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1. INTRODUCTION

This paper proposes a new methodology to study the distribution dynamics
of income in presence of spatial dependence. Our proposal is the result of two
converging strands of literature denoted ETSDA (Exploratory Time-Space Data
Analysis) and ESTDA (Exploratory Space-Time Data Analysis) by Rey (2014).

From one hand, literature on ETSDA extends the methods used in the
temporal studies on income dynamics in order to incorporate spatial dimension.
Quah (1993) can be considered the pioneering contribution to ETSDA for his
attempt to measure the impact of spatial dependence mapping unconditioned
income levels of countries into normalized income levels, where normalization
is respect to the incomes of neighbouring countries. Gerolimetto and Magrini
(2014) represents one of more recent and most significant contribution in this
line of research.

On the other hand, literature on ESTDA extends the spatial methods
generally used for detecting spatial dependence in cross-sectional analysis, as
the Moran’s I and LISA statistics, to incorporate temporal dimension. Recently
within this line of research Rey et al. (2011) have proposed the Directional
Moran Scatter Plot to study the spatial dynamics of US states. The latter
consists in analysing in the Moran space (the space defined by countries’
income and its spatially lagged value) the directions of the movement vectors
standardized by their beginning points, i.e. the transitions that each state has
experimented between the first and the last year centered in the orgin of axes.*

In this paper we propose a /ocal version of the Directional Moran Scatter
Plot, labelled Local Directional Moran Scatter Plot (LDMS), which consists in
the estimate of a random vector field in the Moran space exploiting the
information from the observed movement vectors. With respect to Directional
Moran Scatter Plot our methodology allows to conduct inference on the local
spatial dynamics, and to provide a forecast of the future income distribution
which takes into account also spatial dependence.

The next section gives an heuristic introduction to the Local Directional
Moran Scatter Plot; Section 3 discusses the nonparametric methodology used in
its estimate, and how to make some inference at local level; Section 4 illustrates
the use of LDMS to forecast the distribution dynamics of income in presence of
spatial dependence. Section 5 concludes.

2. THE LOCAL DIRECTIONAL MORAN SCATTER PLOT

To gain the intuition of our proposed methodology consider Fig. 1, which
reports the Moran Scatterplot (i.e. the levels of relative per capita GDP y

4 The movement vectors can also be standardized by their ending point. In any case, the
standardized movement vectors are placed at a common origin, but they preserve their
length and direction.
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versus its spatially lagged values Wy ) for a sample of 49 US states in 1987 (red
points) and 2013 (black points).’

Figure 1. Moran Scatterplot of relative GDP per capita of a sample
of 49 US states for 1987 (red points) and 2013 (black points)
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Spatial matrix W is defined by rook contiguity.

For both years Moran’s [ is positive (equal to 0.10 in 1987 and 0.13 in
2013) and statistically significant at 10%, suggesting that some spatial
dependence should be at work; however, from Moran Scatter Plot no
information can be extracted on the impact of this spatial dependence on the
distribution of GDP per capita in terms of its strength and direction.®

A possibility to fill this gap is to assume that, in the same spirit of the
distribution dynamics approach (see Quah 1997), the dynamics of GDP per
capita of an economy can be expressed as a (random) function of only its
position in the Moran space, i.e. the dynamics of GDP per capita follows a
Markovian process, where the states are defined in terms both of the (relative)
level of GDP per capita y and its spatially lagged values Wy (instead of only
y). This corresponds to the estimate of a random vector field in Moran space,
which we label Local Directional Moran Scatter Plot (LDMS).’

> The spatial matrix p) is defined by rook contiguity; given this definition of spatial

dependence, we exclude from the sample the two US states without any link (Alaska
and Hawaii).

¢ Using a six-nearest neighbor spatial weight matrix, Gerolimetto and Magrini (2014)
finds statistically significant spatial dependence across US States. Morevoer, their
estimated Moran’s [ is generally higher.

7 A vector field in a plane can be visualized as a collection of arrows with a given
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Figure 2. Movement vectors in the Moran space (y, Wy)
for a sample of 49 US states over the period 1987-2013
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The movement vectors reported in Fig. 2, representing all the observed
transitions calculated with a time lag of 10 years and expressed in annual scale

(1-year ahead) in the Moran space (y, Wy) , provides the basic information set

to estimate a LDMS.® In particular, Fig. 2 contains 49 x (2013-1987-10+1) =
833 movement vectors. For comparison, Rey et al. (2011) in the upper panel of
their Fig. 2 reports only 49 movement vectors, representing the transitions from
the first to the last year (1969 and 2008 respectively) of each state in the
sample. Nonetheless the different time period considered, the overall picture of
spatial dynamics looks very similar in the most of Moran space (the south-west
quadrant contains the most of observations with a spatial dynamics converging
toward bisector), but with some important differences (the spatial dynamics in
the north-east and south-east quadrants).

