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3 Spin structures on 3-manifolds

via arbitrary triangulations

Riccardo Benedetti Carlo Petronio

January 25, 2016

Abstract

Let M be an oriented compact 3-manifold and let T be a (loose) triangula-
tion ofM , with ideal vertices at the components of ∂M and possibly internal
vertices. We show that any spin structure s on M can be encoded by extra
combinatorial structures on T . We then analyze how to change these extra
structures on T , and T itself, without changing s, thereby getting a com-
binatorial realization, in the usual “objects/moves” sense, of the set of all
pairs (M, s). Our moves have a local nature, except one, that has a global
flavour but is explicitly described anyway. We also provide an alternative
approach where the global move is replaced by simultaneous local ones.

MSC (2010): 57R15 (primary); 57N10, 57M20 (secondary).

Combinatorial presentations of 3-dimensional topological categories, such as the
description of closed oriented 3-manifolds via surgery on framed links in S3, and
many more, are among the main themes of geometric topology, and in particular
have proved crucial for the theory of quantum invariants, initiated in [16] and [18].

A combinatorial presentation of the set of all pairs (M,s), with M a closed
oriented 3-manifold and s a spin structure on M , was already contained in [5].
This presentation was realized by selecting the (loose) triangulations of M having
only one vertex and supporting a ∆-complex structure (see [8]), also called a
branching. The viewpoint adopted in [5] was actually that of special spines,
equivalent to that of triangulations via duality (see Matveev [14] and below). For
the special spine dual to a triangulation, a branching is precisely a structure of
oriented branched surface (see Williams [20]), and this structure was used in [5]
to define a trivialization of the tangent bundle of M along the 1-skeleton of the
spine, whence a spin structure on M , using constructions already proposed by
Ishii [9] and Christy [7].

The construction just described easily extends to pairs (M,s) with M a com-
pact oriented 3-manifold with non-empty boundary and s a spin structure on M ,
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using branchable triangulations of M with ideal vertices at the components of
∂M , and possibly internal internal vertices. This approach however suffers from
the drawback that not all triangulations of M are branchable: for instance, the
canonical triangulation by two regular hyperbolic ideal tetrahedra of the hyper-
bolic one-cusped manifold called the “figure-eight-knot-sister” is not branchable.
On one hand, one easily sees that any triangulation of M has branchable sub-
divisions (e.g., take a regular subdivision and define a branching by choosing a
total ordering of the vertices). On the other hand, in many circumstances one is
interested in sticking to a given triangulation of M , or to consider the class of all
vertex-efficient triangulations of M (namely, the purely ideal triangulations for
non-empty ∂M , and the 1-vertex triangulations for closed M).

Recently, generalized versions of the notion of branching (see the definitions
below), with the nice property of existing on every triangulation, have emerged
as useful devices to deal with simplicial formulas defined over triangulations
equipped with solutions of Thurston’s PSL(2,C) consistency equations (or vari-
ations of them [11, 12]). For instance, motivated by his work in progress on the
entropy of solutions of the homogeneous PSL(2,R) Thurston equations, Luo in-
troduced the notion of Z/2Z-taut structure on a triangulation, and it turns out
that a certain notion of weak branching, widely employed below together with the
underlying notion of pre-branching, easily allows to show that every triangulation
admits Z/2Z-taut structures (see Remark 1.2). As another example, the same no-
tions of weak and pre-branching were exploited in [1] to extend the construction
of quantum hyperbolic invariants [2, 3] to an arbitrary hyperbolic one-cusped
manifold, over a canonical Zariski-open set of the geometric component of its
character variety.

In several instances Luo [10] suggested that a combinatorial encoding of spin
structures based on arbitrary triangulations might be of use for the construction
of spin-refined invariants obtained from simplicial formulas as those mentioned
in the previous paragraph. In this note we provide such a presentation, using the
notion of weak branching already alluded to.

The results established in this paper provide an “objects/moves” combina-
torial presentation of the set of all pairs (M,s), with M a compact oriented
3-manifold and s a spin structure on M , in the following sense:

• Given any (loose) triangulation T of M , with ideal vertices at the com-
ponents of ∂M and possibly internal vertices, and any s, we encode s by
decorating T with certain extra combinatorial structures;

• We exhibit combinatorial moves on decorated triangulations relating to each
other any two that encode the same (M,s).
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We note that all our moves are explicitly described, but one of them has an in-
trinsically global nature. On the other hand, in the second part of the paper we
will show that this move can actually be replaced, in a suitable sense, by a com-
bination of local ones. This last result is subtle and technically quite demanding,
it is based on some non-trivial algebraic constructions, and it unveils unexpected
coherence properties of the graphic calculus we use to encode weakly branched
triangulations.

A first application of the technology developed in the present note appears
in [1], where our results are used to solve a sign indeterminacy in the phase
anomaly of the quantum hyperbolic invariants (see Remark 2.9). We also note
that adapting the arguments of [5, Chapter 8], the results of this article can
be used to provide an effective construction of the Roberts spin-refined Turaev-
Viro invariants [17], and of the related Blanchet spin-refined Reshetikhin-Turaev
invariants [6] of the double of a manifold.

1 Statements for triangulations

In this section we state some results that provide in terms of arbitrary triangu-
lations a combinatorial encoding of spin structures on oriented 3-manifolds. The
geometric construction underlying this encoding actually employs certain objects
called special spines, and will be fully described in Sections 2 and 3. As a matter
of fact, triangulations and special spines are equivalent to each other via duality,
but perhaps the majority of topologists is more familiar with the language of
triangulations, which is why we are anticipating our statements in this section.

1.1 Triangulations, pre-branchings and weak branchings

In this note M will always be a connected, compact and oriented 3-manifold, with
or without boundary. We also assume that ∂M has no S2 component (otherwise
we canonically cap it withD3). We begin with several definitions. A triangulation
of M is the datum T of

• a finite number of oriented abstract tetrahedra, and

• an orientation-reversing simplicial pairing of the 2-faces of these tetrahedra

such that the space obtained by first gluing the tetrahedra along the pairings and
then removing open stars of the vertices is orientation-preservingly homeomorphic
to M with some punctures (open balls removed). Any number of punctures,
including zero, is allowed (but a closed M must be punctured at leats once).
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Figure 1: Left: a branched tetrahedron of index +1 and one of index −1. Right: a weak
branching compatible with a pre-branching.
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Figure 2: The three types of face-pairing in a weakly branched triangulation.

A branching on an abstract oriented tetrahedron ∆ is an orientation of its
edges such that no face of ∆ is a cycle. Equivalently, one vertex of ∆ should be a
source and one should be a sink, as illustrated in Fig. 1-left. Note that the figure
shows the only two possible branched tetrahedra up to oriented isomorphism.
They are characterized by an index ±1, to define which one denotes by vj the
vertex of ∆ towards which j edges of ∆ point, and one checks whether the ordering
(v0, v1, v2, v3) defines the orientation of ∆ or not. Each face of a branched abstract
tetrahedron is endowed with the prevailing orientation induced by its edges.

A pre-branching on a triangulation T is an orientation ω of the edges of the
gluing graph Γ of T (a 4-valent graph) such at each vertex two edges are incoming
and two are outgoing. Given such an ω, a weak branching b compatible with ω is
the choice of an abstract branching for each tetrahedron in T such that Γ with
its orientation ω is positively transversal to each face of each tetrahedron in T ,
as in Fig. 1-right. Note that for such a b when two faces are glued in T either all
three edge orientations are matched or only one is, and in both the glued faces
it is one of the prevailing two, as in Fig. 2 (the labels ∅,+1,−1 are used below).
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1.2 Spin structure from a weak branching and a 1-chain

All the constructions and results of the rest of this section will be explained and
proved in Sections 2 and 3 in the dual context of special spines. Let a triangulation
T with pre-branching ω and compatible weak branching b be given. We will now
define a chain α(P, ω, b) =

∑
e α(e) · e ∈ C1 (T ;Z/2Z), where e runs over all edges

of e. The value of α(e) is the sum of a fixed initial contribution 1 plus certain
contributions of two different types; both contribution types are computed in the
group G =

(
1
2 · Z

)
/2Z, but for each of them the sum is in Z/2Z; here comes the

description of the two types:

• Endow e with an arbitrary orientation and in the abstract tetrahedra of T
consider the collection of all the edges projecting to e and of type v0v2 or
v1v3; for each such abstract edge ẽ take a contribution +1

2 or −1
2 depending

on whether the projection from ẽ to e preserves or reverses the orientation;

• Consider all the face-gluings as in Fig. 2 in which e is involved (with mul-
tiplicity) and take a contribution depending as follows on the type t of the
gluing and on the position of e within it:

⊲ 0 if t = ∅, regardless of the position of e;

⊲ 1 if t = ±1 and the orientation of e is matched by the gluing;

⊲ ∓1
2 if t = ±1 and the orientation of e is not matched by the gluing.

Proposition 1.1. α(P, ω, b) is a coboundary, and to every β ∈ C2 (T ;Z/2Z)
such that ∂β = α(P, ω, b) there corresponds a spin structure s

(
T , ω, b, β

)
on M .

Moreover s
(
T , ω, b, β0

)
= s

(
T , ω, b, β1

)
if and only if β0+β1 is 0 in H2 (T ;Z/2Z).

Remark 1.2. Let b be a weak branching compatible with a pre-branching ω
on a triangulation T of a manifold M . If in each abstract tetrahedron of T we
choose the pair of opposite edges of types v0v2 and v1v3 with respect to b, then
the choice actually depends on ω only, not on b. Moreover one sees that for all
edges e of T in M there is always an even number of abstract edges of types
v0v2 or v1v3 projecting to e (this corresponds to the fact that the contributions
to α(P, ω, b) of the first type described above are in Z/2Z, and it is established in
Proposition 2.7 below). It follows that, giving sign −1 to all the abstract edges
v0v2 and v1v3, and sign +1 to the other edges, we get a Z/2Z-taut structure on
T , as mentioned in the introduction.

