
Under consideration for publication in Math. Struct. in Comp. Science

cJoin: Join with communicating transactions†

R O B E R T O B R U N I1, H E R N Á N M E L G R A T T I2 and U G O M O N T A N A R I1

1 Dipartimento di Informatica, Università di Pisa
Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
Email: {ugo,bruni}@di.unipi.it
2 Departamento de Computación, FCEyN, Universidad de Buenos Aires - CONICET
Pabellón I, Ciudad Universitaria, (C1428EGA) Buenos Aires, Argentina
Email: hmelgra@dc.uba.ar

Received 18 January 2011; Revised 28 October 2011

This paper proposes a formal approach to the design and programming of Long Running

Transactions (lrt). We exploit techniques from process calculi to define cJoin, which is

an extension of the Join calculus with few well-disciplined primitives for lrt.

Transactions in cJoin are intended to describe the transactional interaction of several

partners, under the assumption that any partner executing a transaction may

communicate only with other transactional partners. In such case, the transactions run

by any party are bound to achieve the same outcome (i.e., all succeed or all fail). Hence,

a distinguishing feature of cJoin, called dynamic joinability, is that ongoing transactions

can be merged to complete their tasks and when this happens either all succeed or all

abort. Additionally, cJoin is based on compensations, i.e., partial executions of

transactions are recovered by executing user-defined programs instead of providing

automatic roll-back. The expressiveness and generality of cJoin is demonstrated by many

examples addressing common programming patterns. The mathematical foundation is

accompanied by a prototype language implementation, which is an extension of the

JoCaml compiler.

Contents

1 Introduction 2

2 Preliminaries 7

2.1 The Chemical Abstract Machine 7

2.2 The Join calculus 8

3 Committed Join 11

3.1 Operational Semantics 12

3.2 Flat transactions 16

† Research supported by the EU FET-GC2 IST-2004-16004 Integrated Project Sensoria, the Italian

MIUR Project IPODS (PRIN 2008), the ANPCyT Project BID-PICT-2008-00319, and the UBACyT

Project 20020090300122.

R. Bruni, H. Melgratti and U. Montanari 2

3.3 Properties of Flat cJoin typing 19

4 Programming common transactional patterns in cJoin 21

4.1 Multi-step Transactions: Trip Booking 21

4.2 Multi-way transactions: Trip Booking Revisited 23

4.3 Speculative Computation 25

5 Language implementation 27

6 t-JoCaml 33

6.1 JoCaml 33

6.2 Transactions for JoCaml 34

7 Big-Step Semantics and Serializability 35

8 Related Work and Concluding Remarks 40

8.1 Language Comparison 42

References 46

Appendix A Correctness and completeness of the implementation 49

A.1 Correctness, part 1 49

A.2 Completeness 50

Appendix B Formal definition of Coor 52

1. Introduction

The ultimate goal of Service Oriented Architecture (SOA) is to make it possible to

develop new components and applications (now services) just by assembling existing

ones. Many recent efforts, strongly pushed by large industrial consortia, have given birth

to several (proposals for) programming/description languages tailored to the specifica-

tion of web service integration, generally known as web service composition languages

(wscl), like xlang (Thatte, 2001), wsfl (Leymann, 2001), ws-bpel (BPEL, 2003),

ws-cdl (WSCDL, 2004), wsci (WSCI, 2002) and bpmn (BPMN, 2010). wscls address

aggregation by following two complementary approaches:

— Orchestration: A composite service consists essentially of a unique program (usually

known as orchestrator) that coordinates the execution of all components, while in-

volved services are neither aware of the fact they are taking part in a larger process

nor of its structure and goal. The application logic of a composite service relies on

the orchestrator, which is responsible for interacting with (i.e., invoking) all involved

components in the right order. For this reason, orchestration is appropriate for speci-

fying intra-organisation (or private) processes, whose application details may be com-

pletely known and whose execution may be coordinated in a centralised way. Typical

orchestration languages are xlang, wsfl, and (executable processes of) ws-bpel

and bpmn.

— Choreography: Choreographies do not rely on a centralised coordinator since they are

intended to facilitate the integration of business processes that spawn over different

organisations. In this context, services are aware of the interaction protocol that un-

derlies their composition, and thus of the way in which they should interact. For this

reason, choreography languages allow for and focus on the definition of protocols that

cJoin: Join with communicating transactions 3

parties should follow in order to achieve a common goal. There are two main ap-

proaches to define choreographies: (i) the global model, in which a protocol describes

from a global perspective the messages exchanged by the parties, and (ii) the inter-

action model in which each service describes the temporal and logical dependencies

among the messages it exchanges, i.e., a kind of interface definition. ws-cdl adopts

the global model style, while wsci and abstract processes of ws-bpel are instances

of the interaction model.

A common aspect considered by both orchestration and choreography styles is related

to long running transactions (lrt), i.e., the possibility of executing some parts of a

composed service atomically. Nevertheless, atomicity does not imply here the usual “all-

or-nothing” property of database transactions, because perfect roll-back is unlikely in

case of a fault. For example, the sending of a message cannot be undone. Consequently,

lrts often rely on a weaker notion of atomicity based on compensations. Compensations

are ad hoc, user-programmed activities to be run when recovering from partial executions

of lrts arising after a fault or interruption because successful completion is no longer

possible. For example, if some information has been sent and it is not longer valid after

the fault, then a second message can be sent to the recipient.

Since most industrial standards lack rigourous foundations, many efforts have been

spent to provide a formal basis to reason about lrts in composition languages. As far as

the orchestration of lrt is concerned, the first proposal that appeared in the literature is

(to the best of our knowledge) StAC (Butler et al., 2002; Butler and Ferreira, 2004), which

enriches an imperative language with primitives for installing, activating and removing

compensations. After StAC, proposals such as (Butler et al., 2005b; Bruni et al., 2005;

Bruni et al., 2011) have provided formal semantics for compensation languages, whose

primitives are closer to real orchestration languages (see e.g. (Eisentraut and Spieler,

2009)).

A different line of research focuses on the formal definition of lrts for interaction-based

choreographies (Bocchi et al., 2003; Bruni et al., 2004; Lucchi and Mazzara, 2004; Laneve

and Zavattaro, 2005; Caires et al., 2009; de Vries et al., 2010). Typically, such research

thread consists of extending well-assessed mobile calculi with ad hoc constructs tailored

to transactions and compensations. The enriched calculi exploit the communication prim-

itives provided by, e.g., π-calculus (Milner et al., 1992) and join-calculus (Fournet et al.,

1996), to model communication among parties. Hence, a composed service is described

by a set of processes, any of them defining a particular partner of the complete system. In

this way, any party declares the interface for proper composition with other partners. In

this respect, transactional processes in those calculi are the formal counterpart of wsci

interfaces or bpel abstract processes. Nevertheless, transactional calculi go beyond the

scope of being just declarative definitions of service interfaces. In fact, they are aimed at

providing an operational characterisation for business processes.

Consider the typical scenario in which a user books a room through a hotel reservation

service. The ideal protocol followed by the two parties can be sketched as follow, by using

an informal π-calculus-like notation:

R. Bruni, H. Melgratti and U. Montanari 4

Client ≡ request!(data).offer?(price).accept!(cc)

Hotel ≡ request?(details).offer !(rate).accept?(card)

We write a!(v) for the sending of the message v on the communication channel a, and

a?(x) for receiving on the variable x some message sent on the channel a. The prefix

symbol “ . ” must not be confused with the usual dot-notation from object-oriented

language: it is used to establish the order in which actions must be executed. The client

starts by sending a booking request to the hotel, which answers it with a rate offer.