Figure 2 suggests an overall pattern of convergence to bisector and, in
particular, towards the region around point (1,1), although such convergence is
absent or very weak for other regions of the Moran space, as for example that
around (1.3,1.1). In general, the presence of a strong random component in US
states’ movements makes difficult to identify any spatial pattern by only a
graphical inspection, especially when the number of movement vectors is very
large as in our case.

In the next section we discuss how to properly estimate a LDMS by the set
of observed movement vectors.

magnitude and direction (our movement vectors) each attached to a point in the plane
(Polyanin and Manzhirov 2006). A random vector field consider for each point in the
plane not just a movement vector, but a set of movement vectors with an associate
probability distribution (Polyanin and Manzhirov 2006).

8 All the calculations are made using R (R Core Team, 2014). Codes and data are
available on author’s web page http://dse.ec.unipi.it/ fiaschi/.
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3. ESTIMATION OF A LOCAL DIRECTIONAL
MORAN SCATTERPLOT

Consider a sample of N economies observed for 7' periods; economy j is
characterized by its level of relative (to the sample average) income in each
point in time y ,, and by the average income of its neighbours Wy, , where W/
is the the j -the row of the spatial weight matrix expressing which economies
are neighbours of j (j=1,.,N and t=1,..,T), and y, is the vector of
relative income of all economies.

We assume that the spatial dynamics of economy ; at period 7, i.e. the
dynamics of economy ; in the space (y, Wy) , only depends on (yj,,Wyjt), i.e.

v, follows a time invariant and Markovian stochastic process.

The spatial dynamics of the sample in the Moran space can be therefore
represented by a random vector field (RVF). In particular, given a subset L of
the possible realization of (y,Wy) (i.e. a lattice in Moran space, see small

black points in Figure 2), a RVF is represented by a random variable A z,,
where A z; = (AT Vi, AWy, ) = ( Vire = VirWyirer =Wy, ) , indicating the spatial
dynamics (i.e. the dynamics from period ¢ to period 7+ 7 represented by a
movement vector) at z, = (y,,Wy,) e L.

For each point in the lattice z,, with i =1,...,L, we therefore estimate the
distribution of probability PI'(ATZ | Zi) on the N (T —T) observed movement
OBS

vectors A?BSZ. In particular, Pr(A z, |Zi) measures the probability that the

dynamics at z, follows A?”z_; this suggests that Pr(A?BSZ it |Z[) should de-

Jt?
: : OBS
crease as function of the distance between z; and z;

Following this intuition Fig. 3 depicts a point of the lattice z, and four

observed movement vectors, which origin at different distance from z, .

OBS

Function a)(zl.,z it ) measures for each observed movement vector its proba-

bility to affect the movement at z, ; these probabilities decline with distance
from z, (i.e. a)( i,ZIOtBS)< a)(zi,zzotBS)< a)(zi,ngS)), and very far observed
movement vectors should have zero probability (a)(zi,zftBS ): 0). Blue vector
is the expected movement from z,, My 2. s calculated on the base of the distri-

bution of probabilities on the observed movement vectors.
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Figure 3. Local mean estimation of the expected movement from z, (K, .)
T
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Probabilities attached to each observed movement vectors, given by a)(zl. R ZjOtBS ) are a

. . . B
negative function of the distance between z, and Zjot s

A convenient way to calculate these probabilities is to use a kernel function

. B, .
to measure the distance between z, and zﬁ * . In particular:

1
(Zi _ZjOtBS)T S_I(Zi _ZjOtBS) det(S) )
- 7 2K

(M

1
o< (Zi - ZJ'OtBS)TS_l (Zi - ZJ'OIBS) det(S)_E
2K ; ;

h 2h

is assumed to be an estimate of the probability that at z, spatial dynamics
follows observed movement vectors A%z » where K(-) is the kernel func-

tion, /4 is the smoothing parameter and S is the sample covariance matrix of

2% The kernel function K (+) is generally a smooth positive function which

peaks at 0 and decreases monotonically as the distance between the observation

z,;, and the point of interest z, increases (see Silverman, 1986 for technical

details). The smoothing parameter / controls the width of the kernel function.’
In the estimation we use a multivariate Epanechnikov kernel (see Silverman,
1986 pp. 76-78), i.e.:

° In all the estimation we use the optimal normal bandwidth; for a discuss on the choice
of bandwidth see Silverman (1986).
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2(l—uTS'u) if u'S'u<i

T

KU'S'u)= )
0 if u'S'uxl,

0BS
jt

adapted to our scope because it assigns zero probability to observed movement
vectors very far from z,.'"” The exact quantification of “very far” is provided by

where u E(zi -z )/h . Multivariate Epanechnikov kernel is particularly

bandwidth /4, i.e. higher bandwidth means higher number of observed move-
ment vectors entering in the calculation of the movement at z, .

Given Eq. (1) for each point in the lattice z, we estimate the 7 -period
ahead expected movement i, . EE[ArZ,. | Zi] using a local mean estimator,
T1

firstly proposed by Nadaraya (1964) and Waston (1964), where the observa-
tions are weighted by the probabilities derived from the kernel function, i.e.:"

= 3306 ()8 o

t=1 j=1

The estimation of Eq. (3) strongly depends on the choice of 7 . This choice
is the result of a trade-off: from one hand, a too short 7 can increase the noise
in the estimation due to the possible presence of business-cycle fluctuations; on
the other hand, a too long 7 could contrast with the local characteristics of the
estimate, increasing the probability that observed movement vectors very far

from z, affects the estimate of g, . ."”
Tl

Figure 4 reports the annualized 10-year ahead expected movements based on
Eq. (3) for a lattice 50x50 =2500 points in the range (0.4-1.6)x(0.4-1.6) in
Moran space. For a wide area of Moran space we cannot calculate any expected
movement due to lack of observed movement vectors sufficiently close to the
points in the lattice (as discussed above such threshold in the distance is
proportional to the bandwidth /).

The overall spatial dynamics pattern suggested by the estimated expected
movements in Figure 4, is convergence toward a region around the bisector
close but below point (1,1) for the most of trajectories starting from points in

10 Other possible kernels, as the Gaussian, does not allow such possibility.

1 See Bowman and Azzalini (1997) for details.

12 For samples with a very short time span a further limit to the choice of a long 7 is
the relatively strong loss of observations.
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the lattice below the horizontal line Wy =1; while for points above Wy =1 a
convergence toward regions around points (1.3,1.1) and (1,1.3) is expected.

Figure 4. The Local Directional Moran Scatter Plot including all the
annualized 10-years ahead expected movements for the points
in the lattice where observed movement vectors are available
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Figure 5. The Local Directional Moran Scatter Plot including all the
annualized 10-years ahead expected movements for the points in the lattice
where the estimated movements are statistically significant at 5% level
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These findings are confirmed also after controlling for the statistical
significance of the estimated expected movements, whose results are reported in
Figure 5 (see the next section for the bootstrap procedure used for the
inference). In particular, the overall convergent spatial dynamics is confirmed;
in addition, within regions previously identified as loci of convergence no
significant spatial dynamics is present, suggesting that they are indeed regions
of steadiness.

With respect to Rey et al. (2011) our analysis confirms the presence of
spatial dependence, i.e. y and Wy tends to have the same sign of variation over

time (the movement vectors show an orientation from south-west to north-east
or vice versa); however, the proposed Standardized Directional Moran Scatter
Plot reported in the bottom panel of Fig. 2 in Rey et al. (2011) cannot identify
the remarkable heterogeneity of spatial dynamics among different regions of
Moran space emerging from Fig. 5, and its implications in term of the existence
of regions of steadiness.

3.1. Inference on Local Directional Moran Scatter Plot

Below we discuss in details how we have conducted the inference on the
estimated expected movements by a bootstrap procedure, whose results is
reported in Fig. 5.

OBS

o s with j=1,..,N and

t=1,...,T , the bootstrap procedure consists of four steps.

Given the observed sample of observations z

1. Estimate the expected value of the 7 -period ahead movement 4, . by
Eq. (3) for each point of the lattice (i =1,...,L).
2. Draw B  samples z'= (zlb ,...,Z,l:,(r_r)) and the associated

Abrz = (Azlh,..., AZZ(T_T)), with b=1,..., B, by sampling with replacement

0BS . 0BS
from the observed z and the associated movement vectors A” "z .