1.3 Triangulation moves preserving the spin structure

The next results provide the combinatorial encoding of spin structures announced
in the title of the paper. From now on all chains β ∈ C2 (T ;Z/2Z) will be viewed
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1

1

Figure 3: Moves preserving the pre-branching and the associated spin structure. In both
moves the “1” means that 1 must be added to the coefficient in β of the triangle to which “1” is
attached; note that in both moves it is the only one whose three edges all retain their orientation
under the move.

Figure 4: A circuit γ in the gluing graph that in each tetrahedron visits faces sharing the edge
v2v3. The gluing encoded by an edge of γ need not match edges of type v2v3 to each other.

up to 2-boundaries, without explicit mention.

Proposition 1.3. s
(
T , ω, b0, β0

)
= s

(
T , ω, b1, β1

)
if and only if (b0, β0) and

(b1, β1) are related by the moves of Fig. 3 (and their compositions and inverses).

Proposition 1.4. s
(
T , ω0, b0, β0

)
= s

(
T , ω1, b1, β1

)
if and only if (ω0, b0, β0)

and (ω1, b1, β1) are related by the moves of Proposition 1.3 and additional moves(
T , ω, b, β

)
7→

(
T , ω′, b′, β

′
)
described as follows:

• In the gluing graph of T (which is oriented by ω) take an oriented simple
circuit γ such that, for each tetrahedron it visits, the two faces it visits share
the edge v2v3 with respect to b, as in Fig. 4;

• Define ω′ by reversing γ, define b′ by reversing each edge v2v3 in each tetra-
hedron visited by γ, and define β

′

by adding 1 to the coefficient of each face
of T visited by γ and incident to tetrahedra of distinct indices.

Proposition 1.5. s
(
T0, ω0, b0, β0

)
= s

(
T1, ω1, b1, β1

)
if and only if the quadru-

ples
(
T0, ω0, b0, β0

)
and

(
T1, ω1, b1, β1

)
are related by the moves of Propositions 1.3

and 1.4 and those shown in Figg. 5 and 6.

Remark 1.6. In this result one can avoid the move of Fig. 6 if T0 and T1 have
the same number of internal vertices and both consist of at least two tetrahedra.
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Figure 5: Moves preserving the spin structure. Note that in the central move the coefficients
1 are given to one internal and to one external face; coefficients 0 are never shown.
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Figure 6: A move increasing by one the number of punctures and preserving the spin structure.
The coefficients of ABV , ACV and BCV in the 2-chain after the move are 0, 0 and 1.
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2 Spin structures from weakly branched spines

We will now explain how the spin structure s
(
T , ω, b, β

)
mentioned in the previ-

ous section is constructed. As announced, this employs the viewpoint of special
spines, which is dual to that of triangulations.

To a triangulation T of M we can associate the dual special spine P of M
minus some balls, as suggested in Fig. 7. The polyhedron P is a compact 2-
dimensional one onto which M minus some balls collapses. Every point of P
has a neighbourhood homeomorphic to the cone over a circle, or over a circle
with a diameter (in which case the point is said to belong to a singular edge), or
over a circle with three radii (in which case the point is called a singular vertex,
and the neighbourhood itself is called a butterfly). Moreover P has vertices, its
singular set S(P ) is a 4-valent graph (actually, it is the gluing graph of T ) and
the components of P minus S(P ), that we call regions, are homeomorphic to open
discs. Any such P is called a special polyhedron, and it is known that there can
exist at most one thickening of P , namely a punctured manifoldM collapsing onto
P , in which case P dually defines a triangulation of M . Moreover one can add
to P an easy extra combinatorial structure, called a screw-orientation (see [4])
ensuring that P is thickenable and that its thickening is oriented. A screw-
orientation for P is an orientation of each edge e of P and a cyclic ordering of the
three germs of regions incident to e, up to simultaneous reversal of both, with
obvious compatibility at vertices. All the special polyhedra we will consider will
be embedded in an oriented 3-manifold or locally embedded in 3-space, and we
stipulate from now on that the screw-orientation will always be the induced one,
which allows us to avoid discussing screw-orientation and orientation altogether.

2.1 Branched spines

If an oriented tetrahedron ∆ is branched, one can endow each wing of the dual
butterfly Y with the orientation such that the edge of ∆ dual to the wing is
positively transversal to the wing. (Note that the ambient orientation is used
here.) One can moreover smoothen Y along its singular set so that the positive
transversal directions to the wings match, as shown in Fig. 8, where we show the
butterflies dual to the branched tetrahedra of Fig. 1-left. We can further define
along the singular set of Y two vector fields ν (the positive transversal to the
wings) and µ0 (the descending vector field), and an orientation of the 4 singular
edges of the butterfly, as shown in Fig. 9. Note that the orientation of an edge
e of a butterfly is always given by the wedge of ν and µ0 along e, and it is the
prevailing orientation of the three induced by the wings incident to e.
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Figure 7: Duality between a tetrahedron and a butterfly (the regular neighbourhood of a
vertex in a special spine).

R R23 23

R R12 02
R13

R
R

02

12
R

R

03

03

R

R

01

01

R13

Figure 8: Smoothing of a butterfly carried by a branching of its dual tetrahedron ∆. Here Rij

denotes the wing of the butterfly dual to the edge vivj of ∆.

Figure 9: The fields ν (vertical) and µ0 (horizontal) along the singular set of a smooth butterfly,
and the orientation of its edges.
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2.2 Weakly branched triangulations and the

induced frame along the dual 1-skeleton

Let us fix in this subsection a triangulation T of an oriented manifold M and
the special spine P dual to T . If T carries a global branching, namely if each
tetrahedron in T is endowed with a branching so that all face-pairings match the
edge orientations, then the frame (ν, µ0) extends to S(P ), as in Fig. 10 below.
However, a global branching does not always exist, and we explain here how the
structure of weak branching still allows to globally define a frame along S(P ).

Remark 2.1. We will call frame on a subset X of M a pair of linearly indepen-
dent sections defined on X of the tangent bundle TM of M ; since M is oriented,
this uniquely induces a trivialization of TM on X.

Let us then take a pre-branching ω of T , viewed as an orientation of S(P )
with two incoming and two outgoing edges at each vertex, and a weak branch-
ing b compatible with ω. For an edge e of P the following three possibilities
(corresponding to those in Fig. 2) occur:

• e can be a branched edge (type ∅), namely one along which the branchings
defined at the ends are compatible, as in Fig. 10; the same figure shows
how to (obviously) extend the frame (ν, µ0) along such an e;

• If e is not branched there is only one region A incident to e lying on the
two-fold side (namely, to the left of e) at both ends of e, and we say that:

– e is a positive unbranched edge (type +1) if A is under at the beginning
of e and over at the end of e, as in Fig. 11-top/left;

– e is a negative unbranched edge (type −1) if A is over at the beginning
of e and under at the end of e, as in Fig. 11-top/right.

In both cases we can again coherently define ν along e, by letting the
transverse orientation of A prevail on the other two, and accordingly define
µ0, as illustrated in Fig. 11-bottom.

For a technical but important reason to a spine P with pre-branching ω and
compatible weak branching b we actually associate a frame ϕ = (ν, µ) that is
obtained from the above-described (ν, µ0) by adding to µ0 a full rotation around
ν along each unbranched edge of P , as shown in Fig. 12. We summarize the main
points of our construction in the following:

Definition 2.2. Let T be a triangulation of a compact oriented 3-manifold M ,
and let P be the dual spine of M minus some balls . A pre-branching on P is

10



Figure 10: A branched edge and the extension of (ν, µ0) along it.

A
AB

C

B
C

A A

B B

C C

Figure 11: Top-left: a positive unbranched edge. Top-right: a negative one. Bottom: the
corresponding extensions of (ν, µ0).

A A

B B

C C

Figure 12: The field µ obtained by adding a full rotation to µ0 along each (positive or negative)
unbranched edge of P .
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Figure 13: Planar structure of index +1 (left) or −1 (right) at a vertex of a graph in N .

an orientation ω of its edges such that at each vertex two germs of edges are
incoming and two are outgoing. A weak branching on T compatible with ω is a
choice b of a branching for each tetrahedron of T , such that b induces ω at each
vertex of P according to Fig. 9. The frame ϕ(P, ω, b) = (ν, µ) defined along S(P )
is given by the pair (ν, µ0) at the vertices of P as in Fig. 9, with extension (ν, µ0)
along the edges of P as in Figg. 10 (branched edges) and 11 (unbranched edges),
and correction from (ν, µ0) to (ν, µ) along the unbranched edges as in Fig. 12.

Remark 2.3. For every triangulation T the dual spine P always admits some
pre-branching ω. Given ω, for a compatible weak branching b there are 4 inde-
pendent choices at each tetrahedron of T . The frame ϕ(P, ω, b) is well-defined
up to homotopy on S(P ).

2.3 Graphs representing weakly branched triangulations

In this subsection we introduce a convenient graphic encoding for weakly branched
triangulations that we will later use to prove (the dual version of) Proposition 1.1.
Let N be the set of finite 4-valent graphs Γ with the following extra structures:

• Each edge of Γ is oriented and bears a colour ∅, +1 or −1;

• At each vertex of Γ a planar structure as in Fig. 13 left/right is given.

Let T be a weakly branched triangulation of an oriented 3-manifold M , and
let P be the dual spine of M minus some balls. We can turn S(P ) into a graph
Γ(T ) ∈ N by associating to a branched tetrahedron of T as Fig. 1-left (or to
a smoothed vertex of the dual spine P as in Fig. 9) a vertex as in Fig. 13, and
giving colour ∅,+1,−1 to each edge depending on its type.

The procedure just described can of course be reversed, namely to a graph
Γ ∈ N we can associate a weakly branched triangulation T (Γ) of an oriented
manifold M . Some examples of how to explicitly construct the spine P dual to
T (Γ) along the edges of Γ are illustrated in Fig. 14. (Recall that P is determined

12
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-1

Figure 14: Reconstruction of a weakly branched spine from a graph in N .

