h‖ 5

4
,

where we used the Sobolev embedding H
1
4 ⊂ L4. Fix γ ∈ ( 1

2 ,
5
4 ] and use (19)

∂t‖h‖2
s ≤−c‖h‖2

2+s +C‖h‖
3+2s

4+2s−2γ

γ ‖h‖
9+4s−6γ

4+2s−2γ

2+s .

Using Young’s inequality with exponents p = (8+4s−4γ)/(9+4s−6γ) and q = (8+4s−
4γ)/(2γ−1) we derive

∂t‖h‖2
s ≤C‖h‖

2(3+2s)
2γ−1

γ .

This inequality implies the following result.
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Theorem 8 Under Assumption 6 suppose s ∈ [ 1
4 ,1]. Then for γ ∈ ( 1

2 ,
5
4 ]:

∫
τ(h0)

0
‖h(t)‖

2(3+2s)
2γ−1

γ dt = ∞ .

Note that for a blow up below criticality with s < 1
2 the Lp([0,T ],Hγ)-norm in this theorem

has a smaller p than assured by Theorem 7. For fixed s the spaces in the above theorem
always have the same level of criticality.

6.4 Leray type results

We state the following theorem, which is based on one of the several celebrated results of
Leray [70] on the Navier-Stokes equations. This relies mainly on a comparison result for
ODEs and energy estimates.

Theorem 9 Under Assumption 6. If s > 1
2 , then there is a universal constant C > 0 only

depending on s such that

‖h(t)‖s ≥C(τ(h0)− t)−(2s−1)/8 for all t ∈ [0,τ(h0)).

Proof For s = 1+δ with δ ∈ (− 1
2 ,

3
2 )

∂t‖h‖2
1+δ

+2‖h‖2
3+δ

=−2
∫ L

0
∂

2
x D2δ h ·B(h,h)dx = 4

∫ L

0
∂xD2δ h ·B(h,∂xh)dx

≤C|h|1+δ+ε |h| 5
2−ε
|h|3+δ ,

where we used Lemma 1 with α = 2 + δ , β = 1
2 − ε , and γ = −α + ε for some small

ε ∈ (0, 1
2 ) such that ε +δ ∈ (− 1

2 ,
3
2 ). Now interpolation (see Remark 15) yields

∂t‖h‖2
1+δ

+2‖h‖2
3+δ
≤C‖h‖

1
4 (7−2δ )

1+δ
|h‖

1
4 (5+2δ )

3+δ
.

As (5+2δ )< 8, apply Young’s inequality with p= 8/(7−2δ ) and q= 8/(1+2δ ) to derive

∂t‖h‖2
1+δ
≤C‖h‖2(5+2δ )/(1+2δ )

1+δ
=C‖h‖2(3+2s)/(2s−1)

s .

Recall that by comparison principle for ODEs for a solution ϕ of ϕ ′ ≤ Cϕ p, on (0,τ) we
have

ϕ(s)≤
[
ϕ(t)−(p−1)+C(p−1)(t− s)

]− 1
p−1

for all 0 < t < s < τ(h0).

Solving this for ϕ(t) and passing to the limit s→ τ(h0) yields the claim for s ∈ ( 1
2 ,

5
2 ).

The general case is proved similarly, by starting with ∂t‖h‖2
k+δ

for k ∈ N and then dis-
tributing the derivatives as evenly as possible on the tri-linear terms by integration by parts.
Thus proceeding as above yields the claim. ut
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6.5 The set of singular times

Let us state without proof a bound on the set of singular times. Note that due to the energy
estimate from (3) solutions are at some point smooth and small in H 2 and thus from that
point on one has a global unique solution.

Let h be a global weak solution to (9) and consider the set of regular times of h,

R = {t ∈ (0,∞) : h is continuous with values in H 1 in a neighbourhood of t}.

By the smoothness of local solutions R is equal to the set of all times t such that h is C∞ in
space and time in a neighbourhood of t. Define the set of singular times S = [0,∞)\R.

The theorem (in the spirit of results of Leray [70], Scheffer [100] for Navier-Stokes)
states, that the set of singular times is “small”. For the proof see [16].

Theorem 10 Given a global weak solution h to (9), the set S of singular times of h is a
compact subset of [0,∞) and

H
1
4 (S ) = 0,

where H 1
4 is the 1

4 -dimensional Hausdorff measure.

Remark 17 It is possible to give a further limit to the set of singular times by showing that
its box-counting dimension is smaller or equal than 1

4 . This result can be proved as in [90]
and we refer to this paper for further details.

