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Abstract

We present here a static analysis, based on Abstract Interpretation [8], obtained by
defining an abstract version of the causal semantics for the Mate/Bud/Drip (MBD)
version of Brane Calculi [7], proposed by Busi [6]. Our analysis statically approximates
the dynamic behaviour of MBD systems. More precisely, the analysis is able to de-
scribe the essential behaviour of the represented membranes, in terms of their possible
interactions. Furthermore, our analysis is able to statically capture the possible causal
dependencies among interactions, whose determination can be exploited to better under-
stand the modelled biological phenomena. Finally, we apply our analysis to an abstract
specification of the receptor-mediated endocytosis mechanism.

Keywords: Causality, Abstract Interpretation, Brane Calculi

1. Introduction

In Systems Biology, understanding the causal relationships among the actions per-
formed by a system is a relevant issue. Determining which events are necessary for
another event to occur is in general essential in biology, to capture the overall emerging
behaviour of a complex system. Causal information can be exploited in several ways.
For instance, knowing the order of some events may limit the size of the system to be
explored. Only the events that may have an impact on the phenomenon of interest
deserve our attention. Also, in drug research, e.g. determining the chemical species that
are involved in causing a pathological phenomenon, can help in identifying possible drug
targets.

In her seminal work [6], Nadia Busi formally addresses causality in a bio-inspired
process algebraic framework. More precisely, she proposes a causal semantics for the
Mate/Bud/Drip (MBD) fragment of Brane Calculi [7]. Brane calculi [7] have been
introduced to more closely model the behaviour of dynamic and nested membranes. As
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a consequence, these calculi are useful for modelling and reasoning about a large class
of biological systems.

In [6], different kinds of causal dependencies are taken into account, including the
subtle ones, due to the membrane structure and to the specific MBD primitives.

Causality is embedded in the semantics, as follows. Each reduction step is annotated
with a fresh cause name and with a set of causes names that represent the previous reac-
tions on which the current step depends. Extracting causal information from a complex
system is in this way less difficult than in the case of standard semantics. Nevertheless, it
is still not cost-effective, because the causal transition system that describes its dynamic
behaviour is usually quite huge (or even infinite), and computationally demanding to be
investigated. Due to the intrinsic complexity of biological systems, the computational
cost is particularly high.

A typical way to reduce the computational cost of dynamic investigation is resorting
to static analysis techniques. Fostering some ideas presented in [3], we therefore propose
a static analysis for the causal MBD, based on Abstract Interpretation [8] techniques.
The analysis relies on the definition of an abstract version of the causal semantics of [6],
and provides two related results: an abstract state and a causality relation. The abstract
state describes the possible hierarchical structures of membranes, and the processes that
may be associated to each membrane, while the causality relation describes the possible
causal dependencies among reduction steps. Both the abstract state and the causality
relation are statically computed by collecting the information from the abstract causal
semantics of the system that we want to analyse. What we obtain is a safe over-
approximation of the causal behaviour. This means that all the events that the analysis
does not predict will never happen, while all the events that the analysis predicts may
happen, i.e. they are only possible. Therefore, in particular, we can predict that a
particular reduction step does not causally depend on another one. The analysis has
polynomial complexity, thus being quite efficient.

Our static analysis can be seen as a further level of abstraction in modelling a biolog-
ical system, and can be exploited accordingly. It can be used to perform a preliminary
investigation of the systems of interest. The analysis results may contribute to dry lab
activities, by giving some insights on which in silico experiments may be more promising
to be performed.

Related work. Static analysis avoids a full exploration of the potential concrete behaviour
of a system, by keeping the computational costs low, but still offering accurate and
useful information. Many static analysis techniques ([20, 11, 2, 21]) have been applied
to biologically-oriented calculi (see [14] for a nice survey on calculi for biology), to make
predictions about systems. These techniques compute over-approximate information
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on the possible structure of the states that can be reached from the initial one. As a
consequence, this approach guarantees invariant properties, showing that certain events
will not happen in each state of the transition system, but it hardly captures causality
aspects.

The first attempt [22] of statically addressing causality has been made for Bioambi-
ents [26], another compartment-based process calculus. In [22], the authors introduce
a context-dependent Control Flow Analysis (CFA), together with three auxiliary analy-
ses, which are able to increase the precision of the over-approximation, and to capture
causality information for the action capabilities. The contextual CFA introduced in [3]
for Brane calculi exploits some causality information to reduce the degree of approxima-
tion. As a result, the analysis is able to partly reflect the causal dependencies discussed
in [6], giving some causal structure to the usually flat CFA results. Nevertheless, the gain
in precision is paid in computational terms: the presented analysis is rather expensive.

The approaches based on the abstraction of the transition system are able to ad-
dress causality and even more general temporal properties. The flow sensitive pathway
analysis in [23] (for BioAmbients) focusses on the way the configurations are reachable,
by approximating the sequential order of the transitions that lead to a given configu-
ration. The approximation, given in terms of a finite automaton, faithfully embeds the
causal orderings underlying the possible dynamic evolutions of the analysed systems.
The analysis establishes also that a transition step does not causally depend on another
one. The analyses in [12, 13], based on Abstract Interpretation techniques, still applied
to Bioambients, rely instead on the definition of an abstract version of the transition
system. The technique supports the validation of important causality properties such
as the check-point one, showing when an event is necessary for another one to happen.
This approach is more expensive from a computational point of view and costly like the
one in [23].

In all the above mentioned papers, though, abstraction techniques are applied to the
standard interleaving semantics and causality information is extracted only in an indirect
way. Causal dependencies are mainly derived by observing the possible modifications of
the nesting hierarchy, due to interactions, and to the possible sequences of transitions.

The main advantage of the analysis presented here is that causality is embedded in
the concrete semantics, on which the abstraction is built on. As a consequence, besides
the possible hierarchies of membranes, we can directly obtain the possible causal depen-
dencies between interactions, which are an over-approximation of the actual dynamic
ones.

The idea of including causal information inside an interleaving semantics, through
relabelling of transitions, dates back to the late ’80s and ’90s (see [16, 5, 9] to cite only
a few). The interested process calculi were CCS [18] and π-calculus [19]. In [6], this
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approach has been adapted to the MBD fragment of Brane calculi, thus paving the way
for our abstraction. Causality issues have been addressed also in [15], starting from [9],
in the framework of Beta Binders [25], another bio-inspired language, in which processes
are enveloped inside boxes representing the borders of biological entities.

Overview. The rest of the paper is organised as follows. In Section 2, we recall the
standard MBD semantics, in Section 3, we present the causal semantics for MBD, while
in Section 4, we introduce the analysis. In Section 5, our analysis is applied to an abstract
specification of the receptor-mediated endocytosis mechanism. Some concluding remarks
can be found in Section 6. Proofs of theorems and lemmata presented throughout the
paper are collected in Appendix A.

This article is the full and revised version of the extended abstract published in [4].
More precisely, the new contributions of this paper with respect to [4] are:

• the treatment of the full MBD calculus, including the replication construct. The
resulting static analysis is more complex and requires the introduction of a certain
number of new features;

• the introduction of several examples and explanations to better illustrate the causal
semantics and our analysis;

• the presentation of a new example to test our analysis in the biological systems
setting;

• the inclusion of extended definitions, results and proofs.

2. An Overview on the MBD Part of Brane Calculi

Brane Calculi [7] are a family of calculi based on a set of primitives inspired by
biological membrane interactions. The membrane interactions are explicitly described
by means of a set of interaction capabilities. The actions of the MBD fragment are in-
spired by membrane fusion and splitting. Because membrane fission is an uncontrollable
process that can split a membrane at an arbitrary place, it is replaced by two simpler
operations: budding, which is splitting off one internal membrane, and dripping, which
consists in splitting off zero internal membranes. Membrane fusion, or merging, is called
mating.

We introduce the syntax and the interleaving semantics for MBD, considering a
labelled version of the calculus. As usual in static analysis, labels are exploited to support
the abstraction and do not affect the dynamic semantics of the calculus. Specifically,
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P,Q ::= � | P ◦Q | !P | σLP MΓ systems Sys

σ, τ ::= 0 | σ|τ | !σ | aλ.σ membrane processes Proc

a, b ::= maten | maten | budn | budn(σ) | drip(σ) actions Act

Table 1: Syntax of Labelled MBD.

the labels are used in both the definitions of the causal semantics and of the analysis
(presented in Sections 3 and 4, respectively).

A membrane system consists of nested membranes, where each membrane has as-
sociated a membrane process. The syntax of labelled MBD is described in Table 1,
where n is taken from a countable set N of names, and where we write P ∈ Sys for
systems, σ ∈ Proc for membrane processes, and a ∈ Act for actions. Each membrane is
annotated with a membrane label Γ ∈ L̂abM and each action is annotated with a process
label λ ∈ LabP .

We therefore need two distinct sets of labels. We have the set of process labels LabP ,
ranged over by α, β, γ . . ., that is partitioned, i.e. is obtained by the disjoint union of
countable sets LabP i (formally LabP = ]ωi=1LabPi). Moreover, given a countable set of
basic labels LabM, we have the associated set of membrane labels L̂abM, ranged over by
∆,Γ,Ψ . . . , defined as the least set such that: (i) LabM ⊆ L̂abM; and (ii) if Γ,∆ ∈ L̂abM
and λ, µ ∈ LabP , then mate(Γ,∆, λ, µ), bud(Γ,∆, λ, µ), drip(Γ, λ) ∈ L̂abM.

The structure of a system consists of an empty system (denoted by �), the parallel
composition of two systems (denoted by the operator ◦), and the parallel composition of
an unbounded number of systems (denoted by the replication operator !). The system
σLP MΓ describes a membrane, decorated by label Γ1 that contains the system P and that
performs the membrane process σ, describing its interaction capabilities.

The term 0 denotes the empty membrane process, the operator | denotes the parallel
composition of two processes, and the operator ! denotes the replication of a process.
The construct aλ.σ defines a sequential process that executes an action a, decorated by
label λ, and then behaves as the process σ. We adopt standard syntactical abbreviations:
aλ stands for aλ.0, LP MΓ stands for 0LP MΓ, and σLMΓ is a shorthand for σL�MΓ.

As we have already mentioned, the labels will be exploited in our version of the
causal semantics of MBD. More in details, the process labels related to the actions
that interact in a reaction are used to generate the fresh cause name associated to

1For brevity, from now on, we will usually write membrane Γ, instead of membrane labelled by Γ.
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P ◦Q ≡ Q ◦ P σ|τ ≡ τ |σ
P ◦ (Q ◦R) ≡ (P ◦Q) ◦R σ | (τ | ρ) ≡ (σ | τ) | ρ
P ◦ � ≡ P σ|0 ≡ σ
!� ≡ � !0 ≡ 0
!(P ◦Q) ≡!P◦!Q !(σ|τ) ≡!σ|!τ
!!P ≡!P !!σ ≡!σ
!P ≡ relab(P ) ◦!P !σ ≡ relab(σ)|!σ
P ≡ Q⇒ P ◦R ≡ Q ◦R σ ≡ τ ⇒ σ|ρ ≡ τ |ρ
P ≡ Q⇒!P ≡!Q σ ≡ τ ⇒!σ ≡!τ
P ≡ Q ∧ σ ≡ τ ⇒ σLP MΓ ≡ τLQMΓ σ ≡ τ ⇒ aλ.σ ≡ aλ.τ
0LMΓ ≡ �

Table 2: Structural Congruence for (Well Labelled) MBD.

the corresponding reduction step. To this aim, we require that systems are well labelled,
i.e. that all process labels λ ∈ LabP occurring in the system are distinct. In the following,
we therefore consider only well labelled systems and membrane processes.

The semantics of the calculus is given in terms of a transition system on well la-
belled systems, defined up to structural congruence and reduction rules. The structural
congruence on systems and membrane processes is the least congruence satisfying the
clauses in Table 2. The definition is standard except for the rules that model the un-
folding of replication (both for systems and membrane processes) that are adapted in
order to preserve well labelling. The new system (process, respectively) introduced by
replication is suitably relabelled, using fresh process labels. Formally, given a system
P , relab(P ) denotes a relabelled version of P , where each process label λ ∈ LabP i is
replaced by a label µ such that µ ∈ LabP i (i.e. λ and µ belong to the same partition of
LabP). Similarly, we define relab(σ) for a process σ.

The reduction rules given in Table 3 complete the definition of the semantics. Besides
the standard reduction rule for congruence (Struct), and the contextual rules to prop-
agate reductions across parallel composition (Par) and membrane nesting (Brane),
there are the axioms specific of the MBD fragment.

Rule (Mate) models the fusion of two parallel membranes, labelled by ∆ and Γ,
which exercise the actions mateλn and mate

µ
n, respectively. The membrane introduced by

the fusion takes the label mate(∆,Γ, λ, µ) and has associated the parallel composition of
the residual processes of the two membranes. In the rule (Bud), a membrane labelled
by Γ expels a child membrane labelled by ∆, by performing the actions bud

µ
n(ρ) and

budλn, respectively. The membrane ∆ is wrapped inside a new membrane with label
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(Par)
P → Q

P ◦R→ Q ◦R
(Brane)

P → Q

σLP MΓ → σLQMΓ

(Struct)
P ≡ P ′ ∧ P ′ → Q′ ∧ Q′ ≡ Q

P → Q

(Mate) mateλn.σ|σ0LP M∆ ◦ mate
µ
n.τ |τ0LQMΓ→σ|σ0|τ |τ0LP ◦QMmate(∆,Γ,λ,µ)

(Bud) bud
µ
n(ρ).τ |τ0Lbudλn.σ|σ0LP M∆ ◦ QMΓ→ρLσ|σ0LP M∆Mbud(∆,Γ,λ,µ) ◦ τ |τ0LQMΓ

(Drip) dripλ(ρ).σ|τLP M∆→ρLMdrip(∆,λ) ◦ σ|τLP M∆

Table 3: Reduction Semantics for (Well Labelled) MBD.

bud(∆,Γ, λ, µ) and has associated the membrane process ρ. Finally, in the rule (Drip),
a membrane labelled by ∆, by performing the action dripλ(ρ), creates a new empty
membrane, labelled by drip(∆, λ), which has associated the membrane process ρ.

3. Causal Semantics for MBD

In this section, we introduce a simplified version of the causal semantics of [6],
adapted for dealing with well labelled systems and for simplifying the abstract version of
the semantics. Before introducing the causal semantics, we briefly recall the discussion,
presented in [6], on the causal dependencies arising in MBD, and on the way these
dependencies can be expressed by the causal semantics of the calculus.

3.1. Causality in MBD

In [6], Busi describes and classifies different kinds of causal dependencies arising in
MBD. As in all process algebras, we can find the standard structural causality, due to the
prefix structure of terms and the synchronisation causality, due to the synchronisation
of complementary actions.

Furthermore, there are the causal dependencies coming from the membrane structure
and due to the MBD primitives. In particular, the mate reaction introduces a quite sub-
tle kind of causality, called environment causality. The fusion of two membranes modifies
indeed the environment, so that the interaction possibilities of their child membranes
may result increased. More in details, after the fusion of two membranes it is possible
that: (i) two child membranes become siblings and, therefore, can perform a mate re-
action that was not possible before; and (ii) a child membrane can move out from the
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parent membrane, by performing a bud reaction that was not possible before. Hence,
such interactions of the child membranes causally depend on the mate realised by the
parent membranes. On the contrary, a drip reaction realised by a child membrane can
be considered causally independent from the mate operation, because it can be executed
regardless of the fact that the fusion of the parent membranes has been performed.

We present some illustrative examples, taken from [6], of these kinds of causality.
The first example illustrates both structural and synchronisation causality.

In all the examples, to obtain a more precise approximation, we assume a particular
labelling for the initial (well labelled) systems2. In particular, we assume that all the
process labels belong to different subsets of LabP , and that all the membrane labels
belong to the set of basic membrane labels LabM.

Example 1 (Structural and Synchronisation Causality). The following system illus-
trates both forms of causality,

P1 = dripλ(σ1).mateνn.drip
µ(τ1)LM∆ ◦ dripβ(σ2).mateδn.drip

κ(τ2)LMΓ.

The system is given by the parallel composition of two membranes ∆ and Γ. The first
one has associated the process dripλ(σ1).mateνn.drip

µ(τ1), while the second one the pro-
cess dripβ(σ2).mateδn.drip

κ(τ2). Initially, both membranes can perform a drip reaction.
Membrane ∆ may fire the action dripλ(σ1), thus leading to the creation of a new mem-
brane, which has associated the process σ1. Similarly, membrane Γ may fire the action
dripβ(σ2), thus leading to the creation of a new membrane, which has associated the
process σ2. The two drip reactions can be exercised in any order, and therefore, they are
causally independent.

P1
drip−→ drip−→ P ′1 = σ1LMΦ1 ◦ σ2LMΦ2 ◦ mateνn.dripµ(τ1)LM∆ ◦ mateδn.dripκ(τ2)LMΓ.

