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Abstract

In the present paper we obtain a new correlation inequality and use it for the purpose of exten-
ding the theory of the Almost Sure Local Limit Theorem to the case of lattice random sequences
in the domain of attraction of a stable law. In particular, we prove ASLLT in the case of the
normal domain of attraction of α–stable law, α ∈ (1, 2).
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1 Introduction

In the recent paper [10], the author proves a correlation inequality and an Almost Sure Local Limit
Theorem (ASLLT) for i.i.d. square integrable random variables taking values in a lattice. The
sequence of partial sums of such variables are of course in the domain of attraction of the normal
law, which is stable of order α = 2.

The aim of the present paper is to give an analogous correlation inequality (Theorem 3.1) for the
more general case of random sequences in the domain of attraction of a stable law of order α 6 2
and to apply it for the purpose of extending the theory of ASLLT. Notice that in our situation the
summands need not be square integrable. Our correlation inequality turns out to be of the typical
form needed in the theory of Almost Sure (Central and Local) Limit Theorems (see Corollary 3.3
and Remark 3.4). Our work is based on a careful use of the form of the characteristic function,
and is completely different from the one used in [10] (Mc Donald’s method of extraction of the
Bernoulli part of a random variable).

Acknowledgement. We are grateful to an anonymous referee whose suggestions have led to a
substantial improvement of the presentation.

2 The assumptions and some preliminaries

In this paper we shall be concerned with a sequence of i.i.d. random variables (Xn)n≥1 such that
their common distribution F is in the domain of attraction of G, where G is a stable distribution
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87-100 Toruń, Poland. e-mail: zssz@mat.uni.torun.pl

1



with exponent α (0 < α 6 2, α 6= 1). This means that, for a suitable choice of constants an and
bn, the distribution of

Tn :=
X1 + · · ·Xn − an

bn

converges weakly to G. It is well known (see [6], p. 46) that in such a case we have bn = L(n)n1/α,
where L is slowly varying in Karamata’s sense. For α > 1 we shall assume that X1 is centered; by
Remark 2 p. 402 of [1], this implies that an = 0, for every α.

We shall suppose that X1 takes values in the lattice L(a, d) = {a + kd, k ∈ Z} where d is the
maximal span of the distribution; hence Sn := X1 + · · ·Xn takes values in the lattice L(na, d) =
{na+ kd, k ∈ Z}.

For every n, let κn be a number of the form na+ kd and let

lim
n→∞

κn
bn

= κ.

Then Theorem 4.2.1 p. 121 in [6] implies that

sup
n

{
sup
κ
bnP (Sn = κ)

}
= C <∞. (1)

Throughout this paper we assume that

xαP (X > x) =
(
c1 + o(1)

)
h(x); xαP (X 6 −x) =

(
c2 + o(1)

)
h(x), α ∈ (0, 2], (2)

where h is slowly varying as x → ∞ and c1 and c2 are two suitable non–negative constants,
c1 + c2 > 0, related to the stable distribution G.

Let φ be the characteristic function of F . By [1], Theorem 1, for α 6= 1 it has the form

φ(t) = exp

{
−c|t|αh

( 1

|t|

)
(1− iβsign(t) tan

πα

2
) + o

(
|t|αh

( 1

|t|

))}
, (3)

where c = Γ(1 − α)(c1 + c2) cos πα2 > 0 and β = c1−c2
c1+c2

∈ [−1, 1] are two constants. This formula
implies that

log
∣∣φ(t)

∣∣ = Re
(

log φ(t)
)

= −c|t|αh
( 1

|t|

)(
1 + o(1)

)
. (4)

arg
(
φ(t)

)
= Im

(
log φ(t)

)
= −c|t|αh

( 1

|t|

)(
− βsign(t) tan

πα

2
+ o(1)

)
.

hence

lim
t→0

∣∣∣arg
(
φ(t)

)
log |φ(t)|

∣∣∣ =
∣∣∣β tan

πα

2

∣∣∣. (5)

We notice that L(n) = h
1
α (bn) for α ∈ (0, 2) (by Remark 2 p. 402 in [1]), while L(n) =√

E
[
X21{|X|6bn}

]
for α = 2.
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Remark 2.1 For the case α = 2 we need that x 7→ x2P (|X| > x) is a slowly varying function, a
stronger assumption than the slow variation of x 7→ E[X21{|X|6x}] (which in turn is equivalent to
the CLT, see Corollary 1 p. 578 in [3]). To see this, consider the following distribution:

P (X = n) =
C

n22n
, n ≥ 1, C =

∑
k>1

1

k22k
.