6.6 An “inviscid” variation

Analogous to the relation Navier-Stokes and Euler equation, one might neglect the surface
diffusion hxxxx and keeps only the nonlinear surface dynamics. But in this case the blow–up
is easier to prove. Consider

∂th+(h2
x)xx = 0

subject to periodic boundary conditions on [0,L]. If we have a non–constant smooth solution
of the above problem, then we will show below that there is always a blow–up in finite time.

In fact the main issue for the inviscid problem above is the existence of a, at least local,
smooth solution. By similarity with the Navier–Stokes/Euler equations, one may believe that
the methods developed in the latter case [111,64] may work. A quick series of computations
shows that this is not the case. Indeed there is a more fundamental problem here, since not
even general results such as the Cauchy–Kovalevskaya theorem work. The reason, roughly
speaking, is the number of derivatives in the nonlinearity.

It is easy to verify that for a sufficiently smooth solution h the following quantities

M0 :=
∫ L

0
h(t,x)dx, E0 :=

∫ L

0
h(t,x)2 dx, and

∫ L

0
hx(t,x)3 dx,

are conserved and independent of time. As usual we can assume without loss of generality
that the total mass M0 is zero.

Let us prove first a bound in H1. Let φ(x) be a smooth function such that φ ′′(x) =
arctan(x), then the energy estimate for φ(h) yields

2
3

∫ t

0

∫ L

0

h4
x(τ)

1+h2(τ)
dxdτ =

∫ L

0
φ(h(0))dx−

∫ L

0
φ(h(t))dx.
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Since φ has quadratic growth, the integrals on the right–hand side are uniformly bounded in
time by a constant depending on E0. In particular,∫ L

0
hx(t)2 dx≤

(∫ L

0

hx(t)4

1+h(t)2 dx
) 1

2
(∫ L

0
1+h(t)2 dx

) 1
2

≤ c(L,E0)
(∫ L

0

hx(t)4

1+h(t)2 dx
) 1

2
,

and we can conclude that for every t > 0,∫ t

0
‖hx(τ)‖2

L2 dτ ≤C(L,E0).

The H1 estimate immediately yields a L∞ bound. Due to Sobolev’s embeddings,∫
∞

0
‖h(t)‖2

L∞ dt ≤C(L,E0). (20)

We can now preliminarily show that some solutions cannot be global.

Proposition 6 Assume that h(0) is smooth and non–zero. If∫ L

0
h(0)3 dx≤ 0,

then there cannot be a global smooth solution with initial condition h(0).

Proof Let us first remark that h is by assumption on h(0) also non-zero. The energy estimate
for
∫

h3dx yields after a short calculation

4
∫ t

0

∫ L

0
|hx(s)|4 dxds =

∫ L

0
h(0)3 dx−

∫ L

0
h(t)3 dx≤

∫ L

0
h(0)3 dx+E0‖h(t)‖∞.

By (20) we can deduce that there is a sequence tn ↑ ∞ such that ‖h(tn)‖L∞ → 0. If we apply
this fact to the previous inequality, we obtain a contradiction to h being non-zero:

4
∫

∞

0

∫ L

0
|hx(s)|4 dxds≤

∫ L

0
h(0)3 dx≤ 0 .

ut

Let us prove now that no non–zero global solution exist.

Theorem 11 Every smooth solution that does not blow up in finite time is constant.

Proof Assume, as before, without loss of generality that M0 = 0. A simple computation
yields

d
dt

∫ L

0
e−h(t) dx =

1
3

∫ L

0
h4

x e−h(t) dx,

and hence for any t ≥ s≥ 0 ∫ L

0
e−h(s) dx≤

∫ L

0
e−h(t) dx.
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Consider again the sequence of times tn ↑ ∞ such that ‖h(tn)‖L∞ → 0. On this sequence∫ L

0
e−h(tn) dx→ L for → ∞ .

Therefore by the conservation of mass for any s≥ 0

1
L

∫ L

0
e−h(s) dx≤ lim

n→∞

1
L

∫ L

0
e−h(tn) dx = 1 = e−

1
L
∫ L

0 h(s)dx .

This is the case of equality in the Jensen inequality, thus h(s) is constant and, since M0 = 0,
h(s)≡ 0. ut

7 Complex-valued blow up

In this section we study complex-valued solutions of the equation posed in d = 1. Obviously,
our energy estimate (3) that is used for global existence fails. Our main aim is to provide a
simple proof, that there is a blow up for complex valued solutions of (9). Here we construct
a large class of solutions that do blow up. The key idea is to derive an infinite-dimensional
system of ODEs that allows blow up by transporting mass to ∞ in finite time. This is also
the idea of the dyadic model embedded into an averaged Navier-Stokes equation in [113].