3. For every bootstrapped sample b and for each point of the lattice i
estimate by Eq. (3) the expected value of the 7 -period ahead movement

b
:LlATzl- :
4. Calculate the two-side p-value of the estimated movement vector at point i

in the lattice under the null hypothesis of no dynamics (note that null
hypothesis of no dynamics is separately tested in the two directions y and

W) as: b b
ASL; =2 x min (): BaL<0Y M. > o) /B 4)
bh=1 b=1

In the analysis we have set B =300, and used the usual significance level
of 5% to decide which expected movements to report in Fig. 5.
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3.2. Test on the Presence of Local Spatial Dependence

The local characteristics of LDMS allows also to test on the presence of
local spatial dependence in the same spirit of LISA (see Anselin1995). In
particular, the null hypothesis of no spatial dependence in the estimated
movements in Moran space can be formulated as follows:

HO : #Arzi = E[A‘rzi | Zi] = E[ATZI' | yi ]’ (5)
that is the null hypothesis is that the dynamics in point z, only depends on the

value of y; .
Figure 6. Permutation test for the presence of
local spatial dependence in RVF
P-value
of test
e
W -
|
| s S
Ty >
o2
- l' b\ N\
AN 3 <
In the fi pothesis in
Eq. (5).

1. Generate P independent permutation samples z” = (yp WP ) , with
p=1,...,P, by taking the entire time-series of an economy but randomly
permuting its neighbours (therefore in every permutation sample y” is
equal to y”* , but Wy” will be randomly different from #y™).

2. For every permutation sample p and for each point of the lattice i by Eq.
(3) estimate the expected value of the 7 -period ahead movement ,ufrzi .

3. For each point of the lattice i calculate the difference A o = L, . —ay ..

1 T
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4. Calculate the two-side p-value of the estimated movement vector at point i
in the lattice under the null hypothesis of no spatial dependence as

, P P
ASL, =2 xmin (): Ay <0.Y Ay > o) /P. (6)
p=1 p=1

Figure 6, which reports the results of the permutation test for P =300
permutations, highlights how within the three regions previously indicated as of
steadiness, spatial dependence is absent, while is particularly effective at the
borders of the north-east quadrant. Spatial dependence appears to be a
significant force also around (1,1).

The overall picture suggests that spatial dependence is a pervasive
phenomenon, but its effects appears not so important at aggregate level because
it is not significant in the regions of steadiness, where the most of US states are
concentrated."

4. FORECASTING BY A LOCAL DIRECTIONAL
MORAN SCATTER PLOT

The estimated LDMS also allows to compute F x7 -year ahead
projections starting from the observed cross-economy income distribution. The
proposed procedure is similar in the distribution approach to the use of the
estimated stochastic kernel to project in the future the actual distribution; in the
limit such projection leads to the ergodic (equilibrium) distribution. In
particular, the randomness of the estimated LDMS suggests to replicate S time
the procedure of computation of the F' -period ahead projection and to calculate
the average distribution (the replications allows also to calculate confidence
bands for our F x 7 -year ahead projected distribution).

The procedure for the computation of the /' x 7 -year ahead distribution

OBS
T

starting from the distribution in the last year 7z, is as follows.

1. For each replication s, with s =1,...,5":

(a) For each economy j=1,.... N set Z{ = Z’/.H (z; = z?fs ).

(b) For each economy j individuate the closest point in the lattice, and assign
to the economy ; the estimated probability distribution on the observed
movement vectors for that point,

—

ie. Pr (AT: :,-;) , where. i;f = argmin{.}L szf —;.H
Bz

13 From the point of view of distribution dynamics the regions of steadiness can be seen
as also the loci in the plane where the US states should pass more time.
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(c) For each economy j draw one transition, denoted by Arzf , from the
observed A?BSZ e
with probability Pr (AT: :,'}) and calculate Ejfﬂ = { LA CZ { .
~ f+l

(d) For each economy j normalize yf = J

J N ~f+l
z_/:lyj

that the new calculated distribution y{” has mean one.

in order to maintain

(e) For each economy j calculate the spatial lagged value Wy]f .