After receiving the offer, the client accepts it. This is the ideal protocol both parties

should follow in order to accomplish the common goal. Nevertheless, there are several

situations in which parties may be forced/inclined not to complete the execution of

the protocol (e.g., the hotel has no available rooms for the requested day, or the client

does not obtain acceptable rates). Clearly, just stopping the execution of the protocol

may be not acceptable in most of the cases. Compensable transactions are designed to

handle this kind of situations. In addition to the usual primitives of name passing calculi,

transactional calculi provide a new kind of terms, generally of the form [P : Q], involving:

(i) a process P that is required to be executed until completion and (ii) the corresponding

compensation Q to be executed in case P cannot complete successfully. Moreover, the

cancellation of the transaction can be handled by making P reach a special process,

usually denoted by abort . For example, when the hotel is unable to proceed with the

order, it may abort the transaction and use the compensation to suggest an alternative

hotel to the client (e.g., by sending the message alt!(hotel)). Then, the description of the

protocol could be improved as follow

Client ≡ [request!(data).offer?(price).(accept!(cc) + abort) : alt?(h).Q]

Hotel ≡ [request?(details).(offer !(rate).accept?(card) + abort) : alt!(hotel)]

The above protocol allows also the client to abort the transaction after receiving an

offer (for instance when the offer does not satisfy her expectations). Alternatively, the

hotel may abort after receiving a request (for instance when no rooms are available).

Clearly, more sophisticated protocols may be written to allow clients and hotels to abort

at any moment. We illustrate the use of compensations by making the component Hotel

generate the single message alt!(hotel) to provide the client with the information of an

alternative hotel to contact running Q. More concretely, hotel could be a tuple of channel

names request ′, offer ′, accept ′ to contact another hotel and Q could be just a recursive

instance of Client parametric on such channels.

Proposals in the literature differ mainly in the kinds of interactions allowed across

transaction boundaries and the effects associated with the handshaking. Roughly, on one

side of the design option we have completely permeable transactional scopes (as in πt-

calculus (Bocchi et al., 2003)), where messages may freely cross transactional boundaries.

For instance, a possible computation for the protocol can be described as follows

cJoin: Join with communicating transactions 5

Client|Hotel → [offer?(price).(accept!(cc) + abort) : alt?(h).Q]

| [offer !(rate).accept?(card) + abort : alt!(hotel)]

→ [(accept!(cc) + abort) : alt?(h).Q] | [accept?(card) : alt!(hotel)]

→ [0 : alt?(h).Q] | [0 : alt!(hotel)]

→ 0

Messages in the above computation flows freely from one transaction to the others.

The main drawback of such approach is that transactional scopes does not ensure all

interacting transactions to reach the same result, i.e., some of them may commit even

though others have failed. For instance, consider a client executing the following protocol

Client′ ≡ [request!(data).offer?(price).(accept!(cc)|abort) : alt?(h).Q]

Analogously to the previous case, there is a computation leading the system to the

following state

Client′|Hotel→∗ [(accept!(cc)|abort) : alt?(h).Q] | [accept?(card) : alt!(hotel)]

Then the system may evolve to

Client′|Hotel→∗ [abort : alt?(h).Q] | [0 : alt!(hotel)]

At this point one transaction (that one from the client) can only abort by releasing the

compensation Q, while the other (the hotel party) can only commit. Hence, the hotel

has reserved a room that the client is not willing to book. It is true that we can write

a different compensation for the client that contains the code needed for making the

hotel cancel the reservation. For example, graceful termination mechanisms for closing

dyadic sessions have been studied in (Boreale et al., 2008) and can be likely reused for

transactions. Nevertheless, from our point of view, the fact that involved participants

have no guaranties about the final outcome of the remaining transactional participants

provides too weak a transactional mechanism for handling many common situations.

Although stronger transactional properties may be ensured by programming ad hoc co-

ordination code through compensations, suitable transactional primitives should relieve

programmers from writing such kind of code.

In this paper we present Committed Join (cJoin), a calculus designed to ensure that all

participants of the same transaction reach the same agreed outcome. This is achieved by

making interacting transactional processes become part of the same larger transaction.

The cJoin is an extension of the Join calculus (Fournet and Gonthier, 1996), which is

a process calculus with asynchronous name-passing communication. We based our ap-

proach on the Join calculus rather than on other more popular process calculi, such as

the π-calculus, because Join adheres to a locality principle that guarantees that extruded

names cannot be used in input by the process who received them (they can only output

values on such ports). This feature is crucial for deploying distributed implementations

and it is not enforced in the full π-calculus. Moreover, it allows to obtain precise charac-

terisations of transaction termination and atomic joining of multiple transactions, which

are missing from most alternative proposals in the literature. Another advantage is that

R. Bruni, H. Melgratti and U. Montanari 6

the operational semantics rules are quite simple and compact when compared to other

transactional calculi.

The process Client′|Hotel behaves in cJoin as follows. When both transactions commu-

nicate through the port request for the first time they are merged in a unique larger

transaction, whose transactional process and compensation correspond respectively to

the parallel composition of the residuals of the original transactions and to the parallel

composition of the original compensations, as shown below

Client′|Hotel → [offer?(price).(accept!(cc) | abort)

| (offer !(rate).accept?(card) + abort) : alt?(h).Q | alt!(hotel)]

From this moment on, the system may evolve as usual. In particular, assuming the hotel

sends an offer (1) and the client sends the confirmation (2), the system moves as follows

→ [accept!(cc) | abort | accept?(card) : alt?(h).Q | alt!(hotel)] (1)

→ [abort : alt?(h).Q | alt!(hotel)] (2)

In this case both original transactions are bound together and none of them has al-

ready committed, therefore the abort condition reached by the client causes the hotel

transaction to be compensated as well. In this way, transactional scopes of cJoin ensure

that all parties of a transaction commit (resp. abort) only when all other parties com-

mit (resp. abort), although each party is responsible for defining its own compensation.

Note that the transactional primitive in cJoin relieves programmers from coding proto-

cols needed to agree on a common result for a distributed transaction, while leaving to

the programmer the responsibility for defining suitable compensations to recover aborted

transactions. Though no automatic roll-back mechanism is provided, it is obvious that

restoring the initial process upon the abort can be straightforwardly programmed by

recursive definitions like P ≡ [Q : P], easy to implement in cJoin syntax.

Another important issue addressed in this paper is transaction serializability. Not to be

confused with object serializability, it is a way for ensuring the correctness of reasoning

at different levels of abstractions, in which transactions become atomic reductions when

seen at the abstract level. Let us consider a set of n transactions {Ti | 1 ≤ i ≤ n}, each

consisting of several activities to be carried out. Their concurrent execution T1 || . . . || Tn
can interleave the activities from different transactions and it is said to be serializable

if there exists a sequence Ti1 ; Ti2 ; . . . ;Tin that executes all transactions one at a time

(without interleaving their steps) and produces the same result (Bernstein et al., 1987).

More generally, in the case of nested transactions, each Ti could involve recursively several

sub-transactions Ti,1, ..., Ti,n1
among the activities to be carried out, whose execution

is possibly interleaved with those of other transactions and of their sub-transactions.

Serializability is important because it allows to reason about the behaviour of a system

by considering one transaction at a time, at any given level of nesting. Transaction

serializability is generally difficult to achieve in other proposals where communication is

allowed across transactions. Here we show that, for a large class of cJoin processes, called

shallow processes, serializability is guaranteed by construction because if two separately

initiated transactions interact, then their scopes are merged together as part of the same

transaction, i.e. after merge they cannot commit or abort independently.

cJoin: Join with communicating transactions 7

For the prototype implementation of cJoin we rely on available distributed imple-

mentation of Join. In fact, the primitives of Join have been exploited in the design of

Jocaml (Conchon and Le Fessant, 1999), an extension of the Objective Caml, a func-

tional language with support of object-oriented and imperative paradigms, and Poly-

phonic C# (Benton et al., 2002) (later Cω) that extends C# with asynchronous methods

and synchronisation patterns, called chords. We take advantage of this fact for extending

JoCaml with transactional primitives. The resulting language, called transactional Jo-

Caml (t-JoCaml), adds to JoCaml the possibility of writing programs that should execute

as compensable transactions in the style of cJoin transactions.