It is easy to check that in this case x 7→ x2P (|X| > x) is not slowly varying.

Remark 2.2 Let h̃ ∼ h as x→ +∞. Then, by (4),

log
∣∣φ(t)

∣∣ = −c|t|αh
( 1

|t|

)(
1 + o(1)

)
= −c|t|αh̃

( 1

|t|

)
·
h
(

1
|t|

)
h̃
(

1
|t|

)(1 + o(1)
)

= −c|t|αh̃
( 1

|t|

)(
1 + o(1)

)
.

This means that h is unique up to equivalence; thus, by Theorem 1.3.3. p. 14 of [2] we can assume
that h is continuous (even C∞) on [a,∞) for some a > 0.

An analogous observation is in force for arg
(
φ(t)

)
.

Remark 2.3 Thus we deal with a subclass of strictly stable distributions. Denoting by ψ the
characteristic function of G, we know from [11], Theorem C.4 on p.17 that logψ (for strictly stable
distributions) has the form

logψ(t) = −c|t|α exp{−i
(π

2

)
θα sign(t)},

where |θ| 6 min{1, 2α − 1} and c > 0. For α = 1 and |θ| = 1 we get degenerate distribution and in
this case we say that Xn is relatively stable (see e.g. [9]). Almost sure variant of relative stability
for dependent strictly stationary sequences will be discussed elsewhere.

Let δ > −1 and p > 0 two given numbers; we shall use the equality∫ +∞

0
tδe−pt

α
dt =

Γ( δ+1
α )

α
· 1

p
δ+1
α

= C · 1

p
δ+1
α

. (6)

In what follows, with the symbols C, c and so on we shall mean positive constants the value of

which may change from case to case.

3 The correlation inequality

We assume that (Xn)n>1 is a sequence of i.i.d. random variables verifying the following conditions:
(2), α 6= 1 and µ = E[X1] = 0 when α > 1. Recall that the norming constant are an = 0 and
bn = L(n)n1/α with L slowly varying. With no loss of generality, we shall assume throughout that
d = 1.
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Theorem 3.1 (i) In the above setting we have

bmbn

∣∣∣P (Sm = κm, Sn = κn)− P (Sm = κm)P (Sn = κn)
∣∣∣

6 C
{( n

n−m

)1/α L(n)

L(n−m)
+ 1
}
.

(ii) In addition to the previous hypotheses assume that the function h appearing in (2) and (3)
verifies

lim inf
x→∞

h(x) =: ` > 0.

Then there exists ε > 0 such that, putting

M(x) = sup
1
ε
6y6x

h(y), x >
1

ε
,

we have M(x) <∞ for every x and

bmbn

∣∣∣P (Sm = κm, Sn = κn)− P (Sm = κm)P (Sn = κn)
∣∣∣

6 CL(n)

n1/α
( 1

e(n−m)c
+

1

enc

)
+

m
n(

1− m
n

)1+ 1
α

(
1 +M(n1+

1
α )
)

+

(
m
n

) η
αLη(m)

(1− m
n )

η+1
α

 (7)

for every pair (m,n) of integers, with m > 1, n > m+ ε−
α
α+1 , and for every η ∈ (0, 1].

Remark 3.2 If h is ultimately increasing, then condition (ii) of Theorem 3.1 is automatically
satisfied. A quick look at the proof (see below) shows that if h is increasing and continuous, the
inequality (7) holds for 1 6 m < n.

Proof of Theorem 3.1.