+1 +1

= =

-1 +10 -1

Figure 15: To each Γ̃ ∈ Ñ one can uniquely associate a weakly branched special spine, also
given by the graph Γ ∈ N obtained from Γ̃ by fusing the edges through valence-2 vertices.

by the attaching circles of its regions to S(P ), which is what we show in Fig. 14-
centre, and that the screw-orientation of P is induced by the local embedding in
3-space, shown in Fig. 14-right.) We summarize our construction as follows:

Proposition 2.4. The set N of decorated graphs corresponds bijectively to the
set of triples (P, ω, b) with P an oriented special spine, ω a pre-branching on P
and b a weak branching compatible with ω.

For later purpose we now need to extend the set of graphs N to some Ñ , by
allowing 2-valent vertices besides the 4-valent (decorated) ones, and insisting that
the edge orientations should match through the 2-valent vertices. By interpreting
each 2-valent vertex as or we can then associate as above to each element
Γ̃ of Ñ a weakly branched special spine. On the other hand we can define the
fusion of two edges separated by a valence-2 vertex by interpreting the set of
colours {∅,+1,−1} as Z/3Z and postulating that colours sum up under fusion.
Applying fusion as long as possible to Γ̃ ∈ Ñ we then get some Γ ∈ N . The
following result can be easily verified —see Fig. 15

Proposition 2.5. The weakly branched special spine associated to Γ̃ ∈ Ñ is
independent of the interpretation of the 2-valent vertices, and it coincides with

13



A A

B C B C

A A

B BC C

Figure 16: The frames (ν, µ0) corresponding to +1 + 1 and to −1.

the spine corresponding to the graph Γ ∈ N obtained from Γ̃ by edge-fusion.

We conclude this subsection by explaining why have defined ϕ(P, ω, b) = (ν, µ)
not simply as (ν, µ0), but adding instead a full twist to µ0 along unbranched edges:

Proposition 2.6. Take Γ̃ ∈ Ñ and let Γ ∈ N be obtained from Γ̃ by fusing edges
through valence-2 vertices. Then the frames (ν̃, µ̃) and (ν, µ) carried by Γ̃ and by
Γ are homotopic to each other.

Proof. We have to show that when we fuse two coloured edges into one the frame
(ν, µ) defined by the fusion is homotopic to the concatenation of the frames
defined by the two edges. Recall that the colour of the combination is the sum of
the colours, and note that the conclusion is obvious when one of the edge colours
is ∅. When the two edge colours are opposite to each other one can examine
Fig. 11 and see that the concatenation of the two frames (ν, µ0) is homotopic to
a constant frame; at the level of (ν, µ) we would have to add two full twists to
µ0, which amounts to nothing, and the conclusion follows. We are left to deal
with the sum of two edges with identical colour. We deal with the case +1 + 1,
since −1−1 is similar. The frames (ν, µ0) corresponding to +1+1 and to −1 are
shown in Fig. 16, and recognized to differ by a full twist. When passing to (ν, µ)
we have to add two full twists to µ (that is, nothing) in the +1+1 configuration,
and one full twist in the −1 configuration, thus getting homotopic frames.

14



+1 -1

-1/2 +1/2 +1/2-1/2

1 1

Figure 17: Decoration of the attaching circles of the regions near vertices and edges.

2.4 Obstruction computation

Let us now denote by α(P, ω, b) ∈ C2 (P ;Z/2Z) the obstruction to extending
ϕ(P, ω, b) to a frame defined on P . To define α(P, ω, b), note that TM can always
be trivialized as GL+(3;R)×R on each open region R of P , and α(P, ω, b)(R) is
the element of π1(GL+(3;R)) = Z/2Z represented by the restriction of ϕ(P, ω, b)
to (a loop parallel to) ∂R. The next result shows that the chain α(P, ω, b) =∑

e α(e) · e ∈ C1 (T ;Z/2Z) introduced in Section 1 is dual to α(P, ω, b), namely
that α(e) = α(P, ω, b) (R) if R is the region of P dual to an edge e of T .

Proposition 2.7. Given Γ ∈ N decorate the attaching circles of the regions of
the special spine P defined by Γ as follows:

• At each vertex of Γ put arrows as in Fig. 17-top;

• At each edge e of Γ, if the edge colour is ∅, put nothing, while if the edge
colour is ±1 put a weight 1 on the region that lies to the left of e at both ends
of e, and ∓1

2 on the two other regions (see two examples in Fig. 17-bottom).

Then α(P, ω, b)(R) ∈ Z/2Z is computed as 1 plus the sum of the numerical contri-
butions along ∂R plus the sum of contributions from arrows, turned numerical as
follows: choose for ∂R an arbitrary orientation and give each arrow value +1

2 or
−1

2 depending on whether it agrees or not with the orientation. Moreover, both
the sum of the numerical contributions and that of the contributions from arrows
turned numerical belong to Z/2Z.

Proof. Recall first that ϕ(P, ω, b) = (ν, µ) is obtained from (ν, µ0) by adding a
full twist to µ0 along the edges of P having colour ±1. It is then sufficient to
show that the obstruction α0 to extending (ν, µ0) is computed by decorating the
regions of P as in Fig. 17-top near the vertices and as in Fig. 18 near the edges.

Let us now pick a region R, give it some orientation, and compute α0(R).
Thanks to the orientation of R and of the ambient manifold M , for a vector at

15



+1 -1

+1/2 -1/2 -1/2+1/2

Figure 18: Reduced decoration near edges, used to compute α0.

R R R R R R

up down in out for(ward) back(ward)

Figure 19: Positions of a vector on the boundary of an oriented region.

some point of ∂R the positions shown in Fig. 19 are well-defined. We now analyze
how the positions of ν and µ0 change as ∂R travels near a vertex or edge of P .

From Fig. 9 one sees that (ν, µ0) does not change at a vertex except if ∂R is in
one of the two positions indicated by arrows in Fig. 17-top (the sink and the source
quadrants of the vertex); for these positions, we have 4 different possibilities, two
as follows

Position of R Position of R

V1 Sink quadrant of vertex V2 Source quadrant of the vertex

with ∂R oriented as the arrow in Fig. 17-top, and two more V 1 and V 2 with
opposite orientation of ∂R; the corresponding changes of ν and µ0 are

∆ν ∆µ0 ∆ν ∆µ0

V1 up→up→up out→back→in V 1 down→down→down in→for→out

V2 up→up→up in→for→out V 2 down→down→down out→back→in

and this description applies whatever the index of the vertex.
Turning to ∆(ν, µ0) along an edge e, of course nothing happens if e is branched

or e is unbranched but R is in position A in Fig. 11; otherwise we have 8 possi-
bilities, 4 with ∂R concordant with e and R in the following position

Position of R Position of R

E1 B in Fig. 11-left E2 C in Fig. 11-left

E3 B in Fig. 11-right E4 C in Fig. 11-right

and 4 more Ej with ∂R discordant with e; the corresponding ∆(ν, µ0) is
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∆ν ∆µ0 ∆ν ∆µ0

E1 up→in→down out→up→in E1 up→in→down in→down→out

E2 down→out→up in→down→out E2 down→out→up out→up→in

E3 down→in→up in→up→out E3 down→in→up out→down→in

E4 up→out→down out→down→in E4 up→out→down in→up→out.

The value of α0(R) will be given in π1(GL+(3;R)) = Z/2Z = {0, 1} by 1 plus
some contribution of each configuration Vi, V i, Ej , Ej, but:

• The Vi, V i, Ej , Ej cannot appear in arbitrary order: only some concatena-
tions are possible;

• The individual Vi, V i, Ej , Ej do not make sense in π1(GL+(3;R)) but some
of their concatenations do, when (ν, µ0) is the same at the two ends of the
configuration.

The idea of the proof is then to assign to each Vi, V i, Ej , Ej a value ±1
2 so that,

whatever concatenation is possible and makes sense in π1(GL+(3;R)), its geomet-
rically correct value in π1(GL+(3;R)) is the sum of the values of the Vi, V i, Ej , Ej

appearing in it. Turning to the details, the possible concatenations are
{
V1, E2, E3

}
+

{
V2, E1, E4

}
{V2, E2, E3}+ {V1, E1, E4}{

V 1, E1, E4

}
+
{
V 2, E2, E3

} {
V 2, E1, E4

}
+
{
V 1, E2, E3

}
.

(1)

and some concatenations that readily make sense in π1(GL+(3;R)) are

V1 + V2 = V2 + V1 = 1 V 1 + V 2 = V 2 + V 1 = 1

E1 + E2 = E2 +E1 = 1 E1 + E2 = E2 + E1 = 1

E1 + E3 = E3 +E1 = 0 E1 + E3 = E3 + E1 = 0

E2 + E4 = E4 +E2 = 0 E2 + E4 = E4 + E2 = 0

E3 + E4 = E4 +E3 = 1 E3 + E4 = E4 + E3 = 1;

see for instance Fig. 20 for E1+E2 = 1, where the concatenation is shown on the
left and then homotoped to 1 ∈ π1(GL+(3;R)).

These relations (subject to the condition that all Vi, V i, Ej , Ej should be
assigned ±1

2 as a value) are equivalent to

V1 = V2 V 1 = V 2

E1 = E2 = −E3 = −E4 E1 = E2 = −E3 = −E4
(2)

(note that the relations E4 = −E1, E3 = −E2, E4 = −E1, E3 = −E2 come from
the algebra but they are also geometrically clear). We now claim that

E1 + V 1 + E2 + V2 = 1
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Figure 20: Proof that E1 + E2 = 1.

Figure 21: A concatenation giving 1 ∈ π1(GL+(3;R)).

18



+1 -1
1 1

+1/2

+1/2+1/2

+1/2

Figure 22: Alternative method to compute α(P, ω, b).

which is proved in Fig. 21. Taking into account (2) the last condition is equivalent
to any one of the following

V1 = E1 = E1 = −V 1 V1 = E1 = V 1 = −E1

V 1 = E1 = E1 = −V1 V1 = E1 = V 1 = −E1.
(3)

Choosing one of the relations (3) and combining it with (2) one can now compute
the correct value of any possible concatenation according to (1). Let us now
choose V1 = E1 = E1 = +1

2 and V 1 = −1
2 , and note that the concatenation

rules (1) imply that the total number of V1, V2, V 1, V 2 found along ∂R is even
(see also below). The desired computation rule and the last assertion of the
statement easily follow.