Our result verifies that most energy estimates, which are usually also true for complex-
valued solutions, cannot be used alone to rule out a possible blow up.

7.1 The network of ODEs

We rewrite the PDE as an infinite system of ODEs, by going into Fourier-space. Suppose
for simplicity of presentation that the equation is posed on [0,2π]. Let

h(t,x) =
∞

∑
k=−∞

hk(t)eixk

then for all k 6= 0 (note, h0 ≡ 0 by mass conservation)

∂thk =−k4hk + k2
∞

∑
l=−∞

lhl(k− l)hk−l

Definition 7 Define the weighted Fourier modes by χk = khk.

Thus we have for all k 6= 0

∂t χk =−k4
χk + k3

∞

∑
l=−∞

χl χk−l . (21)

In the following, we need local existence and uniqueness of solutions only for a simplified
system, where it will be obvious. But let us remark that either the results in [19] for a
probabilistic representation via branching processes yields the existence of solutions for the
system (21), or we can modify our results in Section 3 and use existence of solutions for the
original PDE.
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Definition 8 We define the following spaces

Σ = {χ ∈ CZ : χk = 0 ∀k ≤ 0} ∼= CN ,

Σ
+ = {χ ∈ Σ : χk ≥ 0 ∀k ≥ 0} ∼= [0,∞)N ,

Σ(L) = {χ ∈ Σ : |χk| ≤ Lk ∀k ≥ 0} for L > 0 .

The space Σ(L) is a weighted L∞-space in Fourier space for solutions h of (9). Note that
|χk| ≤ Lk implies |hk| ≤ Lk/k. For L > 1 this is a space of quite irregular distributions, while
for L ∈ (0,1) the corresponding functions h are C∞.

For L = 1 we conjecture that this corresponds to a critical space for h.

Lemma 9 The spaces Σ and Σ+ are invariant for (21) for sufficiently smooth solutions.

Proof (Idea of Proof) Probabilistic representation of [19] gives invariance of a unique solu-
tion among all sufficiently regular solutions. The existence of invariant solutions also follows
from the discussion in the next subsection. ut

7.2 Explicit solution

In Σ Equation (21) simplifies to

∂t χk =−k4
χk + k3

k−1

∑
l=1

χl χk−l for all k > 0 . (22)

Thus any Fourier mode k is driven only by lower modes l ∈ {1, . . . ,k}. For the first few
equations: 

∂t χ1 =−χ1,

∂t χ2 =−16χ2 +8χ2
1 ,

∂t χ3 =−81χ3 +54χ1χ2,

∂t χ4 =−216χ4 +108χ1χ3 +54χ2
2 ,

. . .

This system can be solved inductively, and we obtain easily:

Lemma 10 For all initial conditions in Σ , there is a solution χ of (22) such that χ(t) ∈ Σ

for all t ≥ 0. Moreover, for all such solutions, the space Σ+ of positive solutions is invariant.

Let us remark, that there is no regularity for the solution provided by this Lemma.

Remark 18 (Mild solution) We can also restate (22) as mild formulation for solutions in Σ .

χk(t) = e−tk4
χk(0)+ k3

k−1

∑
l=1

∫ t

0
e−(t−s)k4

χl(s)χk−l(s)ds . (23)
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7.3 Exponential Bound

This section provides the invariance of Σ(L).

Lemma 11 Suppose that χ solves (22) in Σ and |χk(0)| ∈ Σ(L) for some L> 0, then χk(t)∈
Σ(L) for all t > 0, k > 0.

This allows for exponential divergence (in k) of solutions provided χk(0)> 1 for one k.

Proof By induction. First, |χ1(t)|= e−t |χ1(0)| ≤ L. Then, from the mild formulation (using
the assertion up to k−1)

|χk(t)| ≤ e−tk4 |χk(0)|+ k3
∫ t

0
e−(t−s)k4

k−1

∑
l=1
|χl(s)| · |χk−l(s)|ds

≤ e−tk4
Lk + k3

∫ t

0
e−(t−s)k4

k−1

∑
l=1

LlLk−lds

≤ Lk
(

e−tk4
+k4

∫ t

0
e−(t−s)k4

ds
)
≤ Lk .

ut

Note that the Lemma is also true if we consider only the first finitely many k.

7.4 Stability

Under very weak regularity assumptions (even exponentially growth of Fourier-coefficients)
we can prove that the solution is eventually smooth after some time and converges to 0.