(i) We write

bmbn

∣∣∣P (Sm = κm, Sn = κn)− P (Sm = κm)P (Sn = κn)
∣∣∣

=
{
bmP (Sm = κm)

}
·
{
bn

∣∣∣P (Sn−m = κn − κm)− P (Sn = κn)
∣∣∣}

6 C · bn
∣∣∣P (Sn−m = κn − κm)− P (Sn = κn)

∣∣∣,
by (1). Inequality (i) follows since

bn

∣∣∣P (Sn−m = κn − κm)− P (Sn = κn)
∣∣∣ 6 bn(P (Sn−m = κn − κm) + P (Sn = κn)

)
=
( bn
bn−m

· bn−mP (Sn−m = κn − κm) + bnP (Sn = κn)
)
6 C

( bn
bn−m

+ 1
)
,

by (1) again.

(ii) Let φ be the characteristic function of F . By the inversion formula (see Theorem 4, p. 511 of
[3]) we can write

bn

∣∣∣P (Sn−m = κn − κm)− P (Sn = κn)
∣∣∣ =

bn
2π

∣∣∣ ∫ π

−π

{
e−it(κn−κm)φn−m(t)− e−itκnφn(t)

}
dt
∣∣∣

6 Cbn

∫ π

−π

∣∣∣eitκmφn−m(t)− φn(t)
∣∣∣ dt.
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Recall the expression (3) of φ where, by Remark 2.2, on can choose h continuous on [a,∞) for some
a > 0. The additional assumption ` > 0 allows to take ε ∈

(
0, 1a
]

such that, for |t| < ε we have

h
( 1

|t|

)
>
A

2
> 0. (8)

We write ∫ π

−π

∣∣∣eitκmφn−m(t)− φn(t)
∣∣∣ dt =

∫
|t|<ε

+

∫
ε<|t|<π

= I1 + I2.

Now

I2 6
∫
ε<|t|<π

|φ(t)|n−m dt+

∫
ε<|t|<π

|φ(t)|n dt.

Since d = 1, by Theorem 1.4.2 p. 27 of [6] we have |φ(t)| < 1 for 0 < |t| < 2π. Hence a constant
c > 0 exists such that, for ε < |t| < π we have |φ(t)| < e−c, which gives∫

ε<|t|<π
|φ(t)|n dt < 2πe−nc;

∫
ε<|t|<π

|φ(t)|n−m dt < 2πe−(n−m)c,

so that
I2 6 C

(
e−(n−m)c + e−nc

)
. (9)

Now we evaluate I1,

I1 =

∫ ε

−ε

∣∣∣eitκmφn−m(t)− φn(t)
∣∣∣ dt

6
∫ ε

−ε

∣∣∣eitκmφn−m(t)− eitκmφn(t)
∣∣∣ dt+

∫ ε

−ε

∣∣∣eitκmφn(t)− φn(t)
∣∣∣ dt

=

∫ ε

−ε

∣∣∣φn−m(t)− φn(t)
∣∣∣ dt+

∫ ε

−ε

∣∣∣eitκm − 1
∣∣∣ · ∣∣φ(t)

∣∣n dt. (10)

For a complex number A = %eiθ we have

∣∣Ax −Ay∣∣ =
{(
%x − %y

)2
+ 2%x+y

(
1− cos θ(x− y)

)}1/2
6
∣∣%x − %y∣∣+

{
2%x+y

(
1− cos θ(x− y)

)}1/2

6
∣∣%x − %y∣∣+ %

x+y
2 |θ|

∣∣x− y∣∣.
Applying with A = φ(t), x = n−m and y = n we get∫
|t|<ε

∣∣∣φn−m(t)−φn(t)
∣∣∣ dt 6 C(∫

|t|<ε

∣∣∣|φ(t)|n−m− |φ(t)|n
∣∣∣ dt+m

∫
|t|<ε

∣∣∣ arg φ(t)
∣∣∣ · ∣∣φ(t)

∣∣n−(m/2) dt).
(11)