2.5 Remarks on the computation of the obstruction

At the end of the proof of Proposition 2.7 one can also choose V1 = V 1 = E1 = +1
2

and E1 = −1
2 , which implies that α(P, ω, b) can be also computed by decorating

the attaching circles of the regions as in Fig. 22. More generally, if we indicate by
ci, ci the number of configurations Ci, Ci along ∂R, we have that α0(R) is equal
to 1 plus

1
2 (+ (v1 + v2) + (v1 + v2) + (e1 + e2 − e3 − e4)− (e1 + e2 − e3 − e4))

= 1
2 (+ (v1 + v2) + (v1 + v2)− (e1 + e2 − e3 − e4) + (e1 + e2 − e3 − e4))

= 1
2 (+ (v1 + v2)− (v1 + v2) + (e1 + e2 − e3 − e4) + (e1 + e2 − e3 − e4))

= 1
2 (− (v1 + v2) + (v1 + v2) + (e1 + e2 − e3 − e4) + (e1 + e2 − e3 − e4))

and these expressions are recognized to be equivalent to each other because

v1 + v2 + e1 + e2 + e3 + e4 v1 + v2 + e1 + e2 + e3 + e4
v1 + v2 + e1 + e2 + e3 + e4 v1 + v2 + e1 + e2 + e3 + e4
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Figure 23: Additivity of the computation of α.

are all even numbers, thanks to (1). This implies that v1 + v2 + v1 + v2 is also
even (as noted above), and e1 + e2 + e3 + e4 + e1 + e2 + e3 + e4 is even as well
(which is clear, since it counts the number of up/down switches of ν).

Remark 2.8. The main reason why we have defined ϕ(P, ω, b) = (ν, µ) not
as (ν, µ0), but rather adding a full twist to µ0 along unbranched edges, was
to have additivity of the frames with respect to edge-fusion, as explained in
Proposition 2.6. Coherently with this we now have that the obstruction α(P, ω, b)
is also additive, namely it can be computed at the level of the graphs in Ñ , which
would be false for α0. Two examples of additivity (that again holds independently
of the interpretation of the 2-valent vertices) are shown in Fig. 23.

Remark 2.9. Extending results of [2, 3], in [1] certain quantum hyperbolic invari-
ants HN (P) have been constructed for a variety of patterns P, with N ≥ 3 an odd
integer. A pattern consists of an oriented compact 3-manifold M with (possibly
empty) toric boundary, and an elaborated extra structure on M , which includes
a PSL(2,C)-character. Each invariant is computed as a state sum over a suitably
decorated weakly branched triangulation of M with some number k of punc-
tures, and it is well-defined up to a phase anomaly. Namely, for N ≡ 1 (mod 4)
up to multiplication by an N -th root of unity, while for N ≡ 3 (mod 4) up to
multiplication by an N -th root of unity and a sign. And it turns our that in
the latter case the sign ambiguity can be removed by multiplying the state sum
by (−1)k−α(P,ω,b)([P ]), where (P, ω, b) is the weakly branched spine dual to the
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triangulation, and [P ] ∈ C2(P ;Z/2Z) is the sum of all the regions of P .

2.6 Spin structures from cochains

We close this section with a result that dualizes to Proposition 1.1.

Proposition 2.10. The class of α = α(P, ω, b) vanishes in H2 (P ;Z/2Z). For
every β ∈ C1 (P ;Z/2Z) such that δβ = α a spin structure s(P, ω, b, β) is well-
defined as the homotopy class of the frame (ν, β(µ)) on S(P ), where (ν, µ) =
ϕ(P, ω, b) and β(µ) is obtained by giving a full twist to µ along all the edges e
of P such that β(e) = 1. Moreover s(P, ω, b, β0) = s(P, ω, b, β1) if and only if
β0 + β1 vanishes in H1 (P ;Z/2Z).

Proof. All three assertions are general topological facts. To prove the first one, let
(ν, µ) be any given spin structure on M , namely a frame on S(P ) that extends to
P and is viewed up to homotopy on S(P ). Homotoping (ν, µ) we can suppose it
coincides with (ν, µ) at the vertices of P , so we can define β ∈ C1 (P ;Z/2Z) where
β(e) is the difference between (ν, µ) and (ν, µ) along e. Since the obstruction to
extending (ν, µ) to a region R of P vanishes, we see that the obstruction α(R) to
extending (ν, µ) to R is the the sum of β(e) for all the edges e of P contained in
∂R, namely δβ = α.

The second assertion is now easy: if δβ = α then the obstruction to extending
(ν, β(µ)) to P vanishes.

Turning to the third assertion, it is first of all evident that if v is a vertex of P
and v̂ ∈ C0 (P ;Z/2Z) is its dual then the frames on S(P ) carried by some β with
δβ = α and by β + δv̂ are homotopic on S(P ), with homotopy supported near
v. Conversely, suppose β0, β1 with δβ0 = δβ1 = α give frames

(
ν(0), µ(0)

)
and(

ν(1), µ(1)
)
that are homotopic on S(P ) via

(
ν(t), µ(t)

)
t∈[0,1]

. If v is a vertex of P ,

by construction
(
ν(0), µ(0)

)
equals

(
ν(1), µ(1)

)
at v, so we can view

(
ν(t), µ(t)

)
t∈[0,1]

at v as an element γ(v) of π1(GL+(3;R)) = Z/2Z. We then have γ ∈ C0 (P ;Z/2Z)
and β1 = β0 + δγ, whence the conclusion.

Note that the previous result is coherent with the known fact that the set of
spin structures on M is an affine space over H1 (P ;Z/2Z) = H1 (M ;Z/2Z).

3 Spine moves preserving the spin structure

We will establish in this section the dual versions of Propositions 1.3 to 1.5.
From now on we will regard any β ∈ C1 (P ;Z/2Z) such that δβ = α(P, ω, b) up
to coboundaries. To discuss when two quadruples (P, ω, b, β) define the same
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Figure 24: Moves that change the weak branching while preserving the pre-branching and the
spin structure. Recall that ±1 are colours in Z/3Z while 1 is a weight in Z/2Z.

s(P, ω, b, β) we can then describe right to left how the quadruple must change,
and we have already dealt with the change of β.

Before proceeding further we introduce a convenient graphic encoding for
the quadruples (P, ω, b, β). Namely we define Nw as the set of all graphs Γ as
in N , with the extra structure of weight in Z/2Z attached to each edge of Γ. A
natural correspondence between Nw and the set of all quadruples (P, ω, b, β), with
(P, ω, b) as in Proposition 2.4 and β ∈ C1 (P ;Z/2Z), is obtained by interpreting
the weight of an edge as the value of β on it. Note that for Γ ∈ Nw the edge
colours belong to Z/3Z = {∅,+1,−1} and the weights to Z/2Z = {0, 1}, so no
confusion between colours and weights is possible. Colours ∅ and weights 0 will
often be omitted. We can similarly define Ñw as the set of graphs in Ñ with
weights in Z/2Z attached to the edges, stipulating that weights sum up in Z/2Z
when two edges are fused together.

3.1 The vertex moves

The next result dualizes to Proposition 1.3.

Proposition 3.1. Two graphs in Nw define quadruples (Pj , ωj , bj , βj) for j = 0, 1
with P1 = P0, ω1 = ω0 and s(P0, ω0, b0, β0) = s(P1, ω1, b1, β1) if and only if they
are obtained from each other by repeated applications of the moves I and II of
Fig. 24 (and their inverses, followed by the reduction from Ñ to N ).

Proof. We must prove that the moves I and II generate all possible changes at a
vertex V of a weak branching compatible with a given pre-branching and, taking
weights into account, that the associated spin structure is preserved. For both
indices ε = ±1 of V there are 3 such possible changes; for ε = −1 they are given
by the moves I, II and III− (already shown in Fig. 24), which can be realized
as III− = I · II = II · I, with I and II the inverses of I and II, and products
written with the move applied first on the left; for ε = +1 the 3 possible changes
are given by I, II and III+ = II · I = I · II.
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Figure 25: Left: move I preserves the pre-branched spine. Right: the frame (ν, µ0) is un-
changed under move I on the region D.

It is then sufficient to show that the moves I and II correctly represent one
change of weak branching and preserve the spin structure, which we will do
explicitly only for I. Ignoring the frame, the proof that I preserves the pre-
branched spine is contained in Fig. 25-left. Turning to the frames, thanks to
Proposition 2.6, we can carry out a completely local analysis. Moreover we note
that locally before the move the frame (ν, β(µ)) coincides with (ν, µ0), while after
the move the frame (ν, β(µ)) is obtained from (ν, µ0) by giving a full twist to µ0

along each of the 4 involved edges (three edges have colour ±1 and weight 0,
the fourth edge has colour ∅ and weight 1). These four twists are induced by a
homotopy, so it will be enough to show that the frames (ν, µ0) before and after
the move coincide up to homotopy. Showing this on a single global picture is
too complicated, so we confine ourselves to proving that (ν, µ0) is unchanged up
to homotopy separately on the boundary of each of the regions A,B,C,D,E, F
of Fig. 25-left. This is very easy for all the regions except A, see for instance
Fig. 25-right for D. In Fig. 26 we treat instead the case of the region A.

Remark 3.2. Let the change of weak branching on the pre-branched spine (P, ω)
in move I be given by b 7→ b′. The difference ∆α = α(P, ω, b)+α(P, ω, b′) is then
computed locally, and Proposition 3.1 implies that ∆α = δê, with e as in Fig. 27.
This fact can actually be checked directly, as in the rest of Fig. 27, since the
picture shows that ∆α is 0 on A,B,F and 1 on C,D,E.

3.2 The circuit move

The next result dualizes to Proposition 1.4.
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Figure 26: The frame (ν, µ0) is unchanged up to homotopy on A. Left: before the move; right:
after the move. Top: locally embedded configuration; bottom: abstract configuration.
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Figure 27: Variation of α with move I .
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Figure 28: The edges in the circuit γ and the corresponding regions of P .

Proposition 3.3. Two graphs in Nw define quadruples (Pj , ωj , bj , βj) for j = 0, 1
with P1 = P0 and s(P0, ω0, b0, β0) = s(P1, ω1, b1, β1) if and only if they are related
by the moves of Proposition 3.1 plus moves of the form Γ 7→ Γ′, where:

• Γ contains a simple oriented circuit γ that at all its vertices is an overarc;

• Γ′ is obtained from Γ by reversing the orientation of the edges in γ and
adding 1 to the weights of the edges of γ whose ends have distinct indices.

Proof. Suppose that ω0 and ω1 are distinct pre-branchings on the same spine P .
The union of the edges of P on which ω0 and ω1 disagree can be expressed as a
disjoint union of simple circuits oriented by ω0. It is then sufficient to consider
the situation of two weak branchings ω, ω′ that differ only on a simple circuit
γ oriented by ω, and then iterate the procedure. Moreover, having already de-
scribed how to obtain from each other any two pairs (b, β) yielding the same spin
structure on a given (P, ω), it is now sufficient to find one specific weak branch-
ing b on (P, ω) and one b′ on (P, ω′) and to describe a move β 7→ β′ such that
s(P, ω, b, β) = s(P, ω′, b′, β′). This move will be that of the statement, implying
the conclusion. To describe the move we note that indeed via Proposition 3.1 we
can arrange so that γ contains overarcs only in a graph Γ ∈ N giving a weak
branching b on (P, ω). Examining Fig. 1-left and 13 one readily sees that the
weak branching b′ obtained by reversing γ is derived from b by switching the
orientation of the edge v2v3 in the tetrahedra dual to the edges in γ. We are
only left to show that the move β 7→ β′ such that s(P, ω, b, β) = s(P, ω′, b′, β′)
consists in adding to β the 1-cochain ∆β given by the duals of the edges in γ
having endpoints with distinct indices. We will prove this in a slightly indirect
way, in the spirit of Remark 3.2, by computing ∆α = α(P, ω, b)+α(P, ω′, b′) and
showing that ∆α = δ(∆β).

We begin by noting that there are 9 possible positions of a region R with
respect to an edge e of γ, as shown in Fig. 28. One can now check that the
contributions carried by e to (∆α)(R), depending on the indices ±1/ ± 1 of the
ends of e, are as given in the following table (with ∂R oriented as in in Fig. 28):
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Figure 29: Three computations of the contribution of an edge e in γ to (∆α)(R). The colour
∅/+ 1/− 1 of e (unchanged by the switch of γ) is shown in the middle. On the left we see the
indices of the ends of e before the switch, and the local computation of α(R). On the right the
computation of α′(R) after the switch.

+1/+ 1 −1/− 1 +1/− 1 −1/+ 1

∅-in-out-right 0 0 1 1

∅-along 0 0 0 0

∅-in-out-left 0 0 1 1

+1-in-out 0 0 1 1

+1-in 1 0 1 0

+1-out 1 0 0 1

−1-in-out 0 0 1 1

−1-in 1 0 1 0

−1-out 1 0 0 1

See Fig. 29 for the explicit computation of some of these values.
To conclude we must now show that the total (∆α)(R) obtained by summing

the contributions given by the various edges of γ equals (mod 2) the number of
edges in γ visited by ∂R and having ends with distinct indices. If ∂R visits only
one edge, i.e., if it is of type in-out, the conclusion is evident from the values in the
table. Otherwise (∆α)(R) is the sum of only two possibly non-0 contributions,
one from the edge of γ where ∂R enters and one from the edge of γ where it
leaves. More precisely, as one sees from the table, there is an “in” contribution
depending only on the index of the vertex of γ where ∂R enters (contribution 1 for
index +1 and contribution 0 for index −1), and an “out” contribution depending
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Figure 30: Moves on Ñw preserving the associated spin structure; the edges entirely contained
in the picture have colour ∅ and weight 0.

only on the index of the vertex of γ where ∂R leaves (again, contribution 1 for
index +1 and contribution 0 for index −1). This implies that indeed (∆α)(R)
has the desired value, and the proof is complete.

3.3 The bubble and the 2-3 move

The next result dualizes to Proposition 1.5.

Proposition 3.4. Two graphs in Nw define quadruples (Pj , ωj , bj , βj) for j = 0, 1
with s(P0, ω0, b0, β0) = s(P1, ω1, b1, β1) if and only if they are obtained from each
other by the moves of Propositions 3.1 and 3.3 and those shown in Fig. 30.

Proof. Two special polyhedra are spines (in the punctured sense) of the same
manifold without boundary spheres if and only if they are related by bubble and
2-3 moves [13, 15]. It is then sufficient to prove the following:

• Using the moves I and II any edge e with distinct ends V0, V1 of a graph
in Nw can be transformed into one to which a move in Fig. 30 applies;

• At the level of spines the moves in Fig. 30 translate the bubble and the 2-3
move, and at the level of quadruples (P, ω, b, β) represented by graphs in
Nw the associated spin structure is unchanged under these moves.

With ε being the index of a vertex, the following steps establish the first assertion:
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1. If e is an underpass at some Vj , apply to each such Vj the move IIIε(Vj)

(with III+ the analogue of III− for a vertex of index +1); this allows to
assume that e is an overpass at V0 and V1;

2. If the colour of e is now +1, act as follows:

(a) If ε(V0) = ε(V1) = −1, apply I to V0 and II to V1;

(b) If ε(V0) = −1 and ε(V1) = +1, apply II to V1;

(c) If ε(V0) = +1, apply I to V0;

3. If the colour of e is now −1, act as follows:

(a) If ε(V0) = ε(V1) = +1, apply I to V0 and II to V1;

(b) If ε(V0) = +1 and ε(V1) = −1, apply II to V1;

(c) If ε(V0) = −1, apply I to V0;

4. The colour of e is now ∅, and we want to exclude the case ε(V0) = +1 and
ε(V1) = −1, for which we apply I to V0 and II to V1;

5. Up to coboundaries we turn the weight of e to 0.

For the second assertion, once again we start by an indirect argument in the spirit
of Remark 3.2, showing that the weights appearing in the moves compensate for
the variation of the obstruction α ∈ C2 (P ;Z/2Z), which is done in Fig. 31. A
more direct arguments for the move of Fig. 30-top/left is carried out in Fig. 32;
for the other moves the argument follows from [5].

4 Arbitrarily branched graphs

and the corresponding moves

In this section we show that the global move of Proposition 3.3 can be replaced,
in a suitable sense, by a simultaneous combination of local ones.

4.1 Graphs representing arbitrarily branched triangulations

We introduce now a set A of decorated graphs via which we can encode an arbi-
trarily branched triangulation, namely a triangulation in which each tetrahedron
is endowed with a branching, without any compatibility whatsoever. Each vertex
of a graph Γ in A will be given a planar structure as in Fig. 13, which corresponds
to giving the dual tetrahedron a branching. Note that each edge of Γ then has an
orientation defined at each of its ends. We are left to choose colours for the edges
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Figure 31: Proof that under the moves of Fig. 30 the change in the obstruction α is com-
pensated by the weights on the edges. For the two moves on the right this is easy: on all the
regions that survive α keeps the same value, and on the newborn region it has value 0. For
the top-left move ∆α is 1 on A,B,C and 0 on D, while for the bottom-left move ∆α is 0 on
A,B,C,E, F,G and 1 on D,H, I,N , and indeed for both cases these values are given by the
weights in the moves.

Figure 32: Top: the branched bubble move. Middle: frames carrying the same spin structure
before and after the move. Bottom: the frame carried by the spine after the move, that becomes
the previous one taking into account the weight 1 appearing in the move of Fig. 30-left.
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Figure 33: Labels for the germs of region near a (branched) vertex.

of Γ in order to encode the face-pairings, or equivalently the attaching circles to
S(P ) = Γ of the regions of the dual spine P . To do so we note that dual to a
germ e of edge of S(P ) at some vertex there is a branched triangle. We can now
label by 0, 1, 2 the vertices of this triangle according to the number of incoming
edges, and dually the germs of regions incident to e. We show in Fig. 33-left
(in a cross-section) this abstract labeling rule, and in Fig. 33-right its concrete
consequences. One can now easily check the following:

Lemma 4.1. Let e be an edge of Γ and let n(e) be the number of regions incident
to e having the same label at both ends of e.

• If the two ends of e are consistently oriented then n(e) = 0 or n(e) = 3;

• If the two ends of e are inconsistently oriented then n(e) = 1.

This implies that we can give an edge e of Γ the following colours in S3 (see
Fig. 34 for some examples):

• If the two ends of e are consistently oriented colour

σ ∈ S
+
3 = {∅, (0 1 2), (0 2 1)}

if region j at the first end of e is matched to region σ(j) at the second end;

• If the two ends of e are inconsistently oriented, colour

τ ∈ S
−

3 = {(0 1), (0 2), (1 2)}

if region j at one end is matched to region τ(j) at the other end.

Remark 4.2. A graph Γ in A defines a weakly branched triangulation if and
only if all the edges are consistently oriented. In this case Γ is converted into a
graph in N representing the same weakly branched triangulation by the colour-
replacements (0 1 2) 7→ +1 and (0 2 1) 7→ −1.
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Figure 34: Meaning of the edge colours for a graph in A.
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Figure 35: How to fuse together two edges of a graph in Ã.

From now on we will call even (respectively, odd) an edge of a graph in
A with colour in S

+
3 (respectively, in S

−

3 ), or, equivalently, with consistently
(respectively, inconsistently) oriented ends.

4.2 Graphs with multiply coloured edges

As we did for N , to define moves on A it is convenient to enlarge it to some Ã by
allowing valence-2 vertices; edges are again decorated by an orientation at each of
their ends and a colour (in S

+
3 if the orientations match, in S

−

3 if they do not),
but we also insist that orientations should match across the valence-2 vertices.
Note that if we choose for each 2-valent vertex of Γ̃ ∈ Ã an interpretation as
or as we can associate to Γ̃ an arbitrarily branched special spine.

We now define a projection Ã → A by illustrating in Fig. 35 how fuse together
two edges sharing a valence-2 vertex; note that σ, σ1, σ2 ∈ S

+
3 and τ, τ1, τ2 ∈ S

−

3 ;
moreover σ−1

◦ τ = τ ◦σ and τ ◦σ−1 = σ ◦ τ , which gives alternative ways of
expressing the fusion rules. We have the following:

Proposition 4.3. The fusion rules of Fig. 35 are associative, so each graph
Γ̃ ∈ Ã defines a unique Γ ∈ A. Moreover the arbitrarily branched spine associated
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Figure 36: To each Γ̃ ∈ Ã one can uniquely associate an arbitrarily branched special spine,
also given by the graph Γ ∈ A obtained from Γ̃ by fusing the edges through valence-2 vertices.
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Figure 37: A move on Ã.

to Γ̃ is well-defined regardless of the interpretation of the valence-2 vertices as
or , and it coincides with the arbitrarily branched spine associated to Γ.

The first assertion of this result follows from the second one, that can be
established with some patience; see some examples in Fig. 36.

4.3 A new move

Let us consider the move on graphs in Ã described in Fig. 37-left. In Fig. 37-
right we show that the move preserves the spine (or triangulation) encoded by
the graph, while of course changing the arbitrary branching. The following result
(that will also follow from the rest of this section) is not difficult to show:

Proposition 4.4. Any two arbitrary branchings on the same triangulations are
related by compositions of the moves I and II (ignoring weights), that of Fig. 37,
and their inverses.

Since for a single tetrahedron there are 24 different branchings, this result
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(0 1) (0 1)

(1 2)

(1 2)

Figure 38: The inverse of the move of Fig. 37 and one generated by those in Fig. 37 and 24.

means that at each vertex using the moves I and II and that of Fig. 37 one can
create all 24 possible configurations. See for instance Fig. 38.

4.4 Weighted graphs and weighted fusion

We define Ãw as the set of graphs in Ã with weights attached to the edges. The
weight of an edge e is given by an internal orientation and by a numerical weight
in the group G =

(
1
2 · Z

)
/2Z, with the following restrictions:

• If e is even then its internal orientation matches those at its ends (so it is
not shown in the pictures) and the numerical weight is 0 or 1;

• If e is odd the numerical weight is ±1
2 .

Note that there is a natural inclusion Ñw ⊂ Ãw The numerical part of a system
of weights will be viewed up to 1-coboundaries with values in Z/2Z, namely the
numerical weights of all 4 edges incident to a vertex can simultaneously change
by 1. We next define the weighted fusion rules of Fig. 39.

Remark 4.5. The fusion rules do not cover the case of two odd edges with in-
ternal orientations both opposite to the external orientation after fusion, because
this case will never occur for us. For the fusion of two odd edges with discordant
internal orientations, we note that a1, a2 are ±1

2 , so a1 − a2 = a2 − a1 in Z/2Z.

The following fact, proved in Fig. 40, must be taken into account:

Proposition 4.6. The weighted fusion rules of Fig. 39 are not associative.
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Figure 39: Edge fusion rules for graphs in Ãw.
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Figure 40: The fusion rules for graphs in Ãw are not associative. In this example both the
internal orientation and the numerical weight ± 1

2
depend on the order in which fusions are

performed; note however that (τ2 ◦ τ1)
−1

◦ τ3 = (τ2 ◦ τ3)
−1

◦ τ1, coherently with the fact that the
fusion rules for unweighted graphs are associative.

4.5 Moves on weighted graphs

We now introduce certain moves on Nw, to define which we also use Ãw. To begin
we call elementary move on Ãw one of I, I, II, II,M,M from Figg. 41 and 42.
The pictures contain more moves whose rôle will be explained soon.

Remark 4.7. • In the symbols denoting the moves, overlining and subscripts
are used to indicate the type of index transition ±1 7→ ±1;

• The moves I and II are those of Fig. 24 and at the level of Nw, namely
under the associative fusion rules for Ñw, we have I = I−1 and II = II−1;
moreover III− = I ·II = II ·I and III+ = I ·II = II ·I;

• In the product of two moves that to the left applies first; not all products
make sense.

We now establish some results concerning relations between moves:

Proposition 4.8. Consider a vertex as in Fig. 13, apply to it one of the following
combination of weighted moves, and locally apply near the vertex the weighted
fusion rules of Fig. 39; then the result is the same as indicated:

M ·M = id−, N ·N = id−, M ·M = id+, N ·N = id+,

34



(0 1 2)

(0 1 2)

(0 1 2)

(0 1 2)

(0 2 1)

(0 2 1)

1

1

(0 2 1)

(0 1 2)

(0 1 2)

(0 2 1)

1

1

I

II
III-

(0 2 1)

(02 1)

(0 2 1)

(0 2 1)

(0 1 2)

(0 1 2)

1

1I

II
III+

(0 2 1)

(0 1 2)

(0 1 2)

(0 2 1)

1

1

Figure 41: Moves on Ãw derived from those on Ñw.
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Figure 42: More moves on weighted graphs.
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(1 2)
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+1/2+1/2

+1/2

-1/2

M M
=

Figure 43: Proof that M ·M = id− under local application of weighted fusion.

III− ·M = N ·III+, III+ ·M = N ·III−, M ·N = N ·M, M ·N = N ·M.

Remark 4.9. Since the fusion rules in Ãw are not associative, these equalities
do not imply that at the level Aw we have the relations

M = M−1, N = N−1, N = III− ·M ·III+

but these relations do make sense and hold in a restricted context, see below.

The proofs of some of the equalities in Proposition 4.8 are given in Figg. 43
to 45; they all crucially use the weighted fusion rules of Fig. 39 and the convention
that weights are viewed up to Z/2Z-coboundaries; the other proofs are similar.

We now call weighted move on a vertex as in Fig. 13 any sequence of elemen-
tary weighted moves (not followed by any fusion). We first have the following:

Proposition 4.10. Take Γ ∈ Nw and apply to each of its vertices a weighted
move to get Γ̃ ∈ Ã. Suppose that by applying (in some order) the weighted fusion
rules of Fig. 39 one gets Θ ∈ Nw. Then the system of weights on Θ is well-defined
independently of the order of application of the weighted fusion rules.

Proof. The statement contains the implicit claim that the rules of Fig. 39 suffice
to go from Γ̃ to some Θ, namely that no situation as in Remark 4.5 occurs.

We prove the proposition ignoring the colours inS3, because we already know
that fusion is associative at the S3 level. We concentrate on a single edge of Γ
and we imagine e is initially drawn in front of us with orientation from left to
right and weight w ∈ {0, 1}. Replacing external orientations of edges by letters
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Figure 44: Proof that III− ·M = N ·III+ under local application of weighted fusion.
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Figure 45: Proof that M ·N = N ·M under local application of weighted fusion.
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r/ℓ and internal orientations by R/L we then have in Γ an initial edge rr
w

that

gets replaced in Γ̃ by a concatenation ẽ of edges of the form

rr
u
, ℓℓ

u
, rRℓ

a
, rLℓ

a
, ℓRr

a
, ℓLr

a
.

A careful examination of the elementary weighted moves actually shows that the
possibilities for ẽ are only as follows:

((
rr
u

)
∗
· rRℓ

a
·
(
ℓℓ
u

)∗
· ℓLr

a

)
∗

·
(
rr
u

)
∗
· rr
w
·
(
rr
u

)
∗
·
(
rLℓ
a
·
(
ℓℓ
u

)∗
· ℓRr

a
·
(
rr
u

)
∗
)
∗

(4)

(
ℓℓ
u

)∗
· ℓLr

a
·(4)· rLℓ

a
·
(
ℓℓ
u

)∗
(5)

where y∗ means any number (including 0) of repetitions of a string y, and the
weight u (respectively, a) can have a different value in {0, 1} (respectively, ±1

2)
each time it appears. It is then clear that we never get any of the adjacencies
rLℓ
a

· ℓLr
a

or ℓRr
a

· rRℓ
a

not contemplated by the weighted fusion rules of Fig. 39.
Moreover these rules can be expressed as

rr
u1
· rr
u2

= rr
u1+u2

, rr
u
· rDℓ

a
= rDℓ

u+a
, ℓDr

a
· rr
u
= ℓDr

a+u
,

ℓℓ
u1
· ℓℓ
u2

= ℓℓ
u1+u2

, ℓℓ
u
· ℓDr

a
= ℓDr

u+a
, rDℓ

a
· ℓℓ
u
= rDℓ

a+u
,

ℓLr
a1

· rLℓ
a2

= ℓℓ
a1+a2

, rRℓ
a1

· ℓRr
a2

= rr
a1+a2

,

ℓLr
a1

· rRℓ
a2

= ℓℓ
a1−a2

, ℓRr
a1

· rLℓ
a2

= ℓℓ
a1−a2

, rRℓ
a1

· ℓLr
a2

= rr
a1−a2

, rLℓ
a1

· ℓRr
a2

= rr
a1−a2

.

We must show that by applying them as long as possible to (4) or (5) we get a
well-defined result. Note first that each edge ℓℓ

u
or rr

u
can be ignored; in fact, its

contribution is independent of the time it is involved in weighted fusions, because:

• On the internal orientation it acts identically to the right and to the left;

• Its numerical weight is in {0, 1}, so it is insensitive to later sign change.

We then have to deal with concatenations of the form

rRℓ
a1

· ℓLr
b1

·. . . rRℓ
ak

· ℓLr
bk

· rLℓ
dh

· ℓRr
ch

·. . . rLℓ
d1

· ℓRr
c1

, (6)

ℓLr
b0

· rRℓ
a1

· ℓLr
b1

·. . . rRℓ
ak

· ℓLr
bk

· rLℓ
dh

· ℓRr
ch

·. . . rLℓ
d1

· ℓRr
c1

· rLℓ
d0

(7)

but we also consider the following (that arise starting from an edge ℓℓ
w

in Γ):

ℓLr
a1

· rRℓ
b1

·. . . ℓLr
ak

· rRℓ
bk

· ℓRr
dh

· rLℓ
ch

·. . . ℓRr
d1

· rLℓ
c1

, (8)

38



rRℓ
b0

· ℓLr
a1

· rRℓ
b1

·. . . ℓLr
ak

· rRℓ
bk

· ℓRr
dh

· rLℓ
ch

·. . . ℓRr
d1

· rLℓ
c1

· ℓRr
d0

. (9)

We now claim that, regardless of the order in which the weighted fusion rules are
applied, the numerical edge weight on the final result is

∑
i=1,...,k

ai −
∑

i=1,...,k

bi +
∑

j=1,...,h

cj −
∑

j=1,...,h

dj for (6) and (8),

∑
i=1,...,k

ai −
∑

i=0,...,k

bi +
∑

j=1,...,h

cj −
∑

j=0,...,h

dj for (7) and (9).

The claim of course implies the conclusion, and we can prove it by induction on
half the length of the concatenation. The base step of the induction is with length
0 in cases (6) and (8), so it is empty, and with length 2 in cases (7) and (9), so it
follows directly from the weighted fusion rules (remember that −b0−d0 = b0+d0
because both b0 and d0 are ±1

2). For the inductive step we must analyze what
happens by applying one weighted fusion to one of (6)-(9). In all four cases we
can distinguish between the “central” fusion ℓLr

bk
·rLℓ
dh

→ ℓℓ
bk+dh

or rRℓ
bk

·ℓRr
dh

→ rr
bk+dh

and any “lateral” fusion. Dealing with lateral fusions is easier, and we make it
explicit only for case (6) and for a fusion performed to the left of the centre; this
fusion will be rRℓ

at
·ℓLr
bt

→ rr
at−bt

or ℓLr
bt
· rRℓ
at+1

→ ℓℓ
bt−at+1

= ℓℓ
at+1−bt

; then we can forget

the fused edge (remembering that its weight must be added to the final one) so
we are led to a shorter concatenation of type (6); the inductive assumption then
easily implies the conclusion.

Turning to the central fusion, in case (6) forgetting the fused edge we get the
shorter concatenation of type (9)

rRℓ
a1

· ℓLr
b1

· rRℓ
a2

·. . . ℓLr
bk−1

· rRℓ
ak

· ℓRr
ch

· rLℓ
dh−1

·. . . ℓRr
c2

· rLℓ
d1

· ℓRr
c1

whence, by the inductive assumption, independently of the order, a final weight

bk + dh +
∑

i=1,...,k−1

bi −
∑

i=1,...,k

ai +
∑

j=1,...,h−1

dj −
∑

j=1,...,h

cj

=
∑

i=1,...,k

ai −
∑

i=1,...,k

bi +
∑

j=1,...,h

cj −
∑

j=1,...,h

dj
(10)

as desired. The central fusion in (7) gives the type (8) concatenation

ℓLr
b0

· rRℓ
a1

·. . . ℓLr
bk−1

· rRℓ
ak

· ℓRr
ch

· rLℓ
dh−1

·. . . ℓRr
c1

· rLℓ
d0

whence final weight precisely as in (10), as desired. The central fusion in cases (8)
and (9) is similarly reduced to the inductive assumption in cases (7) and (6)
respectively.
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Corollary 4.11. If a sequence of elementary weighted moves is applied to a
vertex as in Fig. 13 and the weighted fusions are applied as long as possible to the
edges generated by these moves, the result is independent of the order of fusions.

Proof. By the argument showing Proposition 4.10 we must prove that concate-
nations of the form

rRℓ
a1

· ℓLr
b1

·. . . rRℓ
ak

· ℓLr
bk

, ℓLr
a1

· rRℓ
b1

·. . . ℓLr
ak

· rRℓ
bk

ℓLr
b0

· rRℓ
a1

· ℓLr
b1

·. . . rRℓ
ak

· ℓLr
bk

, rRℓ
b0

· ℓLr
a1

· rRℓ
b1

·. . . ℓLr
ak

· rRℓ
bk

give a well-defined result. By induction on the length one can indeed see that the
first two give

∑
i=1,...,k

bi −
∑

i=1,...,k

ai and the last two give
∑

i=0,...,k

bi −
∑

i=1,...,k

ai.

The two previous results imply that:

• We can define a weighted move at a vertex as in Fig. 13 as a sequence of
elementary weighted moves followed by weighted fusion;

• If we apply to a graph in Nw some weighted moves and after weighted fusion
we get another graph in Nw, the weights on this last graph are well-defined.

Proposition 4.12. Two weighted moves at a vertex that coincide as unweighted
moves also coincide as weighted moves.

Proof. We will prove the result for moves turning a vertex of index −1 to another
vertex of index −1, the general case following by pre-composition with move I
and/or post-composition with move I. The 12 moves described form a group
Π− which is intrinsically isomorphic to the alternating group S

+
4 on 4 objects.

This isomorphism is made explicit with the choice of generators and the resulting
presentation as follows:

α = III−, β = I ·M, Π− =
〈
α, β| α2, β3, (α · β)3

〉

(with moves and relations understood without weights). To conclude it is then
sufficient to show that the three relations hold also in a weighted sense. For α2

this was already implicit above and very easy anyway; the other two weighted
relations are established in Figg. 46 and 47

We are eventually ready to establish our main result of this section:

Theorem 4.13. Two graphs in Nw represent the same spine of some manifold
M and the same spin structure s on M if and only if they can be obtained from
each other by a combination of the moves I, II,M, I, II,M and weighted fusion.

40



(0 1)

(0 1)

(0 1)

(0 1)

(0 1)

(0 1)

(0 1)
(0 1 2)

(0 1 2)

(0 1 2)

(0 2 1)

(0 2 1)

(0 1 2)

(0 1 2)

(0 1 2)

(0 1 2)

(0 1)

(0 1)

(01)

(0 1)

(0 1)

(01)

(0 1)(0 2 1)

1

1

1

1

1

1

11

I

b

b

(1 2)(1 2)

+1/2

+1/2

+1/2

+1/2

+1/2

+1/2

+1/2

+1/2-1/2

M
=

=
-1/2

-1/2

-1/2

-1/2

-1/2

-1/2

-1/2(0 1 2)

(0 1 2)

(0 2 1)

1

b =

=

Figure 46: Computation of β = I ·M and proof that β3 = id− in a weighted sense.

(0 2 1)

(0 2 1)

(0 2 1)

(02 1)

(0 2 1)

(0 1 2)

(0 1 2)

(0 1 2)

(0 1 2)

(0 1 2)

(12)

(1 2)
(1 2)

(1 2)
(1 2)

II

ab

(0 1 2)
(0 1 2)

(0 2 1)

1

(1 2) (1 2)

+1/2-1/2

M
=

+1/2

+1/2

+1/2

+1/2

+1/2

+1/2

+1/2

+1/2

+1/2

+1/2

(0 2)

(0 2)

(0 2)

(0 2)

(02)

(0 1 2)

(0 1 2)
(0 2 1)

1

ab
(0 2)

(0 2)

(0 2 1)

(0 2 1)

(1 2)

(1 2)

+1/2

+1/2

+1/2

+1/2

(01 2)

(0 1 2)

=

ab

=

Figure 47: Computation of α · β = III− · I · M = II · I · I · M = II · M and proof that
(α · β)3 = id− in a weighted sense.

41



(1 2) (1 2)

(1 2) (1 2)

(1 2) (1 2)

(1 2) (1 2)

-1/2 -1/2

+1/2 +1/2

+1/2 +1/2

+1/2 +1/2

M  M

M  M

s

s

s

s s

s s

s

w

w

w w

w w

w

w +1

= =

= =

-1

-1

Figure 48: Generation of the circuit move via the moves M,M and weighted fusion.

Proof. Suppose that Γ1,Γ2 ∈ Nw represent the same (M,s). Then they are
related bymoves I, II, I, II and circuit moves. To get the desired conclusion it is
then enough to show that the moves M,M generate the circuit move, which is
done in Fig. 48 for an edge of a circuit with first end of index −1 (the cases with
first end +1 being similar).

For the opposite implication we need two preliminary results. The proof of
the first one is an easy variation of the argument showing Proposition 3.3:

Proposition 4.14. Suppose that in Γ ∈ Nw there are some (possibly intersecting)
oriented circuits γ1, . . . , γn, and that each γj is either an undercircuit (an overpass
at all its vertices) or an overcircuit (an underpass at all its vertices). Then
the spin structure defined by Γ is also defined by the graph obtained from Γ by
reversing the orientation of each edge e of γ1∪ . . .∪γn and adding 1 to the weight
of e if the ends if e have different indices.

Proposition 4.15. If Γ ∈ Nw then using the moves I, II, I, II at the vertices of
Γ, followed by fusion, one can get Θ ∈ Nw such that each edge of Θ is either an
overpass at both its ends or an underpass at both its ends.

Proof. To begin we note that given a vertex V of Γ and the choice of two germs
of edges of Γ at V having consistent orientation through V , the moves I, II, I, II
allow to put the two chosen germs of edges in the overpass position at v. It is
then enough to show that we can attach labels o (over) and u (under) to the
germs of edges of Γ at vertices, so that:

• For each edge the labels at its ends are the same;

• At each vertex the germs having the same label have consistent orientation.

One such labeling will be termed good, and the coming argument proving its
existence is due to Federico Petronio. We choose a vertex V of Γ and attach any
label to any of the germs of edge at V . Then we propagate the labeling along a
path in Γ by applying alternatively the following rules until V is reached again:
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Figure 49: Extension of the labeling in case of initial label u on an outgoing germ at V .

• If an end of an edge has a label, give the other end the same label;

• If at a vertex an incoming (respectively, outgoing) germ has a label, give
the other incoming (respectively, outgoing) germ the other label.

Note that the propagation path need not be simple, but at each vertex visited
twice the labeling is good —see Fig. 49-left. When V is reached again we have
one of the situations in Fig. 49-right; in the top one we proceed by applying the
second rule, and eventually get back to V again with a good labeling; in the
bottom one we proceed with an arbitrary choice of the label, but once more we
get back to V with a good labeling. We can now similarly start from some other
vertex, until all the germs of edges at vertices are labeled.

Back to the proof of Theorem 4.13, suppose that Γ2 ∈ Nw is obtained from
Γ1 ∈ Nw by a combination of weighted moves I, II,M, I, II,M and weighted
fusion. Let ∆ be the union of the edges of Γ2 having a different orientation in
Γ1. By Proposition 4.15 we can find weighted moves generated by I, II turning
Γ2 into Γ3 ∈ Nw in which ∆ appears as a union of overcircuits and undercircuits.
Note that Γ3 carries the same spin structure as Γ2 by Proposition 3.1. With
pictures similar to Fig. 48 one can now see that the multiple circuit moves of
Proposition 4.14 are generated by the moves M,M,N,N,D− = M · N = N ·
M,D+ = M ·N = N ·M (the move D− is shown in Fig. 45, and D+ is obtained
similarly).

This shows that we can find a combination of the moves I, II,M, I, II,M that,
after weighted fusion, turn Γ2 into some Γ4 carrying the same spin structure as Γ2

and the same pre-branching as Γ1. Proposition 3.1 then implies that via moves
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I, II, I, II we can turn Γ4 into some Γ̃1 carrying the same spin structure as Γ2

and different from Γ1 possibly only for the weights. We then have a sequence of
weighted moves I, II,M, I, II,M that under weighted fusion give

Γ1 −→ Γ2 −→ Γ3 −→ Γ4 −→ Γ̃1

and that ignoring weights give the identity of Γ1 (namely, they give the identity
at every vertex of Γ1). Proposition 4.12 then implies that Γ̃1 coincides with Γ1

also as a weighted graph (up to coboundaries). This shows that Γ2 carries the
same spin structure as Γ1.

4.6 Obstruction computation on graphs with split edges

Even if this is not strictly necessary for our main results, we provide here two
methods for the computation of the obstruction α(P, ω, b) carried by a graph Γ̃ ∈
Ã that after fusion becomes a graph in Θ ∈ N defining a triple (P, ω, b). The first
method is general, direct and easy; the second one only applies to a Γ̃ resulting
from the application to some Γ ∈ N of the moves of Proposition 4.10 (ignoring the
numerical weights but using internal orientations), and it is more complicated,
but it also shows that some non-trivial algebra underlies the computation.

First method. Take Γ̃ ∈ Ã that after fusion gives Γ ∈ N representing (P, ω, b).
We claim that α(P, ω, b) can be computed from Γ̃ by considering on the boundary
of each region of P some numerical contributions in G =

(
1
2 · Z

)
/2Z and some

arrows, as in Proposition 2.7. Contributions from vertices and from even edges
are the same as in Proposition 2.7, while those from an odd edge e are described
as follows (with the regions labeled 0,1,2 as in Fig. 33 and contributions 0 not
mentioned):

e τ = (0 1) τ = (0 2) τ = (1 2)
t regions 0 and 1 get +1

2 all regions get 1 regions 1 and 2 get −1
2

t regions 0 and 1 get −1
2 all regions get 1 regions 1 and 2 get +1

2

The proof that this recipe works follows from the fact that the contributions
combine consistently under fusion, which is shown on examples in Fig. 50.

Second method. We begin with an apparently unrelated algebraic result. For
any set G we consider the right action of S3 on G given by

(g0, g1, g2) · η =
(
gη(0), gη(1), gη(2)

)
.

We check that indeed this is a right action on an example:
(
(g0, g1, g2) · (0 1)

)
· (1 2) = (g1, g0, g2) · (1 2) = (g1, g2, g0)

(g0, g1, g2) ·
(
(0 1) ◦ (1 2)

)
= (g0, g1, g2) · (0 1 2) = (g1, g2, g0).
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Figure 50: Associativity of the computation of α on a graph in Ã.

If G is an Abelian group of course we have

(
(g0, g1, g2) + (h0, h1, h2)

)
· η = (g0, g1, g2) · η + (h0, h1, h2) · η

so we can define the semidirect product S3 ∐G3 as S3 ×G3 with operation

(η, (g0, g1, g2)) · (θ, (h0, h1, h2)) = (η ◦ θ, (g0, g1, g2) · θ + (h0, h1, h2).

We now specialize our choice to =
(
1
2 · Z

)
/2Z and we establish the following:

Proposition 4.16. Define s : S3 → G3 by

s(∅) = (0, 0, 0) s((0 1 2)) =
(
−1

2 ,−
1
2 , 1

)
s((0 1)) =

(
−1

2 ,+
1
2 , 0

)

s((0 2)) = (1, 0, 1) s((0 2 1)) =
(
1,+1

2 ,+
1
2

)
s((1 2)) =

(
0,−1

2 ,+
1
2

)
.

Then Ψ : S3 → S3 ∐G3 given by Ψ(η) = (η, s(η)) is a group homomorphism.

Proof. If x = (0 1) and y = (1 2) we have the presentation of S3 given by

〈
x, y| x2, y2, (x · y)3

〉

with (0 1 2) = x · y, (0 2 1) = y · x, (0 2) = x · y · x. The proposition will then be a
consequence of the relations

Ψ(x)2 = Ψ(y)2 = (Ψ(x) ·Ψ(y))3 = (∅, (0, 0, 0)), Ψ((0 2)) = Ψ(x) ·Ψ(y) ·Ψ(x)
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Ψ((0 1 2)) = Ψ(x) ·Ψ(y), Ψ((0 2 1)) = Ψ(y) ·Ψ(x).

We start with

Ψ(x)2 =
(
(0 1),

(
−1

2 ,+
1
2 , 0

))
·
(
(0 1),

(
−1

2 ,+
1
2 , 0

))

=
(
(0 1) ◦ (0 1),

(
+1

2 ,−
1
2 , 0

)
+
(
−1

2 ,+
1
2 , 0

))
= (∅, (0, 0, 0)).

The computation of Ψ(y)2 is similar. Before checking that Ψ(x) · Ψ(y) has van-
ishing cube we compute it, checking it is Ψ((0 1 2)):

Ψ(x) ·Ψ(y) =
(
(0 1),

(
−1

2 ,+
1
2 , 0

))
·
(
(1 2)

(
0,−1

2 ,+
1
2

))

=
(
(0 1) ◦ (1 2),

(
−1

2 , 0,+
1
2

)
+

(
0,−1

2 ,+
1
2

))

=
(
(0 1 2),

(
−1

2 ,−
1
2 , 1

))
.

And now we conclude:

(Ψ((0 1 2)))3 =
(
(0 1 2),

(
−1

2 ,−
1
2 , 1

))3

=
(
(0 1 2) ◦ (0 1 2),

(
−1

2 , 1,−
1
2

)
+

(
−1

2 ,−
1
2 , 1

))
·Ψ((0 1 2))

=
(
(0 2 1),

(
1,+1

2 ,+
1
2

))
·
(
(0 1 2),

(
−1

2 ,−
1
2 , 1

))

=
(
(0 2 1) ◦ (0 1 2),

(
+1

2 ,+
1
2 , 1

)
+

(
−1

2 ,−
1
2 , 1

))
= (∅, (0, 0, 0));

Ψ(y) ·Ψ(x) =
(
(1 2),

(
0,−1

2 ,+
1
2

))
·
(
(0 1),

(
−1

2 ,+
1
2 , 0

))

=
(
(1 2) ◦ (0 1),

(
−1

2 , 0,+
1
2

)
+

(
−1

2 ,+
1
2 , 0

))

=
(
(0 2 1),

(
1,+1

2 ,+
1
2

))
;

Ψ(x) ·Ψ(y) ·Ψ(x) =
(
(0 1),

(
−1

2 ,+
1
2 , 0

))
·
(
(0 2 1),

(
1,+1

2 ,+
1
2

))

=
(
(0 1) ◦ (0 2 1),

(
0,−1

2 ,+
1
2

)
+

(
1,+1

2 ,+
1
2

))

= ((0 2), (1, 0, 1)) .

Remark 4.17. The previous result remains true, with the same proof, if the
values on s on the transpositions are redefined as

s((0 1)) =
(
+1

2 ,−
1
2 , 1

)
, s((1 2)) =

(
1,+1

2 ,−
1
2

)
, s((0 2)) = (0, 1, 0).

Let us then turn to the computation of the obstruction α(P, ω, b). We start
from Γ ∈ N , we apply to it some of the moves of Proposition 4.10 (but neglecting
the numerical weight) and we call Γ̃ the result. Next, we assume that applying
fusion to Γ̃ we get Θ ∈ N defining (P, ω, b). Note that every edge of Γ̃ carries
an internal orientation (that for an even edge we stipulate to be the the same as
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Figure 51: Examples of computation of α with the second method.

the orientations at the ends). Let us concentrate on an edge e of Θ, that in Γ̃
(before fusion) will be subdivided into several edges. Since in Θ ∈ N the edge
e is oriented, we can speak of a global orientation of e (that coincides with the
internal orientations of the two extremal subedges of e). Now note that each
subedge e′ of e brings three portions of strands of attaching circles of P to S(P ),
and that these strands are numbered 0, 1, 2 at both ends of e′ according to the
orientation of these. The recipe for the computation of α(P, ω, b) now uses the
map s of Proposition 4.16, and goes at follows:

• Let η ∈ S3 be the permutation attached to e′, and define (h0, h1, h2) to
be s(η) if the internal orientation of e′ is consistent with the global one,
otherwise define (h0, h1, h2) as s

(
η−1

)
;

• At the first end of e′ with respect to the global orientation, attach to the
strands 0, 1, 2 the weights h0, h1, h2.

A formal proof that summing the contributions of the various e′ one gets the
edge contributions to α(P, ω, b) as in Proposition 2.7 employs Proposition 4.16,
but we confine ourselves here to some examples only, see Fig. 51 and 52.
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Figure 52: More examples of computation of α with the second method.
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