
Causal Trees, Finally

Roberto Bruni1(B), Ugo Montanari1,
and Matteo Sammartino2

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
bruni@di.unipi.it

2 ICIS, Radboud University, Nijmegen, The Netherlands

Abstract. Causal trees are one of the earliest pioneering contributions
of Pierpaolo Degano, in joint work with Philippe Darondeau. The idea
is to record causality dependencies in processes and in their actions. As
such, causal trees sit between interleaving models and truly concurrent
ones and they originate an abstract, event-based bisimulation seman-
tics for causal processes, where, intuitively, minimal causal trees repre-
sent the semantic domain. In the paper we substantiate this feeling, by
first defining a nominal, compositional operational semantics based on
History-Dependent automata and then we apply categorical techniques,
based on named-sets, showing that causal trees form the final coalgebra
semantics of a suitable coalgebraic representation of causal behaviour.

1 Introduction

Causal trees [7,8] are one of the key pioneering contributions of Pierpaolo Degano,
in joint work with Philippe Darondeau, to the field of concurrency. The idea is to
enrich Milner’s synchronisation trees, the classical model for interleaving seman-
tics, with causality information between the currently performed action and pre-
vious ones. As such, causal trees sit between interleaving models and truly concur-
rent ones. They differ from the non-sequential processes/event structures of Petri
nets (see [2,11] for a comparison between causal trees and event structures). In
fact, the causal tree semantics does not offer an operational setting, where a con-
current computation is seen as the equivalence class of all sequential computations
with concurrent events executed in any order. Rather, it suggests an abstract,
event-based bisimulation semantics, where minimal causal trees represent the
semantic domain. We will see in this paper that our categorical developments con-
firm this conclusion, since it turns out that causal trees form the final coalgebra
semantics of a suitable coalgebraic representation of causal behaviour (see [16] for
details about coalgebras).

At the syntax level, the basic idea is to have causal processes, i.e., processes in
which each sequential agent comes with the set of its past events, called causes.
When one agent performs an action, or two agents synchronise, a new event

Research supported by MIUR PRIN Project CINA Prot. 2010LHT4KM and by
NWO Project 612.001.113 Practical Coinduction.

c© Springer International Publishing Switzerland 2015
C. Bodei et al. (Eds.): Degano Festschrift, LNCS 9465, pp. 27–43, 2015.
DOI: 10.1007/978-3-319-25527-9 4



28 R. Bruni et al.

is generated and the causes of the involved agents are recorded in the label,
together with the action. These causes, updated with the new event, are then
assigned to the continuations of the agents. Correspondingly, the usual notion of
bisimulation becomes history preserving [10], because causes must be matched.

The main issue with causal semantics is that the state-space is usually infi-
nite, because the causes of causal processes grow after each transition. A solution
was proposed in [13] by Montanari and Pistore. They introduced a class of oper-
ational models, namely causal automata, for the causal semantics of Petri nets1.
Causal automata have no direct minimal realisations, but they can be mapped
(possibly provoking a state explosion) to equivalent ordinary automata, which
can in turn be minimised. Later, it was observed by the same authors that event
generation mechanisms of causal automata can be generalised to handle name
generation in nominal calculi. This led to History Dependent (HD-)Automata
[15]. They are automata featuring name allocation and deallocation, and were
initially intended for the π-calculus. Unlike causal automata and causal trees,
each state of an HD-automaton is equipped with a symmetry group, telling under
which permutation of names the state is invariant. This is essential to have min-
imal representatives.

HD-automata admit a categorical representation as coalgebras over named
sets [6], because states and transitions are indexed by sets of names. This per-
spective led to several results and generalisations. In [6,12], a connection between
HD-automata and the categorical operational semantics of the π-calculus [9] has
been established. More precisely, the former can be automatically derived from
the latter through a categorical equivalence. In [5] it is shown that this equiv-
alence is much more general: if the presheaf category on which coalgebras are
based has certain properties, then we have equivalent notions of named sets and
coalgebras over them.

Our original contribution is two-fold, as explained next.

History-Dependent Semantics for Causal Processes. In the first part of
our contribution we derive compact operational models for causal processes. In
Theorem 1 we show full abstraction w.r.t. Darondeau-Degano causal semantics
(DD-semantics for short). The state-space of our models is usually significantly
smaller, often finite instead than infinite, than the one produced by the corre-
sponding DD-semantics.

In order to do this, we represent events as names, and event generation as
name generation. States are special causal processes, called P-processes, with
the following features:

– they include a poset, describing the causal relations among the process’ events;
– they only keep track of immediate causes, that are the most recent events,

according to the poset, for each agent;
– they are canonical representatives of isomorphic processes.

1 An analogous concept of location automata was introduced in [14] for modelling the
location semantics of CCS.



Causal Trees, Finally 29

Transitions have history maps that record the correspondence between event
names along transitions. The semantics is history-dependent (HD-semantics in
short), in the sense that events may have different meanings depending on past
transitions.

The poset plays a crucial role in bisimilarity: two states can be compared
for bisimilarity only if their posets can be related via a suitable (partial) iso-
morphism. This ensures that bisimilar states have the same history of events,
which is essential for the correspondence with causal trees and, equivalently,
with history dependent bisimilarity.

Our work is based on [4], where an analogous semantics for causal processes
was first introduced. It was rather indirect and cumbersome, because it was
gradually built on top of the whole (possibly infinite) DD-semantics of a causal
process. Here HD-semantics is computed directly and more efficiently, via a
compositional, inductive procedure that starts from transitions of individual
agents in the basic, non-causal LTS.

Final Semantics. The second part of our work is concerned with represent-
ing our semantics of causal processes as coalgebras over named sets, i.e., HD-
automata. This construction enables us to use results from the well-established
theory of coalgebras. In particular, we have a final semantics and corresponding
minimal models. This construction crucially depends on states being equipped
with symmetry groups, formed by isomorphisms over the state’s poset under
which the state is invariant. This way, all bisimilar states have a unique repre-
sentative as a state with symmetries. A simple counterexample shows that this
cannot be achieved if symmetries are not considered.

We base our technical development on [5], where a general notion of named
set is introduced: symmetry groups are defined over a category C, and then
named sets are defined as families of such groups. To instantiate C, we introduce
a category P of posets, where symmetry groups are formed by poset automor-
phisms. Then we define HD-automata as coalgebras for a suitable behavioural
endofunctor on named sets, which captures causal information and event gener-
ation in transitions.

We provide a direct translation of causal HD-semantics into HD-automata.
Behavioural equivalence is preserved by the translation, and in Theorem2 we
prove that it is indeed induced by causal trees. Thus we can conclude that causal
trees, even if infinite, are the right abstract notion to represent causal semantics.
The finite case, represented by a finite minimal HD automaton, corresponds to
a causal tree with a finite number, up to isomorphism, of subtrees.2

2 As it is common in final semantics, the final coalgebra is typically an infinite object
that accounts for all possible behaviours, but the minimal representative of an HD-
automaton needs to account just for the behaviours of that automaton: it decomposes
uniquely the map from the HD-automaton to the final object into a surjective map-
ping from the HD-automaton to the representative and an embedding of the latter
into the final object.



30 R. Bruni et al.

Structure of the Paper. In Sect. 2 we fix some notation on posets, recall the basic
ideas around causal processes and their semantics and introduce a very simple
running example, which is expressive enough to show all the key features of our
approach. In Sect. 3 we introduce P-processes, our main ingredient for address-
ing causal semantics with nominal techniques, together with the basic opera-
tions to combine them. In Sect. 4 we define a causal semantics for P-processes,
called HDC-bisimilarity and show that it agrees with the classical Darondeau
and Degano’s semantics (Theorem 1). Finally, in Sect. 5, we address the issue
of finding minimal models up-to HDC-bisimilarity, exploiting symmetries to the
purpose (Theorem 2). Due to space limitation, the reader must have some famil-
iarity with categories and coalgebras to appreciate the technical development
in Sect. 5, although this is not needed to understand the construction of the
operational model and to follow its application to the running example.

2 Background and Running Example

A poset over a set S is a pair O = (∣O∣,≼O), where ∣O∣ ⊆ S and ≼O is a reflexive,
transitive and antisymmetric (binary) relation on ∣O∣. We will sometimes write
posets as sets of elements and pairs, omitting reflexive and transitive pairs, for
instance {e1, e2 ≼O e3} is the poset with elements e1, e2, e3 such that e1 ≼O e1,
e2 ≼O e2 ≼O e3 ≼O e3. A morphism of posets O → O′ is a function σ∶ ∣O∣ → ∣O′∣
that preserves order, namely x ≼O y implies σ(x) ≼O′ σ(y). We say that σ reflects
order whenever σ(x) ≼O′ σ(y) implies x ≼O y; σ is an order-embedding whenever
it both preserves and reflects order. A set K ⊆ ∣O∣ is down-closed w.r.t. O whenever
y ∈K and x ≼O y implies x ∈K.

Throughout the paper we assume that posets are over a countable set of
event names E . We will model event generation via the following event allocation
operator, which takes a poset O and adds a new element e ∉ ∣O∣ to it, with a
given set of causes K ⊆ ∣O∣:

δ(O,K, e) = (O ∪ (K × {e}))∗ .

For example, δ({e1, e2 ≼O e3},{e1}, e) = {e1 ≼O e, e2 ≼O e3}

2.1 Abstract Posets

We assume a choice of isomorphism representatives for posets. We call such
representatives abstract posets. We write [O] for the canonical representative of
O and we assume a choice of an abstraction map αO ∶O → [O], to be exploited
in the definition of synchronised product of causal processes (see Fig. 2, where
we omit the subscript because it is clear from the context).

For abstract posets, the event allocation operator is simpler: we do not need
to specify e, as we can add a(ny) new event, up to isomorphism. Therefore the
abstract allocation operator δ(O,K) gives [δ(O,K, e)], for any e. We assume
the following operations:



Causal Trees, Finally 31

– the (injective) morphism old(O,K) embeds O into δ(O,K);
– new(O,K) ∈ δ(O,K) ∖ old(O,K)(O) gives the unique new event in δ(O,K).

For example, letting O = {e1, e2 ≼O e3}, if δ(O,{e1}) = {e2 ≼O e1, e3 ≼O e4} we
can have new(O,{e1}) = e1 and old(O,{e1})(ei) = ei+1 for i = 1,2,3.

These operations can be used to define the extension of σ∶O → O′ to a
morphism σ+K ∶ δ(O,K) → δ(O′, σ(K)) given by

σ+K(x) =

⎧

⎪
⎪

⎨

⎪
⎪

⎩

new(O′, σ(K)) if x = new(O,K)

old(O′, σ(K))(σ(y)) if x = old(O,K)(y)

The intuition is that σ+K does not mix up old and new events: it acts “as” σ
(modulo suitable embeddings) on events that were already in O, and maps the
new event in δ(O,K) to the new one in δ(O′, σ(K)). To ease notation, we will
just write σ+ when K is clear from the context.

2.2 Darondeau-Degano Causal Semantics

Let p, q, . . . denote sequential agents. Processes are generated by the following
grammar

t ∶∶= 0 ∣ p ∣ t1 ∥ t2

where 0 is a distinguished inactive agent and the operator ∥ is the parallel
composition of processes, which is associative and has unit 0.

Let Act be a set of actions such that, for each a ∈ Act, there is also a ∈ Act
(we let a = a). We assume a set of basic transitions for non-ε agents

Δ = {p
a
�→ t ∣ a ∈ Act}

such that the subset Δp = {p
a
�→ t ∈Δ} is finite, for all p. Notice that continuations

from an agent can be parallel compositions of agents.
Causal processes are process terms whose agents are decorated with finite

subsets of positive natural numbers, representing their causes. They are written3

K1 ⊢ p1 ∥ ⋅ ⋅ ⋅ ∥Kn ⊢ pn

where K1, . . . ,Kn ⊆ N
+ are finite. Intuitively, the cause 1 represents a dependency

with the last executed event, 2 with the one but last, and so on. The Darondeau-
Degano causal semantics (DD-semantics hereafter) is a labelled transition system
computed from basic transitions of agents. We illustrate it later via our running
example.

Bisimilarity for the DD-semantics is the standard LTS bisimilarity. We call
it DD-bisimilarity, denoted ∼dd. It has been shown (see, e.g., [1]) that DD-
bisimilarity is fully abstract w.r.t. causal trees.

3 Note that inactive agents of the form K ⊢ 0 are just disregarded.



32 R. Bruni et al.

Example 1 (Running example). Consider two agents p1 and p2, with basic tran-
sitions

p1
a1
�→ p1 p2

a2
�→ p2 .

The DD-semantics of corresponding causal agents, for each set of causes K, is
the following

K ⊢ pi
K⊢ai
���→ δ(K) ∪ {1} ⊢ pi (i = 1,2).

The label shows the action ai and the set K of causes of the moving agent. A
new event is generated, canonically denoted 1, and is added to the causes of the
continuation agent. The old causes are incremented by one, written δ(K), to
avoid a clash between the new event and the old ones.

The DD-semantics of parallel composition is computed from that of single
agents. For instance

{2} ⊢ p1 ∥ {1} ⊢ p2
{1}⊢a2
����→ {3} ⊢ p1 ∥ {1,2} ⊢ p2

Here only the right component (p2) moved, its label (a2 with cause {1}) became
the overall one and its set of causes became {1,2}. Note that despite the same
symbol, the cause 1 in the source and label of the transition refer to a different
event than the one associated with the cause 1 in the target of the conclusion. The
left component is idle, but its event 2 needs to be incremented to avoid clashes
with the continuation of the moving agent. In general, δ needs to be applied to
causes of idle agents. If we have more than one moving agent, i.e., two agents
can do complementary actions K1 ⊢a and K2 ⊢a, their parallel composition can
do K1 ∪K2 ⊢ τ , and causes δ(K1 ∪K2) are assigned to both continuations of
synchronised agents.

In Fig. 1 we show a finite part of the DD-semantics of ∅ ⊢ p1 ∥ ∅ ⊢ p2: the
state-space is actually infinite. States are tagged with marks (1) to (4) that
will be used later to establish a correspondence with the named semantics (see
Example 2 and Fig. 4): for the moment they can be ignored.

Fig. 1. Part of the infinite LTS in the running example.



Causal Trees, Finally 33

3 P-processes

Since we want to apply nominal techniques to model causal semantics, we intro-
duce an abstraction of causal processes, where events are drawn from a set E
instead of N+.

Definition 1 (Nominal causal process). A nominal causal process (n-
process in short) is an expression of the form

K1 ⊢ p1 ∥ ⋅ ⋅ ⋅ ∥Kn ⊢ pn

where p1, . . . , pn are agents and K1, . . . ,Kn are finite subsets of E. We will use
k, k′, . . . to denote these processes.

We use finite posets over E to keep track of causal dependencies among events in
n-processes. We say that a n-process k is consistent with a poset O whenever, for
all agents K ⊢ p in k, K is down-closed w.r.t. O. Intuitively, agents in k contain
the whole history of their events, as described by O.

The history of events in a n-process can be augmented via the following
closure operator.

Definition 2 (Closure operator). Given K ⊆ ∣O∣ and O′ such that O is a
subposet of O′, the closure of K w.r.t. O′ is given by

K↓O′ = ⋃
x∈K

{y ∈ ∣O′∣ ∣ y ≼O′ x}

Its extension to n-processes is (K ⊢ p)↓O′ = (K↓O′) ⊢ p and distributes over par-
allel composition.

Given k consistent with O and O′ ⊇ O, k↓O′ is clearly consistent with O′.

Definition 3 (Causes, immediate causes). The sets of causes K (k) and
immediate causes icO(k) of a n-process k w.r.t. a poset O are recursively defined
by letting:

K (K ⊢ p) = K K (k1 ∥ k2) = K (k1) ∪K (k2)
icO(K ⊢ p) = maxO(K) icO(k1 ∥ k2) = icO(k1) ∪ icO(k2)

where maxO(K) is the set of maximal elements in K w.r.t. O.

The immediate causes of a n-process are events that are maximal with respect
to at least one of its agents.

We assume that we have canonical representatives of n-processes. Let Aut(O)
be the set of automorphisms on O, we pick a representative from {kφ ∣ φ ∈
Aut(O)}, for any k consistent with O. We introduce an abstraction operator
[k]O that, given k consistent with O, returns a canonical representative of k
that is consistent with [O] and a map that allows us to recover k from its
representative.



34 R. Bruni et al.

Definition 4 (Process abstraction operator). Given a process k consistent
with O, the process abstraction operator [k]O gives a pair (k̂, ϕ̂) of a n-process
k̂ consistent with [O] and the isomorphism ϕ̂∶O → [O] such that kϕ̂ = k̂.

We now introduce the states of our causal semantics, namely P-processes.

Definition 5 (P-process). A P-process is a pair O ⊳ k where O is an abstract
poset and k is a n-process, such that:

1. ∣O∣ =K (k);
2. k is consistent with O;
3. for all agents K ⊢ p in k, K ⊆ icO(k);
4. [k]O = (k,ϕ), for some ϕ;

Condition 1 says that the causes recorded in O are all and only the ones men-
tioned in k; condition 2 guarantees that the causes of each component in k are
down-closed according to the order in O; condition 3 enforces only the most
recent causes to be recorded in agents; finally, condition 4, establishes that k is a
canonical representative. This makes event names local, i.e., there is no obvious
relation among events in different P-processes.

3.1 Operations on P-processes

We introduce some operations on P-processes. The first one computes the “min-
imal” P-process that can be formed from a given poset and n-process.

Definition 6 (Immediate causes reduction operator). Given a poset O
and a n-process k consistent with O, let OI be O restricted to icO(k) and define
normO(K ⊢ p) = K ∩ ∣OI∣ ⊢ p, distributing over parallel composition. Then the
immediate causes reduction operator is

ic(O,k) = [OI] ⊳ k̂

where [normO(k)]OI
= (k̂, ϕ̂), and we denote by �O,k� the map [OI] → O given

by (OI ↪ O) ○ ϕ̂−1.

Here the map [OI] → O records the original identity of events of the reduced
P-process.

We define an operation of amalgamated parallel composition, that allows us
to form the parallel composition of two P-processes O1 ⊳ k1 and O2 ⊳ k2. Since
events are local to P-processes, we need to specify how those in O1 and O2 are
related. We do this through amalgamations, that are cospans

O1
ε1
�→ O

ε2
←� O2

of order-embeddings such that ∣O∣ = img(ε1) ∪ img(ε2). We denote by am
(O1,O2) the set of all amalgamations of O1 and O2.



Causal Trees, Finally 35

Definition 7 (Amalgamated parallel composition). Given two n-processes
k1, k2, consistent respectively with O1 and O2, and an amalgamation ε = O1

ε1
�→

O
ε2
←� O2 ∈ am(O1,O2), we can form their amalgamated parallel composition

k1 ∣∣∣
ε
k2 = (k1ε1)↓O ∥ (k2ε2)↓O .

We extend the operator to P-processes O1 ⊳ k1 and O2 ⊳ k2 as follows:

O1 ⊳ k1 ∣∣∣
ε
O2 ⊳ k2 = O ⊳ k1 ∣∣∣

ε
k2 .

4 HD Causal Semantics

Our causal semantics for P-processes is inductively computed from basic transi-
tions of their agents. Transitions are of the following form

O ⊳ k
K⊢μ
��⇒

h
O′ ⊳ k′

Here O ⊳ k is performing an action μ ∈ Act ∪ {τ} with causes K ⊆ max(O).
Unlike the DD-semantics, K only contains the most recent events among the
causes of moving agents. This choice is sound, because down-closed sets, such as
causes of agents, are fully determined by their maxima. The poset O′ is δ(O,K)
reduced to immediate causes. The history map h∶O′ → δ(O,K) keeps track of
the original identity of events. The presence of history maps makes the semantics
history dependent, in the sense that the identity of events depend on the past
transitions.

4.1 Interleaved and Synchronised Product

Our SOS rules will use two operations of left/right interleaved product and
synchronised product to compute interleaving and synchronisation of two P-
processes. They are defined in Fig. 2. The definitions are complicated by the need
to deal with several embeddings, amalgamations, and removal of non-maximal
causes, but are otherwise straightforward.

Suppose we want to compute the interleaving behaviour of a P-process that
can be decomposed as an amalgamated parallel composition with amalgamation
O1

ε1
�→ O

ε2
←� O2. In defining the left interleaved product O′1 ⊳ k1⋉O2 ⊳ k2,

we assume that the left component has a transition to O′1 ⊳ k1, with causes
K1 ⊆max(O1) and history map h1∶O

′

1 → δ(O1,K1), while the right component
is O2 ⊳ k2 and is idle. We want to compute action causes, history map and
continuation of the interleaved transition. Action causes K⋉1 are those K1 of the
moving P-process, embedded in O via ε1 (the superscript ⋉ is just an annotation
to make clear that we are considering the left interleaved product). Some of them
may become non-maximal, so they must be removed. To compute continuation
and history map, we form a new amalgamation O′1

ν1
�→ δ(O,K⋉1 )

ω1
←� O2. Here



36 R. Bruni et al.

Fig. 2. Operations to compute continuations of parallel P-processes in the HDC-
semantics.

the vertex poset models event allocation for the overall transition. We use this
amalgamation to compute parallel composition of k1 and k2. The resulting n-
process may contain non-immediate causes, so we use ic to discard them and to
compute a suitable history map h⋉, because we want to get a P-process. The
right interleaved product O1 ⊳ k1⋊O

′

2 ⊳ k2 is defined analogously.
The synchronised product is also similar. Now we assume that both compo-

nents move, and we know their action causes, history maps and continuations.
The action causes K1�K2 of the synchronisation are simply the union of all
action causes, embedded into O, namely ε1(K1) ∪ ε2(K2). Again, non-maximal
causes are removed. Overall continuation and history map are computed as in the
interleaved product, via a new amalgamation O′1

γ1○ν1
���→ δ(O,K1�K2)

γ2○ν2
←��� O′2.



Causal Trees, Finally 37

4.2 HDC-semantics and Bisimulation

The History Dependent causal semantics (HDC-semantics) is the smallest LTS
generated by the rules in Fig. 3.

Remark 1. Note that, given the particular nature of n-processes and P-processes,
each agent p will have at most one immediate cause to expose in a transition.
If a synchronisation is performed, at most two causes are recorded in the label
and only one event is added to the target.

Fig. 3. SOS rules for the HDC-semantics. The rule (Par-Left) has a symmetric one
(Par-Right), which is omitted.

The rule (Agent) says that an agent p can become a P-process with either
empty or singleton poset O. Any transition exhibits ∣O∣ as action causes, and goes
to a P-process where each agent has a single cause e. The history map takes e to
the maximal element of δ(O, ∣O∣). For instance, if O = {e}, δ(O,{e}) = {e1 ≼ e2},
and h(e) = e2.

The rules (Par-Left) ((Par-Right) is analogous, so it is omitted) and
(Sync) handle the (amalgamated) parallel composition of two P-processes. The
first two rules derive interleaving behaviour, and the latter derives a synchronisa-
tion between P-processes performing complementary actions. We use appropriate
product operations to compute the derived transition.

We now introduce bisimilarity for P-processes, called HDC-bisimilarity. It is
quite involved: when comparing two P-processes, we need to establish an explicit
correspondence between their events. This correspondence can be a partial func-
tion, because some events may not be observable. Then a P-process is allowed
to simulate a transition with a different transition, provided that this transition
can be mapped to the original one via the partial function.



38 R. Bruni et al.

Definition 8 (HDC-bisimilarity). A HDC-bisimulation R is a ternary rela-
tion such that, whenever (O1 ⊳ k1, σ,O2 ⊳ k2) ∈ R:

– σ is a partial isomorphism (i.e., an isomorphism between subposets) from O1

to O2;
– if O1 ⊳ k1

K⊢a
��⇒

h1
O′1 ⊳ k′1 then σ is defined on K, and there are a transition

O2 ⊳ k2
σ(K)⊢a
���⇒

h2
O′2 ⊳ k′2 and σ′ such that (O′1 ⊳ k′1, σ

′,O′2 ⊳ k′2) ∈ R and the

following diagram commutes

O′1
h1 ��

σ′

��

δ(O1,K)

σ+

��
O′2 h2

�� δ(O2, σ(K))

– if O2 ⊳ k2
K⊢a
��⇒

h2
O′2 ⊳ k′2 then σ is defined on K, and there are a transition

O1 ⊳ k1
σ−1(K)⊢a
����⇒

h1
O′1 ⊳ k′1 and σ′ analogous to the previous item.

The greatest such bisimulation is denoted ∼hdc. We write O1 ⊳ k1 ∼
σ
hdc O2 ⊳ k2

to mean (O1 ⊳ k1, σ,O2 ⊳ k2) ∈∼hdc.

The commuting diagram essentially says that σ′ should act as σ on “old” events,
and preserve freshness of events. The identity of new and old events is specified
by the history maps.

Now we show how we can derive a HDC-semantics for (Darondeau-Degano)
causal processes that is fully abstract w.r.t. DD-bisimilarity.

Theorem 1. Consider the following implementation of event names and event
generation: E = N+ and δ(O,K) is the reflexive and transitive closure of

{(n + 1,m + 1) ∣ (n,m) ∈ ∣O∣} ∪ {n + 1 ∣ n ∈K} × {1}

with new(O,K) = 1 and old(O,K)(n) = n + 1. Then k1 ∼dd k2 implies
ic(O1, k1) ∼hdc ic(O2, k2), for any Oi consistent with ki (i = 1,2).

Example 2 (HDC-semantics for the running example). In order to derive the
HDC-semantics of ∅ ⊳ ∅ ⊢ p1 ∥ ∅ ⊢ p2, we start from the HDC-semantics of
agents

∅ ⊳ ∅ ⊢ pi
∅⊢ai
��⇒

id
{1}

{1} ⊳ {1} ⊢ pi {1} ⊳ {1} ⊢ pi
∅⊢ai
��⇒

h1
{1} ⊳ {1} ⊢ pi.

where h1∶ {1} → δ({1}) = {2 ≼ 1} maps 1 to itself. Then we derive other P-
processes using (Par-Left) and (Par-Right). The resulting HDC-semantics
is in Fig. 4, where states tagged with numbers (1) to (4) are “representations” of
states in Fig. 1 with the same mark, in the sense that they are obtained from the
latter by immediate causes reduction. Remarkably, this gives a finite state-space.



Causal Trees, Finally 39

Fig. 4. The finite LTS for the HDC operational semantics of our running example

5 Causal History-Dependent Automata with Symmetries

We now consider minimal models for our HDC-semantics, up to HDC-
bisimilarity. We do this by characterising HDC-semantics as History Dependent
(HD-)automata, that are coalgebras over a suitable category of named sets. We
call these coalgebras causal HD-automata (HDC-automata) because they will be
defined in such a way that their transition relation matches our HDC-semantics.
HDC-bisimilarity is then characterised as behavioural equivalence induced by
the final HDC-automaton.

One important feature of HDC-automata is the presence of symmetries over
states. Given an abstract poset O, a symmetry over O is a set Φ ⊆ Aut(O) (called
just permutations hereafter) such that id ∈ Φ and it is closed under composition.
States are of the form O ⊳Φ s, where Φ is a symmetry over O.

Symmetries are essential for a correct notion of minimal model. In the case of
ordinary labelled transition systems (LTSs), one can compute minimal versions
w.r.t. bisimilarity, where all bisimilar states have been identified. Bisimilar LTSs
have isomorphic minimal versions, so we may use any of them as canonical
representative of the class of bisimilar LTSs. For HDC-automata, if we remove
symmetries this fails: we may have minimal HDC-automata that are bisimilar
but not isomorphic. We provide an example that explains this phenomenon.



40 R. Bruni et al.

Example 3. Consider the P-process {1,2} ⊳ {1} ⊢ p1 ∥ {2} ⊢ p2 of Example 2,
together with its two looping transitions. Consider the following HD-automaton

{1,2} ⊳ s

{1}⊢a1

h′3 ��

{2}⊢a2

h′4
��

h′3∶ {1,2} → {2 ≼ 1,3} =
⎧

⎪
⎪

⎨

⎪
⎪

⎩

1↦ 1
2↦ 3

h′4∶ {1,2} → {3 ≼ 1,2} =
⎧

⎪
⎪

⎨

⎪
⎪

⎩

1↦ 1
2↦ 2

Reminding that in Example 2 we had

h3∶ {1,2} → {2 ≼ 1,3} =
⎧

⎪
⎪

⎨

⎪
⎪

⎩

1↦ 1
2↦ 3

h4∶ {1,2} → {3 ≼ 1,2} =
⎧

⎪
⎪

⎨

⎪
⎪

⎩

1↦ 2
2↦ 1

we can note that h′3 = h3 and h′4 = h4 ○ (1 2) (the permutation (1 2) swaps 1
and 2). Suppose we want to find a minimal realisation of these HDC-automata.
They are not isomorphic, in the sense that there is no permutation on {1,2}
that, applied to labels and composed with history maps, turns transitions of the
former into transitions of the latter. However, we have

{1,2} ⊳ {1} ⊢ p1 ∥ {2} ⊢ p2 ∼
(1 2)
hdc {1,2} ⊳ s

so these states should be identified in some way. This way is provided by sym-
metries: minimal behaviour, according to ∼hdc, is invariant under (1 2), so we
can identify those states, provided that the resulting state is annotated with the
permutation (1 2).

In [5] a symmetry group over a category C is defined to be a collection
of morphisms in C[c, c], for any c ∈ ∣C∣, which is a group w.r.t. composition
of morphisms. Then generalised named sets are defined to be families of such
groups. Since our symmetries are over abstract posets, we instantiate C to the
following category.

Definition 9 (Category P). The category P has abstract posets as objects and
order-embeddings as morphisms.

We give an equivalent presentation of our named sets, closer to the original one
in [6]. Given a set S of morphisms and a morphism σ in P, we write S ○ σ for
the set {τ ○ σ ∣ τ ∈ S} (analogously for σ ○ S).

Definition 10 (Category Sym(P)). Let Sym(P) be the category defined as
follows:

– objects Φ are subsets of P[O,O] that are groups w.r.t. composition in P;
– morphisms Φ1 → Φ2 are sets of morphisms σ ○ Φ1 such that σ∶dom(Φ1) →

dom(Φ2) and Φ2 ○ σ ⊆ σ ○Φ1.

Definition 11 (Category NSet(P)). The category NSet(P) is defined as
follows:



Causal Trees, Finally 41

– objects are P-named sets, that are pairs N = (QN ,GN) of a set QN and a
function GN ∶QN → ∣Sym(P)∣. The local poset of q ∈ QN , denoted ∥q∥, is
dom(σ), for any σ ∈ GN(q).

– morphisms f ∶N →M are P-named functions, that are pairs (h,Σ) of a func-
tion h∶QN → QM and a function Σ mapping each q ∈ QN to a morphism
GM(h(q)) → GN(q) in Sym(P).

Then we can define the category of HDC-automata as coalgebras over a suit-
able endofunctor on NSet(P). Formally, this endofunctor is yielded by a cate-
gorical equivalence between pullback-preserving presheaves on P and NSet(P)
(cf. [3,4]). We give an informal description below.

Definition 12 (Category of HDC-automata). Let B∶NSet(P) →NSet(P)
be the following endofunctor

BN = Pf(L ×ΔN)

where:

– Pf ∶NSet(P) →NSet(P) is the finite powerset on NSet(P), mapping N to
its finite subsets that satisfy some requirements (see [6] for the corresponding
functor on named sets), equipped with a compatible symmetry group;

– L is a P-named set of labels whose elements are pairs (K,μ), where a ∈ Act∪
{τ} and K represents the causes of a;

– Δ∶NSet(P) → NSet(P) is the event generation functor, mapping N to a
P-named set made of pairs (q, e), with q ∈ QN and e ∈ ∥q∥ is an event marked
as fresh; the symmetry group is the subgroup of GN(q) that fixes e.

5.1 HDC-automata for P-processes

We now show how we can derive HDC-automata from the HDC-semantics. The
P-named set of states for these automata is defined as follows.

Definition 13 (P-named set of P-processes). The P-named set of P-
processes is (QP ,GP ), where:

– QP is the set of n-processes k such that O ⊳ k is a P-process and ∥k∥ = O;
– GP (k) = {φ ⊆ Aut(∥k∥) ∣ kφ = k};

We write O ⊳Φ k for k ∈ QP such that ∥k∥ = O and GP (k) = Φ.

Intuitively, in O ⊳Φ k, Φ is a set of permutations that do not affect the state.
Typically, when states are syntactic entities, we have Φ = {id}.

Transitions from O ⊳Φ k to O′ ⊳Φ′ k′ are derived from those between the
underlying P-processes. The idea is that we only keep one transition among the
set of transitions that can be computed from each other using permutations in

Φ and Φ′. Formally, we say that two transitions O ⊳ k
Ki⊢a
��⇒

hi

O′ ⊳ k′, i = 1,2, are



42 R. Bruni et al.

symmetric whenever there are φ ∈ Φ and φ′ ∈ Φ′ such that K2 = φ(K1) and the
following diagram commutes

O′
h1 ��

φ′

��

δ(O,K1)

φ+

��
O′

h2

�� δ(O,K2)

The derivation is done by taking a canonical representative among symmetric
transitions. Clearly all other transitions can be reconstructed.

Bisimilarity for HDC-automata induced by the HDC-semantics can be char-
acterised as a slight variant of Definition 8, where permutations are taken into
account. It is a set of triples (O1 ⊳Φ1 k1, σ,O2 ⊳Φ2 k2) such that, for all φ1 ∈ Φ1

and every transition of O1 ⊳Φ1 k1, there is a transition of O2 ⊳Φ2 k2 obtained by
applying φ−12 ○σ ○φ1 to the former transition, for some φ2 ∈ Φ2. The commuting
diagram for the new map σ′, relating the continuations, now involves φ−12 ○σ○φ1.

It can be proved that this new notion of bisimilarity is fully abstract w.r.t
HDC-bisimilarity. Under the assumptions of Theorem1, this is equivalent to
DD-bisimilarity. Therefore we have our final theorem.

Theorem 2 (Causal trees, finally). Under the assumptions of Theorem1, the
final semantics of a P-process is a HDC-automaton that represents the causal
tree of the underlying causal process.

As mentioned, symmetries allow computing minimal realisations, where all
bisimilar P-markings are identified. More precisely, we can identify two states
O1 ⊳Φ1 k1 and O2 ⊳Φ2 k2 that are related by ∼σ

hdc, for some σ. Then σ becomes
part of the state symmetry. Actually, σ is a permutation between subposets of
O1 and O2, but it can be shown that all HDC-bisimilar states have the same
poset of observable events on which σ is defined. This means that σ is indeed a
permutation on that poset.

Example 4 (HDC-automaton for the running example). The HDC-automaton
for the running example can be derived by taking O ⊳

{id} k, for each P-process
O ⊳ k in Example 2. Its minimal realisation has the same shape and the same
transitions, but the state {1,2} ⊳ {1} ⊢ p1 ∥ {2} ⊢ p2 is equipped with symmetry
{id, (1 2)}.

6 Conclusion

In this paper we have revisited causal tree semantics under the new light offered
by nominal techniques, not available when causal trees were first introduced by
Pierpaolo Degano and Philippe Darondeau. While doing so, we have outlined a
general methodology for providing minimal realisation up to causal semantics.
The methodology is based on a nominal framework, here enriched with poset
information. While the work in this paper builds on the work in [3,4], Sect. 4



Causal Trees, Finally 43

provides causal processes with a direct, compositional definition of operational
semantics and of the associated bisimilarity. Moreover, the minimal realisation
is shown to provide a, possibly finite, causal tree semantics.

References

1. Basagni, S.: A note on causal trees and their applications to CCS. Int. J. Comput.
Math. 71(2), 137–159 (1999)

2. Bodei, C.: Some concurrency models in a categorical framework. In: ICTCS (1998)
3. Bruni, R., Montanari, U., Sammartino, M.: A coalgebraic semantics for causality

in Petri nets. J. Logic Algebr. Meth. Progr. (2015, in press). http://cs.ru.nl/M.
Sammartino/publications/JLAMP15.pdf

4. Bruni, R., Montanari, U., Sammartino, M.: Revisiting causality, coalgebraically.
Acta Inf. 52(1), 5–33 (2015). http://www.cs.ru.nl/M.Sammartino/publications/
ACTA2014.pdf

5. Ciancia, V., Kurz, A., Montanari, U.: Families of symmetries as efficient models of
resource binding. Electr. Notes Theor. Comput. Sci. 264(2), 63–81 (2010)

6. Ciancia, V., Montanari, U.: Symmetries, local names and dynamic (de)-allocation
of names. Inf. Comput. 208(12), 1349–1367 (2010)

7. Darondeau, P., Degano, P.: Causal trees. In: Dezani-Ciancaglini, M., Ronchi Della
Rocca, S., Ausiello, G. (eds.) ICALP 1989. LNCS, vol. 372, pp. 234–248. Springer,
Heidelberg (1989)

8. Darondeau, P., Degano, P.: Causal trees interleaving + causality. In: Guessarian,
I. (ed.) LITP 1990. LNCS, vol. 469, pp. 239–255. Springer, Heidelberg (1990)

9. Fiore, M.P., Turi, D.: Semantics of name and value passing. In: LICS, pp. 93–104
(2001)

10. Fröschle, S.B., Hildebrandt, T.T.: On plain and hereditary history-preserving
bisimulation. In: Kuty�lowski, M., Wierzbicki, T.M., Pacholski, L. (eds.) MFCS
1999. LNCS, vol. 1672, pp. 354–365. Springer, Heidelberg (1999)

11. Fröschle, S.B., Lasota, S.: Causality versus true-concurrency. Theor. Comput. Sci.
386(3), 169–187 (2007)

12. Gadducci, F., Miculan, M., Montanari, U.: About permutation algebras,
(pre)sheaves and named sets. Higher-Order Symbolic Comput. 19(2–3), 283–304
(2006)

13. Montanari, U., Pistore, M.: Minimal transition systems for history-preserving
bisimulation. In: Morvan, M., Reischuk, R. (eds.) STACS 1997. LNCS, vol. 1200,
pp. 413–425. Springer, Heidelberg (1997)

14. Montanari, U., Pistore, M., Yankelevich, D.: Efficient minimization up to location
equivalence. In: Riis Nielson, H. (ed.) ESOP 1996. LNCS, vol. 1058, pp. 265–279.
Springer, Heidelberg (1996)

15. Pistore, M.: History dependent automata. Ph.D. thesis, University of Pisa (1999)
16. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput. Sci.

249(1), 3–80 (2000)

http://cs.ru.nl/M.Sammartino/publications/JLAMP15.pdf
http://cs.ru.nl/M.Sammartino/publications/JLAMP15.pdf
http://www.cs.ru.nl/M.Sammartino/publications/ACTA2014.pdf
http://www.cs.ru.nl/M.Sammartino/publications/ACTA2014.pdf

	Causal Trees, Finally
	1 Introduction
	2 Background and Running Example
	2.1 Abstract Posets
	2.2 Darondeau-Degano Causal Semantics

	3 P-processes
	3.1 Operations on P-processes

	4 HD Causal Semantics
	4.1 Interleaved and Synchronised Product
	4.2 HDC-semantics and Bisimulation

	5 Causal History-Dependent Automata with Symmetries
	5.1 HDC-automata for P-processes

	6 Conclusion
	References