After the execution of the two drip reactions (for readability, we annotate the tran-
sitions with the kind of the corresponding interaction), the two new created membranes
are labelled by Φ1 = drip(∆, λ) and Φ2 = drip(Γ, β), respectively. Furthermore, the
membrane ∆ has associated the process mateνn.drip

µ(τ1), while the membrane Γ to the
process mate

δ
n.drip

κ(τ2). The two membranes ∆ and Γ are now ready to realise a mate
reaction on n, by firing the actions mateνn and mate

δ
n, respectively. Due to the prefix

structure of membrane processes, the two co-actions causally depend on the previously
occurred drip reactions. As a consequence, the mate reaction on n causally depends on

2We refer the reader to the analysis of the systems presented in the Examples 8, 9 and 10.
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both the previous drip reactions.

P ′1
maten−→ P ′′2 = σ1LMΦ1 ◦ σ2LMΦ2 ◦ (dripµ(τ1)|dripκ(τ2))LMΠ.

Finally, the membrane Π = mate(∆,Γ, ν, δ), resulting from the fusion, has associated
the process dripµ(τ1)|dripκ(τ2). As before, the two drip reactions can be exercised in
any order, and thus they are causally independent. However, they both causally depend
on the previous mate reaction on n and, in turn, also on the drip reactions that caused
the mate. In particular, the more recent reaction (the mate on n) represents what we
will call their immediate cause.

In the next examples, we focus on environment causality, by discussing the effect of
a mate reaction on the future interactions (mate and bud) of the child membranes.

Example 2 (Environment Causality 1). The following system illustrates the dependence
of a mate reaction between two membranes from a previous mate reaction, which leads
the two merging membranes to be siblings,

P2 = mateνnLmateµm|mateζoLMΘ ◦ mateβo LMΦM∆ ◦ mateδnLmate
λ
mLMΨMΓ.

The system is composed by the two parallel membranes ∆ and Γ, the first one has
associated the process mateνn, and the other one mate

δ
n. The membrane ∆ contains two

child membranes Θ and Φ, while the membrane Γ only contains the child membrane Ψ.
Initially, the two top level membranes can realise a mate reaction on n (by firing the
corresponding actions mateνn and mate

δ
n). At the same time, also the two membranes Θ

and Φ can realise a mate reaction on o (by firing the corresponding actions mateζo and
mate

β
o ). Therefore, the mate reactions on n and on o are causally independent. Actually,

the membranes ∆ and Γ are initially siblings at top level, as well as the membranes Θ
and Φ are initially siblings, inside the membrane ∆.

On the contrary, the membranes Θ and Ψ are willing to realise a mate reaction on
m, by performing the actions mateµm and mate

λ
m, respectively, but they cannot interact,

because, initially, they are not siblings. Since the membranes Θ and Ψ become siblings
only after the fusion of the parent membranes ∆ and Γ, we can conclude that the mate
reaction on m causally depends on the mate reaction on n,

As an example, we present the computation in which the first mate interaction is
that on n, the second one is on m, and the third one is on o.

P2
maten−−−→ P ′2 = L(mateµm|mateζo)LMΘ ◦ mateβo LMΦ ◦ mateλmLMΨMΠ.
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The membrane resulting from the mate reaction on n is labelled by Π = mate(∆,Γ, ν, δ).
After the fusion of the parent membranes, the mate reaction on m becomes possible,

P ′2
matem−−−−→ P ′′2 = L(mateζoLMΠ1 ◦ mateβo LMΦMΠ.

The membrane resulting from the mate reaction on m is labelled by Π1 = mate(Θ,Ψ, µ, λ).
The last reaction is the mate on o,

P ′′2
mateo−−−→ P ′′′2 = LLMΠ2MΠ

where the new resulting membrane is labelled by Π2 = mate(Π1,Φ, ζ, β). It should be
clear that the mate reaction on o could have been performed before, because it does not
depend on any other reaction.

Example 3 (Environment Causality 2). The following system illustrates the depen-
dence of a bud reaction from a previous mate reaction, which made parent-child the two
interacting membranes.

P3 = mateνn|bud
λ
m(ρ1)LbudµmLMΘ ◦ budζoLMΦM∆ ◦ mateδn|bud

β
o (ρ2)LMΓ.

As in Example 2, the system is composed by two parallel membranes ∆ and Γ that are
ready to interact, performing a mate reaction on n. Here, the membrane ∆ contains two
child membranes Θ and Φ that are both willing to realise a bud reaction.

The child membrane Θ can perform an action budµm, to which the parent membrane

∆ can immediately offer the corresponding action bud
λ
m(ρ1). Therefore, the bud reaction

on m can be performed independently from the mate reaction on n.
On the contrary, the child membrane Φ offers an action budζo, but it cannot interact

with its parent membrane ∆ that does not offer the corresponding co-action. After the
fusion of the parent membranes ∆ and Γ, the bud reaction on o becomes possible, because
the newly created membrane inherits the action bud

β
o (ρ2) from membrane Γ. Therefore,

we can conclude that the bud reaction on o causally depends on the mate reaction on n.
As an example, we present the computation in which the first reaction is the mate

reaction on n, the second one is the bud reaction on o and the third one is the bud
reaction on m.

P3
maten−−−→ P ′3 = (bud

λ
m(ρ1)|budβ0 (ρ2))LbudµmLMΘ ◦ budζoLMΦMΠ.

The membrane resulting from the mate on n reaction is labelled by Π = mate(∆,Γ, ν, δ).
Due to the previous mate reaction on n, the bud reaction on o becomes possible,
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P ′3
budo−−→ P ′′3 = ρ2LLMΦMΨ1 ◦ budλm(ρ1)LbudµmLMΘMΠ.

The new membrane created by the bud reaction is labelled by Ψ1 = bud(Φ,Π, ζ, β). The
last reaction is the bud reaction on m,

P ′′3
budm−−−→ P ′′′3 = ρ2LLMΦMΨ1 ◦ ρ1LLMΘMΨ2 ◦ LMΠ,

where the new resulting membrane is labelled by Ψ2 = bud(Θ,Π, µ, λ). It should be clear
the bud on m could have been performed before, because it does not depend on any other
reaction.

The causal semantics for MBD in [6] is based on the idea of annotating each reduction
step with the following causal information:

• a fresh name k in a set of causes K that represents the name associated to the
reaction;

• a set of causes H ⊆ K that includes the names associated to the already occurred
reactions, which represent the immediate causes of the current reaction.

Note that the set of all the causes of a reduction step can be obtained by transitive
closure of the immediate causal relation. Moreover, the syntax of the calculus is enriched
with causal information, to propagate the cause name associated to each reduction
step to the next interactions that may causally depend on it. Finally, further causes,
called internal and external causes, respectively, are introduced to handle environment
causality dependencies, as the ones illustrated in the Examples 2 and 3.

3.2. The Causal Semantics Revised

We simplify and adapt the causal semantics in [6], to make the definition of its
abstract version easier. The main difference consists in the construction of the fresh
cause names associated to each reduction step. In our semantics, the cause name k,
associated to a given reaction step, is obtained by using the process labels related to the
involved actions: the labels of the two co-actions for the mate and bud interactions, and
a single label for the drip interaction. The well labelling condition of systems guarantees
that k is fresh.

In [6], decorated cause are specifically introduced to capture the environment causal-
ity, due the fusion of two membranes, in a way that will be made clear in the following.
We just adapt the original definition of decorated causes, by deriving it from our defi-
nition of cause names.
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P̃ , Q̃ ::= � | P̃ ◦ Q̃ | !P̃ | σ̃LP̃ MΓ systems with causes S̃ys

σ̃, τ̃ ::= 0 | σ̃|τ̃ | !σ̃ | (K, I,E) :: aλ.σ membrane processes with causes P̃roc

Table 4: Syntax of MBD with Causes, where a ∈ Act is defined as in Table 1.

Definition 1. Let K be the set of cause names defined as follows,

K = LabP ∪ (LabP × LabP)3.

The derived set of decorated causes is defined as follows,

K± = {kx | k ∈ K, x ∈ {+,−}}.

For simplicity, when a set of causes (or, similarly, a set of decorated causes) is a
singleton, we omit the surrounding parentheses.

The causal information that we will use to annotate membrane processes is subdi-
vided into three parts: the set of immediate cause names, followed by the set of internal
decorated causes, and by the set of external decorated causes.

Definition 2. We define K̂, ranged over by triples like (K, I,E), as follows

K̂ = ℘(K)× ℘(K±)× ℘(K±)4.

In [6], internal and external causes come with different subscripts, and can therefore
be merged in one single set, together with immediate causes. For the sake of clarity, we
prefer instead to distinguish them in simple, internal and external causes, respectively.

We now define the MBD calculus with causes by introducing the causal information
in well labelled systems and membrane processes. The syntax of systems with causes
S̃ys and of membrane processes with causes P̃roc is defined in Table 4, where (K, I,E) ∈
K̂. The causal information (K, I,E) is recorded in front of each sequential processes,
associated to a membrane.

In a sequential process with causes (K, I,E) :: aλ.σ, the component K represents
the set of immediate causes of the process, while the components I and E report sets of
decorated causes representing its internal and external causes, respectively. Decorated
causes are specifically introduced to handle environment causality and, therefore, to treat

3We assume the set K disjoint from the name set N .
4Here and afterwards, ℘(S) denotes the power set of the set S.
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the causal dependencies originated by the fusion of two membranes. More in details,
they are used to assign the cause associated to the mate of two membranes to the future
mate and bud interactions of the child membranes, provided that such interactions have
become possible as a consequence of the fusion of the parent membranes. Intuitively, in
a decorated cause hx the cause name h refers to a previously occurred mate reaction,
while the sign x ∈ {−,+} is used to distinguish one membrane that has merged from
the other one. More precisely, an internal cause hx ∈ I says that the membrane, which
has associated the process aλ.σ, was a child membrane of one of the two membranes
that realised the mate associated to h, and, in particular, the one associated to the sign
x. Similarly, an external cause hx ∈ E says that the process aλ.σ derives from one of
the two membranes that realised the mate associated to h, and, in particular, the one
associated to the sign x.

By suitably combining the internal and external causes of two membranes that want
to realise a mate or a bud reaction, we can determine whether such interaction is a
consequence of a previous mate reaction. The use of internal and external causes can
be completely understood in the following, once the semantic rules have been defined in
Table 5, by looking at the examples presented in Section 3.3.

For simplicity, we omit the empty causal information represented by a triple (∅, ∅, ∅)
in front of sequential membrane processes. By abuse of notation, a labelled process
(labelled system, respectively) can be interpreted, when required, as a process with
empty causes (a system with empty causes, respectively).

The causal semantics is given in terms of the causal transition relation
k;H−→, where

P̃
k;H−→ Q̃ denotes that the system P̃ performs an action, associated with the fresh cause

name k ∈ K, and with the set of immediate causes H ⊆ K.
We first introduce two auxiliary operators. The first operator distributes the causal

information on sequential membrane processes and on systems.

Definition 3. Given a triple (K, I,E) ∈ K̂, the operator (K, I,E) . is inductively

defined on membrane processes P̃roc, and on systems with causes S̃ys as follows,

(K, I,E) . 0 = 0
(K, I,E) . σ̃|τ̃ = (K, I,E) . σ̃ | (K, I,E) . τ̃
(K, I,E) . !σ̃ = !(K, I,E) . σ̃
(K, I,E) . (K ′, I ′, E ′) :: aλ.σ = (K ∪K ′, I ∪ I ′, E ∪ E ′) :: aλ.σ

(K, I,E) . � = �
(K, I,E) . (P̃ ◦ Q̃) = (K, I,E) . P̃ ◦ (K, I,E) . Q̃

(K, I,E) . !P̃ = !(K, I,E) . P̃

(K, I,E) . σ̃LP̃ MΓ = ((K, I,E) . σ̃)LP̃ MΓ.
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The following auxiliary operator is used to combine sets of decorated causes, accord-
ing to their sign.

Definition 4. The function ⊗ : ℘(K±)× ℘(K±)→ ℘(K) is defined as follows,

Y1 ⊗ Y2 = {k | kx ∈ Y1, k
y ∈ Y2, with x, y ∈ {+,−}, x 6= y}.

Note that, due to the subdivision of the cause set in three parts, ⊗ plays the role of
the several operators used to combine causes in [6].

The causal transition system is defined up to causal structural congruence (which
is the trivial adaptation of the one presented in Table 2) and to causal reduction rules,
obtained by decorating the rules of Table 3 with information on causes. Table 5 presents
the causal version of the MBD axioms, and includes the obvious adaptation of the rules
(Par), (Brane) and (Struct) in Table 3.

P 

(K1,I1,E1) I> matenλ.σ 

σ0 

Δ 

Q 

(K2,I2,E2) I> matenμ.τ 

τ0 

Γ 

(∅, (λ,μ)+, ∅) I> P 

((λ,μ),I1,E1) I> σ |((λ,μ),I2,E2) I> τ 

(∅, ∅, (λ,μ)+)  I> σ0 |  
(∅, ∅, (λ,μ)‐)   I> τ0 

mate(Δ,Γ,λ,μ) 

°  (∅, (λ,μ)‐, ∅) I> Q 

(λ,μ); K1  ∪  K2 ∪  (I1 ⊗ I2)  

They become siblings a@er the  
mate (λ,μ) of the parent membranes: 
(λ,μ)+ and (λ,μ) ‐ are the internal causes 

They become parent‐child a@er the mate (λ,μ): 
(λ,μ)+ and  (λ,μ)‐ are the external causes 

Fresh name cause  
associated to mate 
synchronisaJon 

h in (I1 ⊗ I2) if the two  
membranes have  
become siblings a@er  
the mate h 

Figure 1: Illustration of the (Matec) Rule (where tildes are omitted for simplicity in systems and
membrane processes.)
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• In the rule (Matec) (illustrated in Figure 1), two membranes ∆ and Γ realise a
fusion, by synchronising on actions mateλn and mate

µ
n, respectively. The reduction

step is associated to the fresh cause name k derived from the process labels λ
and µ. Moreover, it has, in the set of immediate causes, the immediate causes of
both actions (K1 and K2, respectively), and all the causes h ∈ I1 ⊗ I2, derived by
combining the internal causes of both actions (I1 and I2, respectively). Actually,
if hx ∈ I1 and hy ∈ I2, with x 6= y, then the two membranes ∆ and Γ have become
siblings as a consequence of the mate reaction associated to cause h. Therefore,
the mate reaction associated to k causally depends on the one associated to h.

The information on causes is propagated into the resulting system with causes as
follows. Both continuations of mate and co-mate have k as immediate cause, and
inherit the internal and external causes from the previous action. Both internal
and external causes related to cause k are introduced to propagate the cause k
to the future mate and bud interactions of the child membranes. More in details,
the child membranes coming from the membrane ∆ (Γ, respectively) take inter-
nal cause k+ (k−, respectively). These causes are defined internal, because they
concern the membranes inside the merging membranes.

Finally, external causes are assigned to the remaining subprocesses coming from
the two merging membranes. Again, cause k+ is propagated in the subprocess
coming from the membrane ∆, while k− is propagated in the subprocess coming
from the membrane Γ. These causes are called external, because they concern the
sequential processes associated to the merging membranes.

• In the rule (Budc), a membrane Γ expels a child membrane ∆, by synchronising
on actions budλn and bud

µ
n(ρ), respectively. The reduction step is associated to

the fresh cause name k, derived as in rule (Matec). The set of immediate causes
contains the immediate causes of both actions, and the causes h ∈ E1⊗I2, derived
by combining the external causes of the cobud (E1) and the internal causes of the
bud action (I2). Actually, if hx ∈ E1 and hy ∈ I2, with x 6= y, then the movement
of the child membrane ∆ out from the parent membrane Γ has became possible
after the execution of the mate reaction h. Hence, the bud reaction associated to
k causally depends on the mate reaction associated to h. Propagation of causes in
the resulting system is obtained as follows. The continuations of the two actions
acquire causes as in Rule (Matec). The new membrane enclosing the membrane
∆ has associated the process ρ, which has k as immediate cause and inherits,
from the cobud, the internal causes I1, needed to control the possible future mate
interactions of the new membrane.
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• In the rule (Dripc), a membrane ∆ splits off an empty membrane, performing an
action dripλ(ρ). The reduction step is associated to the fresh cause name λ, and to
the set of immediate causes of the drip action. Differently from the previous cases,
a drip reaction is causally independent from the previously mate reactions realised
by the parent membranes. The continuation of the drip action has immediate
cause λ and inherits internal and external causes from the drip action. The new
membrane has associated the process ρ, which acquires the causes from the drip
action as done in rule (Budc).

(Parc)
P̃

k;H−→ Q̃

P̃ ◦ R̃ k;H−→ Q̃ ◦ R̃
(Branec)

P̃
k;H−→ Q̃

σ̃LP̃ MΓ k;H−→ σ̃LQ̃MΓ

(Structc)
P̃ ≡ P̃ ′ ∧ P̃ ′

k;H−→ Q̃′ ∧ Q̃′ ≡ Q̃

P̃
k;H−→ Q̃

(Matec) ((K1, I1, E1) :: mateλn.σ)|σ̃0LP̃ M∆ ◦ ((K2, I2, E2) :: mateµn.τ)|τ̃0LQ̃MΓ

k; K1 ∪ K2 ∪ (I1⊗I2)−−−−−−−−−−−−−−→
((k, I1, E1) . σ)|((∅, ∅, k+) . σ̃0)|((k, I2, E2) . τ)|
((∅, ∅, k−) . τ̃0)L(∅, k+, ∅) . P̃ ◦ (∅, k−, ∅) . Q̃MΨm

(Budc) ((K1, I1, E1) :: bud
µ
n(ρ).τ)|τ̃0L((K2, I2, E2) ::budλn.σ)|σ̃0LP̃ M∆ ◦ Q̃ MΓ

k; K1 ∪ K2 ∪ (E1⊗I2)−−−−−−−−−−−−−−−→
((k, I1, ∅) . ρ)L ((k, I2, E2) . σ)|σ̃0LP̃ M∆ MΨb ◦ ((k, I1, E1) . τ)|τ̃0LQ̃MΓ

(Dripc) ((K, I,E) :: dripλ(ρ).σ)|τLP̃ M∆

λ; K−−−→
((λ, I, ∅) . ρ)L�MΨd ◦ ((λ, I, E) . σ)|τ̃LP̃ M∆

where k = (λ, µ),Ψm = mate(∆,Γ, λ, µ),Ψb = bud(∆,Γ, λ, µ), and Ψd = drip(∆, λ)

Table 5: Causal Reduction Semantics of MBD.