Zf“ Z(ny,Wny).

epeat steps (a)-(e) tor f = 2,...,17 .
Rep p fi 2, F
(g) Estimate the cross-economy income distribution for the last forecast period

~

Fér.=70").
2. Take the average of the estimated income distributions on all replications

¢AFXT ZZSSZI¢A;XT/S as the expected (F'x7) -year ahead forecast

distribution.

and set

Setting F'=5 and S =1000 , the distribution in Moran space of all
computed 50-year ahead forecasts for a total of 49.000 points (49 US states
times 1000 replications) reported in Fig. 7 highlights how no particular
dispersion/polarization emerges from the computation of forecast distributions;
the most of economies is expected to populate the regions of steadiness, and a
region in the north-east quadrant just above horizontal line Wy =1.

Fig. 8 shows how the computed 50-year ahead forecast distribution of y
(green line) is not statistically different from the estimated income distribution
in 2013 (black line). The actual income distribution across US states therefore
should tend to persist at least for the next 50 years.

We also report the 50-year forecast distribution of y based on the use of a
stochastic kernel (SK) (orange line), which appears centered around 1 and more
or less symmetric. "* The difference between the 50-year ahead forecast
distribution calculated by LDMS and SK measures the magnitude of the bias in
the estimate of distribution dynamics deriving from the omission of spatial
dependence.

' We use a Gaussian kernel with adaptive bandwidth. See Quah (1997) for more details
on the meaning of stochastic kernel and its use to forecast future distributions, and
(Silverman, 1986, p. 100) for the procedure to estimate a stochastic kernel with adaptive
bandwidth.
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Figure 7. All computed 50-year ahead forecasts for a total of
49.000 points (49 US states times 1000 replications) (green points),
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With a very different approach Gerolimetto and Magrini (2014) find a
similar results. By using quarterly data for 48 conterminous US states over three
decades running between 1981:Q1 and 2010:Q4, they show that neglecting
spatial dependence substantially affect the estimate of distributional tendencies;
in particular, in the second decade (1991:Q1 and 2000:Q4) the spatial estimator
shows a stronger tendency towards divergence in the ergodic distribution with
respect to the non spatial estimator."

5. CONCLUDING REMARKS

This paper has proposed a novel methodology to analyse the distribution
dynamics in presence of spatial dependence by estimating a random vector field
in Moran space. The methodology has successfully identified local
heterogeneity in spatial dynamics for US States from 1987 to 2013. Inference
on such local heterogeneity has shown how spatial dependence is present only
in some regions of Moran space, and that there exists a converging dynamics to
three regions where local spatial dependence is instead very weak. The forecast
of future income distribution suggests that the most of US States should persist
within the three regions, and that no particular change is expected in the income
distribution with respect to 2013. The comparison with the forecasted
distribution calculated by stochastic kernel generally used in the distribution
dynamics literature has shown how the former can be bias from the omission of
spatial dependence.

The methodology could be refined by adopting an adaptive kernel in the
estimation of LDMS, i.e. a kernel whose bandwidth changes accordingly to the
density of observation around the point in the lattice (in particular, the
bandwidth is larger where observations are less numerous, see Silverman,
1986). More important, the analysis can be extended to include other
explanatory variables of the movement vectors (e.g. the typically Solovian
variables such as investment rates and population growth); the limit is the so-
called “curse of dimensionality” that generally plagues the use of kernel in
multivariate analysis (see, again, Silverman, 1986).

15 Their results are not exactly comparable with ours both for the data used in the
analysis (we have a more limited time span), and for the estimation of the stochastic
kernel made using a nearest-neighbor bandwidth in the first year, normal scale
bandwidth in the last year, a Gaussian kernel and mean bias adjustment via a local
linear estimate.
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UN DIAGRAMME DE MORAN DIRECTIONNEL - LDMS

Résumé - Cet article s’appuie sur une démarche méthodologique originale
permettant d’estimer [’évolution de la distribution des revenus, en présence
d’effets de dépendance spatiale. Dans ce travail, nous admettons [’hypothese
que les dynamiques spatiales peuvent étre représentées comme un vecteur
aléatoire dans le diagramme de Moran. Les effets de causalité des dynamiques
spatiales sont analysés par le biais d’un test de dépendance spatiale. La métho-
dologie utilisée permet de prévoir la future distribution des revenus, en tenant
compte des effets de dépendance spatiale, aux Etats-Unis.

Mots-clés - ANALYSE DE ,DONNEES EXPLORATOIRE, POLARISATION,
VECTEUR ALEATOIRE, DEPENDANCE SPATIALE, DISTRIBUTION DES
REVENUS