Lemma 12 Suppose that χ solves (22) in Σ(L) for some L > 0.
Then for all small ε > 0 there is a sequence of times 0 < T1 < .. . < Tk↗ T ∗ < ∞, such

that

|χk(t)| ≤ 1
2 ε

k for all t > Tk and k > 0

Proof By Induction. First,

|χ1(t)| ≤ e−t L < 1
2 ε for t > t1 = ln(2L/ε) .

Then, using the mild formulation (23)

χk(Tk−1 + t)≤ e−tk4 |χk(Tk−1)|+ k3
∫ t

0
e−(t−s)k4

k−1

∑
l=1

1
2 ε

l 1
2 ε

k−lds

≤ e−tk4
Lk + 1

4 ε
k < 1

2 ε
k

for all t > tk = 1
k4 ln(4Lk/εk). Finally, define Tk = ∑

k
l=1 tl , which converges as tl ∼C/l3. ut
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Fig. 2 First six curves of χk , growing fast in k already for χ1(0) = 2.2 and χk(0) = 0 for k 6= 1. The value
necessary for the lower bound of Theorem 12 would be χ1(0)> 27, as a = b = 1.

7.5 The Blow-up

This section provides a very simple lower bound that leads to a blow up for sufficiently large
smooth solutions in Σ+. Let us remark that [71,72] proved a similar result for 3D-Navier
Stokes which is significantly more complicated, but yields solution with finite L 2-norm,
while we only obtain a lower bound on the blow up of solutions.

Theorem 12 Suppose χ is a solution of (22) in Σ+, such that for some a,b ∈ N and C > 0

χk(0)≥C for k ∈ [a,b] .

Then for any L ∈ [2, 2
27

Ca3

b4 ] (and thus C > 0 large) there are times 0 = T0 < T1 < .. . < Tk↗
T ∗ < ∞ such that for all N ∈ N, the following is true:

For all k ∈ [a2N ,b2N ]

χk(TN)≥CLN and inf
t∈[TN ,TN+1]

{χk(t)} ≥ 2
3CLN .

Thus for some time t∗ ≤ T ∗

‖χ(t)‖∞ = sup
k∈N
|χk(t)| ↗ ∞ for t→ t∗.

Note that this result is in well agreement with criticality. It is easy to check that ‖χ(t)‖∞≤
C‖h‖H s for all s≥ 1

2 . Thus the norm blows up in the critical and all subcritical H s-spaces.

Proof We proceed by induction on N. Define TN = ∑
N
k=1 tk, where tk is defined later. Fur-

thermore, fix α = 2
3 .

For N = 0 the lower bound holds at T0 = 0. For the lower bound on [T0,T1] = [0, t1]
consider for k ∈ [a,b] that for t ∈ [0, t1]

χk(t)≥ e−tk4
χk(0)≥ e−t1b4

C = αC if t1 =
1
b4 ln(α−1) .

For the induction step from N−1 to N we first prove the bound at TN . Fix k ∈ [a,b] ·2N . By
assumption on [TN−1,TN ] we have

χl χk−l ≥ α
2C2L2N−2
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for at least one l ∈ {1, . . . ,k−1}. Thus

χk(TN) = χk(TN−1 + tN)

≥ k3
∫ tN

0
e−(tN−s)k4

k−1

∑
l=1

χl(TN−1 + s)χk−l(TN−1 + s)ds

≥ a323N
∫ tN

0
e−(tN−s)b424N

ds ·α2C2L2N−2

≥ a3

b4
1

2N (1− e−tN b424N
)α2C2L2N−2 =CLN

provided that

tN =
1

b424N ln
(
(1− ( 2

L )
N b4L2

Cα2a3 )
−1
)

Here we used that tN is well defined for all N, if L≥ 2 and 2Lb4 <Cα2a3, which is true by
assumption.

On [TN ,TN+1] we now use the lower bound at time TN . Fix again k ∈ [a,b]2N , then

χk(TN + t)≥ e−tk4
χk(TN)≥ e−tb424N

CLN ≥ αCLN ,

if tN ≤ b−42−4N ln(α−1). This in turn is true for all N, if

1
2 (1−α)α2 ≥ Lb4

Ca3

which is true by assumption. Note that α = 2
3 maximizes the right hand side with maximum

2/27. It remains to check that T∗ = ∑
∞
l=1 tl < ∞. But this is true, as for N→ ∞

tN =
1

b424N ln(1+O(( 2
L )

N)) =
1

b424N O(( 2
L )

N) = O(( 1
8L )

N) .

ut
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