Given a system P , its causal semantics is defined as a Labelled Transition System
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(LTS), obtained by transitive closure starting from the system with empty causes, cor-

responding to P . Given P ∈ Sys, L̃TS(P ) denotes the LTS (X,→, P ), where: (i)
X ⊆ S̃ys is the set of reachable systems with causes; (ii) →⊆ S̃ys× (K, ℘(K))× S̃ys is
the causal reduction relation defined by the rules in Table 5; (iii) P is the initial system
with empty causes.

In the following, using a standard notation, we denote the reflexive and transitive

closure of the causal transition relation
k;H−→ with −→∗, and, analogously, the transitive

closure after n steps with −→n.
Starting from the causal semantics, it is easy to retrieve the standard interleaving

semantics, by just removing the causes in membrane processes and systems. To this
aim, we need the following auxiliary function, which represents the adaptation of the
function DropCause in [6] to our version of the semantics.

Definition 5. The function DropCause is defined inductively on membrane processes
with causes P̃roc and on systems with causes S̃ys as follows,

DropCause(0) = 0
DropCause(σ̃|τ̃) = DropCause(σ̃)|DropCause(τ̃)
DropCause(!σ̃) =!DropCause(σ̃)
DropCause((K, I,E) :: aλ.σ) = aλ.σ

DropCause(�) = �
DropCause(P̃ ◦ Q̃) = DropCause(P̃ ) ◦DropCause(Q̃)

DropCause(!P̃ ) =!DropCause(P̃ )

DropCause(σ̃LP̃ MΓ) = DropCause(σ̃)LDropCause(P̃ )MΓ

Now, we can state a correspondence theorem, similar to the one in [6]. The proof is
analogous and it is therefore omitted.

Theorem 1. Let P̃ ∈ S̃ys a system with causes. The following properties hold:

• if P̃
k;H−→ P̃ ′ then DropCause(P̃ ) −→ DropCause(P̃ ′);

• if DropCause(P̃ ) −→ Q, then there exists a system with causes Q̃, a cause name

k and a set of causes H such that P̃
k;H−→ Q̃ and Q = DropCause(Q̃).

3.3. Semantics at work

We now revisit the previously introduced examples, by discussing their causal seman-
tics. We will show that the causal semantics captures the causal dependencies, already
described in the Examples 1, 2 and 3.
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Example 4. We consider the system P1, introduced in Example 1,

P1 = dripλ(σ1).mateνn.drip
µ(τ1)LM∆ ◦ dripβ(σ2).mateδn.drip

κ(τ2)LMΓ.

As an example, we show the causal version of the computation there illustrated.

P1
h1;∅−−→ h2;∅−−→ P̃1

′
= (h1, ∅, ∅) :: σ1LMΦ1 ◦ (h2, ∅, ∅) :: σ2LMΦ2◦

(h1, ∅, ∅) :: mateνn.drip
µ(τ1)LM∆◦

(h2, ∅, ∅) :: mateδn.drip
κ(τ2)LMΓ

P̃1
′ h3;{h1,h2}−−−−−−→ P̃1

′′
= (h1, ∅, ∅) :: σ1LMΦ1 ◦ (h2, ∅, ∅) :: σ2LMΦ2◦

(h3, ∅, ∅) :: dripµ(τ1)|(h3, ∅, ∅) :: dripκ(τ2)LMΠ

P̃1
′′ h4;{h3}−−−−→ h5;{h3}−−−−→ P̃1

′′′
= (h1, ∅, ∅) :: σ1LMΦ1 ◦ (h2, ∅, ∅) :: σ2LMΦ2◦

(h4, ∅, ∅) :: τ1LMΦ3 ◦ (h5, ∅, ∅) :: τ2LMΦ4 ◦ LMΠ

where

h1 = λ, h2 = β, h3 = (ν, δ), h4 = µ, h5 = κ, and
Φ1 = drip(∆, λ),Φ2 = drip(Γ, β),Π = mate(∆,Γ, ν, δ),Φ3 = drip(Π, µ),Φ4 = drip(Π, κ).

Causal annotations make it possible to derive the causal dependencies among the
different reactions.

• The drip reaction, realised by membrane ∆, is associated to the fresh cause name
h1, while the one realised by the membrane Γ is associated to h2. In both cases, the
reactions have empty sets of immediate causes. As a consequence, the continuation
of action dripλ(σ1) (associated to membrane ∆) acquires h1 as immediate cause,
while the continuation of action dripβ(σ2) (associated to membrane Γ) acquires
h2. The newly created membranes are decorated by labels Φ1 and Φ2, respectively.

• The mate reaction on n, realised by membranes ∆ (by firing the action mateνn) and
Γ (by firing the co-action mate

δ
n), is associated to the fresh cause name h3, and

has as immediate causes the set {h1, h2}. This set is the union of the immediate
causes of the corresponding mate and comate actions. The fusion introduces a
new membrane labelled by Π, which has associated the parallel composition of the
residual processes of both membranes. The continuation of both mate and comate
actions acquire h3 as immediate cause.
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• Finally, the membrane Π can perform two drip reactions. The reaction corre-
sponding to the execution of the action dripµ(τ1) is associated to the fresh cause
name h4, and leads to the creation of the new membrane labelled by Φ3. Instead,
the reaction corresponding to the execution of dripκ(τ2) is associated to h5, and
leads to the creation of the new membrane labelled by Φ4. In both cases, the set of
immediate causes is {h3}.

Note that the mate reaction on n (associated to h3) is the immediate cause of both drip
reactions associated to h4 and h5. The set of all causal dependencies can be obtained by
transitive closure of the immediate causal relation. The other computations are similar.

Example 5. We consider the system P2, introduced in Example 2,

P2 = mateνnLmateµm|mateζoLMΘ ◦ mateβo LMΦM∆ ◦ mateδnLmate
λ
mLMΨMΓ.

As an example, we show the causal version of the computation there illustrated. The
other computations are similar.

P2
h1;∅−−→ P̃2

′
= L((∅, h+

1 , ∅) :: mateµm|(∅, h+
1 , ∅) :: mateζo)LMΘ◦

(∅, h+
1 , ∅) :: mateβo LMΦ ◦ (∅, h−1 , ∅) :: mateλmLMΨMΠ

P̃2
′ h2;{h1}−−−−→ P̃2

′′
= L((∅, h+

1 , h
+
2 ) :: mateζoLMΠ1 ◦ (∅, h+

1 , ∅) :: mateβo LMΦMΠ h3;∅−−→ LLMΠ2MΠ

where

h1 = (ν, δ), h2 = (µ, λ), h3 = (ζ, β), and
Π = mate(∆,Γ, ν, δ), Π1 = mate(Θ,Ψ, µ, λ), Π2 = mate(Π1,Φ, ζ, β).

Causal annotations make it possible to derive the causal dependencies among the
different reactions.

• The mate reaction on n, realised by membranes ∆ and Γ, is associated to the fresh
cause name h1. The set of immediate causes is empty. Internal causes related
to h1 are propagated into the processes associated to the child membranes of the
membrane Π resulting from the fusion. In particular, the membranes Θ and Φ,
which were child membranes of membrane ∆, acquire internal cause h+

1 . Analo-
gously, the membrane Ψ, which was the child membranes of membrane Γ, acquires
internal cause h−1 . Internal causes are used to assign the cause h1, associated to
the mate on n, to the future interactions of the child membranes.
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• The mate reaction on m, realised by membranes Ψ and Θ, is associated to the
fresh cause name h2. The set of immediate causes {h1} is derived by combining the
internal causes of the mate (h+

1 ) and comate (h−1 ). The signs of decorated causes
show that the two membranes Θ and Ψ have became siblings as a consequence of
the mate reaction on n.

• Finally, the mate reaction on o, realised by membranes Π1 and Φ, is associated to
the fresh cause name h3. In this case, differently from the previous one, the set
of immediate causes is empty. The mate and the comate indeed carry the same
internal cause h+

1 , thus revealing that the two membranes were siblings also before
the mate reaction on n.

Example 6. We consider the system P3, introduced in Example 3,

P3 = mateνn|bud
λ
m(ρ1)LbudµmLMΘ ◦ budζoLMΦM∆ ◦ mateδn|bud

β
o (ρ2)LMΓ.

We show the causal version of the computation there illustrated. The other computations
are similar.

P3
h1;∅−−→ P̃3

′
= (∅, ∅, h+

1 ) :: bud
λ
m(ρ1)|

(∅, ∅, h−1 ) :: bud
β
0 (ρ2))L(∅, h+

1 , ∅) :: budµmLMΘ ◦ (∅, h+
1 , ∅) :: budζoLMΦMΠ

P̃3
′ h2;{h1}−−−−→ P̃3

′′
= (h2, ∅, ∅) :: ρ2LLMΦMΨ1 ◦ (∅, ∅, h+

1 ) :: bud
λ
m(ρ1)L(∅, h+

1 , ∅) :: budµmLMΘMΠ

P̃3
′′ h3;∅−−→ P̃3

′′′
= (h2, ∅, ∅) :: ρ2LLMΦMΨ1 ◦ (h3, ∅, ∅) :: ρ1LLMΘMΨ2 ◦ LMΠ

where

h1 = (ν, δ), h2 = (ζ, β), h3 = (µ, λ), and
Π = mate(∆,Γ, ν, δ), Ψ1 = bud(Φ,Π, ζ, β), Ψ2 = bud(Θ,Π, µ, λ).

Causal annotations make it possible to derive the causal dependencies among the
different reactions.

• The mate reaction on n, realised by membranes ∆ and Γ, is modelled as in Ex-
ample 5. Internal and external causes related to cause name h1 are propagated
into the resulting system, to propagate the effect of the fusion. More precisely, the
processes associated to the membranes Θ and Φ, which were child membranes of
membrane ∆, acquire internal cause h+

1 . In addition, the residual processes derived
from the two membranes Γ and ∆ acquire external causes. The process in parallel
with the mate takes h+

1 , while the process in parallel with the comate takes h−1 .
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• The bud reaction on o realised by membranes Π and Φ is associated to the fresh
cause name h2 and has set of immediate causes {h1}. The immediate causes are
derived by combining the external causes of the cobud (h+

1 ) and the internal causes
of the bud (h−1 ). The decorated causes show that the bud reaction on o has become
possible as a consequence of the mate reaction on n.

• Finally, the bud reaction on m, realised by membranes Π and Θ, is associated to
the fresh cause name h3, and has the set of immediate causes empty. Differently
from the previous case, both the bud and the cobud carry the same decorated cause
h+

1 , thus showing that the bud reaction on m was possible also before the mate
reaction on n.

4. The Abstraction

The analysis computes a description of the structure of all the derivatives of the
initial system, together with a description of the possible causal dependencies among
reaction steps. Following the Abstract Interpretation approach, the analysis relies on
the definition of an abstract version of the causal semantics, in which systems with
causes are represented by abstract states. More precisely, an abstract state provides
information on the possible hierarchical structure of membranes, and on the processes
with causes that may be associated to each membrane. The abstract causal semantics
is described by abstract causal transitions among abstract states. The analysis result is
calculated by collecting the information from the abstract causal semantics, describing
the approximated behaviour of the system that we want to analyse. We prove that the
analysis is a safe over-approximation of the concrete causal behaviour.

4.1. Abstract Causal Semantics

4.1.1. Abstract MBD with Causes

The first thing we need to abstract are labels, whose treatment deserves some atten-
tion because of replication. The unfolding of replication may indeed lead to an infinite
number of process and membrane labels. Therefore, to guarantee that the analysis can
be computed in a finite number of steps, we need to have an abstraction of labels (both
for membrane processes and membranes), able to keep the set of abstract labels finite.

As far as the process labels are concerned, we consider the equivalence classes induced
by the partition of LabP .

Definition 6. The set of abstract process labels is defined as Lab◦P = LabP/≡ (ranged
over by λ◦, β◦, µ◦), where for λ, µ ∈ LabP , we have λ ≡ µ if and only if λ, µ ∈ LabP i,
for some i. In the following, λ• denotes the abstract version of λ ∈ LabP .
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Note that λ◦ denotes a generic abstract process label, while λ• exactly denotes the
abstract version of the process label λ (i.e. the equivalence class of λ).

As far as membrane labels are concerned, we first introduce the abstract version of
the set of basic membrane labels Lab◦M = LabM ∪ {@}, where the special symbol @
represents the outermost membrane.

Definition 7. The set of abstract membrane labels L̂ab
◦
M, ranged over by Γ◦, ∆◦, ...,

is defined as the least set such that: (i) Lab◦M ⊆ L̂ab
◦
M; and (ii) if Γ◦,∆◦ ∈ L̂ab

◦
M then

mate(Γ◦,∆◦), bud(Γ◦,∆◦), drip(Γ◦) ∈ L̂ab
◦
M.

Nevertheless, since interactions between membranes may introduce arbitrarily nested
membrane labels (e.g. mate(bud(drip(Γ◦),∆◦),Ψ◦), the approximation introduced by

L̂ab
◦
M may not suffice to assure the finiteness of the analysis.
We therefore introduce a further abstraction. Intuitively, it is possible to choose a

fixed level of nesting depth d. All the abstract membrane labels with depth no greater
than d can be recorded, while all the labels with depth greater than d are approximated
with the new special labels: mate(>,>), bud(>,>) and drip(>).

Definition 8. The set of abstract membrane labels parametric with respect to d with
d ∈ N+ is defined as follows,

L̂ab
d

M = {∆◦|∆◦ ∈ L̂ab
◦
M and depth(∆◦) ≤ d} ∪ {mate(>,>), bud(>,>), drip(>)}

where given ∆◦ ∈ L̂ab
◦
M,

depth(∆◦) =


1 if ∆◦ ∈ Lab◦M,
1 +max(depth(Γ◦), depth(Ψ◦)) if ∆◦ ∈ {mate(Γ◦,Ψ◦), bud(Γ◦,Ψ◦)},
1 + depth(Γ◦) if ∆◦ = drip(Γ◦)

According to the previous definition, e.g. depth(mate(bud(drip(Γ◦),∆◦),Ψ◦)) = 4.
We can now formalise the relation between membrane labels L̂abM and abstract

membrane labels L̂ab
d

M, by introducing the abstract version of a membrane label ∆,
denoted by ∆•5.

Definition 9. For ∆ ∈ L̂abM, we define ∆• as follows.

• ∆ ∈ LabM ⇒ ∆• = ∆;

5For simplicity we omit the explicit indication of the parameter d.
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P ◦, Q◦ ::= � | P ◦ ◦Q◦ | !P ◦ | σ◦LP ◦MΓ◦ abstract systems Sys◦

σ◦, τ ◦ ::= 0 | σ◦|τ ◦ | !σ◦ | aλ◦ .σ◦ abstract membrane processes Proc◦

P̃ ◦, Q̃◦ ::= � | P̃ ◦ ◦ Q̃◦ | !P̃ ◦ | σ̃◦LP̃ ◦MΓ◦ abstract systems with causes S̃ys
◦

σ̃◦, τ̃ ◦ ::= 0 | σ̃◦|τ̃ ◦ | !σ̃◦ | abstract membrane processes with causes P̃roc
◦

(K◦, I◦, E◦) :: aλ
◦
.σ◦

Table 6: Syntax of Abstract MBD and Abstract MBD with Causes, where a ∈ Act is
defined as in Table 1.

• ∆ = #(Γ,Ψ, λ, µ) with # ∈ {mate, bud} ⇒ ∆• =

{
#(Γ•,Ψ•) if depth(#(Γ•,Ψ•)) ≤ d
#(>,>) otherwise

• ∆ = drip(Γ, λ) ⇒ ∆• =

{
drip(Γ•) if depth(drip(Γ•)) ≤ d
drip(>) otherwise

At last, we have all the ingredients to define the abstract version of MBD with and
without causes.

Starting from the abstraction of process labels described above, the abstract version
of causes and of decorated causes is easily obtained from the concrete one, by replacing
process labels with abstract process labels. Formally, we define the set of abstract cause
names as

K◦ = Lab◦P ∪ (Lab◦P × Lab◦P)

and the derived set of abstract decorated causes as

K±◦ = {k◦x | k◦ ∈ K◦, x ∈ {+,−}}.

The information on causes associated to membrane processes is modelled by a triple
(K◦, I◦, E◦), where K◦ is the set of abstract immediate causes, while I◦ and E◦ are the
sets of abstract decorated causes representing internal and external causes, respectively.
In the abstract case, we therefore adopt the following set

K̂◦ = ℘(K◦)× ℘(K±◦)× ℘(K±◦).

The syntax of abstract systems Sys◦, and that of abstract membrane processes Proc◦,
(reported in the first part of Table 6), is obtained from the concrete syntax in Table 1,

while the syntax of abstract systems with causes S̃ys
◦
, and that of membrane processes

with causes P̃roc
◦
, (reported in the second part of Table 6), is obtained from the concrete

syntax in Table 4. In both cases, the abstract versions are obtained by replacing process
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and membrane labels with abstract process and membrane labels, respectively, and,
elements of K̂ with the corresponding abstract elements of K̂◦.

Note that any concrete element has a corresponding abstract version. For instance,
any membrane process σ ∈ Proc has a corresponding abstract version, denoted by
σ• ∈ Proc◦, obtained by replacing each process label λ, and each membrane label ∆,
with their abstract versions λ• and ∆•, respectively. Similarly, each process P ∈ Sys

has a corresponding abstract process P • ∈ Sys◦. Then, we denote with k• the abstract
version of a cause name k, obtained by replacing each process label λ with its abstract
version λ•. Using an analogous notation, we use K• (Y •, respectively) for denoting the
abstract version of the set of causes K (of the set of decorated causes Y , respectively).
Finally, we use P̃ • (σ̃•, respectively) to indicate the abstract version of the system
with causes P̃ (process with causes σ̃, respectively), obtained by extending the previous
definitions.

In the following, we also use the operators lab : S̃ys◦ → ℘(Lab◦P), and lab : P̃roc◦ →
℘(Lab◦P), to denote the set of abstract process labels lab(P̃ ◦) (lab(σ̃◦), respectively)
occurring in the process P̃ ◦ (σ̃◦, respectively).

In the abstract framework, we further use some operators that are the obvious adap-
tations of the ones given in the causal semantics. To combine sets of abstract decorated
causes, we introduce the operator ⊗ : ℘(K±◦)× ℘(K±◦)→ ℘(K◦), that adapts the cor-
responding concrete operator of Definition 4. Moreover, we assume to have the operator
. that adapts the concrete operator . of Definition 3. Finally, for simplicity, as in the
concrete case, we omit the empty triple (∅, ∅, ∅) in front of abstract sequential membrane
processes.

4.1.2. Abstract States

We now introduce the abstract states that are used to represent approximate in-
formation about systems with causes, in the abstract causal semantics. An abstract
state reports information about membrane hierarchy, and about processes with causes
associated to each membrane. Formally, an abstract state is defined as a function that,
for each abstract membrane label ∆◦, returns: (a) a set of abstract membrane labels
representing the membranes that may be child membranes of membrane ∆◦; and (b)
a set of abstract sequential membrane processes with causes representing the processes
that may be associated to membrane ∆◦. The component (b) is described by what we
call a configuration.

Definition 10 (Configurations). Let C◦ ⊆ P̃roc be a set of abstract membrane processes
with causes s.t., for each σ̃◦ ∈ C◦, we have σ̃◦ = (K◦, I◦, E◦) :: aλ

◦
.τ ◦. We say that

C◦ is a configuration iff, for each (K◦1 , I
◦
1 , E

◦
1) :: aλ

◦
.τ ◦, (K◦2 , I

◦
2 , E

◦
2) :: aλ

◦
.τ ◦ ∈ C◦ then
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K◦1 = K◦2 , I◦1 = I◦2 and E◦1 = E◦2 . We use C◦ for the set of configurations.

Definition 11 (Abstract States). An abstract state is a partial function S◦ : L̂ab
d

M →
℘(L̂ab

d

M)× C◦. We use S◦ for the set of abstract states.

An abstract state S◦ can be alternatively described by⋃
Γ◦∈dom(S◦)

{(Γ◦, (M◦, C◦))| S◦(Γ◦) = (M◦, C◦)}

i.e. by the set of pairs (Γ◦, (M◦, C◦)), given by the set of abstract membrane labels M◦

and the configuration C◦, associated to Γ◦.
In standard Abstract Interpretation style, the abstract states have to be equipped

with an approximation order (denoted by v◦) that allows us to compare two approxima-
tions in terms of precision. Thus, S◦1v◦S◦2 says that the abstract state S◦1 is more precise
than the abstract state S◦2 or, analogously that S◦2 safely approximates S◦1 . The definition
of the approximation order on abstract states relies on a corresponding approximation
order on configurations (denoted by vC).

Definition 12 (Approximation Orders). Let C◦1 , C
◦
2 ∈ C◦ be two configurations and let

S◦1 , S
◦
2 ∈ S◦ be two abstract states.

• We say that C◦1vCC◦2 if and only if, for each (K◦1 , I
◦
1 , E

◦
1) :: aλ

◦
.τ ◦ ∈ C◦1 there

exists a (K◦2 , I
◦
2 , E

◦
2) :: aλ

◦
.τ ◦ ∈ C◦2 such that K◦1 ⊆ K◦2 , I◦1 ⊆ I◦2 and E◦1 ⊆ E◦2 .

• We say that S◦1v◦S◦2 if and only if dom(S◦1) ⊆ dom(S◦2) and, for each ∆◦ ∈
dom(S◦1) we have S◦1(∆◦) = (M◦

1 , C
◦
1) and S◦2(∆◦) = (M◦

2 , C
◦
2) with M◦

1 ⊆M◦
2 and

C◦1vCC◦2 .

Given the previous orders, we also derive the corresponding least upper bounds
(l.u.b.), as expected. The l.u.b. over configurations C◦ and over abstract states S◦ are
denoted by tC and t◦, respectively.

Abstract states are used to approximate the systems with causes. To formally relate
systems with causes and abstract states, we introduce several auxiliary functions.

First of all, we define a translation function t◦ : L̂ab
d

M × S̃ys
◦ → S◦, which returns

an abstract state, describing an abstract system with causes P̃ ◦, with respect to an
abstract membrane ∆◦ (representing the enclosing membrane). The resulting abstract
state contains the information on the parent-relation between membranes, and on the
set of sequential processes with causes associated to each membrane, assuming that
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P̃ ◦ is enclosed inside the membrane ∆◦. The translation function on abstract systems
with causes is defined in Table 7 and uses an auxiliary translation function on abstract
membrane processes with causes t◦ : P̃roc

◦
→ C◦6. The description of an abstract

process with causes is simply a set of abstract sequential membrane processes with
causes, i.e. a configuration.

t◦(∆◦, �) = {(∆◦, (∅, ∅))}
t◦(∆◦, P̃ ◦ ◦ Q̃◦) = t◦(∆◦, P̃ ◦)t◦ t◦(∆◦, Q̃◦)

t◦(∆◦, !P̃ ◦) = t◦(∆◦, P̃ ◦)

t◦(∆◦, σ̃◦LP̃ ◦MΓ◦) = {(∆◦, ({Γ◦}, ∅))}t◦ t◦(Γ◦, P̃ ◦)t◦ {(Γ◦, (∅, t◦(σ̃◦)))}
t◦(0) = ∅

t◦(σ̃◦|τ̃ ◦) = t◦(σ̃◦) tC t◦(τ̃ ◦)
t◦(!σ̃◦) = t◦(σ̃◦)

t◦((K◦, I◦, E◦) :: aλ
◦
.σ◦) = {(K◦, I◦, E◦) :: aλ

◦
.σ◦}

Table 7: Translation Functions for Abstract Systems and Processes with Causes.

Based on the translation function, it is immediate to derive a corresponding abstrac-
tion function, which relates systems with causes with abstract states. The abstraction
function, for each system with causes, returns the abstract state that is the best approx-
imation. Intuitively, the best approximation is the most precise (with respect to the
order v◦) abstract state that safely represents the information contained in the system.

Definition 13 (Abstraction function). We define αS̃ys : S̃ys → S◦ such that for P̃ ∈
S̃ys, αS̃ys(P̃ ) = t◦(@, P̃ •).

The best approximation αS̃ys(P̃ ) of a system with causes P̃ is obtained, by applying

the translation function t◦ to its abstract version (denoted by P̃ •), with respect to the
abstract membrane label representing the outermost membrane (denoted by @).

Note that the previously introduced notions can be used to formalise the notion of
safe approximation between abstract states and system with causes. Specifically, an ab-
stract state S◦ safely approximates the system with causes P̃ if and only if αS̃ys(P̃ )v◦S◦.

Finally, we derive the corresponding abstraction and concretisation functions that
constitute a Galois connection [8]. The abstraction function ᾱ computes the best ap-
proximation of a set of systems with causes, by taking the l.u.b. of the best abstraction

6For simplicity, we use t◦ for both abstract systems with causes and membrane processes.
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of each system contained in the set. The concretisation function γ̄ reports the set of
systems with causes safely approximated by an abstract state.

Definition 14. We define the abstraction and concretisation functions ᾱ : ℘(S̃ys)→ S◦
and γ̄ : S◦ → ℘(S̃ys) functions as follows,

1. for X ∈ ℘(S̃ys), ᾱ(X) =
⊔◦
P̃∈XαS̃ys(P̃ );

2. for S◦ ∈ S◦, γ̄(S◦) = {P̃ | αS̃ys(P̃ )v◦S◦}.

Theorem 2. The pair of functions (ᾱ, γ̄) in Definition 14 is a Galois connection between
(℘(S̃ys),⊆) and (S◦,v◦).

The proof of Theorem 2 can be found in Appendix A.

4.1.3. Abstract LTS

The abstract causal semantics is given in terms of the causal transition relation
k◦;H◦−−−→◦ among abstract states, where k◦ ∈ K◦ is the abstract cause name (not necessarily
fresh) describing the reaction, while H◦ ⊆ K◦ is the set of abstract immediate causes.
The abstract transitions are obtained by introducing inference rules for abstract states
that model the possible membrane interactions (mate, bud and drip).

To obtain a more precise approximation of the possible interactions, we exploit a
relation between abstract process labels, recording pairs of sequential processes that
never occur in parallel on the same membrane, in any possible execution. This relation is
reminiscent of the approximation of the possible membrane incompatibilities, presented
in [3]. More in details, the incompatibility between membrane processes is expressed by
a suitable incompatibility relation, which is a symmetric relation on the set of abstract
process labels Lab◦P . If a pair (λ•, µ•) ∈ R◦ is included in the incompatibility relation
R◦, then two sequential processes aλ.τ and bµ.σ can never appear in parallel on the
same membrane, during the execution. Due to this relation, in the abstract version
of the rule mate, we gain precision, when determining the set of sequential membrane
processes with causes that may be associated to the resulting fused membrane. In the
following, we use I◦ for the set of incompatibility relations.

The incompatibility relation is statically extracted, by analysing the syntax of the
abstract system with causes P̃ • we want to examine. The goal of the definition is to
calculate pairs of abstract process labels that are incompatible in P̃ , and in any derivative
of P̃ . To this aim, it is important to rely on the information on the possible number of
occurrences of the abstract process labels appearing in the abstract system with causes
P̃ •. To represent occurrence counting information, we adopt a rather simple domain of
abstract multiplicity {1, ω}, where 1 stands for one occurrence, while ω indicates more
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than one occurrence. The occurrence counting information is provided by the following
auxiliary partial function.

Definition 15 (Occurrence Counting). The partial function ocP̃ ◦ : Lab◦P → {1, ω} is
defined as follows, for λ◦ ∈ lab(P̃ ◦),

ocP̃ ◦(λ
◦) =

{
1 if ∃! occurrence λ◦ in P̃ ◦, not under the scope of the replication !
ω otherwise

Note that for each abstract process label λ• the function ocP̃ •(λ
•) reports the possible

number of occurrences of the process label λ appearing in P̃ , and in any derivative of P̃ .
The definition of the incompatibility relation for abstract systems with causes is

provided by the function rel◦ : S̃ys
◦ → I◦, presented in Table 8, relying, in turn, on two

further auxiliary functions rel◦ : P̃roc
◦
→ I◦ and rel◦ : Act→ I◦7.

In looking at the definition, recall that abstract membrane processes may be inter-
preted, when required, as processes with empty causes. The intuition is that each label
which occurs only once is incompatible with itself, and with all the labels which occur
in the membrane process it prefixes.

Before the introduction of our abstract semantics, we need to introduce some aux-
iliary operators. The first operator, given an abstract membrane ∆◦, and an abstract
state S◦, returns the set of membrane labels, whose membranes are possible parents of

∆◦. We define parent : S◦ × L̂ab
d

M → ℘(L̂ab
d

M) as follows,

parent(S◦,∆◦) = {Γ◦ | S◦(Γ◦) = (M◦, C◦) and ∆◦ ∈M◦}.

This operator can be also used to establish if two membranes are possible siblings, by
checking whether they share the same parent.

The second operator, given an incompatibility relation R◦, a process label λ◦, and
a configuration C◦, returns only the sequential membrane processes in C◦ that are
compatible with λ◦, according to R◦. We define comp : I◦× Lab◦P ×C◦ → C◦ as follows,

comp(R◦, λ◦, C◦) = {(K◦, I◦, E◦) :: aµ
◦
.σ◦ ∈ C◦| (µ◦, λ◦) /∈ R◦}.

Finally, the last operators .C and .S propagate the causal information, given by a triple
(K◦, I◦, E◦) ∈ K̂◦, both to configurations and to the set of configurations associated to
a set of abstract membrane labels M◦ in an abstract state S◦. We have

(K◦, I◦, E◦) .C C
◦ = {(K◦, I◦, E◦) . σ̃◦ | σ̃◦ ∈ C◦}

(K◦, I◦, E◦) .S (M◦, S◦) =
⊔◦

∆◦∈M◦{(∆◦, (∅, (K◦, I◦, E◦) .C C◦1))| S◦(∆◦) = (M◦
1 , C

◦
1)}.

7For simplicity, we overload the function name rel◦.
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rel◦(!Q̃◦) = rel◦(�) = ∅
rel◦(Q̃◦1 ◦ Q̃◦2) = rel◦(Q̃◦1) ∪ rel◦(Q̃◦2)

rel◦(σ̃◦LQ̃◦MΓ◦) = rel◦(Q̃◦) ∪ rel◦(σ̃◦)

rel◦(0) = rel◦(!σ̃◦) = ∅
rel◦(σ̃◦|τ̃ ◦) = rel◦(σ̃◦) ∪ rel◦(τ̃ ◦)

rel◦((K◦, I◦, E◦) :: aλ
◦
.σ◦) =


rel◦(a) ∪ rel◦(σ◦) ∪ L◦ if ocP̃ ◦(λ

◦) = 1

rel◦(a) ∪ rel◦(σ◦) if ocP̃ ◦(λ
◦) = ω

where L◦ = {(λ◦, λ◦)} ∪ {(λ◦, µ◦)|µ◦ ∈ lab(σ◦)}

rel◦(a) =

{
∅ if a ∈ {maten, maten, budn},
rel◦(ρ◦) if a ∈ {budn(ρ◦), drip(ρ◦)}

Table 8: Incompatibility Relation with respect to ocP̃ ◦ .

We can now present the abstract inference rules, reported in Tables 9 and 10, where

we write R◦ ` S◦1
k◦;H◦−−−→◦ S◦2 to denote a transition from the abstract state S◦1 to the

abstract state S◦2 , given an incompatibility relation R◦ ∈ I◦. We insist, in particular, on
the abstract version of the inference rule (Matec), because it is the more delicate and
complex rule.

The Rule (Mate◦c), in Table 9, models the fusion of two membranes (∆◦ and Γ◦)

that may synchronise on actions mateλ
◦
n and mate

µ◦

n . This requires that: (i) the abstract
membranes ∆◦ and Γ◦ are reported as possible siblings (having a common parent mem-
brane Φ◦); (ii) the configurations C◦1 and C◦2 , describing the processes associated to ∆◦

and Γ◦, respectively, include the actions mate and comate.
The abstract reaction step is associated to the cause name k◦ and to the set of

abstract immediate causes, computed as in the concrete case, by using the abstract
version of the ⊗ operator.

The resulting abstract state enriches the starting abstract state S◦ with information
reporting the effects of the possible fusion of the two membranes ∆◦ and Γ◦, in particular
on the membrane possibly resulting from the fusion. This membrane is described by
the abstract membrane label Ψ◦, obtained by approximating the label mate(∆◦,Γ◦),
according to its depth. Moreover, we have the following.

29



(Mate◦c)
Φ◦ ∈ parent(S◦,∆◦) ∩ parent(S◦,Γ◦),

S◦(∆◦) = (M1
◦, C◦1), S◦(Γ◦) = (M◦

2 , C
◦
2),

(K◦1 , I
◦
1 , E

◦
1) :: mateλ

◦
n .σ

◦ ∈ C◦1 , (K◦2 , I
◦
2 , E

◦
2) :: mateµ

◦

n .τ
◦ ∈ C◦2

R◦ ` S◦
k◦;K◦1 ∪ K◦2 ∪ (I◦1⊗I◦2 )
−−−−−−−−−−−−−−→◦ S◦ t◦ {(Φ◦, ({Ψ◦}, ∅))} t◦ {(Ψ◦, (M◦

1 ∪M◦
2 , C

◦))} t◦
(∅, k◦+, ∅) .S (M◦

1 , S
◦) t◦ (∅, k◦−, ∅) .S (M◦

2 , S
◦)

where k◦ = (λ◦, µ◦) and Ψ◦ =

{
mate(∆◦,Γ◦) if mate(∆◦,Γ◦) ∈ L̂ab

d

M,
mate(>,>), otherwise,

C◦ = t◦((k◦, I◦1 , E
◦
1) . σ◦) tC (∅, ∅, k◦+) .C comp(R

◦, λ◦, C◦1) tC
t◦((k◦, I◦2 , E

◦
2) . τ ◦) tC (∅, ∅, k◦−) .C comp(R

◦, µ◦, C◦2).

Table 9: Abstract Causal Semantics: the (Matec) rule.

• The abstract membrane Ψ◦ is added as a possible child of the membrane Φ◦,
common parent of the two membranes ∆◦ and Γ◦.

• The membrane Ψ◦ inherits all the possible child membranes of ∆◦ and Γ◦, which
thus become possible children of Ψ◦.

• The membrane processes with causes associated to Ψ◦ are described by the config-
uration C◦, which contains a set of sequential processes with causes, inherited from
the configurations of both membranes ∆◦ and Γ◦. As a consequence, the configura-
tion C◦ contains the translation of the continuations of the mate and of the comate
actions, respectively. In addition, it contains the membrane processes with causes
that may run in parallel with the action mateλ

◦
n (mateµ

◦

n , respectively), associated
to ∆◦ (to Γ◦, respectively). In both cases, the set of membrane processes is com-
puted starting from the corresponding configurations (C◦1 and C◦2 , respectively),
and by filtering out the incompatible sequential membrane processes, according to
the relation R◦.

• Finally, the abstract cause name k◦ related to the mate, and the corresponding
external and internal causes (k◦+ and k◦−) are propagated, as in the concrete case.
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(Bud◦c)
Φ◦ ∈ parent(S◦,Γ◦),Γ◦ ∈ parent(S◦,∆◦),
S◦(Γ◦) = (M1

◦, C◦1), S◦(∆◦) = (M◦
2 , C

◦
2),

(K◦1 , I
◦
1 , E

◦
1) :: bud

µ◦

n (ρ◦).τ ◦ ∈ C◦1 , (K◦2 , I◦2 , E◦2) :: budλ
◦
n .σ

◦ ∈ C◦2
R◦ ` S◦

k◦;K◦1 ∪ K◦2 ∪ (E◦1⊗I◦2 )
−−−−−−−−−−−−−−→◦ S◦ t◦ {(Φ◦, ({Ψ◦}, ∅))} t◦ {(Ψ◦, (∆◦, t◦((k◦, I◦1 , ∅) . ρ◦)))}

t◦ {(∆◦, (∅, t◦((k◦, I◦2 , E◦2) . σ◦)))}
t◦ {(Γ◦, (∅, t◦((k◦, I◦1 , E◦1) . τ ◦)))}

where k◦ = (λ◦, µ◦) and Ψ◦ =

{
bud(∆◦,Γ◦) if bud(∆◦,Γ◦) ∈ L̂ab

d

M,
bud(>,>), otherwise.

(Drip◦c)
Γ◦ ∈ parent(S◦,∆◦), S◦(∆◦) = (M◦, C◦),

(K◦, I◦, E◦) :: dripλ
◦
(ρ◦).σ◦ ∈ C◦

R◦ ` S◦ λ◦;K◦−−−→◦ S◦ t◦ {(Γ◦, ({Ψ◦}, ∅))} t◦ {(Ψ◦, (∅, t◦((λ◦, I◦, ∅) . ρ◦)))} t◦
{(∆◦, (∅, t◦((λ◦, I◦, E◦) . σ◦)))}

where Ψ◦ =

{
drip(∆◦) if drip(∆◦) ∈ L̂ab

d

M,
drip(>), otherwise.

Table 10: Abstract Causal Semantics: the (Budc) and the (Dripc) rules.

The rules (Bud◦c) and (Drip◦c), in Table 10, are derived from the concrete versions
by applying similar techniques. Note that, in both cases, the inference rules do not
depend on the incompatibility relation R◦.

As in the concrete case, the abstract causal semantics of a system P is defined
as an abstract Labelled Transition System (LTS), obtained by starting from its best
approximation αS̃ys(P ). The abstract transition relation −→◦ is derived, by applying the
abstract inference rules of Tables 9 and 10, with respect to the incompatibility relation

rel◦(P •), calculated for the abstract version of P . For P ∈ Sys, we use L̃TS◦(P ) to
denote the abstract LTS (X◦,−→◦ , αS̃ys(P )), where: (i) X◦ ⊆ S◦ is the set of reachable
abstract states; (ii) −→◦ ⊆ S◦×(K◦, ℘(K◦))×S◦ is the abstract causal transition relation
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@ ∆,Γ
∆ dripλ

•
(σ•1).mateν

•
n .drip

µ•(τ •1 )

Γ dripβ
•
(σ•2).mateδ

•

n .drip
κ•(τ •2 )

Table 11: Abstract State αS̃ys(P1) of Example 7.

defined by the inference rules in Tables 9 and 10, with respect to the incompatibility
relation rel◦(P •); and (iii) αS̃ys(P ) is the initial abstract state. Note that the system P
is interpreted, as in the concrete case, as a system with empty causes.

We now illustrate the abstract causal semantics, by means of an example. In this
example, as well as in the ones presented in Section 4.3, we assume that the depth
parameter d, used to approximate membrane labels, is equal to 3.

Example 7. We consider the system introduced in Examples 1 and 4,

P1 = dripλ(σ1).mateνn.drip
µ(τ1)LM∆ ◦ dripβ(σ2).mateδn.drip

κ(τ2)LMΓ.

The abstract causal semantics of P1 is computed starting from the initial state that is
the best approximation αS̃ys(P1) (depicted in Table 11). For each abstract membrane
label, the table gives the set of possible child membranes (on the second column) and the
configuration (on the third one). For instance, the first line must be read as: the abstract
membranes ∆ and Γ, may8 appear at top level (as their parent is the outermost mem-
brane @). The second line must be read instead as: the membrane ∆ does not include
any membrane, but it may have associated the processes dripλ

•
(σ•1).mateν

•
n .drip

µ•(τ •1 ).
Similarly, the third line must be read as: the membrane Γ does not include any mem-
brane, but it may have associated the processes dripβ

•
(σ•2).mateδ

•
n .drip

κ•(τ •2 ).
To apply the inference rules of Tables 9 and 10, first, we have to calculate the in-

compatibility relation rel◦(P •1 ) for the abstract version of P1. We obtain

rel◦(P •1 ) = { (λ•, ν•), (λ•, µ•), (µ•, ν•)(β•, δ•), (β•, κ•), (δ•, κ•),
(λ•, λ•), (ν•, ν•), (µ•, µ•), (β•, β•), (δ•, δ•), (κ•, κ•)}

where

P •1 = dripλ
•
(σ•1).mateν

•
n .drip

µ•(τ •1 )LM∆ ◦ dripβ•(σ•2).mateδ
•

n .drip
κ•(τ •2 )LMΓ.

The incompatibility relation rel◦(P •1 ) is defined according to the definition presented
in Table 8. Since the abstract system with causes P •1 does not contain any occurrence

8May and not must since this is an over-approximation.

32



@ ∆,Γ,Φ•1,Φ
•
2,

∆ dripλ
•
(σ•1).mateν

•
n .drip

µ•(τ •1 ),
(h•1, ∅, ∅) :: mateν

•
n .drip

µ•(τ •1 )

Γ dripβ
•
(σ•2).mateδ

•

n .drip
κ•(τ •2 ),

(h•2, ∅, ∅) :: mateδ
•

n .drip
κ•(τ •2 )

Φ1
• = drip(∆) (h•1, ∅, ∅) :: σ•1

Φ2
• = drip(Γ) (h•2, ∅, ∅) :: σ•2

Table 12: Abstract State S◦1,1, where h•1 = λ• and h•2 = β•.

of replication, the number of occurrences of each abstract process label in the system
is equal to 1. As a consequence, the pairs of incompatible labels can be simply ex-
tracted from the structure of the processes associated to membranes. From the process
dripλ

•
(σ•1).mateν

•
n .drip

µ•(τ •1 ), we extract the pairs (λ•, ν•), (λ•, µ•), (µ•, ν•), (λ•, λ•),

(ν•, ν•), and (µ•, µ•). Similarly, from the process dripβ
•
(σ•2).mateδ

•

n .drip
κ•(τ •2 ), we ex-

tract (β•, δ•), (β•, κ•), (δ•, κ•), (β•, β•), (δ•, δ•), and (κ•, κ•). Nothing can be said,
instead, on the incompatibility between process labels occurring on membrane ∆ with
respect to the ones occurring on membrane Γ. Actually, due to membrane fusion, it can
happen that these processes may end up in parallel, associated to the same membrane.

To illustrate the abstract semantics, we present now the abstract version of the initial
part of the computation presented in Example 4, by showing the reached abstract states.
Specifically, we focus on the computation in which the system exercises the two drip
reactions, realised by the membranes Γ and ∆, and then the mate reaction on n realised
by the membranes Γ and ∆. In the abstract case we have,

αS̃ys(P1)
h•1;∅
−−→◦

h•2;∅
−−→◦ S◦1,1

h•3;{h•1,h•2}−−−−−−→◦ S◦1,2
where the abstract states S◦1,1 and S◦1,2 are depicted in Tables 12 and 13, respectively.
Moreover, the abstract cause names are defined as h•1 = λ•, h•2 = β•, and h•3 = (ν•, δ•).

The abstract state S◦1,1 is obtained by applying the rule (Drip◦c), which models the two
drip reactions realised by membranes ∆ and Γ. The abstract reaction steps are associated
to cause names h•1 and h•2, respectively, and have an empty set of immediate causes, as
in the concrete case. The drip reactions introduce the new membranes Φ•1 = drip(∆)
and Φ•2 = drip(Γ), respectively, which reside at top level. The causes related to h•1 and
h•2 are propagated as in the concrete case.

According to the membranes hierarchy expressed in S◦1,1, the membranes ∆ and Γ
may be siblings and may be ready to exercise the actions mate and comate, respectively.
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@ ∆,Γ,Φ•1,Φ
•
2,Π

•

∆ dripλ
•
(σ•1).mateν

•
n .drip

µ•(τ •1 ),
(h•1, ∅, ∅) :: mateν

•
n .drip

µ•(τ •1 )

Γ dripβ
•
(σ•2).mateδ

•

n .drip
κ•(τ •2 ),

(h•2, ∅, ∅) :: mateδ
•

n .drip
κ•(τ •2 )

Φ1
• = drip(∆) (h•1, ∅, ∅) :: σ•1

Φ2
• = drip(Γ) (h•2, ∅, ∅) :: σ•2

Π• = mate(∆,Γ) (h•3, ∅, ∅) :: dripµ
•
(τ •1 ),

(h•3, ∅, ∅) :: dripκ
•
(τ •2 )

Table 13: Abstract State S◦1,2, where h•1 = λ•, h•2 = β•, h•3 = (ν•, δ•).

Therefore, by applying the rule (Mate◦c), we derive the abstract state S◦1,2. The abstract
reaction step is associated to cause names h•3, and has {h•1, h•2} as the set of immediate
causes, derived as in the concrete case from the immediate causes of the mate and
comate actions. The newly created membrane Π• = mate(∆,Γ) is placed at top level,
i.e. at the same level of the membranes ∆ and Γ. The causes related to cause name h•3
are propagated as in the concrete case.

It is worth discussing in more details the crucial role of the incompatibility relation
rel◦(P •1 ) in the rule (Mate◦c). The information on incompatible pairs of labels is funda-
mental indeed to reduce the loss of information due to the approximation. In particular,
the incompatibility relation is used to determine the configuration of the new membrane
Π•, resulting from the fusion of the two membranes ∆ and Γ.

The membrane Π• inherits all the sequential membrane processes that are compatible
with the label ν• of the mate action, from the configuration describing membrane ∆
(reported in Table 12). Given that (λ•, ν•), (ν•, ν•) ∈ rel◦(P •1 ), the membrane Π• does
not inherit any process from the configuration describing ∆. The incompatibility relation
guarantees that these processes can never run on membrane ∆, in parallel with the mate
action, in any possible execution of the system P1.

Analogously, the membrane Π• does not inherit any process from the configuration
describing Γ (reported in Table 12), since all those processes are incompatible with the
label δ• of the comate action. The incompatibility relation guarantees that these processes
can never be associated to the membrane Γ, in parallel with the comate action, in any
possible execution of the system P1.

As a consequence, the configuration describing the membrane Π• (reported in Ta-
ble 13) contains the sequential processes with causes corresponding to the continuation
of the mate and comate actions, only. In conclusion, due to the use of the incompat-
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ibility relation, the membrane Π• does not acquire the two drip actions as well as the
mate and comate actions from the membranes ∆ and Γ. Note that these actions can
never indeed be associated with the membrane resulting from the mate reaction between
the membrane ∆ and Γ, in any possible execution of the system P1.

4.2. Causal Analysis

The analysis provides: (i) an abstract state describing the possible structure of all
the derivatives of the initial system, and (ii) a description of the set of the possible causal
dependencies between reaction steps. Both kinds of information are derived from the
abstract causal LTS describing the approximate behaviour of the system that we want to
analyse. The abstract state is obtained by considering the l.u.b. of all the abstract states
that can be reached, while the abstract causal dependencies are collected by considering
the causal annotations that decorate the abstract transition steps.

Causal dependencies are formally described by relations in the set of causality rela-
tions, defined as D◦ = ℘(K◦ ×K◦). If the pair (k◦, h◦) belongs to a causality relation,
then the reaction step associated to the abstract cause name k◦ may causally depend
on a reaction step associated to h◦. The set of all the causes associated to a reaction
step can be obtained by transitive closure of the immediate causal relation. Hence,
closure(D◦) stands for the transitive closure of a causality relation D◦ ∈ D◦.

Definition 16 (The Analysis). We define a function A◦ : Sys→ S◦×D◦ such that for

P ∈ Sys with L̃TS◦(P ) = (X◦,−→◦ , αS̃ys(P )), we have A◦(P ) = (S◦, D◦) where

• S◦ = t◦S◦′∈X◦S
◦′ is the abstract state,

• D◦ = closure({(k◦, h◦) | h◦ ∈ H◦, S◦1
k◦;H◦−−−→◦ S◦2 ∈−→◦ })) is the causality relation.

4.2.1. Properties of the Analysis

We show that the analysis of a system is a safe approximation of the concrete causal
behaviour. The main theorem is based on two auxiliary properties.

The first lemma presents the properties of the incompatibility relation, defined in
Table 8. The result states that, for any abstract system with causes P̃ •, any pair of
abstract process labels such that (λ•, µ•) ∈ rel◦(P̃ •), are incompatible in P̃ , and in any
derivative of P̃ .

Lemma 1. Given P̃ ∈ S̃ys, if (λ•, µ•) ∈ rel◦(P̃ •), then two sequential membrane pro-
cesses (K, I,E) :: aλ.τ and (K1, I1, E1) :: bµ.σ do not occur in parallel on the same
membrane, in any P̃ ′ such that P̃ −→∗ P̃ ′.
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The next result relates concrete reduction steps of the causal semantics with ab-
stract transition steps. More precisely, the property relates the reaction steps of a
system with causes P̃1 with the ones of an abstract state S◦1 that safely approximates
P̃1 (αS̃ys(P̃1)v◦S◦1). We have that each reaction step of P̃1 is safely approximated by a
reaction step of S◦1 . In particular, if the concrete reaction step is decorated by the cause
k, and by the set of immediate causes H, then the abstract one is decorated by the
abstract version of k (k•), and by a set of abstract immediate causes H◦ that approxi-
mates H. Formally, for each h ∈ H, it must be the case that h• ∈ H◦ (or, analogously,
H• ⊆ H◦).

Lemma 2. Let P̃1 ∈ S̃ys be a system with causes and let S◦1 ∈ S◦ be an abstract state

such that αS̃ys(P̃1)v◦S◦1 . For each P̃1
k;H−→ P̃2, there exists rel◦(P̃ •) ` S◦1

k•;H◦−−−→◦ S◦2 ,

where αS̃ys(P̃2)v◦S◦2 and H• ⊆ H◦, for each P̃ such that P̃ −→∗ P̃1.

The main theorem shows that the analysis of a system safely approximates its con-
crete causal behaviour, described by the causal LTS. Thus, the result states that: (i)
each derivative of the initial system is safely approximated by the abstract state com-
puted by the analysis; and (ii) each causal dependency arising in the concrete causal
semantics is reflected by a corresponding abstract causal dependency. As in the abstract
case, to capture all causal dependencies, we need to apply the transitive closure of the
immediate causal dependencies. Therefore, closure(D) stands for the transitive closure
of a relation D ∈ ℘(K ×K).

Theorem 3 (Safety). Let P ∈ Sys be a system with L̃TS(P ) = (X,→, P ) and D =

closure({(k, h) | h ∈ H, Q̃1
k;H−→ Q̃2 ∈→ }). If A◦(P ) = (S◦, D◦), then we have:

1. ᾱ(X)v◦S◦;
2. (k•, h•) ∈ D◦ for each (k, h) ∈ D.

The proofs of Lemmata 1 and 2, and that of Theorem 3 can be found in the Appendix A.

4.2.2. Complexity

We discuss the complexity of our approach. As a measure of complexity of our
analysis, we consider the maximal number of steps necessary to reach a fix point of the
computation of A◦(P ), in the worst case. Let P be a well labelled system, let m be the
number of different subprocesses running on the membranes of P (i.e. the number of
different process labels in the system P ), and n be the number of different membrane
labels appearing in P.
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First, we compute an upper bound to the maximal number of different abstract
membrane labels that can be introduced by the analysis. Such upper bound depends on
the chosen depth level d. Since the membrane label constructor mate and bud are binary,
while drip is unary, we have that, for d = 2, the maximal number of abstract membrane
labels is (n+ 2(n2) + n) ≈ O(n2). Similarly, for d = 3, we have (n2 + 2(n2 · n2) + n2) ≈
O(n4) and for d = 4, we have (n4 + 2(n4 · n4) + n4) ≈ O(n8). A further generalisation

allows us to derive that the maximal number of abstract membrane labels is O(n2(d−1)
),

for a given d.
We can now count the number of different abstract causes names that can be gener-

ated. They are m for the unary causes and m2 for binary causes. Therefore, the number
of different abstract causes names that can be generated is O(m2).

Now for each abstract membrane label, in the worst case, our analysis adds (i) one
new abstract label as a child, or, (ii) a new subprocess as a running process, or, (iii)
one new internal or external cause to a subprocess. Note that the immediate cause is
just one and that is univocally determined, when introducing the related subprocess on
the membrane. Hence, in the worst case, the complexity of our analysis amounts to
n2(d−1)

(n2(d−1)
+ m + (m2 + m2 + m) · m) ≈ O(n2d + n2(d−1)

m3). This assures us that
our analysis is polynomial in the number of different membranes and subprocesses of the
analysed system P .

4.3. Our Analysis at work

We now show the application of the analysis to the systems introduced in the exam-
ples in Section 39. Since the analysis safely approximates the causal behaviour (as stated
by Theorem 3), it can be applied to prove that a reaction does not causally depend on
another one.

Example 8. We consider the system presented in Examples 4 and 7,

P1 = dripλ(σ1).mateνn.drip
µ(τ1)LM∆ ◦ dripβ(σ2).mateδn.drip

κ(τ2)LMΓ.

In Example 7, we have illustrated the abstract causal semantics of the system, pre-
senting part of an abstract computation. We recall that the abstract causal semantics
of P1 is calculated starting from the abstract state αS̃ys(P1), which represents the best
approximation of P1 (depicted in Table 11). Furthermore, the abstract inference rules
are applied using the incompatibility relation rel◦(P •1 ), there illustrated.

9We recall that, as in Example 7, we assume that the depth parameter, used to abstract membrane
labels, is d = 3.
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The analysis of P1 is performed as follows. The abstract state is computed by col-
lecting the information on all the abstract states that can be obtained from the abstract
state αS̃ys(P1), by applying the abstract inference rules with respect to rel◦(P •1 ). More-
over, the causality relation is derived by considering the transitive closure of the causal
dependencies, associated to all abstract transition steps.

As a result of the analysis, we have A◦(P1) = (S◦1 , D
◦
1), where

• S◦1 is the abstract state, illustrated in Table 14. For clarity, the membrane hierarchy
described by the second column is also depicted in the tree in Figure 2, where the
nodes represent the membrane labels and the edges represent the inclusion relation.

• D◦1 = closure({(h•3, h•1), (h•3, h
•
2), (h•4, h

•
3)(h•5, h

•
3)}) is the causality relation.

As expected, the abstract state S◦1 safely approximates the abstract states of the ab-
stract computation, described in Example 7, in particular, the abstract states αS̃ys(P1),
S◦1,1 and S◦1,2, illustrated in Tables 11, 12 and 13, respectively. Analogously, the causal-
ity relation D◦1 contains the causal dependencies (h•3, h

•
1) and (h•3, h

•
2), derived from the

causal annotations of the computation illustrated in Example 7.
In addition, the abstract state S◦1 contains the information on the abstract membrane

label Φ•3, introduced by the two drip reactions realised by Π•. We recall that, in the
causal semantics of system (illustrated in Example 4), the execution of the two drip
reactions, realised by Π, introduces two new membrane labels Φ3 = drip(Π, µ) and
Φ4 = drip(Π, κ). The membrane label Φ3 is related to the execution of dripµ(τ1),
while the membrane label Φ4 is related to the execution of dripκ(τ2). In the abstract
setting, due to the abstraction of labels, the membrane labels Φ3 and Φ4 are represented
by the same abstract membrane Φ•3 = drip(Π•). As a consequence, the abstract state S◦1
predicts that the processes τ •1 and τ •2 may be associated to the same membrane Φ•3.

The causality relation D◦1 reports the possible causal dependencies among the reac-
tions steps. Due to the over-approximation this information establishes that

• both the drip reactions, associated to causes h•1 and h•2, do not causally depend on
any other reaction,

• the mate reaction on n, associated to cause h•3, does not causally depend on the
drip reactions associated to causes h•4 and h•5,

• the drip reactions, associated to causes h•4 and h•5, do not causally depend on each
other.
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@

∆ Γ Φ•1 Φ•2 Π• Φ•3

Figure 2: The Membrane Hierarchy Tree of S◦1 .

@ ∆,Γ,Φ•1,Φ
•
2,Π

•,Φ•3
∆ dripλ

•
(σ•1).mateν

•
n .drip

µ•(τ •1 ),
(h•1, ∅, ∅) :: mateν

•
n .drip

µ•(τ •1 )

Γ dripβ
•
(σ•2).mateδ

•

n .drip
κ•(τ •2 ),

(h•2, ∅, ∅) :: mateδ
•

n .drip
κ•(τ •2 )

Φ1
• = drip(∆) (h•1, ∅, ∅) :: σ•1

Φ2
• = drip(Γ) (h•2, ∅, ∅) :: σ•2

Π• = mate(∆,Γ) (h•3, ∅, ∅) :: dripµ
•
(τ •1 ),

(h•3, ∅, ∅) :: dripκ
•
(τ •2 )

Φ•3 = drip(Π•) (h•4, ∅, ∅) :: τ •1 , (h•5, ∅, ∅) :: τ •2

Table 14: Abstract State S◦1 of Example 8, where h•1 = λ•, h•2 = β•, and h•3 =
(ν•, δ•), h•4 = µ•, h•5 = κ•.

In addition, the abstract state described by Table 14 provides information on the
possible hierarchy of membranes, and on the processes that may be associated to each
membrane, as explained in Example 7. This information can be exploited to prove invari-
ant properties that hold in any system with causes that can be reached from the system
P1, as in other related approaches [20, 11, 2, 21]. Here, for instance, we can observe
that the membranes ∆, Γ, Φ1, Π, Φ2 and Φ3 may appear at top level, while they cannot
be included inside any other membrane. Moreover, the membrane Π resulting from the
mate reaction of membranes ∆ and Γ does not include any membrane, but it may have
associated the processes (h3, ∅, ∅) :: dripµ(τ1) and (h3, ∅, ∅) :: dripκ(τ2).

In Example 7, we have discussed the use of the incompatibility relation in the com-
putation of the analysis of P1, in particular in the rule (Mate◦c). Note that, without
this information, the membrane Π• = mate(∆,Γ) would have inherited all the membrane
processes with causes contained in the configurations of membranes ∆ and Γ (described
by the second and third line in Table 14). This would have lead us to predict that the
membrane Π• could realise the two drip reactions, as well as a mate reaction with itself.
As a consequence, an infinite number of membrane labels would be generated. Even if
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such infinite number of membrane labels will be approximated using the parameter d, a
serious loss in precision will be introduced, both on the membrane hierarchy and on the
causality relation.

Example 9. We consider the system introduced in Example 5,

P2 = mateνnLmateµm|mateζoLMΘ ◦ mateβo LMΦM∆ ◦ mateδnLmate
λ
mLMΨMΓ.

In this case the incompatibility relation rel◦(P •2 ) is

rel◦(P •2 ) = {(ν•, ν•), (µ•, µ•), (ζ•, ζ•), (β•, β•), (δ•, δ•), (λ•, λ•)}
The analysis of P2 is computed starting from the initial state that is the best approx-

imation (depicted in Figure 15), using the incompatibility rel◦(P •2 ).

@ ∆,Γ,
∆ Θ,Φ mateν

•
n

Γ Ψ mate
δ•

n

Θ mateµ
•
m , mate

ζ•
o

Φ mate
β•

o

Ψ mate
λ•

m

Table 15: Abstract State αS̃ys(P2).

The result of our analysis for P2 is A◦(P2) = (S◦2 , D
◦
2), where S◦2 is the abstract

state illustrated in Table 16 and D◦2 = {(h•2, h•1)} is the causality relation. As before,
the membrane hierarchy, expressed in the first two columns of state S◦2 , is also depicted
in Figure 3, for clarity. Note that membranes Π◦3 and Π◦4 are introduced by abstract
computations different from the one described in the Example 5, i.e. they abstract the two
alternative computations, in which the mate on o is performed before the mate on m.

The causality relation D◦2 allows us to prove that the mate reaction on n (associated
to cause h•1) and the mate on o (associated to h•3 ) do not causally depend on any other
reaction. Moreover, the mate reaction on m (associated to h•2) does not causally depend
on the mate reaction on o.

Example 10. We consider the system introduced in Example 6,

P3 = mateνn|bud
λ
m(ρ1)LbudµmLMΘ ◦ budζoLMΦM∆ ◦ mateδn|bud

β
o (ρ2)LMΓ.

In this case incompatibility relation rel◦(P •3 ) is
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@

∆

Θ Φ Π◦3

Γ

Ψ

Π•

Θ Φ Ψ Π•1 Π•2 Π◦3 Π◦4

Figure 3: The Membrane Hierarchy Tree of S◦2 .

@ ∆,Γ,Π•

∆ Θ,Φ,Π◦3 mateν
•
n

Γ Ψ mate
δ•

n

Θ (∅, h•1+, ∅) :: mateµ
•
m ,

(∅, h•1+, ∅) :: mateζ
•
o

Φ (∅, h•1+, ∅) :: mateβ
•

o

Ψ (∅, h•1−, ∅) :: mateλ
•

m

Π• = mate(∆,Γ) Θ,Φ,Ψ,Π•1,Π
•
2,Π

◦
3,Π

◦
4

Π•1 = mate(Θ,Ψ) (∅, h•1+, h•2
+) :: mateζ

•
o

Π•2 = mate(Π•1,Φ)
Π◦3 = mate(Θ,Φ) (∅, h•1+, h•3

+) :: mateµ
•
m

Π◦4 = mate(Π◦3,Ψ)

Table 16: Abstract State S◦2 of Example 9, where h•1 = (ν•, δ•), h•2 = (µ•, λ•), and
h•3 = (ζ•, β•).

rel◦(P •3 ) = {(ν•, ν•), (λ•, λ•), (µ•, µ•), (ζ•, ζ•), (δ•, δ•), (β•, β•)}.

The analysis of P3 is computed starting from the initial state that is the best approx-
imation (depicted in Figure 17), using the incompatibility rel◦(P •3 ).
The result of our analysis for P3 is A◦(P3) = (S◦3 , D

◦
3), where S◦3 is the abstract state

illustrated in Table 18 and D◦3 = {(h•2, h•1)} is the causality relation. As before, the
membrane hierarchy, expressed in the first two columns of state S◦3 , is also depicted in
Figure 4, for clarity.

The causality relation D◦3 allows us to prove that the mate reaction on n (associated
to cause name h•1) and the bud reaction on m (associated to h•3) do not causally depend
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@ ∆,Γ

∆ Θ,Φ mateν
•
n , bud

λ•

m (ρ•1)

Γ mate
δ•

n , bud
β•

o (ρ•2)
Θ budµ

•
m

Φ budζ
•
o

Table 17: Abstract State αS̃ys(P3).

on any other reaction. Moreover, the bud reaction on o (associated to h•2) does not
causally depend on the bud reaction on m.

@ ∆,Γ,Π•,Ψ•1,Ψ
•
2,Ψ

◦
3

∆ Θ,Φ mateν
•
n , bud

λ•

m (ρ•1)

Γ mate
δ•

n , bud
β•

o (ρ•2)
Θ (∅, h•1+, ∅) :: budµ

•
m

Φ (∅, h•1+, ∅) :: budζ
•
o

Π• = mate(∆,Γ) Θ,Φ (∅, ∅, h•1−) :: bud
β•

o (ρ•2),

(∅, ∅, h•1+) :: bud
λ•

m (ρ•1)
Ψ•1 = bud(Φ,Π•) Φ (h•2, ∅, ∅) :: ρ•2
Ψ•2 = bud(Θ,Π•) Θ (h•3, ∅, ∅) :: ρ•1
Ψ◦3 = bud(∆,Θ) Θ (h•3, ∅, ∅) :: ρ•1

Table 18: Abstract State S◦3 of Example 10, where h•1 = (ν•, δ•), h•2 = (ζ•, β•), and
h•3 = (µ•, λ•).

Impact of a different choice of depth parameter We now briefly discuss what
would happen, if we chose d = 2 as maximal depth of a membrane label. In this case, we
would have a unique abstract label, say Ψ◦ = bud(>,>), for describing both the abstract
membrane labelled Ψ•1 and Ψ•2, obtained by the previous analysis. Therefore, the lines
for Ψ•1 and Ψ•2 should be replaced by the following single line:

Ψ◦ Φ, Θ (h•2, ∅, ∅) :: ρ•2, (h•3, ∅, ∅) :: ρ•1

As a consequence, this would introduce an approximation in the description of the topol-
ogy of the systems. For instance, according to the analysis, the membrane processes ρ•1
and ρ•2 could run in parallel on the same membrane, even though this behaviour does not
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@

∆ Γ Π• Ψ•1 Ψ•2 Ψ◦3

Θ Φ Θ Φ Φ Θ Θ

Figure 4: The Membrane Hierarchy Tree of S◦3 .

correspond to any concrete behaviour. On the contrary, in this case, we would obtain
the same causality information, i.e. the same set of causal dependencies D◦3.

The previous examples show that our analysis is able to capture the possible causal
dependencies in a very precise way. For all these systems indeed, the causality relation
reported by the analysis exactly contains the causal dependencies that may arise in the
dynamic behaviour (illustrated in Examples 4, 5 and 6). This precision could not have
been obtained without using the incompatibility relation in the inference rule (Mate◦c).
As far as the system of Example 4 is concerned, the role of the incompatibility relation is
widely discussed in Examples 7 and 8. Similar considerations also hold for the analysis
of the other systems of Examples 5 and 6. Hence, our approach is able to handle all
kinds of causality that may appear in MBD, included the critical environment causality.

5. Biological Applications

We illustrate our approach by applying it to the MDB specification of the process
known as receptor-mediated endocytosis, a very general mechanism that allows living
cells to transport specific substances (ligands) from the external environment to the
cytoplasm.

The general process, depicted in Figure 5, consists of various steps and involves the
formation of vesicles. The first step occurs on the outer side of the cell membrane and
is represented by the binding between the ligands and a set of specialised molecules
(receptors) embedded in the cell membrane. The formation of the ligand-receptor com-
plex (LR) triggers further events close to the inner side of the cell membrane: first, one
molecule of the AP-2 complex binds to each LR complex, thus allowing the binding with
a protein called Clathrin. These molecules elicit the invagination of the part of the cell
membrane that resides close to the receptors, and eventually leads to the formation of
a vesicle, which contains the LR complex and is coated by an external layer of AP-2
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Figure 5: The Receptor-mediated Endocytosis.

and Clathrin molecules. This vesicle moves along the cytoplasm towards other vesicles
(Endosomes). Finally, the vesicle coalesces with the Endosome (fusion) immediately
after the dissociation of the external AP-2-Clathrin coat (uncoating).

We model, in particular, the process used by cells to acquire additional Low Density
Lipoprotein (LDL, or “bad”) cholesterol, by removing it from the bloodstream. There-
fore, our ligand is given by LDL particles. We also provide a pathological version of the
process, which arises in the presence of the genetic disorder called Familial Hypercholes-
terolemia. Our analysis provides a safe over-approximation of the causal behaviour of
both versions of the process, giving some insights on the biological phenomenon under
investigation. In this example, we consider d = 7 as the maximal depth of abstract
membrane labels. Our analysis results can be exploited to prove when a reaction step
does not causally depend on another one.
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As expected, we model compartments and multi-protein complexes as membranes,
and we render chemical reactions, by exploiting the membrane fusion and splitting
primitives of MDB calculus. For simplicity, we do not explicitly model the binding
process between AP2 and Clathrin, but we directly specify the AP-2-Clathrin complex
behaviour. The corresponding causality dependencies are not crucial and can be left
out. Alternatively, we could have used a sequential process to subdivide the binding in
steps.

Anyway, we choose to give an abstract model of the pathway: in particular, we
abstract on the bind & release operations of molecules on membrane surfaces. For a
more faithful model of the LDL Degradation pathway, see the one presented in [27],
where the full calculus is exploited, with recursion in place of replication.

The system that models the previously described receptor-mediated endocytosis, in
absence of diseases, is specified as follows:

P = Ligand|Cell
Ligand = mateνlig−recLmate

µ
receptLMΘM∆

Cell = mate
δ
lig−rec.τ1|bud

λ
ligand(ρ1)LReceptor ◦ Ap2-Clathrin ◦ EndosomeMΓ

Receptor = mate
β
recept.mate

η
ap2−clathrinLbudθap2−clathrinLMΞMΣ

Ap2-Clathrin = mateςap2−clathrin|bud
ξ
ap2−clathrin(mateκfree).mate

π
endoLMΩ

Endosome = mate
ζ
free.mate

ε
endo.τ2LMΥ.

The system describes a pathway, i.e. a sequence of reactions, that have to take place
in order for the cell to bind with the early endosomes. More in details, the first mate
interaction (on the actions mateνlig−rec and mate

δ
lig−rec), between the Ligand and Cell

membranes, leads to the first binding between the ligands and a set of receptors, located
in the cell, driven by the second mate interaction (on mate

µ
recept and mate

β
recept). At this

point, the action bud
λ
ligand(ρ1) is associated to the newly created membrane. This action

models the possibility that the binding between the Ligand and Receptor is not stable,
thus allowing Ligand to unbind from the Cell. Note that the instability does never
occur in absence of diseases. Therefore, in this model, the newly created membrane
can only perform a bud interaction (on budθap2−clathrin and bud

ξ
ap2−clathrin(mateκfree)) be-

tween the membranes Ap2-Clathrin and Receptor, by producing the Clathrin-coated
vesicle. Finally, we have two additional mate interactions. The first one (on mateκfree

and mate
ζ
free) models the uncoating of the external AP-2-Clathrin coat, while the second

one (on mateπendo and mate
ε
endo) models the vesicle coalescence with the Endosome.

The analysis of P is described by the causality relation

D◦1 = closure({(h•2, h•1), (h•3, h
•
2), (h•4, h

•
3), (h•5, h

•
4), (h•6, h

•
5)})
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and by the abstract state S◦1 shown in Table 19.
Information on the possible causality dependencies of the pathway can be inferred

from the causal dependencies in D◦1. In particular, we have that the reaction associated
to the cause name h•1 does not depend on any other reaction. Moreover, the analysis
shows that the reaction associated to h•2 may depend only on the reaction associated
to h•1. Therefore, the binding leading to the ligand-receptor complex does not depend
on any other reactions. Similarly, the binding of the ligand-receptor complex with the
complex AP2-Clathrin (reaction associated to h•3) does not depend on actions such as
the production of the Clathrin-coated vesicle (associated to h•4), the dissociation of the
external AP2-Clathrin coat, the so called uncoating (associated to h•5), or the coalescing
with the Endosome (associated to h•6). The production of the Clathrin-coated vesicle
(associated to h•4) does not depend on the dissociation of the external AP2-Clathrin coat
(associated to h•5) or on the coalescing with the Endosome (associated to h•6). Finally,
the dissociation of the external AP2-Clathrin coat (associated to h•5) is not causally
dependent from the fusion with the Endosome (associated to h•6). It is worth noting
that the previously described causal dependencies are fully coherent with the pathway
structure of the system P .

We now present a pathological version of the above process that models the effects
of the hereditary disorder called Familial Hypercholesterolemia. This disorder is due to
a genetic defect in the LDL receptor proteins that makes it difficult to remove LDL from
the blood, thus increasing the risk of cardiovascular disease. In this case, the receptor
is not longer able to form a stable binding with the ligand.

We model this phenomenon by introducing a defective receptor, called DefReceptor,
which allows the ligand to unbind after binding. The new system P ′ extends P , by
introducing the membrane DefReceptor inside the membrane Cell′, a revised version
of the membrane Cell of system P . Hence, system P ′ now models two alternative
behaviours: the healthy one and the ill one. More precisely, such kinds of behaviour
are modelled using two pathways that become alternative after the binding between the
Ligand and the Cell. Indeed, either the Ligand binds with a healthy Receptor, and
it evolves into the sequence of reactions already discussed for system P , or the Ligand
binds with a DefReceptor and the newly created binding between Cell and Ligand is
undone, by letting the Ligand exit from the Cell.
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@ ∆,Γ,Π◦

∆ Θ mateν
•
lig−rec

Γ Σ,Ω,Υ mateδ
•

lig−rec.τ
•
1 , bud

λ•

ligand(ρ
•
1)

Θ (∅, h•1+, ∅) :: mateµ
•

recept

Σ Ξ (∅, h•1−, ∅) :: mateβ
•

recept.mate
η•

ap2−clathrin

Ω
(∅, h•1−, ∅) :: mateς

•

ap2−clathrin,

(∅, h•1−, ∅) :: bud
ξ•

ap2−clathrin(mateκ
•
free).mate

π•
endo

Υ (∅, h•1−, ∅) :: mateζ
•

free.mate
ε•

endo.τ
•
2

Ξ (∅, {h•2−, h•3−, h•5+}, ∅) :: budθ
•
ap2−clathrin

Π◦ = mate(∆,Γ)
Θ,Σ,Ω,Υ,Π◦1,
Π◦2,Φ

◦,Π◦3,Π
◦
4

(h•1, ∅, ∅) :: τ•1 , (∅, ∅, h•1−) :: bud
λ•

ligand(ρ
•
1)

Π◦1 = mate(Θ,Σ) Ξ (h•2, h
•
1
−, ∅) :: mateη

•

ap2−clathrin

Π◦2 = mate(Ω,Π◦1) Ξ
(∅, h•1−, h•3+) :: bud

ξ•

ap2−clathrin(mateκ
•
free).mate

π•
endo

(h•5, h
•
1
−, h•3

+) :: mateπ
•
endo

Φ◦ = bud(Ξ,Π◦2) Ξ (h•4, h
•
1
−, ∅) :: mateκ

•
free

Π◦3 = mate(Φ◦,Υ) (h•5, h
•
1
−, ∅) :: mateε

•

endo.τ
•
2

Π◦4 = mate(Π◦2,Π
◦
3) (h•6, h

•
1
−, ∅) :: τ•2

Table 19: Abstract State S◦1 , where h•1 = (ν•, δ•), h•2 = (µ•, β•), h•3 = (ς•, η•), h•4 =
(θ•, ξ•), h•5 = (κ•, ζ•), and h•6 = (ε•, π•).

P ′ = Ligand|Cell′
Ligand = mateνlig−recLmate

µ
receptLMΘM∆

Cell′ = mate
δ
lig−rec.τ1|bud

λ
ligand(ρ1)LReceptor ◦ Ap2-Clathrin ◦ Endosome ◦ DefReceptorMΓ

Receptor = mate
β
recept.mate

η
ap2−clathrinLbudθap2−clathrinLMΞMΣ

DefReceptor = mate
σ
recept.bud

ι
ligandLMΛ

Ap2-Clathrin = mateςap2−clathrin|bud
ξ
ap2−clathrin(mateκfree).mate

π
endoLMΩ

Endosome = mate
ζ
free.mate

ε
endo.τ2LMΥ.

The analysis of the system P ′ is described by the causality relation

D◦2 = closure({(h•2, h•1), (h•3, h
•
2), (h•4, h

•
3), (h•5, h

•
4), (h•6, h

•
5), (h•7, h

•
1), (h•8, h

•
7)}),

and by the abstract state S◦2 , depicted in Table 20. Besides the causality dependencies of
the original system P , the analysis includes the possible causal dependencies introduced
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by the binding with a defective receptor. The causal dependencies in D◦2 guarantee that
the binding of the ligand-receptor complex with the complex AP2-Clathrin (reaction
associated to cause name h•3) the production of the Clathrin-coated vesicle (associated
to h•4), the dissociation of the external AP2-Clathrin coat (associated to h•5), and, finally,
the coalescing with the Endosome (associated to h•6) do not depend on the binding
between the ligand and the defective receptor (associated to h•7), and on the exit of
the ligand from the cell (associated to h•8) and vice versa. Note that this results are
totally coherent with the fact that two pathways are alternative: if the binding between
ligand and receptor is not stable, the receptor-mediated endocytosis cannot be completed
successfully.

@ ∆,Γ,Π◦

∆ Θ mateν
•
lig−rec

Γ Σ,Ω,Υ,Λ mateδ
•

lig−rec.τ
•
1 , bud

λ•

ligand(ρ
•
1)

Θ (∅, h•1+, ∅) :: mateµ
•

recept

Σ Ξ (∅, h•1−, ∅) :: mateβ
•

recept.mate
η•

ap2−clathrin

Ω
(∅, h•1−, ∅) :: mateς

•

ap2−clathrin,

(∅, h•1−, ∅) :: bud
ξ•

ap2−clathrin(mateκ
•
free).mate

π•
endo

Υ (∅, h•1−, ∅) :: mateζ
•

free.mate
ε•

endo.τ
•
2

Λ (∅, h•1−, ∅) :: mateσ
•

recept.bud
ι•
ligand

Ξ (∅, {h•2−, h•3−, h•5+}, ∅) :: budθ
•
ap2−clathrin

Π◦ = mate(∆,Γ)
Θ,Σ,Ω,Υ,Π◦1,Π

◦
2,

Φ◦,Π◦3,Π
◦
4,Π

◦
5,Φ

◦
1

(h•1, ∅, ∅) :: τ•1 , (∅, ∅, h•1−) :: bud
λ•

ligand(ρ
•
1)

Π◦1 = mate(Θ,Σ) Ξ (h•2, h
•
1
−, ∅) :: mateη

•

ap2−clathrin

Π◦2 = mate(Ω,Π◦1) Ξ
(∅, h•1−, h•3+) :: bud

ξ•

ap2−clathrin(mateκ
•
free).mate

π•
endo

(h•4, h
•
1
−, h•3

+) :: mateπ
•
endo

Φ◦ = bud(Ξ,Π◦2) Ξ (h•4, h
•
1
−, ∅) :: mateκ

•
free

Π◦3 = mate(Φ◦,Υ) (h•5, h
•
1
−, ∅) :: mateε

•

endo.τ
•
2

Π◦4 = mate(Π◦2,Π3) (h•6, h
•
1
−, ∅) :: τ•2

Π◦5 = mate(Θ,Λ) (h•7, h
•
1
−, ∅) :: budι

•
ligand

Φ◦1 = bud(Π◦5,Π) Π◦5 (h•8, ∅, ∅) :: ρ•1

Table 20: Abstract State S◦1 , where h•1 = (ν•, δ•), h•2 = (µ•, β•), h•3 = (ς•, η•), h•4 =
(θ•, ξ•), h•5 = (κ•, ζ•), h•6 = (ε•, π•), h•7 = (µ•, σ•), h•8 = (ι•, λ•).

The whole LDL Degradation pathway, expressed in BioAmbients [26], is statically
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analysed also in [24, 23]. The contextual Control Flow Analysis in [24] describes the
possible hierarchies of the nested ambient, but it is not able to capture causal information
about the sequential order of transitions. Instead, in [23], an additional flow sensitive
pathway analysis is able to safely approximate the set of possibly infinite sequential
behaviours that occur at run-time. As a consequence, the analysis can indirectly capture
some causality aspects in the setting of the LDL Degradation pathway. More precisely,
the analysis can state which reactions cannot arise.

6. Conclusions

Developing abstract models to reason about complex biological systems is one of the
main tasks of System Biology. Explicitly including causality in these models can con-
tribute to better understand the relationships among the different activities occurring
in biological systems. The causal semantics in [6] for the MBD part of Brane Calculi [7]
meets this need, but leads to quite big causal transition systems, computationally de-
manding to explore. Our Abstract Interpretation-based analysis for approximating the
causal semantics in [6] cuts the computational cost of dynamic investigation: its com-
plexity is indeed polynomial.

Our static analysis can be used to efficiently predict the causal dependencies among
membranes interactions and, therefore, to understand the causal behaviour of the anal-
ysed systems. Because of over-approximation, the analysis introduces some imprecision,
but on the safe side. It can never happen that a causal dependency arises, at run time,
between two reaction steps, if the analysis does not report it. As a consequence, the
analysis can be applied to show that a reaction step does not depend on another one.

Our abstraction is able to reflect all the kinds of causality (discussed in [6]) that
may arise in MBD, included the environment causality, which is peculiar of the mem-
brane interactions. Any membrane fusion is indeed able to modify the environment of
membranes (and their hierarchy), and to cause further interactions not possible before
the fusion. We have applied our analysis to the simple systems presented in [6], which
model critical situations from a causality point of view. The causal dependencies re-
ported by the analysis of these systems turned out to be very precise with respect to
the dynamic ones. We have also applied our approach to an MBD specification of the
receptor-mediated endocytosis mechanism.

The main novelty of our approach is that the abstraction techniques are applied
to the causal semantics of [6], rather than to the standard interleaving semantics. As
a consequence, the possible causal dependencies are directly obtained by collecting the
immediate causal transition relation, for any abstract computation. Therefore, our anal-
ysis is more efficient with respect to the alternative approaches relying on the definition
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of an abstract transition system, as the ones for Bioambients presented in [12, 13, 23].
Other related analysis techniques ([20, 11, 2, 21]) provide relevant information on the
structure of the configurations that can be reached, but they do not directly capture
causality aspects.

We plan to apply our approach to other biological case studies in which causality
can help in identifying chains of causally related interactions. Furthermore, our static
analysis can be exploited to study static causal properties, and, therefore, to obtain
useful insights on membrane interactions. In future work, we also intend to extend
our causal analysis to the full Brane calculus [7]. Finally, there are other biologically-
oriented calculi potentially of interest for our approach, such as an extension [17] of
κ-calculus [10], the Calculus of Looping Sequences [1], and Beta Binders [25], whose
causality issues have been addressed in [15].
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Appendix A. Appendix: the Formal Proofs

Proof of Theorem 2. We have to prove that the pair of functions (ᾱ, γ̄) of Definition 14
is a Galois connection.

• ᾱ : ℘(S̃ys)→ S◦ and γ̄ : S◦ → ℘(S̃ys) are obviously monotone.
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• for each X ∈ ℘(S̃ys), we have to prove that γ̄(ᾱ(X)) ⊇ X. We have ᾱ(X) =⊔◦
P̃∈XαS̃ys(P̃ ) and, therefore, γ̄(ᾱ(X)) = {P̃ | αS̃ys(P̃ )v◦

⊔◦
P̃∈XαS̃ys(P̃ )}. We recall

that
⊔◦ stands for the least upper bound on the S◦ domain. Hence, for each

P̃ ∈ X, we have that αS̃ys(P̃ )v◦
⊔◦
P̃∈XαS̃ys(P̃ ). We can then conclude that X ⊆

γ̄(ᾱ(X)).

• for S◦ ∈ S◦, we have to prove that ᾱ(γ̄(S◦))v◦S◦. We have γ̄(S◦) = {P̃ |
αS̃ys(P̃ )v◦S◦}, and, therefore, ᾱ(γ̄(S◦)) =

⊔◦
{P̃ |α

S̃ys
(P̃ )v◦S◦}αS̃ys(P̃ ).

Now it can be easily seen that
⊔◦
{P̃ |α

S̃ys
(P̃ )v◦S◦}αS̃ys(P̃ )v◦S◦, because, by definition,⊔◦ is the least upper bound on S◦.

Proof of Lemma 1. We prove it by induction on the number of transition steps necessary
to obtain P̃ ′ from system P̃ , i.e. P̃ −→n P̃ ′.

(n = 0.) Assume, by contradiction, that there exists a (λ•, µ•) ∈ rel◦(P̃ •) such that the
two sequential processes labelled λ and µ run in parallel on the same membrane
of P̃ . By definition of rel◦, there are two cases:

• λ• = µ•. We have two further cases: either (i) a process labelled λ was
under the scope of a replication operator in P̃ or, (ii) a process labelled
λ was not under the scope of a replication operator in P̃ . In case (i), by
definition, ocP̃ •(λ

•) = ω since λ• occurs under the scope of a replication
operator. This leads to a contradiction, because the pair (λ•, µ•) is introduced
in rel◦(P̃ •) if and only if ocP̃ •(λ

•) = 1. In case (ii) we assume that the
processes (K, I,E) :: aλ.τ and (K1, I1, E1) :: bµ.σ run in parallel in P̃ . Also
in this case, by definition, ocP̃ •(λ

•) must be ω because P̃ • contains at least
two processes labelled λ•. This leads to a contradiction, because the pair
(λ•, µ•) is introduced in rel◦(P̃ •) if and only if ocP̃ •(λ

•) = 1.

• λ• 6= µ•. In this case, we have a process with causes (K, I,E) :: aλ.τ in P̃ . By
definition, (λ•, µ•) ∈ rel◦(P̃ •) if and only if µ• ∈ lab(τ •), ocP̃ •(µ

•) = 1 and
ocP̃ •(λ

•) = 1. From µ• ∈ lab(τ •), we have that λ• and µ• belong to the same
sequential process. We have a contradiction because there are at least two
processes labelled µ• in P̃ •: one in τ •, and the other one (we have assumed)
running in parallel with (K, I,E) :: aλ

•
.τ . This allows us to conclude that if

(λ•, µ•) ∈ rel◦(P̃ •), then there are not processes labelled µ• that can run in
parallel with the process labelled λ•.
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(n > 0.) We assume that the claim holds for a process P̃ ′ obtained in n transition steps

from P̃ , i.e. P̃ −→n P̃ ′ and we prove it for P̃ ′′ such that P̃ ′
k;H−→ P̃ ′′. Note that the

only rule that deserves our attention is the Rule (Matec) in Table 5, since this is the
only rule that enriches the number of processes running in parallel on a membrane.
More precisely, the Rule (Matec) allows processes that run on the two membranes
that are going to fuse, to run together in parallel on the same newly created
membrane, as a result of the fusion. Without loss of generality, we assume that
the membranes that are going to perform the fusion occur at top level and that the
system is P̃ ′ = ((K1, I1, E1) :: mateπn.σ)|σ̃0LP̃ M∆ ◦ ((K2, I2, E2) :: mateψn .τ)|τ̃0LQ̃MΓ

and P̃ ′′ = ((k, I1, E1) . σ)|(∅, ∅, k+) . σ̃0)|((k, I2, E2) . τ)|((∅, ∅, k−) . τ̃0)L(∅, k+, ∅) .
P̃ ◦ (∅, k−, ∅) . Q̃MΨm . Note that since no other membranes of the system would
be involved by the application of the Rule (Matec), our simplification does not
impact on the result.

We have to prove that it cannot be the case that if (λ•, µ•) ∈ rel◦(P̃ •), then the two
sequential processes (K3, I3, E3) :: aλ.τ1 and (K4, I4, E4) :: bµ.σ1 occur in parallel on
the membrane. Since, by induction, the claim holds for the process P̃ ′, the case we
have to prove is the one in which (K3, I3, E3) :: aλ.τ1 and (K4, I4, E4) :: bµ.σ1 run in
parallel on the same membrane Ψm and, more in details, when τ̃0 = (K3, I3, E3) ::
aλ.τ1 or ((k, I2, E2) . τ) = (K3, I3, E3) :: aλ.τ1 and σ̃0 = (K4, I4, E4) :: bµ.σ1 or
((k, I1, E1) . σ) = (K4, I4, E4) :: bµ.σ1, or vice versa. Now, we first assume that
τ̃0 = (K3, I3, E3) :: aλ.τ1. Note that this leads to a contradiction, because, by
definition (λ•, µ•) ∈ rel◦(P̃ •) if and only if µ• ∈ lab(τ •1 ), ocP̃ •(µ

•) = 1 and
ocP̃ •(λ

•) = 1. Hence, in this case, we have that there exists a process labelled µ•

as subprocess of τ1. This leads to a contradiction, since ocP̃ •(µ
•) = 1. This allows

us to conclude that no process labelled µ• can be a subprocess of the sequential
process σ1 or σ, as it was initially assumed. A similar reasoning allows us to
exclude the case where ((k, I2, E2) . τ) = (K3, I3, E3) :: aλ.τ1.

This concludes the proof.

Proof of Lemma 2. The prooof is by cases depending on the rule applied to obtain the

transition P̃1
k;H−→ P̃2.

(Matec) In this case there exists a membrane Σ of P̃1 that encloses the two parallel
membranes Γ and ∆. More precisely, Σ contains ((K1, I1, E1) :: mateλn.σ)|σ̃0LP̃ M∆◦
((K2, I2, E2) :: mateµn.τ)|τ̃0LQ̃MΓ. By applying the Rule (Matec) in Table 5, we
obtain a system P̃2, where, instead of Γ and ∆ in Σ, there is the newly created
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membrane Ψm = mate(∆,Γ, λ, µ), obtained as follows ((k, I1, E1) . σ)|((∅, ∅, k+) .
σ̃0)|((k, I2, E2).τ)|((∅, ∅, k−). τ̃0)L(∅, k+, ∅). P̃ ◦ (∅, k−, ∅).Q̃MΨm . More in details,

by applying the Rule (Matec), P̃1
k;H−→ P̃2 with k = (λ, µ), H = K1 ∪ K2 ∪ (I1⊗I2)

and Ψm = mate(∆,Γ, λ, µ).

We now want to prove that we can “mimic” this transition step in the abstract
setting, starting from the state S◦1 , and using the abstract version of the (Matec),
i.e. Rule (Mate◦c) in Table 9.

Since S◦1 is such that αS̃ys(P̃1)v◦S◦1 , by definition of αS̃ys(P̃1), and by definition of
the order v◦, we can be sure that Σ• ∈ parent(S◦1 ,∆•)∩parent(S◦1 ,Γ•). Moreover,
S◦1(∆•) = (M1

◦, C◦1), S◦1(Γ•) = (M◦
2 , C

◦
2), (K◦1 , I

◦
1 , E

◦
1) :: mateλ

•
n .σ

• ∈ C◦1 , and

(K◦2 , I
◦
2 , E

◦
2) :: mate

µ•

n .τ
• ∈ C◦2 with K•1 ⊆ K◦1 , I

•
1 ⊆ I◦1 , E

•
1 ⊆ E◦1 , and K•2 ⊆

K◦2 , I
•
2 ⊆ I◦2 , E

•
2 ⊆ E◦2 . Consider now any P̃ such that P̃

k1;H1−→ P̃1 and let us
apply (Mate◦c) to S◦1 with respect to rel◦(P •). First note that such transition
Mate◦c is decorated with (λ•, µ•);K◦1 ∪ K◦2 ∪ (I◦1 ⊗ I◦2 ). Moreover, note that
k = (λ, µ). Hence, we have that k• = (λ•, µ•), and, also, since K•i ⊆ K◦i , I

•
i ⊆ I◦i

and E•i ⊆ E◦i for i ∈ {1, 2}, by motonicity of the ⊗ operator, we have that
(K1 ∪K2 ∪ (I1 ⊗ I2))• ⊆ K•1 ∪K•2 ∪ (I•1 ⊗ I•2 ) ⊆ K◦1 ∪K◦2 ∪ (I◦1 ⊗ I◦2 ). Therefore,

we can conclude that rel◦(P̃ •) ` S◦1
k•;H◦−−−→◦ S◦2 , with H• ⊆ H◦. We now have to

relate P̃2 and S◦2 , as required by the claim of the theorem.

By definition of Rule (Mate◦c), we know that S◦2 is as follows

S◦1 t◦ {(Σ•, ({Ψ◦}, ∅))} t◦ {(Ψ◦, (M◦
1 ∪M◦

2 , C
◦))} t◦

(∅, k•+, ∅) .S (M◦
1 , S

◦
1) t◦ (∅, k•−, ∅) .S (M◦

2 , S
◦
1)

where k• = (λ•, µ•) and

Ψ◦ = mate(∆•,Γ•) if mate(∆•,Γ•) ∈ L̂ab
d

M, Ψ◦ = mate(>,>), otherwise,

C◦ = t◦((k•, I◦1 , E
◦
1) . σ•) tC (∅, ∅, k•+) .C comp(rel

◦(P̃ •), λ•, C◦1) tC
t◦((k•, I◦2 , E

◦
2) . τ •) tC (∅, ∅, k•−) .C comp(rel

◦(P̃ •), µ•, C◦2).

We are then left to prove that αS̃ys(P̃2)v◦S◦2 . Let us call N1 the membrane labels
occurring at top level inside membrane ∆, and N2 the membrane labels occurring
at top level inside membrane Γ in P̃1. Let
P̃3 = (k, I1, E1) . σ)|((∅, ∅, k+) . σ̃0)|((k, I2, E2) . τ)|((∅, ∅, k−) . τ̃0)L(∅, k+, ∅) . P̃ ◦
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(∅, k−, ∅) . Q̃MΨm . Since, by hypothesis, αS̃ys(P̃1)v◦S◦1 , we have,

αS̃ys(P̃2) v◦ S◦1 t◦t◦(Σ•, P̃ •3 )

v◦ S◦1t◦{(Σ•, ({Ψ•m}, ∅))}t◦{(Ψ•m, (N•1 ∪N•2 , C ′
◦))}t◦⊔◦

∆◦n∈N•1
t◦((∅, k•+, ∅) . σ̃nLP̃nM∆◦n)

⊔◦
Γ◦n∈N•2

t◦((∅, k•−, ∅) . τ̃nLQ̃nMΓ◦n)

where C ′◦ = t◦(((k•, I•1 , E
•
1).σ•)|((∅, ∅, k•+).σ̃•0)|((k•, I•2 , E•2).τ •)|((∅, ∅, k•−).τ̃ •0 )),

Note that Ψ•m = mate(∆,Γ, λ, µ)• = Ψ◦. Moreover, since αS̃ys(P̃1)v◦S◦1 , N•1 ⊆M◦
1

and N•2 ⊆M◦
2 . Hence, by definition of v◦, we have that

αS̃ys(P̃2) v◦ S◦1t◦{(Σ•, ({Ψ◦}, ∅))}t◦{(Ψ◦, (M◦
1 ∪M◦

2 , C
′◦))}⊔

∆◦n∈M◦1
{(∆◦n, (∅, (∅, k•+, ∅) .C C◦1))| S◦1(∆◦n) = (M◦

3 , C
◦
1)}⊔◦

Γ◦n∈M◦2
{(Γ◦n, (∅, (∅, k•−, ∅) .C C◦2))| S◦1(Γ◦n) = (M◦

4 , C
◦
2)}

= S◦1t◦{(Σ•, ({Ψ◦}, ∅))}t◦{(Ψ◦, (M◦
1 ∪M◦

2 , C
′◦))}

t◦(∅, k•+, ∅) .S (M◦
1 , S

◦
1) t◦ (∅, k•−, ∅) .S (M◦

2 , S
◦
1)

Note that last equality holds by definition of the .S operator.

We are now left to prove that C ′◦ vC C◦. Recall that, on the one hand, we have
that

C◦ = t◦((k•, I◦1 , E
◦
1) . σ•) tC (∅, ∅, k•+) .C comp(rel

◦(P̃ •), λ•, C◦1)

tCt◦((k•, I◦2 , E◦2) . τ •) tC (∅, ∅, k•−) .C comp(rel
◦(P̃ •), µ•, C◦2).

On the other hand, we have that

C ′◦ = t◦(((k•, I•1 , E
•
1) . σ•)|((∅, ∅, k•+) . σ̃•0)|((k•, I•2 , E•2) . τ •)|((∅, ∅, k•−) . τ̃ •0 ))

= t◦((k•, I•1 , E
•
1) . σ•) tC t◦((∅, ∅, k•+) . σ̃•0)

tCt◦((k•, I•2 , E•2) . τ •) tC t◦((∅, ∅, k•−) . τ̃ •0 )

Since I•i ⊆ I◦i and E•i ⊆ E◦i for i ∈ {1, 2}, we have that t◦(((k•, I•1 , E
•
1) . σ•) vC

t◦((k•, I◦1 , E
◦
1) . σ•) and t◦((k•, I•2 , E

•
2) . τ •) vC t◦((k•, I◦2 , E◦2) . τ •). The last step

consists in proving that t◦((∅, ∅, k•+) . σ̃•0) vC (∅, ∅, k•+) .C comp(R
◦, λ•, C◦1) and,

analogously, t◦((∅, ∅, k•−) . τ̃ •0 ) vC (∅, ∅, k•−) .C comp(R
◦, µ•, C◦2). It is worth

noting that t◦(σ̃•0) vC C◦1 . Note that, by Theorem 1, if (ξ•, ν•) ∈ rel◦(P̃ •), then
the two sequential processes labelled ξ and ν cannot run in parallel (on the same
membrane) P̃1. This is because, by hypothesis, P̃1 is a derivative of P̃ . Hence,
by definition of comp, t◦(σ̃•0) vC comp(rel◦(P̃ •), λ•, C◦1). Moreover, by definition
of .C , t◦((∅, ∅, k•+) . σ̃•0) vC (∅, ∅, k•+).Ccomp(rel

◦(P̃ •), λ•, C◦1). With the same
argument, we show that t◦((∅, ∅, k•−).τ̃ •0 ) vC (∅, ∅, k•−).C comp(rel

◦(P̃ •), µ•, C◦2).
Since tC is the least upper bound, we can conclude that C ′◦ vC C◦.
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(Budc) In this case there exists a membrane Σ of P̃1 that encloses a membrane Γ ob-
tained as follows ((K1, I1, E1) :: bud

µ
n(ρ).τ)|τ̃0L((K2, I2, E2) ::budλn.σ)|σ̃0LP̃ M∆◦Q̃ MΓ.

By applying the Rule (Budc) in Table 5, we obtain a system P̃2, where, the mem-
branes inside Σ are modified as follows: ((k, I1, ∅).ρ)L ((k, I2, E2).σ)|σ̃0LP̃ M∆ MΨb ◦
((k, I1, E1) . τ)|τ̃0LQ̃MΓ. More in details, by applying the Rule (Budc), P̃1

k;H−→ P̃2

with k = (λ, µ), H = K1 ∪ K2 ∪ (E1 ⊗ I2) and Ψb = bud(∆,Γ, λ, µ).

We now want to prove that we can “mimic” this transition step in the abstract
setting, starting from the state S◦1 of the claim, and by using the abstract version
of the Rule (Budc), i.e. the Rule (Bud◦c) in Table 10.

Since S◦1 is such that αS̃ys(P̃1)v◦S◦1 , by definition of αS̃ys(P̃1), and by definition of
the order v◦, we can be sure that Σ• ∈ parent(S◦1 ,Γ•),Γ• ∈ parent(S◦1 ,∆•),
S◦1(Γ•) = (M1

◦, C◦1), S◦1(∆•) = (M◦
2 , C

◦
2),

(K◦1 , I
◦
1 , E

◦
1) :: bud

µ•

n (ρ•).τ • ∈ C◦1 ,
(K◦2 , I

◦
2 , E

◦
2) :: budλ

•
n .σ

• ∈ C◦2
with K•1 ⊆ K◦1 , I

•
1 ⊆ I◦1 , E

•
1 ⊆ E◦1 and K•2 ⊆ K◦2 , I

•
2 ⊆ I◦2 , E

•
2 ⊆ E◦2 .

Consider now any P̃ such that P̃
k1;H1−→ P̃1 and let us apply (Bud◦c) to S◦1 w.r.t.

rel◦(P •).

First, note that such transition Bud◦c is decorated with (λ•, µ•);K◦1 ∪ K◦2 ∪ (E◦1⊗
I◦2 ). Furthermore, note that k = (λ, µ), and, hence, k• = (λ•, µ•). Moreover, since
K•i ⊆ K◦i , I

•
i ⊆ I◦i , and E•i ⊆ E◦i for i ∈ {1, 2}, by motonicity of the ⊗ operator,

we have that (K1 ∪K2 ∪ (E1 ⊗ I2))• ⊆ K•1 ∪K•2 ∪(E•1⊗I•2 ) ⊆ K◦1 ∪K◦2 ∪(E◦1⊗I◦2 ).

Hence, we can conclude that rel◦(P̃ •) ` S◦1
k•;H◦−−−→◦ S◦2 with H• ⊆ H◦. We now

have to relate P̃2 and S◦2 as required by the claim of the theorem.

By definition of Rule (Bud◦c), we know that S◦2 is as follows

S◦1 t◦ {(Σ•, ({Ψ◦}, ∅))} t◦ {(Ψ◦, (∆•, t◦((k•, I◦1 , ∅) . ρ•)))} t◦
{(∆•, (∅, t◦((k•, I◦2 , E◦2) . σ•)))} t◦ {(Γ•, (∅, t◦((k•, I◦1 , E◦1) . τ •)))}

where k• = (λ•, µ•) and

Ψ◦ = bud(∆•,Γ•) if bud(∆•,Γ•) ∈ L̂ab
d

M,Ψ
◦ = bud(>,>), otherwise.

We are then left to prove that αS̃ys(P̃2)v◦S◦2 . Let

P̃3 = ((k, I1, ∅) . ρ)L ((k, I2, E2) . σ)|σ̃0LP̃ M∆ MΨb ◦ ((k, I1, E1) . τ)|τ̃0LQ̃MΓ.
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Since, by hypothesis, αS̃ys(P̃1)v◦S◦1 , we have that

αS̃ys(P̃2) v◦
S◦1 t◦{(Σ•, ({Ψ•b}, ∅))} t◦ {(Ψ•b , (∆•, t◦((k•, I•1 , ∅) . ρ•)))}t◦
{(∆•, (∅, t◦((k•, I•2 , E•2) . σ•)))} t◦ {(Γ•, (∅, t◦((k•, I•1 , E•1) . τ •)))}

Note that Ψ•b = bud(∆,Γ, λ, µ)• = (∆•,Γ•) = Ψ◦. Moreover, since I•i ⊆ I◦i and
E•i ⊆ E◦i , for i ∈ {1, 2}, we can conclude that

αS̃ys(P̃2) v◦
S◦1 t◦{(Σ•, ({Ψ◦}, ∅))} t◦ {(Ψ◦, (∆•, t◦((k•, I◦1 , ∅) . ρ•)))} t◦
{(∆•, (∅, t◦((k•, I◦2 , E◦2) . σ•)))} t◦
{(Γ•, (∅, t◦((k•, I◦1 , E◦1) . τ •)))}
v◦S◦2 .

(Dripc) In this case, the proof can easily be obtained from the one for Budc.

Proof of Theorem 3. The proof is obtained by reasoning by induction on the number
of transition steps necessary to obtain P ′ from P , i.e. P −→n P ′ with P ′ ∈ X, by
applying Lemma 2, to relate each concrete transition step of the causal semantics to its
corresponding abstract one. Then, we apply Definition 14 and 16, to obtain the claim.
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