Applying Lagrange Theorem to the first summand we find that for a suitable ξ ∈ (n −m,n) we
have, for every δ < ε∫

|t|<ε

∣∣∣|φ(t)|n−m − |φ(t)|n
∣∣∣ dt 6 ∫

|t|<δ
2 dt+m

∫
δ<|t|<ε

∣∣∣ d
dx
{|φ(t)|x}

∣∣∣∣∣∣∣∣
x=ξ

dt

= 4δ +m

∫
δ<|t|<ε

∣∣ log |φ(t)|
∣∣ · |φ(t)|ξ dt 6 4δ +m

∫
δ<|t|<ε

∣∣ log |φ(t)|
∣∣ · |φ(t)|(n−m) dt

6 4δ + C1m

∫
δ<|t|<ε

|t|αh
( 1

|t|

)
· e−C2(n−m)|t|αh

(
1
|t|

)
dt, (12)
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using the relation (4). By reporting the inequality (8) into (12), and recalling that h is continuous,
hence bounded on [δ, ε], we obtain∫

|t|<ε

∣∣∣|φ(t)|n−m − |φ(t)|n
∣∣∣ dt 6 4δ + C1mM

(1

δ

)∫
δ<|t|<ε

|t|α · e−C2(n−m)|t|α dt

6 C
{
δ +

m

(n−m)1+
1
α

·M
(1

δ

)}
,

by (6), for any δ < ε. Taking δ = 1

(n−m)1+
1
α

, we get∫
|t|<ε

∣∣∣|φ(t)|n−m − |φ(t)|n
∣∣∣ dt 6 C{ 1

(n−m)1+
1
α

+
m

(n−m)1+
1
α

·M
(
(n−m)1+

1
α
)}

6 C
m

(n−m)1+
1
α

(
1 +M

(
n1+

1
α
))
, (13)

M being non–decreasing.

For the second summand in (11) we can proceed as follows: by (5),∣∣ arg φ(t)
∣∣ 6 C∣∣ log |φ(t)|

∣∣, ∀ t.

Hence, arguing as before

m

∫
|t|<ε

∣∣ arg φ(t)
∣∣ · ∣∣φ(t)

∣∣n−(m/2) dt 6 Cm∫
|t|<ε

∣∣ log φ(t)
∣∣ · ∣∣φ(t)

∣∣n−(m/2) dt
6 C

m(
n− m

2

)1+ 1
α

{
1 +M

((
n− m

2

)1+ 1
α

)}
6 C

m

(n−m)1+
1
α

(
1 +M

(
n1+

1
α
))
, (14)

as before. Thus, by (11) (13), (14) we obtain∫ ε

−ε

∣∣∣φn−m(t)− φn(t)
∣∣∣ dt 6 C m

(n−m)1+
1
α

(
1 +M

(
n1+

1
α
))
. (15)

Let’s turn to the second summand in (10). By the well known inequality

|eit − 1| 6 21−η|t|η, ∀η ∈ (0, 1]

(see [7], p. 200), we have∫ ε

−ε

∣∣∣eitκm − 1
∣∣∣ · ∣∣φ(t)

∣∣n dt 6 |κm|η21−η ∫ ε

−ε

∣∣t∣∣η · ∣∣φ(t)
∣∣n−m dt 6 C |κm|η

(n−m)
η+1
α

6 C
m

η
αLη(m)

(n−m)
η+1
α

,

(16)

again by (6) and the fact that

κm ∼ κbm = κL(m)m1/α, m→∞.

Summing the estimates (9), (15) and (16) we get, for every η ∈ (0, 1]∫ −π
−π

∣∣∣eitκmφn−m(t)− φn(t)
∣∣∣ dt

6 C

{(
e−(n−m)c + e−nc

)
+

m

(n−m)1+
1
α

(
1 +M

(
n1+

1
α
))

+
m

η
αLη(m)

(n−m)
η+1
α

}
.

Multiplying by bn = L(n)n1/α gives the conclusion.
�
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Corollary 3.3 For large m and n ≥ 2m, for every δ < 1
α and for every η ∈ (0, 1] we have

bmbn

∣∣∣P (Sm = κm, Sn = κn)− P (Sm = κm)P (Sn = κn)
∣∣∣ 6 CL̃(n) ·

(m
n

)ρ
,

with L̃(n) = L(n)
(
1 +M(n1+

1
α ) + Lη(n)

)
and ρ := min{η( 1

α − δ), 1}.

Proof of Corollary 3.3. Let ε be the number identified in (ii) of Theorem 3.1 and c the constant

appearing in the second member of (7); let x0 > ε−
α
α+1 be such that ecx ≥ x2/α for x ≥ x0. For

m ≥ x0 we have also n−m > x0 > ε−
α
α+1 (since n−m ≥ m). Then (ii) of Theorem 3.1 holds and

n1/α

enc
6

n1/α

e(n−m)c
6

n1/αm1/α

(n−m)2/α
=

(
m
n

)1/α(
1− m

n

)2/α ≤ 22/α ·
(m
n

)1/α
. (17)

Moreover

m
n(

1− m
n

)1+1/α
6

m
n(

1
2

)1+1/α
= (21+

1
α )
(m
n

)
; (18)

similarly (
m
n

) η
αLη(m)

(1− m
n )

η+1
α

6 2
η+1
α Lη(m)

(m
n

) η
α
. (19)

Recall the well known representation of slowly varying functions (see for instance [2], p.12):

L(x) = γ(x) exp
{∫ x

1

ε(t)

t
dt
}
,

where γ(x)→ γ (a finite constant) and ε(x)→ 0 as x→∞.
We deduce from it that, for every δ > 0, n > 2m and large m we have

mδL(m)

nδL(n)
6 C exp

{
δ logm+

∫ m

1

ε(t)

t
dt− δ log n−

∫ n

1

ε(t)

t
dt
}

= C exp
{
δ log

m

n
+

∫ m

n

ε(t)

t
dt
}

= C exp
{
δ log

m

n
−
∫ n

m

ε(t)

t
dt
}
6 C exp

{
δ log

m

n
+

∫ n

m

δ

2t
dt
}

= C exp
{
δ log

m

n
− δ

2
log

m

n

}
= C

(m
n

) δ
2
6 C

(1

2

) δ
2
.

It follows that

Lη(m)
(m
n

) η
α
6 CLη(n)

(m
n

)η( 1
α
−δ)

. (20)

From (19) and (20) we obtain (
m
n

) η
αLη(m)

(1− m
n )

η+1
α

6 CLη(n)
(m
n

)η( 1
α
−δ)

. (21)

Now the desired conclusion follows from (17), (18) and (21) and the inequality in (ii) of Proposition
3.1.

�

7



Remark 3.4 Let (Yn)n>1) be i.i.d. centered random variables with second moments. It is well
known that correlation inequalities of the form∣∣∣Cov(Ym, Yn)

∣∣∣ 6 C(m
n

)ρ
(22)

for some positive constant ρ are useful tools in order to prove Almost Sure Theorems with loga-
rithmic weights, i.e. statements of the form

lim
N→∞

1

logN

N∑
n=1

Yn
n

= 0. (23)

See for instance [4], Theorem (2.9) as a reference.
The correlation inequality of Corollary 3.3 is similar to (22), but notice that the coefficient L̃ need
not be bounded. See also Remark 4.3.

Remark 3.5 In the case α = 2 the correlation inequality of Corollary 3.3 furnishes ρ = η
(
1
2 − ε

)
<

1
2 , while in [10] the better exponent ρ = 1

2 is found. Nevertheless, we are able to prove an Almost
Sure Local Theorem even with the weaker exponent, as we shall see in the next section.

4 Application to the Almost Sure Local Limit Theorem

In this section we apply our main result to prove a suitable form of the Almost Sure Local Limit
Theorem. Denote by g the α–stable density function related to the distribution function G. We
point out that here we consider only the case α > 1. Precisely

Theorem 4.1 Let (Xn)n>1 be a centered, independent and identically lattice distributed (i.i.l.d.)
random sequence with span d = 1; assume moreover that (2) holds with α ∈ (1, 2] and that there
exists γ ∈ (0, 2) such that

b∑
k=a

L(k)
{

1 +M
(
k1+

1
α

)
+ Lη(k)

}
k

6 C(logγ b− logγ a),

for some η ∈ (0, 1]. If the condition (ii) of Theorem 3.1 is satisfied, then

lim
N→∞

1

logN

N∑
n=1

bn
n

1{Sn=κn} = g(κ).

Example 4.2 Let h(x) = logσ x, with 0 < σ < α
1+α . Notice that

σ

α
< σ ∧ (1− σ) (24)

Remark 2 p. 402 in [1] assures that
bαn = n logσ bn.

Putting f(x) = xα

logσ x and observing that f is strictly increasing for x > e
σ
α , this means that

L(n) =
bn

n
1
α

=
f−1(n)

n
1
α

, (25)
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for sufficiently large n. It is not difficult to check that for sufficiently large n

L(n) 6 logδ n, ∀δ > σ

α
.

In fact by (25) this is equivalent to

n 6 f
(
n

1
α · logδ n

)
=

n logαδ n(
1
α log n+ δ log logn

)σ ,
which clearly holds for αδ > σ. Thus

L(n)
{

1 +M
(
n1+

1
α
)

+ Lη(n)
}
6 logδ n

{
1 +

(
1 +

1

α

)σ
logσ n+ logδη n

}
6 C

(
log n

)2δ∨(δ+σ)
.

If δ < σ we have 2δ ∨ (δ + σ) = δ + σ, hence

b∑
k=a

L(k)
{

1 +M
(
k1+

1
α

)
+ Lη(k)

}
k

6 C
b∑

k=a

(
log k

)δ+σ
k

6 C(logγ b− logγ a)

with γ = δ + σ + 1 < 2 for any δ ∈
(
σ
α , σ ∧ (1− σ)

)
(see (24)).

Remark 4.3 Let Yn = bn

(
1{Sn=κn}−P (Sn = κn)

)
. Theorem 4.1 states exactly relation (23): just

observe that

lim
N→∞

1

logN

N∑
n=1

bnP (Sn = κn)

n
= g(κ),

by Theorem 4.2.1 p. 121 of [6]. Of course, our statement requires an auxiliary hypothesis, due to
the fact that in the second member of our correlation inequality we have a supplementary factor,
L̃(n), which need not be bounded, as observed before (Remark 3.4).

Remark 4.4 If L ≡ a constant (i.e. F belongs to the domain of normal attraction of G, according
to the definition on p. 92 of [6]), then the assumption in Theorem 4.1 and condition (ii) of Theorem
3.1 are automatically satisfied; thus we get the following nice result

Corollary 4.5 If (Xn)n>1 is a centered i.i.l.d. random sequence with span d = 1, (2) holds with
α ∈ (1, 2) and L ≡ c, then

lim
N→∞

1

logN

N∑
n=1

c

n1−
1
α

1{Sn=κn} = g(κ).

Proof of Theorem 4.1. We shall denote L̃(n) := L(n)
{

1 + M
(
n1+

1
α

)
+ Lη(n)

}
as in Corollary 3.3

of the previous section. By Ex. 1.11.4 p. 58 of [2], M is slowly varying, hence the same happens

for n 7→M
(
n1+

1
α

)
and for L̃. Put

Zn :=

2n−1∑
k=2n−1

Yk
k
,

where Yn is defined in Remark (4.3). Following the same argument as in [5], we must prove that

lim
n→∞

∑n
i=1 Zi
n

= 0.

We shall use the Gaal–Koksma Strong Law of Large Numbers, i.e. (see [8], p. 134); here is the
precise statement:
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Theorem 4.6 Let (Zn)n>1 be a sequence of centered random variables with finite variance. Suppose
that there exists a constant β > 0 such that, for all integers m > 0, n > 0,

E
[( m+n∑

i=m+1

Zi
)2]
6 C

(
(m+ n)β −mβ

)
, (26)

for a suitable constant C independent of m and n. Then, for each δ > 0,

n∑
i=1

Zi = O(nβ/2(log n)2+δ), P − a.s.