Paper Outline. After introducing some preliminaries (Section 2) we give the syntax

and semantics of cJoin (Section 3) and describe several examples illustrating the main

features of cJoin (Section 4). By exploiting the strategy used for implementing cJoin

transactions in Join itself, as summarised in Section 5, in Section 6 we describe t-JoCaml

as an extension of JoCaml. We remark that t-JoCaml actually implements a sub-calculus

of cJoin (called flat) in which transactions cannot be nested (see Section 3.2). Section 6.2.2

describes the corresponding extension of the JoCaml compiler we have realised. Section 7

shows how transaction serializability can be achieved in cJoin. To conclude we compare

our proposal against several approaches appeared in the literature and we present some

final remarks (Section 8).

Preliminary studies on cJoin have been presented at IFIP-TCS 2004–IFIP 18th World

Computer Congress, 3rd International Conference on Theoretical Computer Science, and

COMETA 2003–Workshop of the COMETA Project on Computational Metamodels, af-

ter which several other proposals of transactional process calculi emerged in the litera-

ture. Yet the features of cJoin remained quite peculiar and this work integrates previous

studies with new perspectives in the area of service-oriented programming and business

processes, most notably the well-disciplined use of compensations.

2. Preliminaries

In this section we report on the operational semantics of the Join calculus as a chemical

abstract machine, by following the presentation of (Fournet and Gonthier, 1996).

2.1. The Chemical Abstract Machine

The semantics of the Join calculus relies on the reflexive chemical abstract machine

(cham). In a cham (Berry and Boudol, 1992) computation states S (called solutions) are

finite multisets of terms m (called molecules), and computations are multiset rewrites.

Multisets are denoted by m1, . . . ,mn and abbreviated with ⊕i mi. Solutions can be

structured in a hierarchical way by using the operator membrane {[·]} to group a solution

S into a molecule {[S]}. (In (Berry and Boudol, 1992) molecules can be built also with

the constructor airlock, but it is not needed in our presentation.)

Transformations are described by a set of chemical rules, which specify how solutions

react. In a cham there are two different kinds of chemical rules: heating / cooling rules

S � S′ representing syntactical rearrangements of molecules in a solution, and reac-

R. Bruni, H. Melgratti and U. Montanari 8

(reaction law)

m1, . . . ,mk → m′
1, . . . ,m

′
l ∈ set of cham rules

m1σ, . . . ,mkσ → m′
1σ, . . . ,m

′
lσ

(chemical law)

S → S′

S, S′′ → S′, S′′

(membrane law)

S → S′

{[S]} → {[S′]}

Figure 1. cham laws.

tion rules S → S′. Heating / cooling rules are analogous to the axioms for structural

congruence in process calculi, and thus called also structural rules. Structural rules are

reversible: a solution obtained by applying a cooling rule can be heated back to the orig-

inal state, and vice versa. Reaction rules, on the other hand, cannot be undone. Rules

can carry formal parameters to be matched against actual parameters in the redex and

substituted in the right-hand side.

The laws governing cham computations are in Figure 1 (we give them for reaction

rules, but they are applicable to heating / cooling rules as well):

— Reaction law: Given a rule, an instance of its left-hand-side can be replaced by the

corresponding instance of the right-hand-side. The substitution σ replaces the formal

parameters with the actual parameters by matching the solution against the left-hand

side of the rule.

— Chemical law: Reactions can be applied in every larger solution

— Membrane Law: Reactions may occur at any level in the hierarchy of solutions

Note that cham’s heating / cooling / reaction rules have no premises and are purely

local. They specify only the part of the solution that actually changes. Moreover, since

solutions are multisets, not overlapping rules can be applied concurrently.

2.2. The Join calculus

The Join calculus relies on an infinite set of names x, y, u, v, Name tuples are written

~u. Join processes, definitions and patterns are in Figure 2(a). A process is either the inert

process 0, the asynchronous emission x〈~y〉 of message ~y on port x, the process def D in P

equipped with local ports defined by D, or a parallel composition of processes P |Q. A

definition is a conjunction of elementary reactions J . P that associate join-patterns J

with guarded processes P . Names defined by D in def D in P are bound in P and in all

the guarded processes contained in D. The sets of defined names dn, received names rn

and free names fn are in Figure 2(b).

Example 1. Consider the processesQ = def proxy〈y〉.server〈proxy , y〉 in proxy〈a〉 and

P = server〈proxy , b〉|Q. Roughly, Q defines a local port proxy such that when a message

on proxy arrives with any content y then the name proxy is extruded on (the elsewhere

defined, free port) server together with y. Intuitively, the “local proxy” forwards to the

“public server” each message tagged with its “origin” (i.e., the name of the proxy). The

initial state of Q carries a message on proxy whose content is a. The process P places

Q in a context that includes a message to port server with content 〈proxy , b〉. Then,

fn(Q) = {server , a} and fn(P) = {server , a, b, proxy}. Therefore the name server has

common meaning in P and Q, while the symbol proxy denotes, by accident, different

cJoin: Join with communicating transactions 9

(proc) P,Q ::= 0 | x〈~y〉 | def D in P | P |Q
(def) D,E ::= J . P | D ∧ E
(pat) J,K ::= x〈~y〉 | J |K

(a) Syntax

(Free)

fn(0) = ∅ fn(x〈~y〉) = {x} ∪ {~y}
fn(def D in P) = (fn(P) ∪ fn(D))\dn(D) fn(P |Q) = fn(P) ∪ fn(Q)

fn(J . P) = dn(J) ∪ (fn(P)\rn(J)) fn(D ∧ E) = fn(D) ∪ fn(E)

(Defined)

dn(J . P) = dn(J) dn(D ∧ E) = dn(D) ∪ dn(E)

dn(x〈~y〉) = {x} dn(J |K) = dn(J) ∪ dn(K)

(Received)

rn(x〈~y〉) = {~y} rn(J |K) = rn(J) ∪ rn(K)
(b) Free, Defined and Received names

(str-null) 0�
(str-join) P | Q� P,Q

(str-and) D ∧ E � D,E

(str-def) def D in P � Dσdn(D), Pσdn(D) (range(σdn(D)) globally fresh)

(red) J . P, Jσ → J . P, Pσ
(c) Semantics

Figure 2. Join Calculus.

ports in server〈proxy , b〉 and Q: a free (elsewhere defined) port in the former and a

private port in the latter. Moreover, letting D = proxy〈y〉 . server〈proxy , y〉, we have

fn(D) = {proxy , server}, dn(D) = {proxy} and rn(D) = {y}.

The semantics of the Join calculus relies on the reflexive cham. It is called reflexive

because active reaction rules are represented by molecules present in solutions, which are

activated dynamically. Molecules, generated by m ::= P | D, correspond to terms

of the Join calculus denoting processes or definitions. The chemical rules are shown in

Figure 2(c). Rule str-null states that 0 can be added or removed from any solution.

Rules str-join and str-and implies the associativity and commutativity of | and ∧,

because , is such. str-def denotes the activation of a local definition, which imple-

ments a static scoping discipline by properly renaming defined ports by globally fresh

names. A name x is fresh w.r.t. a process P (resp. a definition D) if x 6∈ fn(P) (resp.

x 6∈ fn(D)). Moreover, x is fresh w.r.t. a solution s if it is fresh w.r.t. every term in

s. A set of names X is fresh if every name in X is such. We write the substitution of

names x1 . . . xn by names y1 . . . yn as σ = {y1...yn/x1...xn
}, with dom(σ) = {x1, . . . , xn}

and range(σ) = {y1, . . . , yn}. We indicate with σN an injective substitution σ such that

dom(σ) = N . When we require names to be globally fresh, we mean that they must be

different from all other names appearing in the enclosing context.

R. Bruni, H. Melgratti and U. Montanari 10

Example 2. Consider the process P in the previous example. A solution s containing

only P , i.e., s = {[P]}, may be heated as follows. First, the two parallel agents are

separated by obtaining {[server〈proxy , b〉,def proxy〈y〉 . server〈proxy , y〉 in proxy〈a〉]}.
Now the second molecule contains a definition of a local port proxy that is different

from the homonymous free port proxy in the first molecule server〈proxy , b〉. Hence, when

using str-def for separating the local definition from the corresponding process, the

local definition of proxy must be renamed by using a fresh name, say proxy1, obtaining

the solution s′ = {[server〈proxy〉, proxy1〈y〉 . server〈proxy1, y〉, proxy1〈a〉]}.

Finally, red describes the use of an active reaction rule (J . P) to consume messages

forming an instance of J (for a suitable substitution σ, with dom(σ) = rn(J)), and

produce a new instance Pσ of its guarded process P .

Example 3. By applying rule (red) to the solution s′ from Example 2 for σ = {a/y},
we get s′ → {[server〈proxy , b〉, proxy1〈y〉.server〈proxy1, y〉, server〈proxy1, a〉]}. Note that

the local port proxy1 has been extruded on the free channel server .

Remark 2.1. For π-calculus enthusiasts, the Join calculus can be easily grasped by con-

sidering the main differences enforced by the syntax, namely: (i) like in the asynchronous

π-calculus, only output particles are allowed, not output prefixes; (ii) input prefixes are

encoded as definitions and joint inputs are allowed (i.e. more than one message can be

consumed atomically); (iii) all definitions are persistent, as if they were prefixed by the

replication operator; (iv) the definition construct def D in P is also binding all defined

names in D to ensure the unique receptor property and favour distributed implementa-

tion (names can still be extruded, but the processes that receive them can only output

on them); (v) the programming style is continuation passing, in the sense that output

prefixes can be encoded by including in the message a fresh continuation name k where

the acknowledge of the receipt must be sent to activate the output-prefixed process. For

example, the process P from Example 1 can be understood as the π-calculus process

s〈p, b〉 | (νp)(pa | !p(y).s〈p, y〉), where for brevity initial letters of port names are used.

We shall write P ≡ Q when P �∗ R, for�∗ the reflexive and transitive closure of the

relation �. Moreover, we abuse the notation by allowing one step reductions up to ≡,

i.e. writing P → Q when P �∗→�∗ Q. We write P →n Q for n ≥ 0 if there exist n+ 1

processes P0, ..., Pn such that P ≡ P0 → P1 → ... → Pn−1 → Pn ≡ Q. Finally, we write

P →∗ Q if P →n Q for some n.

Note that by exploiting heating and cooling rules, it is always possible to move def-

initions around, possibly after some remaining of their defined ports. In particular, we

remark that def D in P ≡ P |def D in 0 whenever fn(P) ∩ dn(D) = ∅ and further-

more that (def D1 in P1)|(def D2 in P2) ≡ def D1 in (P1|def D2 in P2) ≡ def D1 ∧
D2 in (P1|P2) if dn(D1) ∩ (dn(D2) ∪ fn(P2)) = dn(D2) ∩ (dn(D1) ∪ fn(P1)) = ∅.

In Sections 3 and 4, where several examples of cJoin processes are given, we shall use

the following syntactic sugar for the case where different decisions can be taken after

receiving a certain message tuple: we write J . P +Q in place of J . P ∧ J . Q.

cJoin: Join with communicating transactions 11

(mess) M,N ::= 0 | x〈~y〉 | M |N
(proc) P,Q ::= M | def D in P | P |Q | [P : Q] | abort

(def) D,E ::= J . P | D ∧ E | J I P
(pat) J,K ::= x〈~y〉 | J |K

Figure 3. Syntax of cJoin.

3. Committed Join

In order to handle lrts we extend the syntax of the Join calculus as shown in Figure 3. For

convenience we introduce the syntactical category M of processes without definitions, i.e.,

a parallel composition of messages. In addition to cJoin processes, we add terms [P : Q] to

denote transactions, where P is the transactional process and Q is its compensation, i.e.,

the process to be executed when P aborts. A transactional process is executed in isolation

until reaching either a commit state or an abort condition. If P commits, the obtained

result is delivered to the outside of the transaction. Otherwise, the compensation Q is

activated. The abort decision is caused by the presence of the special basic process abort .

A new kind of definitions J I P , called merge definitions, is introduced to specify the

possible interactions among transactions (inter-transaction communication). Merge defi-

nitions allow the consumption of messages produced in the scope of different transactions

by joining all participants in a unique larger lrt. Note that all ongoing transactions that

want to merge are treated uniformly: they will issue a request to J I P by producing

an instance of a particle in J and when a full instance Jσ can be formed out of those

particles all the transactions containing those particles are merged. Thus J I P acts as

some kind of message board where merge advertises are posted by transactions. This is

different w.r.t. an “asymmetric” merge discipline, where one message in a transaction is

received by an input running in a different transaction causing the merge. In fact, this

kind of permeability of transaction scopes is not allowed in cJoin. Moreover, cJoin defi-

nitions can be used to create transactions dynamically. For instance, by firing J . [P : Q]

a new instance of the transaction P with compensation Q is activated. Perfect roll-back

can thus be programmed just by writing definitions like J . [P : J]. In fact, if an instance

Jσ of J is consumed to produce [Pσ : Jσ] such that Pσ will abort, then the original

messages Jσ are restored as a compensation. Notably, when two or more of such transac-

tions are merged into a unique transaction, then the overall compensation becomes just

the parallel composition of their perfect roll-backs.

The sets of defined names dn, received names rn and free names fn are defined in

Figure 4. In particular, we distinguish between defined ordinary names dno(D) and

defined merge names dnm(D) that, as a general well-formedness discipline, are always

assumed to be disjoint sets of names.

R. Bruni, H. Melgratti and U. Montanari 12

(proc)

fn(0) = ∅ fn(x〈~y〉) = {x} ∪ {~y}
fn(P |Q) = fn(P) ∪ fn(Q) fn(abort) = ∅

fn(def D in P) = (fn(P) ∪ fn(D))\dn(D) fn([P : Q]) = fn(P) ∪ fn(Q)

(def)

fn(J . P) = dn(J) ∪ (fn(P)\rn(J)) fn(D ∧ E) = fn(D) ∪ fn(E)

fn(J I P) = dn(J) ∪ (fn(P)\rn(J))

dno(J . P) = dn(J) dno(D ∧ E) = dno(D) ∪ dno(E)

dno(J I P) = ∅

dnm(J . P) = ∅ dnm(D ∧ E) = dnm(D) ∪ dnm(E)

dnm(J I P) = dn(J)

(pat)

rn(x〈~y〉) = {~y} rn(J |K) = rn(J) ∪ rn(K)

dn(x〈~y〉) = {x} dn(J |K) = dn(J) ∪ dn(K)

Figure 4. Free, defined and received names.

3.1. Operational Semantics

The operational semantics of cJoin is given in the reflexive cham style. Molecules m and

solutions S for cJoin are as follow

m ::= P | D | xPy | {[S]}
S ::= m | m,S

Processes and definitions are molecules. Terms xQy denote compensations, i.e., frozen

processes to be activated only when the corresponding transaction aborts. Molecules {[S]}
stands for running transactions.

The chemical rules for cJoin are given in Figure 5. The first five chemical rules are

the ordinary ones for Join. Rule (str-trans) states that a term denoting a transaction

corresponds to a sub-solution consisting of two molecules: the transactional process P

and its compensation Q, which is frozen (the operator x.y forbids the enclosed process

to compute because there is no rule for applying reductions inside it).

A transaction can commit only when all internal computations have finished. This

situation can be characterised as the special pattern {[M |def D in 0, xQy]}, comprising

some messages M , the definition D for computing inside the transaction and the so-far

installed compensation Q. Since the scope of D is the nil process, it is evident that at

commit time, private definitions of the transactional process can be discarded, because

neither the messages that are being released contain those names nor they could have

been extruded previously. On the other hand, if defined names of D were present in

some of the messages inside the transaction, then the transactional activity would not

yet be complete and the commit would not take place. When a transaction commit (rule

(commit)), the local resources M produced inside a transaction are released as outcome.

After commit, its compensation procedure xQy is useless and it is discarded as well.

cJoin: Join with communicating transactions 13

The abortion of a transaction is handled by the rule (Abort), which releases Q when-

ever abort is present in the solution.

Interactions among transactions are dealt with (merge), where we let the notation

ΠiJi and ΠiQi denote, respectively, the parallel composition of messages J1|...|Jn and

the parallel composition of processes Q1|...|Qn. We also recall that the notation ⊗imi

denotes multisets of molecules and solutions. The rule (merge) consumes messages from

different transactions and creates a larger transaction by combining the definitions and

messages of the original ones with a new instance of the guarded process Pσ, where

dom(σ) = rn(J1| . . . |Jn). Name clashes are avoided because we assume that str-def

generates globally fresh names. The compensation for the joint transaction is the parallel

composition of all the original compensations.

The rule (merge) is quite general, as it can be used to join atomically an unbounded

number of ongoing transactions. To help the understanding, we show a few particular

instances of the rule (merge), which will be used frequently in the rest of this paper.

The first case is that of a trivial merge, where a unique transaction is involved. It is

interesting to show it just to clarify that rule (merge) can be applied without merging

transactions. This kind of merge rules works as global definitions that can be used in any

transaction of the system.

(triv-merge)

(x〈y〉 I P), {[x〈v〉, S, xQy]} → (x〈y〉 I P), {[S, P{v/y}, xQy]}

The second case is that of a two-way merge, which will be very useful in our examples.

(two-merge)

(x1〈y1〉|x2〈y2〉 I P),

{[x1〈v1〉, S1, xQ1y]},
{[x2〈v2〉, S2, xQ2y]}

→ (x1〈y1〉|x2〈y2〉 I P), {[S1, S2, P{v1,v2/y1,y2}, xQ1|Q2y]}

Note that, as a degenerate case of rule (two-merge) we also have:

(two-merge-deg)

(x1〈y1〉|x2〈y2〉 I P),

{[x1〈v1〉, x2〈v2〉, S, xQy]}
→ (x1〈y1〉|x2〈y2〉 I P), {[S, P{v1,v2/y1,y2

}, xQy]}

The following proposition states that Join is a sub-calculus of Join.

Proposition 3.1. Join is a sub-calculus of cJoin.

Proof. It is obvious from the syntax that any Join process is also a cJoin process. It

remains to show that: (1) for any Join processes P and Q, if P → Q in Join, then P → Q

in cJoin; and (2) for any Join processes P , if P → Q in cJoin, then Q is a Join process and

P → Q in Join. Both implications follow straightforwardly from the fact that the chemical

rules of cJoin can be partitioned in two sets: one consisting exactly of the chemical rules

of Join, and the other containing structural rules involving non-Join operators on both

sides and reaction rules involving non-Join operators in the left-hand side.

We are now ready to revisit the hotel booking problem described in Section 1 and show

how it can be modelled in cJoin.

R. Bruni, H. Melgratti and U. Montanari 14

(str-null) 0 �
(str-join) P | Q � P,Q

(str-and) D ∧ E � D,E

(str-def) def D in P � Dσdn(D), Pσdn(D)

(range(σdn(D)) globally fresh)

(red) J . P, Jσ → J . P, Pσ

(str-trans) [P : Q] � {[P, xQy]}
(commit) {[M |def D in 0, xQy]} → M

(abort) {[abort |P, xQy]} → Q

(merge)

(ΠiJi I P),⊗i{[Jiσ, Si, xQiy]} → (ΠiJi I P), {[⊗iSi, Pσ, xΠiQiy]}

Figure 5. Operational semantics of cJoin.

HB ≡ def HotelSrv〈r〉 | HotelReq〈d , κ〉 I r〈d , κ〉
in H | C

H ≡ [def request〈details, κ〉 . κ〈price, accept〉+ abort

∧ accept〈cc〉 . 0

in HotelSrv〈request〉 : alt〈hotel〉]

C ≡ [def offer〈rate, κ〉 . κ〈card〉+ abort

in HotelReq〈data, offer〉 : Q]

Figure 6. Hotel Booking

Example 4. Process HB in Figure 6 shows a possible modelling for the hotel booking

application, where H describes the behaviour of the hotel service while C models the pro-

tocol followed by the client. There are two main differences with the description given in

Section 1. First, we adhere to the continuation-passing style for enabling communication

among different processes. Note that channels request and offer carry on one extra param-

eter (the continuation) that identifies the channel κ where to communicate next. Second,

the system is not just the parallel composition of the two parties, but it also contains a

merge definition that allows the communication among the two transactions. In fact, the

two parties do not start by communicating directly and the first interaction takes place

indirectly. Note that C starts by sending the message HotelReq〈data, offer〉 to a merge

channel. Similarly, H sends HotelSrv〈request〉. While neither C nor H can complete their

transactions in isolation, these two messages together enable the merge definition that

forwards the request from the client to the hotel and joins both transactions, producing

the following state

cJoin: Join with communicating transactions 15

HB ≡ def HotelSrv〈r〉 | HotelReq〈d , κ〉 I r〈d , κ〉
in [def request〈details, κ〉 . κ〈price, accept〉 (1)

+ abort (2)

∧ accept〈cc〉 . 0 (3)

∧ offer〈rate, κ〉 . κ〈card〉 (4)

+ abort (5)

in request〈data, offer〉 : alt〈hotel〉 | Q]

At this moment the hotel receives the request from the client and it can (nonde-

terministically) decide whether to make an offer (reaction (1)) or to abort (reaction

(2)). We remind that the notation J . P + Q is syntactic sugar for J . P ∧ J . Q. If

the hotel aborts, then both transactions are aborted and the corresponding compensa-

tions (i.e., alt〈hotel〉 | Q) are activated. Otherwise, the hotel can produce the message

offer〈price, accept〉 to send an offer to the client who, in turn, may decide whether to

accept it (reaction (4)) or to abort the conversation (rule (5)). The abortion from the

client is handled analogously to the previous case. If the client accepts the offer, then it

generates the message accept〈card〉, which enables the reaction rule (3). When reaction

(3) is fired all messages inside the transaction are consumed, and hence the transaction

commits (i.e., both parties have successfully finished).

Another interesting example is the modelling of a mailing-list manager with all-or-

nothing delivery of messages to subscribers.

Example 5 (Mailing list). Consider a data structure that allows to send atomically a

message to a list of subscribers (in the sense that the same message is either sent to all

or to none). Such structure can be defined as ML = MailingList〈k〉 .MLDef, where:

MLDef ≡ def List in k〈add , tell , close〉 | l〈nil〉

List ≡ nil〈v, w〉 I w〈〉
∧ l〈y〉 | add〈x〉 . def z〈v, w〉 I x〈v〉 | y〈v, w〉 in l〈z〉
∧ l〈y〉 | tell〈v〉 . [def z〈〉 . 0 in y〈v, z〉 | l〈y〉 : l〈y〉]
∧ l〈y〉 | close〈〉 . 0

A new mailing list is created by sending a message to the port MailingList. Since cJoin

adheres to the “continuation passing” style of programming, the content of the message

sent to MailingList is a continuation port k, which expects information about the newly

created mailing list. The creation of a new list defines five fresh ports nil, l, add, tell

and close: three of them (namely add, tell, and close) will be used to interact with the

list from “outside” and will be sent to the port k as the outcome of the creation. The

remaining two ports will never be extruded. They denote the empty list (nil) and the

actual state of the list (l). Once a list is created, a new subscriber can be added by

sending a message add with the name x of the port where it will be listening to for new

messages. In this case, the list is modified by installing z (on top of it), a forwarder of

messages to x.

The port tell is used to send a message v to the list. When tell is received a new

R. Bruni, H. Melgratti and U. Montanari 16

transaction identified by a fresh name z is generated, and the state of the structure is

put inside the transaction, therefore all other activities, such as adding or closing are

blocked until the transaction ends. Inside the transaction, the message v is sent to the

forwarder at the top of the list y with the identifier of the transaction z. Note that

each forwarder sends the message to the corresponding subscriber and to the following

forwarder in the list. This is repeated until nil is reached, when a message to the identifier

of the transaction is sent. The firing rule z〈〉 . 0 consumes the last local name and the

transaction commits by releasing all the messages addressed to the subscribers and the

state of the list. Then the list is ready to serve new requests. The following process Sys

subscribes two users, Alice and Bob to the mailing list, and sends the message News.

Emp ≡ employees〈a, t, c〉 . a〈Alice〉 | a〈Bob〉 | t〈News〉

Sys ≡ def ML ∧ Emp in MailingList〈employees〉

A possible computation of the process Sys is shown in Figure 7. In this particular com-

putation, both subscriptions take place before the emission of the message, nevertheless

the process does not fix this priority and consequently messages could be consumed in a

different order. For simplicity, we abbreviate chemical solutions by omitting definitions

present in successive solutions, though we usually write only those definitions involved in

the reduction step. Inside solutions, we underline the fired reaction rule and the consumed

messages that matched the corresponding pattern. The phase List creation instanti-

ates a new mailing list by defining the fresh ports add, tell and close, which are sent to

the port employee. The second phase (Subscriptions) adds the names Alice and Bob to

the created mailing list. Phase Distribution of News generates a new transaction that

produces (in a sequential way) the copies of the name News to be sent to any subscriber

of the list. Nevertheless those messages are not released until the phase Commit takes

place. Only when the transaction commits, the generated messages are atomically sent

to subscribers.

3.2. Flat transactions

Nesting is a useful mechanism for programming transactions, e.g. when a transaction

can succeed even when certain sub-activities fail. In the area of databases, nested trans-

actions have been studied since (Moss, 1981). Contrary to other languages proposed in

the literature that do not support nesting (e.g., Webπ∞ (Lucchi and Mazzara, 2004) and

ρπ (Lanese et al., 2010a)), cJoin syntax allows for proper nested transactions, like in

[[P : P ′] : [Q : Q′]]. Nevertheless, many common situations that would involve nested

transactions can be modelled in cJoin without nesting by exploiting dynamic merge and

message-passing communication, as shown in the multi-way transaction example (see

Section 4.2).

This section introduces flat cJoin, which is a sub-calculus of cJoin without nested

transactions. The following sections will show that flat cJoin is expressive enough for

modelling several common programming patterns (Section 4) and, in addition, how it

can be implemented (Sections 5 and 6). In fact, as it will be clear later, the syntactic

restrictions imposed on flat cJoin help us to encode flat cJoin back to Join and to extend

cJoin: Join with communicating transactions 17

Initial Soup: {[Sys]}
 {[MailingList〈k〉 .MLDef, Emp, MailingList〈employees〉]}
List creation:

{[MailingList〈k〉 .MLDef, Emp, MailingList〈employees〉]} →

{[MailingList〈k〉 .MLDef, Emp, MLDef{employees/k}]}

{[MailingList〈k〉 .MLDef, Emp, List{employees/k}, employees〈add, tell, close〉, l〈nil〉]} →

{[l〈y〉 | add〈x〉 , . . . , l〈nil〉, add〈Alice〉, add〈Bob〉, tell〈News〉]}

Subscriptions:

{[l〈y〉 | add〈x〉 , . . . , l〈nil〉, add〈Alice〉, add〈Bob〉, tell〈News〉]} →

{[l〈y〉 | add〈x〉 , . . . , zA〈v, w〉 I Alice〈v〉|nil〈v, w〉, l〈zA〉, add〈Bob〉, tell〈News〉]} →

{[l〈y〉 | tell〈v〉, . . . , zB〈v, w〉 I Bob〈v〉|zA〈v, w〉, l〈zB〉, tell〈News〉]}

Distribution of News:

{[l〈y〉 | tell〈v〉, . . . , zB〈v, w〉 I Bob〈v〉|zA〈v, w〉, l〈zB〉, tell〈News〉]} →

{[zB〈v, w〉 I Bob〈v〉|zA〈v, w〉, . . . , {[z〈〉 . 0, zB〈News, z〉, l〈zB〉, xl〈zB〉y]}]} →

{[zA〈v, w〉 I Alice〈v〉|nil〈v, w〉, . . . , {[z〈〉 . 0,Bob〈News〉, zA〈News, z〉, l〈zB〉, xl〈zB〉y]}]} →

{[nil〈v, w〉 I w〈〉, . . . , {[z〈〉 . 0,Bob〈News〉,Alice〈News〉, nil〈News, z〉, l〈zB〉, xl〈zB〉y]}]} →

{[. . . , {[z〈〉 . 0,Bob〈News〉,Alice〈News〉, z〈〉, l〈zB〉, xl〈zB〉y]}]} →

{[. . . , {[z〈〉 . 0,Bob〈News〉,Alice〈News〉, l〈zB〉, xl〈zB〉y]}]}

Commit:

{[. . . , {[z〈〉 . 0, Bob〈News〉, Alice〈News〉, l〈zB〉, xl〈zB〉y]}]}

{[. . . , {[Bob〈News〉, Alice〈News〉, l〈zB〉, def z〈〉 . 0 in 0, xl〈zB〉y]}]} →

{[. . . , Bob〈News〉, Alice〈News〉, l〈zB〉]}

Figure 7. A possible computation of the Mailing list example

existing distributed implementation of Join to implement flat cJoin. Flat cJoin is defined

through the following type system involving the set T = {�0,�1,�2} of types and the

following type judgements:
` P : �0 The transaction primitive [:] does not appear in P at all.

` P : �1 Transactions may appear in P , but only inside definitions. P does not

have active transactions but it may create them after some reductions.

` P : �2 P has active flat transactions or may create them after some reductions.

` D : �0 D does not contain transactions.

` D : �1 D may contain flat transactions.

Definition 3.2 (Flat (or well-typed) definitions and processes). A definition D

is said flat or well-typed if ` D : �1 in the type system shown in Figure 8. Similarly, a

process P is said flat or well-typed if ` P : �2.

R. Bruni, H. Melgratti and U. Montanari 18

(Sub-P)

` P : �i

` P : �j
i<j

(Sub-D)

` D : �0

` D : �1

(Zero)

` 0 : �0

(Mess)

` x〈y〉 : �0

(Abort)

` abort : �0

(Par)

` P : �i ` Q : �i

` P |Q : �i

(Trans)

` P : �0 ` Q : �1

` [P : Q] : �2

(Def)

` D : �i ` P : �j

` def D in P : �max(i,j)
(Conj)

` D : �i ` E : �i

` D ∧ E : �i

(Ord-0)

` P : �0

` J . P : �0

(Ord)

` P : �i

` J . P : �1

(Merge)

` P : �0

` J I P : �0

Figure 8. Flat cJoin Typing.

We comment on the typing rules in Figure 8. Rules (Sub-P) and (Sub-D) stand for

the sub-type order �0 < �1 < �2. Clearly, the inert process 0, the emission of a message

x〈~y〉 and the constant abort do not contain transactions and, hence, they have type �0

(Rules Zero, Mess, Abort). The parallel composition P |Q has type �i if both P and

Q are typed �i (rule (Par)). Rule (Trans) prevents nesting by stating that [P : Q]

is typed �2 only when P has no transactions (i.e., ` P : �0). Note that the process

P ≡ [def a〈〉.[P1 : Q1] in a〈〉 : Q] is not typable. Although P is not a nested transaction,

P may evolve to a nested transaction as follows P → [def a〈〉. [P1 : Q1] in [P1 : Q1] : Q].

Contrastingly, a compensation may contain transactions as part of its definition. For

instance, [x〈y〉 | abort : def a〈〉 . [P : Q] in a〈〉] has type �2 when ` P : �0 and

` Q : �1. The fact that the compensation includes a transaction as part of its definition

does not compromise flatness because the compensation will run as an ordinary process

after the transaction aborts. In fact, [x〈y〉 | abort : def a〈〉 . [P : Q] in a〈〉]→ def a〈〉 .
[P : Q] in a〈〉, which does not introduce nesting. Rule (Def) combines the types of

definitions and processes. Note that def D in P is typed �0 when neither D nor P

contain transactions, i.e., if they both have type �0. A process def D in P has type �1

when transactions appear only in definitions (i.e., either in D or in other local definitions

occurring in P). Finally, def D in P has type �2 when P contains an active transaction.

A composed definition (i.e., a conjunction) is typed �i only when both sub-terms

have type �i (By rule (Conj)). An ordinary definition J . P is well-typed when its

guarded processes P is well-typed. Moreover, it has type �0 when P has no transactions,

i.e., ` P : �0. Differently, a merge rule is well-typed only when P has type �0 (rule

(Merge)). This is required in order to avoid nesting, because the instances of P will

execute inside transactions.

Example 6 (Well-typed terms). Consider the mailing list process introduced in Ex-

ample 5. Several sub-terms and their types are shown below:

P1 = def z〈〉 . 0 in y〈v, z〉 | l〈y〉 P2 = [P1 : l〈y〉]
D1 = l〈y〉 | tell〈v〉 . P2 D2 = l〈y〉 | close〈〉 . 0

` P1 : �0 ` P2 : �2 ` D1 : �1 ` D2 : �0 ` D1 ∧D2 : �1

Moreover, ` MLDef : �1 (because it does not have active transactions but it can

activate them) and also ` ML : �1.

cJoin: Join with communicating transactions 19

(Mol-Proc)

` P : τ

P : τ

(Mol-Def)

` D : τ

D : τ

(Mol-Fzn)

` P : �1

xPy : �0

(Membrane)

S : �0

{[S]} : �2

(Soup)

S1 : �i S2 : �j

S1, S2 : �max(i,j)

(Empty-Soup)

∅ : �0

Figure 9. Flat Solution Typing.

Example 7 (Counterexample). Process def x〈〉 I [P : 0] in [def D in x〈〉 : 0] is

not well-typed because it has a merge definition whose guarded process is a transaction

(rule (Merge) cannot be applied because 6` x〈〉 I [P : 0] : �0). In fact, this process can

reduce in one step to def x〈〉 I [P : 0] in [def D in [P : 0] : 0] when x 6∈ dn(D), which

has nested transactions.

3.3. Properties of Flat cJoin typing

This section summarises the main properties of our type system, namely, Join processes

have type �0 (Proposition 3.3) and subject reduction holds for �0 (Lemma 3.8) and �2

(Lemma 3.9).

Proposition 3.3 (Join processes have type �0). Let P be a Join process, then

` P : �0.

Proof. The proof follows by induction on the structure of P .

— P ≡ 0 and P ≡ x〈~y〉: the proof follows by using either rule (Zero) or (Mess).

— P ≡ def D in P ′ with D = ∧iJi . Pi. By inductive hypothesis, ` P ′ : �0 and

` Pi : �0 for all i. By using rule (Ord-0), we conclude that ` Ji .Pi : �0 for all i. By

repeatedly using rule (Conj) we conclude ` D : �0. Proof is completed by applying

rule (Def).

— P ≡ P1|P2: the proof follows by inductive hypothesis and rule (par).

In order to prove subject reduction we need some technical preliminaries. In particular,

we extend the typing from processes to solutions.

Definition 3.4 (Type of a solution). The type τ of a solution S, noted as S : τ , is

defined by rules in Figure 9. Moreover, S is flat iff S : �2.

We start by proving that Definition 3.4 is consistent w.r.t. structural congruence of

solutions, i.e. all types are preserved by α-conversion and heating/cooling; and that the

type of a solution reflects on the type of its molecules.

Proposition 3.5. Let σ be a renaming substitution. If ` P : τ then ` Pσ : τ .

Proof. Immediate by the fact that typing does not take into account names, but just

the structure of terms, which cannot be changed by renaming substitutions.

Lemma 3.6. Let S : �j . If {[S]}
 {[S′]} then S′ : �j .

Proof. By straightforward case analysis on the applied cooling/heating rule. When the

applied rule is (str-def), then Proposition 3.5 is used.

R. Bruni, H. Melgratti and U. Montanari 20

Corollary 3.7. Let {[S]}
∗ {[⊗imi]}. Then S : �j iff ∀i.mi : �i and i ≤ j.

We are now ready to prove subject reduction for �0.

Lemma 3.8 (Subject Reduction for �0). Let P : �0. If P →∗ P ′ then P ′ : �0.

Proof. The proof follows by induction on the length of the derivation.

— Base case: P ′ ≡ P (i.e., {[P]}�∗ {[P ′]}). The proof follows by Corollary 3.7.

— Inductive Step: Suppose P → P ′′ →n P ′ with n ≥ 0. The proof follows by case

analysis on the first applied rule and inductive hypothesis. Note that P → P ′′ implies

{[P]}
∗ {[S]} → {[S′]}
∗ {[P ′′]}. By cham semantics we know that S ≡ ⊗imi. Since

P : �0, then mi : �0 for all i by Corollary 3.7. Hence the only possible rule that can

be applied is (red), because any other rule requires at least a molecule composed

by a membrane, which cannot be typed �0. Consequently, S ≡ J . Q, Jσ, S′′ and

S′ ≡ J . Q,Qσ, S′′, where S′′ : �0. As Q : �0, by Proposition 3.5, Qσ : �0. Hence

S′ : �0 and therefore P ′′ : �0 (by Corollary 3.7). The proof follows by applying

inductive hypothesis on P ′′ →n P ′.

The following result ensures that �2 is preserved by reductions.

Theorem 3.9 (Subject Reduction for �2). Let P : �2. If P →∗ P ′ then P ′ : �2.

Proof. The proof follows by induction on the length of the derivation.

— Base case: P ′ ≡ P (i.e., {[P]}�∗ {[P ′]}). The proof follows by Corollary 3.7.

— Inductive Step: Suppose P → P ′′ →n P ′ with n ≥ 0. The proof follows by case

analysis on the first applied rule and inductive hypothesis. Note that P → P ′′ implies

{[P]}
∗ {[S]} → {[S′]}
∗ {[P ′′]}. By cham semantics we know that S ≡ ⊗imi. Since

P : �0, mi : �i where i ≤ 2 for all i by Corollary 3.7. Then, there are four cases:

– Rule (red): When the reduction occurs at top-level, i.e. S ≡ J . Q, Jσ, S′′, S′ ≡
J .Q,Qσ, S′′, and S′′ : �2, the proof is similar to Lemma 3.8. The other possibility

is when the reduction occurs inside a transaction, e.g. S ≡ {[S1]}, S′′ and S′ ≡
{[S′1]}, S′′, where {[S1]} → {[S′1]} by rule (red) and S′′ : �2. Note that {[S1]} : �2,

and therefore S1 : �0. By Lemma 3.8, S′1 : �0 and hence S′ : �2.

(The cases below occur at top-level, because negotiations cannot be nested in P .)

– Rule (commit): S ≡ {[M |def D in 0, xQy]}, S′′, and S′ ≡ M,S′′, with S′′ : �2

(by Corollary 3.7). As M is the parallel composition of messages, it can be typed

�0 and therefore S′ : �2.

– Rule (abort): S ≡ {[abort|P ′, xQy]}, S′′ and S′ ≡ Q,S′′, with S′′ : �2 (by Corol-

lary 3.7). As xQy : �0, it must be Q : �1 and therefore S′ : �2.

– Rule (merge): S ≡ J1| . . . |Jn I R,⊗i{[Jiσ, Si, xQiy]}, S′′ and S′ ≡ J1| . . . |Jn I
R, {[⊗iSi, Rσ, xQ1| . . . |Qny]}, S′′, with S′′ : �2 (by Corollary 3.7). Since R : �0

and for all i Si : �0 and Qi : �1, we have S′ : �2.

cJoin: Join with communicating transactions 21

Remark 3.10. Subject reduction does not hold for �1. Consider P = def x〈〉 . [Q :

Q′] in x〈〉, where ` Q : �0 and ` Q′ : �1. Although ` P : �1, P reduces to P ′ =

def x〈〉 . [Q : Q′] in [Q : Q′], which can be typed �2 but not �1.

Theorem 3.9 ensures that flat processes form a sub-calculus since reductions do not

generate nesting.

Definition 3.11 (Flat cJoin). Flat cJoin is the sub-calculus of all flat processes.

4. Programming common transactional patterns in cJoin

In order to illustrate the transactional aspects of cJoin, we show how to code some

common interaction patterns. We keep and enrich the hotel booking scenario as a running

example.

4.1. Multi-step Transactions: Trip Booking

Let us assume now that the user is making plans for a trip and wants to make reser-

vations for both a flight and hotel accommodation. Such scenarios are usually modelled

by splitting the whole activity as a sequence of two independent transactions: the client

executes a transaction for booking a flight first, and when it commits, a new transaction

for making hotel reservation is started. If the last transaction aborts, then the first one

is compensated for by cancelling the already committed flight reservation. This kind of

composition is usually referred to as compensable flow composition, and it is tailored

to model long running transactions in an orchestration context. Several proposals have

appeared in the literature for describing transactional flow compositions (Butler and Fer-

reira, 2004; Butler et al., 2005b; Bruni et al., 2005). Essentially, they describe the trip

booking problem as follows

TripBooking ≡ {FlightBooking÷ FlightCancelation; BookHotel÷ 0}

The entire activity TripBooking is delimited by the long running transaction scope { }.
A long running transaction is divided by ’;’ into sequential steps. Process FlightBooking

in the first step allows the client to book a hotel accommodation. If it commits, then

the compensation FlightCancelation is installed and the next step BookHotel÷ 0 is

executed. The compensation is installed when a step commits and it is used only when

one of the following steps fails. For instance, if BookHotel fails during its execution, then

the previously installed compensation FlightCancelation is executed.

Although cJoin does not offer a built-in mechanism for these kinds of transactions,

they can be coded into cJoin. Let us consider a simple language defined as follow

L ::= {S}
S ::= P | P ÷Q;S

R. Bruni, H. Melgratti and U. Montanari 22

where P and Q are cJoin processes. A possible encoding J K is below

J{S}K ≡ JSK0
JP Kc ≡ [P : c]

JP ÷Q;SKc ≡ def comp〈〉 . [c | Q : 0]

∧ cont〈〉 . JSKcomp〈〉
in [cont〈〉 | P : c]

provided {cont, comp} ∩ fn(P |Q|S|c) = ∅

The most interesting rule is the last one. A sequence P÷Q;S is encoded w.r.t. a context c

that indicates the compensation installed by the previous execution. Then, the sequence

P ÷ Q;S corresponds to a process that activates the transaction [cont〈〉 | P : c], i.e., it

attempts to executes P until completion (i.e., consuming all messages to its local ports). If

P finishes (i.e., there is no pending message in local ports) and the transaction commits,

then the message cont〈〉 is released. This message will activate the execution of the

remaining part of the sequence. If P aborts, then the previously installed compensation c

is activated. The context for encoding the remaining part S of the sequence is the message

comp〈〉, corresponding to the updated compensation [c | Q : 0]. Hence, if activated, such

compensation will first attempt to complete the execution ofQ. If this is the case, then the

transaction will commit by releasing c, which will then activate the previously installed

compensations.

Then, the cJoin code for planning a trip as a multi-step transaction is in Figure 10.

We model the hotel booking service H as in Figure 6, while the airline service A is

analogous to H (the only difference is that A starts by publishing on the merge channel

AirlineSrv instead of HotelSrv). It is worth remarking that the homonymous (private)

ports request and accept defined by both A and H are different ports. The renaming

mechanism inherited from the Join calculus ensures that such names are fresh, and hence

there are no clashes when transactions are merged. In addition, we add one merging

rule for allowing the interaction among the client and the airline. For the sake of the

simplicity we do not include dynamic creation of sessions, but the presentation can be

straightforwardly extended to consider them.

The system starts its execution with the client interacting with the airline component

analogously to hotel conversation described in Example 4. If the interaction aborts, then

the client finishes its execution (note that transaction compensation is set to 0). If it

commits, the message cont〈〉 is released, which enables the second reaction rule of C′.

Firing this rule will dynamically create a new transaction for interacting with the hotel

booking service (the interaction is as in Example 4). If this newly created transaction

finishes successfully, then the whole long running transaction ends by committing. If the

last transaction aborts, then the compensation comp〈〉|P2 is released. Note that comp〈〉
can fire the first reaction of client component, which will execute FlightCancelation,

i.e., the compensation of the previously committed step.

cJoin: Join with communicating transactions 23

TB ≡ def HotelSrv〈r〉 | HotelReq〈d , κ〉 I r〈d , κ〉
∧ AirlineSrv〈r〉 | AirlineReq〈d , κ〉 I r〈d , κ〉
in A | H | C′

A ≡ [def request〈details, κ〉 . κ〈priceF light, accept〉+ abort

∧ accept〈cc〉 . 0

in AirlineSrv〈request〉 : P1]

H ≡ [def request〈details, κ〉 . κ〈priceRoom, accept〉+ abort

∧ accept〈cc〉 . 0

in HotelSrv〈request〉 : P2]

C′ ≡ def comp〈〉 . [FlightCancellation : 0]

∧ cont〈〉 . [def offer〈rate, κ〉 . κ〈card〉+ abort

in HotelReq〈data, offer〉 : comp〈〉]
in [cont〈〉
| def offer〈rate, κ〉 . κ〈card〉+ abort

in AirlineReq〈data, offer〉 : 0]

Figure 10. Trip Booking as a multi-step transaction

4.2. Multi-way transactions: Trip Booking Revisited

The main drawback of planning a trip as in the previous section is that compensations

are usually not for free. Clearly, cancelling a flight reservation usually requires the client

to pay cancelation fees. By taking advantage of cJoin transactional primitives, we can

model the trip booking example as a multi-way transaction, i.e., a transaction that retains

several entry and exit points, in which parties are not necessarily aware of the remaining

parties in the transaction. Clearly the hotel and airline booking services should not be

necessarily aware of the combined activity to be carried on by the client, and hence they

remain unchanged. The cJoin process for the whole system is shown in Figure 11.

The client is modelled by a transaction that initially sends two messages to different

merge channels, one allows the merge with the airline service while the other joins it to

the hotel service. Once merged, the parties interact by following the conversation pattern

described in Example 4. The main difference is that the abortion of one of the parties

after both merge actions take place implies the abortion of the interaction, and hence all

three parties abort and run their own compensations. Otherwise, the whole interaction

commits when all three parties successfully finish their transactional processes.

As far as the definition of the choreography is concerned, we note that (i) booking

services are independent of the behaviour of the client, even though this may induce

the transactional scope to be extended to third, unknown parties; (ii) the local descrip-

tion of transactional interfaces ensures transactional properties to several different global

interactions; (iii) no coordinator is needed for describing transactional, multiparty chore-

ographies.

There is still one main drawback in the code given above: client description mixes

two independent flows of interaction corresponding to two different roles played by the

R. Bruni, H. Melgratti and U. Montanari 24

TB ≡ def HotelSrv〈r〉 | HotelReq〈d , κ〉 I r〈d , κ〉
∧ AirlineSrv〈r〉 | AirlineReq〈d , κ〉 I r〈d , κ〉
in A | H | C′

A ≡ [def request〈details, κ〉 . κ〈priceF light, accept〉+ abort

∧ accept〈cc〉 . 0

in AirlineSrv〈request〉 : P1]

H ≡ [def request〈details, κ〉 . κ〈priceRoom, accept〉+ abort

∧ accept〈cc〉 . 0

in HotelSrv〈request〉 : P2]

C′ ≡ [def hotelOffer〈rate, κ〉 . κ〈card〉+ abort

∧ airOffer〈rate, κ〉 . κ〈card〉+ abort

in HotelReq〈dataRoom, hotelOffer〉
| AirlineReq〈dataFlight , airOffer〉 : Q]

Figure 11. Trip Booking

component either as a hotel client or as an airline client. The only binding among these

two flows of execution is the fact that both interactions should finish either successfully

or with abortion. A more appealing modular definition for client behaviour is below.

Cm ≡ def RoomFound〈ω〉 | FlightFound〈ω〉 I 0

in [def hotelOffer〈rate, κ〉 . κ〈card〉 | RoomFound〈hotelOffer〉+ abort

in HotelReq〈dataRoom, hotelOffer〉 : Q1]

| [def airOffer〈rate, κ〉 . κ〈card〉 | FlightFound〈airOffer〉+ abort

in AirlineReq〈dataFlight , airOffer〉 : