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Abstract. In this paper we consider a calculus of connectors that allows
for the most general combination of synchronisation, non-determinism
and buffering. According to previous results, this calculus is tightly
related to a flavour of Petri nets with interfaces for composition, called
Petri nets with boundaries. The calculus and the net version are equipped
with equivalent bisimilarity semantics. Also the buffers (the net places)
can be one-place (C/E nets) or with unlimited capacity (P/T nets). In
the paper we investigate the idea of finding normal form representations
for terms of this calculus, in the sense that equivalent (bisimilar) terms
should have the same (isomorphic) normal form. We show that this is
possible for finite state terms. The result is obtained by computing the
minimal marking graph (when finite) for the net with boundaries corre-
sponding to the given term, and reconstructing from it a canonical net
and a canonical term.
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1 Introduction

One of the foci of our long-standing collaboration with José Meseguer has been
concerned with the algebraic properties of Petri nets and their computations,
exploiting suitable symmetric (strict) monoidal categories [13,14,22,23]. In the
context of the ASCENS project!, we have recently investigated a flavour of
composable Petri nets, called Petri nets with boundaries, originally proposed
by Pawel Sobocinski in [28]. Petri nets with boundaries should not be confused
with bounded nets: the former come equipped with left/right interfaces for com-
position, the latter require the existence of a bound on the number of tokens
that can be present in the same place during the computation. Petri nets with
boundaries allow to conveniently model stateful connectors in component-based
systems and have been related to other widely adopted component-based frame-
works, like BIP [4], in [10]. In particular we have shown in [12] that they are
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equivalent to the algebra of stateless connectors from [8] extended with one-
place buffers. In this paper we consider an algebra of connectors that allow for
the most general combination of synchronisation, non-determinism and buffering
and investigate the idea of finding a normal form representation for terms of this
algebra, under some finiteness hypotheses.

Component-based design is a modular engineering practice that relies on the
separation of concerns between coordination and computation. Component-based
systems are built from loosely coupled computational entities, the components,
whose interfaces comprise the number, kind and peculiarities of communication
ports. The term connector denotes entities that glue the interaction of compo-
nents [25], by imposing suitable constraints on the allowed communications. The
evolution of a network of components and connectors is as if played in rounds:
At each round, the components try to interact through their ports and the con-
nectors allow/disallow some of the interactions selectively. A connector is called
stateless when the interaction constraints it imposes are the same at each round;
stateful otherwise.

In the case of the algebra of stateless connectors [8], terms are assigned input-
output sorts, written P : (n,m) or P : n — m, where n is the arity (i.e., the
number of ports) of the left-interface and m of the right-interface. Terms are
constructed by composing in series and in parallel five kinds of basic connectors
(and their duals, together with identities | : (1,1)) that express basic forms
of (co) monoidal synchronisation and non-determinism: (self-dual) symmetry
X:(2,2), synchronisation V : (1,2) and A : (2, 1), mutual exclusion A : (1,2) and
V:(2,1), hiding L : (1,0) and T : (0,1), and inaction L : (1,0) and T : (0,1).
The parallel composition P; ® Py of two terms P; : (n1,m1) and Ps : (ng, ma)
has sort (ny 4+ na, m1 + msg) and corresponds to put the two connectors side by
side, without interaction constraints between them. The sequential composition
Py; Py : (n,m) is defined only if the right-interface k of P; : (n, k) matches with
the left-interface of Ps : (k,m) and corresponds to plug together such interfaces,
enforcing port-wise synchronisation. It is immediate to see that each term P :
(n,m) has a corresponding dual P¢ : (m,n) (defined recursively by letting (P; ®
Py)¢ = Pf ® P§ and (Py; P2)¢ = P§; Pf) and a normal form axiomatisation
is provided in [8] whose equivalence classes form a symmetric strict monoidal
category (PROduct and Permutation category, PROP [16,21]) of so-called tick-
tables. All such connectors are stateless.

The simplest extension to stateful connectors consists of adding one-place
buffers as basic terms: O : (1,1) denotes the empty buffer, willing to receive
a “token” when an action is executed on its left port; and ) : (1,1) denotes
the full buffer, willing to give the “token” away when an action is executed
on its right port. This way, certain interactions can be dynamically enabled
or disabled depending on the presence or absence of “tokens” in the buffers.
Such stateful connectors can be put in correspondence with Petri nets with
boundaries up to bisimilarity [9,12,28]. In fact, the operational semantics of
connectors and Petri nets with boundaries can be expressed in terms of labelled
transition systems (LTS) whose labels are pairs (a, b) with a being a string that
describes the actions observed on the ports of the left-interface and b those on the
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right-interface. In our case a basic action observed on a single port is a natural
number, describing the number of firings on which that port is involved, or
equivalently, the number of “tokens” travelling on that port; therefore a and b
are strings of natural numbers. A transition with such an observation is written
P == P’. In the case of connectors, states are terms of the algebra, while in the
case of nets states are markings. In both cases the “sizes” of the interfaces are
preserved by transitions, e.g., if P <= P’ and P : (n,m), then |a| = n, || = m
and P’ : (n,m). Interestingly, the abstract semantics induced by ordinary bisim-
ilarity over such LTS is a congruence w.r.t. sequential and parallel composition.
Regarding the correspondence, first, it is shown that any net N : m — n with
initial marking X can be associated with a connector Ty, : (m,n) that pre-
serves and reflects the semantics of N. Conversely, for any connector P : (m,n)
there exists a bisimilar net {{P[} : m — n defined by structural recursion on P.
Roughly, in both cases, the one-place buffers of the connector correspond to the
places of the Petri net.

The problem of finding an axiomatisation for stateful connectors such that
normal forms can be found for bisimilarity classes is complicated by the fact that
the number of buffers is not preserved by bisimilarity: the same “abstract state”
can be described by a different combination of places. As a simple example, take
a net with two transitions a and 3 and a place p whose pre-set is {a} and whose
post-set is {G}. Clearly if p is substituted by any number of places connected in
the same way to « and 3, then the overall behaviour is not changed.

The solution provided here is to translate a term P to the corresponding net
{{P]}. Then we build the marking graph of {{P]}. It must be finite because only
a finite number of markings exist. Moreover we observe that marking graphs
can be represented up to bisimilarity by a Petri net with boundaries that has
one place for each reachable marking of {{P]} (i.e., one place for each state of
the marking graph). Finally, the translation of such net to the corresponding
connector gives a canonical representation of P, in the sense that any other
term P’ bisimilar to P will yield the same term (up to suitable permutations).

The same procedure can be followed when Place/Transition (P/T) Petri nets
with boundaries are considered. In this case, places capacity is unconstrained,
i.e., a place can contain any number of tokens. Correspondingly, we start from
terms of the P/T Petri calculus, where the basic constructors () and () are
replaced by a denumerable set of constructors (n|) for any natural number n, each
representing a buffer with n tokens. Given the correspondence in [12], between
P/T Petri calculus terms and P/T nets with boundaries, we can again translate
a term P to the corresponding net {{P]}, but building a finite marking graph
of {{P]} requires the net to be bounded.? This is equivalent to require that only
a finite set of terms is reachable from the term P via transitions. The marking
graph can then be minimised (w.r.t. the number of states, up to bisimilarity)
and translated to an equivalent P/T Petri calculus term.

2 Formally, a net is bounded if 3k € N such that in any reachable marking the number
of tokens in any place is less than or equal to k, i.e., k is a bound for the capacity of
places. Note that the marking graph of a net is finite iff the net is bounded.
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Fig. 1. Graphical representation of terms

Structure of the Paper. Section2 introduces the P/T and the C/E Petri cal-
culi, together with their bisimilarity semantics. Section 3 recalls Petri nets with
boundaries and their tight correspondence with Petri calculi. Section4 shows
how to obtain a normal form for a P/T Petri calculus term P by computing
the minimal marking graph for {{P]} and from it a canonical P/T Petri net N.
Finally, the canonical form of P is obtained by mapping N back into a term of
the P/T calculus. A similar process is outlined in Sect.5 for terms of the C/E
Petri calculus. Section 6 concludes the paper.

2 Petri Calculi

As a matter of presentation, along the paper we find it convenient to present
first the more general version (P/T case) of the definition and constructions,
because it can be largely reused in the simpler case (C/E).

2.1 The P/T Petri Calculus

The P/T calculus is an algebra of connectors that mixes freely elementary syn-
chronization constraints with mutual exclusion and (unbounded) memory. It is
obtained by extending the algebra of stateless connectors with a denumerable
set of constants (n|) (one for any n € N), each of them representing a buffer that
currently contains n data items, aka tokens.

The syntax of terms of the P/T Calculus is below, where n € N.

P ::=(n) buffer withn data items

| 1 identity wire | X twist

| V | A duplicator and its dual | L | T hiding and its dual

| A | V mutex and its dual | | | T inaction and its dual

| P® P parallel composition | P; P sequential composition

The diagrammatical representation of terms is shown in Fig. 1. Any term P
has a unique associated sort (k,l) with k,l € N, that fixes the size k of the left
interface and the size I of the right interface of P (see Fig.2).
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(n): (1,1) I:(1,1) X:(2,2) V:(1,2) A:(2,1)
1:(1,0) T:(0,1) A (1,2) V:i(2,1) 4:(1,0) 1:(0,1)
P : (k) P»:(m,n) Py :(k,n) Pa:(n,l)
Pr®P: (k+m,l+n) Py P (k)
Fig. 2. Sort inference rules
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Fig. 3. Operational semantics of P/T calculus

The operational semantics is defined by means of the LTS in Fig.3 whose
states are terms P of the algebra and whose transitions are labelled by pairs
(a,b) € N* x N*, written P - P’, where if P : (k,l) then |a| = k, |b| = [ and
P’ (k,1). For each i € {1...k}, a; is the number of actions executed on the i-th
port of the left interface. Analogously, for each j € {1...1}, b; is the number of
actions executed on the j-th port of the right interface. Since data items can be
created and deleted, but all connectors are maintained by the rules, the target P’
preserves the overall structure of P (i.e., P and P’ can differ only for sub-terms
of the form (nJ).

We remark that some of the rules are more precisely schemes. For instance,
there is one particular instance of rule (Tx10, ) for any possible choice of n, h
and k. We think the rules are self-explanatory: Rule (Tx10, ) models the case
where a buffer with n tokens releases k£ < n tokens and receives h new tokens
in the same step; at the end n + h — k tokens are left in the buffer. Rule (iny)
and (Twy,) just (re)wire the observation on the left interface to the one on the
right. Rules (v,) and (A,) enforce action synchronization on all ports. Rules
(L) and (T,) hide any action on its interface. Rules (A,) and (vi,) mix
the actions observed on the interface with two ports. Rules (1) and (1) enforce
inaction on their (single) ports. Finally, rules (Tex) and (cur) deal with parallel
and sequential composition.

Notably, the induced bisimilarity is a congruence w.r.t. ® and ; [12].
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Fig. 4. Petri calculus term for a buffer of capacity n

Example 1. As an example, we show one possible way to represent a buffer with
capacity n. First, let P, =T ; V; ((n)®1):(0,2) and Q,,, = T ; V; (I® (m)) :
(0,2) shown in Fig. 4(a) and (b). It is immediate to check that, for any h < n the
only transitions for P, are of the form P, 77 Pp+r—n and symmetrically, for Q,,
and k < m, are of the form Q, 77 Qmin—k. Let C = (1X®1) ; (ARA) : (4,2).
Again, it is immediate to check that the only transitions for C' are of the form
C =55 C. Then, let Dy = (P, ® Q) ; C : (0,2) shown in Fig. 4(c). We have
that Dy 2 Dodtk—hm+h—k with b < n and k < m. Note that (n — h + k) +
(m —k+ h) = n —m, ie., the numbers of tokens in the connector is invariant
under transitions. Thus, the term By, p, = (I Dy ) 5 (A5 L)®1) : (1, 1) shown
in Fig. 4(d) has transitions By, ., hT> By k—hm+h—k With h <n and k < m and
B, 0 is a buffer of capacity n (the sub-term P,, counts the free positions of the
buffer, while Qq the busy ones).

2.2 The C/E Petri Calculus

It is quite common to impose some capacity over buffers. For example, we could
think to consider only buffers of the form (¢, n|) with n < ¢, where n is the
number of tokens in the buffer and c¢ is its maximal capacity. In this case, the
transition (¢, n)) = (¢,m|) would be possible only if & < n and h < ¢ —n
with m = n+ h — k. ((¢,n]) roughly corresponds to the process B._,, , from
Example 1).

In this section we focus on the simplest such case, where buffers have capacity
one, also called one-place buffers. The corresponding calculus, originally intro-
duced in [28], can be seen as the consequent restriction of the P/T Petri calculus
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Fig. 5. Operational semantics for the one-place buffer (of the C/E Petri Calculus)

to operate over one-place buffers; in Petri net terminology, this restriction is
called Condition/Event (C/E). Terms of the C/E Petri Calculus are defined by
the grammar:

Pr=O[O[HX[VIA[L][T|IAlVIL[T][PeP]P;P

The constructors are the same as the ones of P/T calculus except for O) and
(® that respectively mimic the behaviour of (0,1]) and (1,1]). As before, any
term P has a unique associated sort, with O : (1,1) and © : (1,1) (remaining
cases are defined as in Fig. 2).

The operational semantics is then defined by replacing Rule (Tx10, ) in
Fig.3 with the four rules in Fig.5, representing respectively: the arrival of a
token in the empty buffer (rule (Tx1); the release of a token from the full buffer
(rule (Tx0)); the inactivity of the empty/full buffer (rules (TxE), (TxF)).

Remark 1. The semantics of the C/E Petri calculus presented here slightly differs
from the original one in [28] and all its variants considered in [12]. If we restrict
to consider stateless connectors, i.e., terms not involving O and (), then their
semantics is the one called ‘weak’ in [12], whereas the ‘strong’ semantics would
allow only one action at a time to take place in a port, e.g., only transitions

AL A, A 11—0> A and A oif A would be considered for the connector A. Dif-

ferently from the weak case, here we forbid tokens to traverse buffers during a
step, in agreement with the classical C/E semantics where a loop cannot fire.
However, other variants can be nicely accounted for by changing the rules for O
and (. For example, consume/produce loops can be dealt with by adding the
transition () - (. On the one hand, we think the semantics proposed here
improves the correspondence between C/E Petri calculus and C/E Petri nets
with boundaries (avoiding the use of the ‘contention’ relation from [12]) and, on
the other hand, it yields a more uniform definition with the P/T case, preserving
all good properties, like bisimilarity being a congruence w.r.t. ® and ;.

Ezxample 2. A buffer with capacity n can be represented by combining n buffers
of capacity 1: we just let By = :(1,1) and By1 =A; (B, ®Q); V: (1,1).

3 Nets with Boundaries

Nets with boundaries extends ordinary Petri nets by equipping them with left
and right interfaces made of ports. Ports are different from places in that places
in the pre-set of a transition o impose a bound on the number of instances of
« that can be fired concurrently, while ports do not. In fact ports can account
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for an unbounded number of instances of transitions attached to them to fire
concurrently. This is desirable, not an anomaly, because we can account for any
execution context in which the nets with boundaries are plugged in.

3.1 P/T Petri Nets with Boundaries

Petri nets [26] consist of places, which are repositories of tokens, and transitions
that remove and produce tokens. Places of a Place/Transition net (P/T net) can
hold zero, one or more tokens and arcs are weighted. The state of a P/T net is
described in terms of (P/T) markings, i.e., (finite) multisets of tokens.

A multiset on a set X is a function X — N. The set of multisets on X is
denoted M x. We let U,V range over Mx. For U,V € Mx, we write U C V
iff Ve € X : U(z) < V() and we use the usual multiset operations for union
(U), difference (—) and scalar multiplication (-). We use @ € Mx for the empty
multiset s.t. @(x) =0 for all x € X and we write z for the singleton multiset &
such that U (z) = 1 and U(y) = 0 for all y # x. Given a finite X, if f : X — My
and U € Mx then we shall abuse notation and write f(U) = U, cx U(x) - f(z).

Definition 1 (P/T net). A P/T net is a 4-tuple (P, T, °—, —°) where: P is
a set of places; T is a set of transitions; and °—,—°: T — Mp are functions
assigning pre- and post-sets to transitions.

Let X € Mp, we write Ny for the marked P/T net N with marking X.

Definition 2 (P/T step semantics). Let N = (P, T, °—, —°) be a P/T net,
X, Y e Mp. ForU € My a multiset of transitions, we write:
Ny -y Ny & cycx urcy&x-—°u=y-u.
The remaining of this section recalls the composable nets proposed in [28].
Due to space limitation, we refer to [12] for a detailed presentation. In the fol-

lowing we let n range over finite ordinals, i.e., n aef {0,1,...,n—1}.