Remark 4.7 It is easy to see that Theorem 4.6 is in force even if the bound (26) holds only for
all integers m ≥ h0, n > 0, where h0 is an integer strictly greater than 0: just take Zi = 0 for
i = 1, 2, . . . , h0 and use Theorem 4.6.

We go back to the proof of Theorem 4.1, where we shall repeatedly use Remark 4.7 without
mentioning it. Since

E
[( m+n∑

i=m+1

Zi
)2]

=
m+n∑
i=m+1

E[Z2
i ] + 2

∑
m+16i<j6m+n

E[ZiZj ], (27)

we bound separately these two summands. We have first

E[Z2
i ] =

2i−1∑
h,k=2i−1

1

hk
E[YhYk] =

2i−1∑
h=2i−1

1

h2
E[Y 2

h ] + 2
∑

2i−16h<k62i−1

1

hk
E[YhYk]. (28)

Now, by (1)

E[Y 2
h ] = b2h

{
P (Sh = κh)− P 2(Sh = κh)

}
6 b2hP (Sh = κh) 6 Cbh = C · L(h)h1/α.

Fix any ε ∈ (0, 1 − 1
α) and let h0 be such that L(t) < tε for t > h0. Let m be such that 2m > h0;

for h > 2i−1 ≥ 2m we have from the above that E[Y 2
h ] 6 Chε+(1/α), which gives

2i−1∑
h=2i−1

1

h2
E[Y 2

h ] 6 C
2i−1∑
h=2i−1

1

h2−ε−1/α
6 C · 2i − 2i−1

(2i−1)2−ε−1/α
=

C

(2i−1)1−ε−1/α
6 C. (29)

Moreover, by (i) of Theorem 3.1, we have∑
2i−16h<k62i−1

1

hk
E[YhYk] 6 C

∑
2i−16h<k62i−1

1

hk

( k

k − h

)1/α L(k)

L(k − h)
+ C

∑
2i−16h<k62i−1

1

hk
. (30)

Now ∑
2i−16h<k62i−1

1

hk
=

2i−1∑
k=2i−1

1

k

k−1∑
h=2i−1

1

h
6
( 2i−1∑
k=2i−1

1

k

)2
6 C; (31)

and

∑
2i−16h<k62i−1

1

hk

( k

k − h

)1/α L(k)

L(k − h)
6 2

2i−1∑
k=2i−1

L(k)

k2−1/α

k−2i−1∑
j=1

1

j1/α
1

L(j)
(32)

10



(we have used the fact that k
2 < 2i−1 6 h).

Now we are concerned with the inner sum in the last member of (32). The function

t 7→ U(t) =
1

[t]1/α
1

L([t])
, t ≥ 1

is regularly varying with exponent − 1
α ; hence, from Theorem 1 p. 281 part (b) of [3] we deduce

that, for every p > 1
α − 1

kp+1U(k)∫ k
1 x

pU(x) dx
→ p− 1

α
+ 1, k →∞.

Since ∫ k

1
xpU(x) dx =

k∑
j=2

∫ j

j−1
xpU(x) dx >

k∑
j=2

(j − 1)p
∫ j

j−1
U(x) dx =

k−1∑
j=1

jpU(j),

we get

lim inf
k→∞

kp+1U(k)∑k−1
j=1 j

pU(j)
> lim

k→∞

kp+1U(k)∫ k
1 x

pU(x) dx
=
(
p− 1

α
+ 1
)
, k →∞.

In particular, for p = 0 we obtain (remember that 1
α < 1)

k

k1/α
1

L(k)
= kU(k) > C

k−1∑
j=1

U(j) = C

k−1∑
j=1

1

j1/α
1

L(j)
,

whence
k−2i−1∑
j=1

1

j1/α
1

L(j)
6

k−1∑
j=1

1

j1/α
1

L(j)
6 C

k

k1/α
1

L(k)
,

and continuing (32) we obtain

2i−1∑
k=2i−1

L(k)

k2−1/α

k−2i−1∑
j=1

1

j1/α
1

L(j)
6 C

2i−1∑
k=2i−1

L(k)

k2−1/α
k

k1/α
1

L(k)
= C. (33)

Summarizing , from (30), (31), (32) and (33) we have found∑
2i−16h<k62i−1

1

hk
E[YhYk] 6 C, (34)

so that by (28), (29) and (34) we get
E[Z2

i ] 6 C; (35)

this implies
m+n∑
i=m+1

E[Z2
i ] ≤ Cn (36)

which bounds the first sum in (27). Now we consider the second one, i.e.∑
m+16i<j6m+n

E[ZiZj ].

11



We start with a bound for the summand E[ZiZj ] when j > i+ 2. In this case we have

h 6 2i ≤ 2j−2 6
k

2
.

Let m be such that 2m > x0, where x0 is as in Corollary 3.3. For i > m + 1, the same Corollary
assures that

E[ZiZj ] =
2i−1∑
h=2i−1

2j−1∑
k=2j−1

1

hk
E[YhYk] 6 C

2i−1∑
h=2i−1

1

h1−ρ

2j−1∑
k=2j−1

L̃(k)

k1+ρ
. (37)

The function

V (t) =
L̃([t])

[t]1+ρ
, t ≥ 1

is regularly varying with exponent −(1 + ρ). Hence, by Theorem 1 p. 281 part (a) of [3], we have

kp+1V (k)∫∞
k xpV (x) dx

→ −p+ ρ

if −p+ ρ > 0 and
∫∞
k xpV (x) dx is finite. In particular we can take p = 0, since∫ ∞

1
V (x) dx =

∞∑
j=1

L̃(j)

j1+ρ
< +∞,

and we obtain
L̃(k)
kρ∫∞

k V (x) dx
=

kV (k)∫∞
k V (x) dx

→ ρ. (38)

Now∫ ∞
k

V (x) dx =

∫ ∞
k

L̃([x])

[x]1+ρ
dx =

∞∑
j=k

∫ j+1

j

L̃([x])

[x]1+ρ
dx >

∞∑
j=k

L̃(j)

(j + 1)1+ρ
>
(1

2

)1+ρ ∞∑
j=k

L̃(j)

j1+ρ
(39)

and similarly ∫ ∞
k

V (x) dx 6
∞∑
j=k

L̃(j)

j1+ρ
. (40)

From (38), (39) and (40) we deduce that there exist two constants 0 < C1 < C2 such that, for
every sufficiently large k,

C1
L̃(k)

kρ
<
∞∑
j=k

L̃(k)

k1+ρ
< C2

L̃(k)

kρ
.

Going back to (37), we find for sufficiently large i

E[ZiZj ] ≤ 2iρ
(
C2
L̃(2j−1)

2(j−1)ρ
− C1

L̃(2j)

2jρ

)
,

and now, by (35) ∑
m+16i<j6m+n

E[ZiZj ] =
∑

m+36i+26j6m+n

E[ZiZj ] +

m+n−1∑
i=m+1

E[ZiZi+1] =

6
m+n∑
j=m+2

(
C2
L̃(2j−1)

2(j−1)ρ
− C1

L̃(2j)

2jρ

) j−1∑
i=m+1

2iρ +

m+n−1∑
i=m+1

E[Z2
i ]1/2E[Z2

i+1]
1/2

6 C
(m+n−1∑
j=m+1

L̃(2j) + n
)
≤ C

{
(m+ n)γ −mγ + n}. (41)
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Now we insert (36) and (41) into (27) and obtain

E
[( m+n∑

i=m+1

Zi
)2]
6 C

{
(m+ n)γ −mγ + n} ≤ C

{
(m+ n)γ∨1 −mγ∨1]},

and we conclude by Theorem 4.6.
�

Remark 4.8 As clearly stated at the beginning of this section, Theorem 4.1 holds in the case
α > 1. We believe that this is due to the particular arguments used for the proof, and that it is
possible to extend the ASLLT also to the case α < 1. The critical case α = 1 remains unexplored
till now. Another not yet investigated situation is for α = 2 with x 7→ E[X21{|X|6x}] slowly varying
and E[X2] = ∞ with x 7→ x2P (|X| > x) not slowly varying. Hopefully, we shall treat these cases
in another paper.
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