Definition 3 (P/T net with boundaries). Let m,n € N. A (finite) P/T net

_O ._

with boundaries N : m — n is a tuple N = (P,T,°—, —°,*—, —*), where:

- (P,T,°—,=°) is a finite P/T net;
-*—:T = My, and =* : T — M,, are functions that bind transitions to the
left and right boundaries of N ;

Let X € Mp, we write Ny for the P/T net N with boundaries whose current
marking is X'. Note that, for any k € N, there is a bijection "—7 : M — NF
between multisets on k and strings of natural numbers of length k, defined by
U & 1y (1), namely, the i-th natural number in the string "U™ assigned to
the multiset I/ is the multiplicity of the i-th port in . For example, given the

multiset U = {0,0,2} € My we have "U7=2010.
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Fig. 6. Five marked P/T nets with boundaries

Definition 4 (P /T Labelled Semantics). Let N = (P,T,°—,—°,*—,—*) be
a P/T net with boundaries and X,Y € Mp. We write

Ny =Ny ¥ 3eMrst. Ny >y Ny, a="U"&b="U". (1)

Ezample 3. Figure6 shows five different marked P/T nets with boundaries.
Places are circles and a marking is represented by the presence or absence of
tokens; rectangles are transitions and arcs stand for pre- and post-set relations.
The left (respectively, right) interface is depicted by points situated on the left
(respectively, on the right). Figure6(a) shows the marked net P, : 1 — 1 con-
taining three places, four transitions and initially marked with one token in
place p. Figure 6(b) shows the marked net Q2,4 : 1 — 1 containing three places,
two transitions and initially marked with two tokens in p and one in g. These
two nets are bisimilar: they both model a buffer with capacity two, in which
messages are produced over the left interface and consumed over the right inter-
face. Figure 6(c) and (d) show two different models for unbounded buffers. They
are not bisimilar: while R, serialises all operations on the buffer, Sy allows for
the concurrent production/consumption of messages. Note that transition + in
Fig.6(d) has an empty pre-set and ¢ has an empty post-set. Figure 6(e) shows
the net I : 1 — 1 that contains no places. The sole transition 8 has empty pre
and post-sets. This net can forward any quantity of tokens received on its left
port to the right port and, hence, it is neither bisimilar to R, nor to Sg.

While from the point of view of ordinary Petri nets having empty pre-/post-
sets is quite a peculiar feature, which makes life harder when defining the opera-
tional semantics, we emphasize that in our context of decomposing nets into their
minimal components this is a highly valuable property. In fact, the interfaces of
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(b) Composition M; N.

o
ox

(a) Two P/T with boundaries M and N.

Fig. 7. Composition of P/T with boundaries

nets with boundaries have the role of synchronizing the transitions of different
components. In this perspective, it is natural to have nets without places as basic
components.

Nets with boundaries can be composed in parallel and in series.

Given Ny : m — nand My : k — [, their tensor product is the net Nx @My :
m + k — n + [ whose sets of places and transitions are the disjoint union of the
corresponding sets in N and M, whose maps °—, —°, ®*—, —* are defined according
to the maps in N and M and whose initial marking is X U ). Intuitively, the
tensor product corresponds to put the nets N and M side-by-side.

The sequential composition Ny;My : m — n of Ny : m — k and
My : k — n is slightly more involved. Intuitively, transitions attached to the
left or right boundaries can be seen as transition fragments, that can be com-
pleted by attaching other complementary fragments to that boundary. When two
transition fragments in N share a boundary node, then they are two mutually
exclusive options for completing a fragment of M attached to the same boundary
node. Thus, the idea is to combine the transitions of N with those of M when
they share a common boundary, as if their firings were synchronised. As in gen-
eral (infinitely) many combinations are possible, the composed nets is defined
by selecting a minimal (multi-)set of synchronisations that suffices to represent
any other possible synchronisation as a linear combinations of the chosen ones
(i-e., as the concurrent firing of several transitions). The initial marking is X UY
(formal definition can be found at [12]). As an example, Fig.7(b) shows the
sequential composition of the nets M : 0 — 2 and N : 2 — 0 from Fig. 7(a).
A firing of « produces two tokens on the port to which « is also attached, while
a firing of v requires three tokens from the same port and one from the other
port, to which 3 is attached to. Therefore the minimal multi-set of transitions
that allows the synchronization between «, 8 and - contains three instances of
« and two instances of 8 and .

3.2 From P/T Nets with Boundaries to P/T Calculus and Back

The contribution in [12] enlightens a tight semantics correspondence between
P/T calculus and P/T nets with boundaries. Concretely, two translations are
defined. The first encoding T'_ shows that each net Ny can be mapped into a P/T
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calculus process T'y, that preserves and reflects operational semantics (and thus
also bisimilarity). The second encoding {{—]} provides the converse translation,
from a P/T Petri calculus process P to a P/T net with boundaries {{P]}, defined
by structural induction. We recall here the two main correspondence results and
omit the details due to space constraints.

Theorem 1. Let P be a term of P/T calculus.

(i) if P P then (P} 5 (P
(i) if {{P]} —— Nx then 3P’ such that P -~ P’ and {{P']} = Nxy.

Theorem 2. Let N be a finite P/T net with boundaries, then
(i) if Nx % Ny then T, % Ty,
(ii) if Tn, % Q then 3Y such that Ny % Ny and Q = Tyy,.

3.3 C/E Nets with Boundaries

A well-known subclass of bounded P/T nets are C/E nets. In C/E nets, places
have maximum capacity 1 and pre- and post-set of transitions are restricted to
sets (instead of multisets). Formally,

Definition 5 (C/E net). A C/Enet is a P/T net N = (P, T, °—, —°) where:
P is a set of places; T is a set of transitions; and °—, —°: T — 2 are functions.

In addition, a C/E marking is just a subset of places X C P (not a multiset).
We let Nx denote the net N with marking X.

Definition 6 (C/E step semantics). Let N = (P, T, °—, —°) be a C/E net,
X, Y C P andU C My a multiset of transitions s.t. °U and U° are sets, write:

Nx =y Ny ¥ cUcx unXx=o&Y =(X\"U)ulU.

We remark that the constraint on °Y and U° to be sets ensures that every
pair of transitions in I/ has disjoint pre- and post-sets. This definition allows the
concurrent firing of several instances of the same transition when its pre- and
post-sets are both empty: As explained before, even if places are bounded this
will allow for ports of unbounded capacity (w.r.t. the number of actions that can
take place concurrently) in C/E nets with boundaries.

Definition 7 (C/E nets with boundaries). A P/T net with boundaries
N = (P, T,°—, =°,*—, =*) is a C/E net with boundaries if (P, T, °—, —=°)
is a C/E net.

A marking of a C/E net with boundaries is just a set of places of the net,
i.e., X C P. Note that while pre- and post-set of transitions are sets and not
multisets, multiplicity are maintained by ®*— and —*® w.r.t. left and right ports:
many tokens can be exchanged concurrently over a single port in one step.

3 In the context of C/E nets some authors call places conditions and transitions events.
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Definition 8 (C/E Labelled Semantics). Let N = (P, T, °—, =°, *—, —*)
be a C/E net with boundaries and X,Y C P. Write:

Nx =Ny % 3 C Mg st. Ny >y Ny, a=""UT&b="U"  (2)
Remark 2. Following the presentation of the C/E Petri Calculus in Sect. 2.2 (see
Remark 1), we have presented here a slightly different definition for C/E Petri

nets with boundaries w.r.t. [12] by allowing richer observations over interfaces
(strings of natural numbers instead of just 0/1).

Ezample 4. All nets in Fig. 6 except from Q2,4 (Fig. 6(b)) can be interpreted as
C/E nets with boundaries. We remark that P, has the same behaviour when
considering both the P/T net and the C/E labelled semantics (because P, is a
1-bounded P/T net). Similarly, the semantics of I is also invariant under both
views. Differently, the behaviour of R, and Sz changes when considering the
C/E semantics. The former is deadlocked, because of the self-looping transitions,
while the latter models a buffers of capacity one that alternates the production
and consumption of tokens.

The correspondence results in Sect. 3.2 can be restated also for the case of
the Petri Calculus and C/E nets with boundaries along the lines shown in [12].

4 Normal Forms for Finite State P/T terms

This section shows how to obtain normal forms for finite state connectors. We will
take advantage of the mutual encodings between P/T calculus terms and P/T
nets with boundaries summarised in Sect. 3.2. In order to obtain the normal for a
connector, we will proceed as follows: (i) we translate a P/T calculus term into an
equivalent P/T net with boundaries by using the encoding {[_]}, (ii) we compute
a canonical representation (up to isomorphism) for the corresponding net with
boundaries, (iii) we map back the canonical representation of the net into a term
of the P/T calculus by using the encoding T _. The canonical representation of
the net is obtained by analysing its associated marking graph.

Definition 9 (Reachable marking). Let Ny : n — m be a P/T net with
boundaries. Then, Y is a reachable marking of Nx if there exists a (possibly
empty) finite sequence of transitions Nx Z—i* Ny, :—j> e Z—i> Ny with a; € N"
and b; € N™. We write RM(Nx) for the set of all reachable markings of Nx.

Definition 10 (Marking graph of a net with boundaries). Let N : n — m
be a P/T net with boundaries with initial marking X. The marking graph of Ny
is the state transition graph MG(Ny) = (RM(Nx),T) where T C Mp x N x
N x Mp is as follows: T = {(¥,a,b, Z) | V,Z € RM(Nx) A Ny > Nz}.

We say MG(Nyx) is (in)finite state when RM(Ny) is (in)finite. We say
MG(Ny) is finite when it is finite state and T is also finite, we say it is infinite
otherwise.
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@ 0,0 0,0
1,0 0,1 1,0 0,1
@ 0,0 .’

(b) MG(Qzpa). O
() MG(R,)
(¢) MG (1)

2,0

(d) MG(S).

Fig. 8. Marking graphs

MG(Ny) is finitely branching if for any Y € RM(Ny) it holds that Ty =
{V,a,b,2) | (V,a,b,Z) € TAV = Y} is finite.

Note that for any Ny : n — m, it holds that Ny T?;,ﬁ Ny. Therefore, every
node in a marking graph of the net has a self-loop with label (0™, 0™).

Ezample 5. Figure 8 shows the marking graphs for the nets in Fig. 6. We remark
that the marking graphs for P, and @2y, are finite and isomorphic. On the
contrary, the remaining three are infinite. The marking graph for R, and Sz
are infinite state (because the corresponding nets are unbounded). Nevertheless,
while MG(R,) is finitely branching, MG (Sy) is not (e.g., any state in MG(Sy)
has a transition labelled (k,0) for any & € N). Although MG(I) is finite state,
it is infinitely branching.

Remark 3. The marking graph of a net with boundaries is finite state only if the
underlying net is bounded. Note that the marking graph of a net containing a
transition with empty pre-set and non-empty post-set is unbounded (for instance,
the net Sy in Fig. 8(d)).

Remark 4. The marking graph of a P/T net with boundaries containing a tran-
sition with an empty preset is infinitely branching (e.g., the nets Iy in Fig. 6(e)
and Sy in Fig.8(d)). On the contrary, when every transitions in the net has a
non-empty preset, the marking graph is finitely branching because each marking
constraints the number of concurrently fireable instances of each transition.
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The remaining of the section is devoted to the definition of the normal form
of (finite state) connectors. We deal with the general case by using a divide et
impera approach. We solve two sub-problems first: (i) the encoding of nets with
finite marking graphs (Sect.4.1) and (ii) the encoding of infinitely branching
stateless nets (Sect. 4.2).

4.1 Finite (State and Transition) Marking Graphs

In this section we show how to obtain the normal form for P/T nets with bound-
aries whose marking graph is finite, i.e., when it is bounded and every transition
has a non-empty preset. We leave this as an implicit assumption for all the nets
considered in this section.

We first note that for a finite graph we can apply, e.g., a partition refine-
ment algorithm [18,24] to obtain the smallest (up-to iso) (in terms of states and
transitions) automaton amongst all those bisimilar to the given graph. We write
min(MG@G) for the minimal graph in the equivalence class of MG.

We note that any finite marking graph can be represented by a P/T net with
boundaries as follows:

Definition 11 (Marking graph as a net with boundaries). Let MG =
(S,T) with T € S x N® x N™ x S be a marking graph. The corresponding P/T
net with boundaries is NB(MG) = (S,T",°—,—°,*—,—*) :n — m s.t.

- T =T\ A{(s,0",0™,5) | s € S} (we can safely omit self-looping transitions
that are not attached to ports);

- °(s,a,b,t) = s and (s,a,b,t)° = ¢t;

- *(s,a,b,t) =U whered € M,, and "U" = a;

- (s,a,b,t)* =V where V € M,,, and "V =1D.

We let can(Ny) def NB(min(MG(Nx)))x}-

Lemma 1 (Minimal net with boundaries). Let N : n — m be a net with
boundaries, then we have that Nx and can(Ny) are bisimilar.

Proof. Tt follows by noting that Ny and MG(Nx) are bisimilar by construction;
MG(Ny) and min(MG(Ny)) are bisimilar by definition; and min(MG(Ny))
and N B(min(MG(Nx)))¢xy are bisimilar by construction.

Corollary 1. can(N) is unique (up-to iso) because NB(—) and MG(—) are
functions and the minimal automaton is also unique (up-to iso).

Corollary 2. Given two bisimilar nets with boundaries Ny and My, the nets
can(Ny) and can(Myx) are isomorphic.

Ezample 6. Consider the P/T term Q = (V®(T; V)); (I8T®I); ((A; L)®A) with
T =X;(VaV); ((2)@(V; (1); A)®(0]); (A®A) depicted in Fig. 9(a). The equiv-
alent P/T net with boundaries {[Q]} is the net Q2,4 shown in Fig. 6(b). The cor-
responding marking graphs is in Fig. 8(b). This graph is minimal, i.e., there does
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not exist a bisimilar graph with a smaller number of states and/or transitions.
Therefore, min(MG(Q2pq)) = MG(Q2pq) and can(Qzpr) = NB(MG(Q2pr))2pr
which is shown in Fig. 9(b). Then, the normal form nf(Q) is obtained by encod-
ing back can(Qapr) as a P/T term (shown in Fig.9(c)).

(b) can

—~

Q2pq)

(c) nf(Q)

Fig. 9. Normal form of a term with finite marking graph

We remark that the marking graph MG(P,)) (Fig.8(a)), corresponding to
P, in Fig.6(a), is isomorphic to the marking graph of Qa,,. This implies that
both P, and Q2 have the same normal form.
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4.2 Stateless, Infinitely Branching Marking Graphs

The simplest case of finite state, but infinite branching marking graph, is a net
without places, like the net I in Fig.6(e), whose marking graph is (partially)
depicted in Fig. 8(e).

We introduce a minimization procedure for stateless nets that removes redun-
dant transitions, i.e., transitions that can be mimicked by a combination of other
transitions in the net.

Definition 12 (Redundant transition and minimal net). Let N : m — n
be the stateless P/T net with boundaries N = (&, T,°—, —°,*—, —*). A transition

t € T is redundant if there exists U € Mrp_yy s.t. *t = U and t* =U®. We say
that a stateless net is minimal if every transition is not redundant.

Lemma 2. Let N : m — n be the stateless P/T net with boundaries N =
(9,T,°—,—°,*—,—*) with t € T redundant. Define T' =T — {t} and

N'= (gaT/307‘T'770|T/7. - |T/77.|T/)'
Then, Ny and N[ are bisimilar.

The above result provides a minimization procedure by iteratively removing
redundant transitions. The procedure is effective: it takes each transition t € T
and compares pre- and post-sets with each possible multisets & of T'. Since °*t
and t* are finite, there is just a finite number of multisets U of T to consider.
We note N the result of the minimization algorithm over N.

The above procedure converges in a finite number of steps, because T is finite.
The procedure is non-deterministic (w.r.t. the choice of the redundant transition
t to eliminate) but it always converges to the same result.

Lemma 3. Let N be a stateless net with boundaries, then N is uniquely defined
(up-to iso).

Proof. We proceed by contradiction. Suppose that different orders in which
redundant transitions are eliminated can lead to two different outcomes

N' = (Q,T/,O—, _070_7_0) and N = (@,T”,o—, _07._’ _.).

Clearly it cannot be the case that 7/ C 7" or T C T" (otherwise 7" or T"”
would contain redundant transitions). Hence T\ T' # @ and T \ T" # .

Let ¢/ € T'"\T". Since t' € T' C T, it must be redundant w.r.t. the transitions
in T”, i.e., there must exist U’ € My s.t. *t' = *U’ and t'* = U'®. Following
a similar reasoning, any transition ¢” in 7" \ 7" must be redundant w.r.t. the
transitions in 7" and expressible as a suitable " € M.

Moreover, there must be at least one transition ¢’/ € U’, non isomorphic to
', such that ¢/ € T \ T' (otherwise ¢’ would be redundant w.r.t. transitions in
T"). Then, since any such t” can be expressed in terms of U"” € My, it follows
that ¢’ can be expressed as a multiset & € M7,. Now there are two cases:
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— t' € U, but this is absurd, because ¢’ would be redundant;
— t/ € U, but this is absurd, because we would have i/ =t/ isomorphic to t”.

Lemma 4. Let N be a stateless net, then Ng and Ng are bisimilar.

Lemma 5. Let N and M be two stateless bisimilar nets, then Ng = Mg (up-to
is0).

Proof. The proof follows by contradiction. Assume that there is a transition ¢ in
N that is not matched by a transition in M. Let Ng — Ng Then, Ny —; Ng.
Since Ny and Mg are bisimilar, My —y Mg with *t = *U and t* = U°.
Consequently, Mg —y Mg. If |L{| = 1, we are done. Otherwise, U = ky - t; U

..Uk, -t, with n > 1. Then, for any transition ¢; we conclude that Ng —, Ng.
Hence t is redundant in N, which contradicts the assumption that N is minimal.

Ezample 7. Consider the stateless term Sl = (A@ A); (1 ® (A; V) @ 1); (V@ V)
depicted in Fig. 10(a). The corresponding net with boundaries {[S!]} is shown in
Fig. 10(b). Note that the transition [ is redundant because it can be expressed as
the concurrent firing of o and (3; consequently, it is removed by the minimization
algorithm, which produces the minimal net {[Sl]} shown in Fig. 10( ). Finally,
the normal form nf (S7) for the net S is obtained by encoding back {[Sl}} as the
Petri calculus term shown in Fig. 10(d).

’ (a) Si ’ (b) S} {isuy
(d) nf(S)

Fig. 10. A stateless term of the P/T calculus Si

4.3 Finite State and Infinitely Branching Marking Graph

When the marking graph is finite state but infinitely branching, the associated
net has both transitions with empty pre- and post-set and transitions with non-
empty post-set (by Remark 3, the net cannot contain transitions with empty
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pre-set and non-empty post-set). We show first that the behaviour of a net can
be described by combining the behaviour of two subnets containing respectively
the stateless and stateful behaviours.

Definition 13 (Stateless and Stateful subnets). Let N : m — n be the P/T
net with boundaries N = (P,T,°—,—°,*— —*). A transition t € T is stateless if
°t =t° = @. We write T for the set of all stateless transitions and T = T\T*
denote the set of stateful transitions. The stateless subnet of N is

NSI = (QaTS|7 ¢ - |T5'a _O|T5'a ‘- |T5'a _.|T5')
Similarly, the stateful subnet is

st — (P, TSf’O _

o () ()
Tsfy — |Tsfy — |Tsf, — Tsf)

We can now tightly relate the behaviour of N with those of N* and N*.
Lemma 6. Let Ny be a marked P/T net with boundaries. Then,
- If Ny % Ny, then there exist a1, a2, by and by such that a = a; + ag,
b= by +by, Ny 5= Ny and N9y - Ny
~ If N 55 Ny and N9y 2> N9, then Nx —m Ny.

Proof. The proof follows by definition of the subnets and the operational seman-
tics of P/T nets, as transitions of N are just partitioned into N and N*f.

In the following we let I, e ®,, ! : (n,n) and define the following terms of
the P/T calculus, ¥n € N:

Xo €10 (1,1) Ao =Vo ¥ 1:1:(0,0)

X; %X : (2,2) X1 & (Xo @15 (I, ®X) : (n+2,n+2)

M AL (1,2) Ami1 L A@A) 19X, ®@1,) : (n+ 1,20+ 2)
Vi ©vi2,1) Vot (Ve VL) (18X, @1,): (2n+2,n+1)

It can be proved by induction that the only transitions for A,, and V,, are
A, % A, and V,, o, V,, with |a| = n, |b| = 2n, and a; = b; + b,; for all i < n.
a

Definition 14. Let P be a P/T calculus term s.t. {{P]} : m — n and MG({{P]})
is finite state. The normal form of P, written nf(P), is as follows

nf (P) = A (Tean(pp) @ {[P]}S')

Lemma 7. Let P be a P/T calculus term s.t. MG({[P]}) is finite state. Then,
P and nf (P) are bisimilar.

Proof. Tt follows from the behaviour of A,, and V,,, Lemmata 1, 4 and 6 and the
correspondence Theorems 1 and 2.
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Lemma 8. Let P and Q be two bisimilar P/T calculus terms s.t. MG({{P]})
and MG{{Q}) are finite state. Then, nf(P) = nf(Q) (up-to iso).

Proof. Tt follows by contradiction. Assume that min({P}*) = min({{Q[}*) and

—_~—

{P}* = {QJ}*" does not hold. Therefore, it should be the case that either 7)

—_—~

min({P}*) and min({Q}*") are not bisimilar; or i) {P}s = {{QJ}* are not
bisimilar. In both cases we conclude that min({{P]}) and min({{Q]}) (and there-
fore P and Q) are not bisimilar. For (i), we note that the marking graphs differ
in a transition connecting two different states (and this cannot be mimicked by
stateless transitions); for (i7) every state will miss at least a self-loop transition
(since MG({P]}) and MG({|Q]}) are finite state, all infinite self-loops in the
marking graphs are originated by stateless transitions).

Corollary 3 (Idempotency). nf(P) = nf(nf(P)) (up-to iso).

5 Normal Forms for the C/E Petri Calculus

The case of C/E Petri calculus is quite interesting, because now any term P
models a finite state connector, so that we can reduce to normal form any term.

Lemma 9. Let P be a Petri calculus term. Then MG({[P]}) is finite state.

Proof. The C/E net with boundaries MG(P) has as many places as the number
of subterms (O and () in P and the reachable states of MG(P) are just subsets
of the places in MG(P), thus they are finitely many.

Now by using the approach for P/T nets we can obtain the normal form for
every Petri calculus term. The only subtlety to deal with is when mapping a
marking graph into a C/E net, because marking graphs can contain self-loops,
as illustrated by the following example.

Ezample 8. Consider the C/E net C), in Fig.11(a). The corresponding marking
graph is in Fig. 11(b) and the corresponding minimal automaton is in Fig. 11(c).
If we apply N'B we obtain the net in Fig. 11(d). Note that transition « cannot be
fired under the C/E semantics because it inhibits consume/produce loops. Hence,
the obtained net is not bisimilar to C,,. In order to translate back the minimal
marking graph to a C/E net, we need to handle self-loops differently. While
NB already removes any trivial self-loop (i.e., with empty observation) from the
minimal marking graph, non-trivial self-loops are handled by duplicating states,
as illustrated in Fig. 11(e). Then, the normal form is obtained by using the C/E
corresponding to the minimal marking graph without non-trivial self-loops.
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(c) min(MG(Cy)). ()
(d) NB(min(MG(Cp))). () min(MG(Cp)).

, . @D 0.0
1,1 ,)1 1
1,1 p '

Fig. 11. Minimisation of C/E nets

6 Concluding Remarks

In this paper we have considered a calculus of connectors that allows for the
most general combination of synchronisation, non-determinism and buffering.
The touchstone of its generality is its ability of modeling a variety of Petri nets
compositionally, up to bisimilarity. Often bisimilarity implies the existence of a
minimal representative, but such a construction has not been exhibited yet for
Petri nets, at least directly. Thus in the paper we interpret the case graph of a
net as a transition system labelled with the synchronizations observable on its
boundaries. Then we can minimize such a LTS and reinterpret it univocally as a
net and as a term of the calculus. Thus minimality is restricted to a case graph
(step) semantics, which we might say observes parallelism but not concurrency.

Related Work. An algebra consisting of five kinds of basic stateless connectors
(plus their duals) is presented in [8], together with the operational, observational
and denotational semantics and a complete normal-form axiomatisation. The
behaviour of connectors A and V is slightly different from the one considered here,
because in [8] only one action can take place at the time, e.g., only transitions
A 71(? A and A ;17 A are considered instead of A —— A.

The Tile Model [15] offers a semantic framework for concurrent systems, of
which the algebra of stateless connectors is just a particular instance. Roughly,
the semantics of component-based systems can be expressed via tiles when con-
figurations and observations form two monoidal categories with the same objects.
Tiles define LTSs whose labels are pairs (trigger, effect). In this context, the usual
notion of equivalence is called tile bisimilarity, which is a congruence (w.r.t.
sequential and parallel composition) when a suitable rule format is met [15].

Reo [1] is an exogenous coordination model based on channel-like connectors
that mediate the flow of data among components. Notably, a small set of point-
to-point primitive connectors is sufficient to express a large variety of interesting

n+m
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interaction patterns, including several forms of mutual exclusion, synchronisa-
tion, alternation, and context-dependency. Components and primitive connec-
tors can be composed into larger Reo circuits by disjoint union up-to the merging
of shared nodes. The semantics of Reo has been formalised in many ways, tile
model included [2]. See [17] for a recent survey.

BIP [4] is a component framework for constructing systems by superposing
three layers of modelling: (1) Behaviour, representing the sequential computation
of individual components; (2) Interaction, defining the handshaking mechanisms
between these components; and (3) Priority, assigning a partial order of privileges
to interactions. In absence of priorities, the interaction layer admits the algebraic
presentation given in [5] and has been related to connectors in [10].

The wire calculus [27] takes inspiration from [19,20] but shares similarities
with the tile model. It is presented as a process algebra where each process comes
with a sort, written P : (n,m) for a process P with n ports on the left and m
on the right. The usual action prefixes a.P of process algebras are extended by
allowing the simultaneous input of a trigger a and output of an effect b, written
2.P, where a (resp. b) is a string of actions, one for each port of the process.
The Petri calculus [9,28] can be regarded as a dialect of the wire calculus.

Nets with boundaries [28] take inspiration from the open nets of [3], whose
interfaces consist of places instead of ports.

Future Work. Some recent work [6,7] exploits an algebra of connectors similar
to ours to define a relational denotational semantics and a structural operational
semantics for signal flow graphs, a classical structure in control theory and signal
processing. We plan to investigate connections between Petri nets with bound-
aries and signal flow graphs. We might also consider extending the results of
this paper to other more expressive semantics, observing e.g. causality. Another
direction in which our results could be extended is dealing with systems with a
higher degree of dynamism, that adapt their behavior to evolving environments:
e.g., systems whose structure and interaction capabilities can change at runtime.
Some recent progresses in this direction are discussed in [11].

Acknowledgements. We thank the anonymous reviewers for their careful reading
and helpful suggestions for improving the presentation. We would like to express infinite
gratitude to José, for his guidance, support and friendship during our long-standing
collaboration.
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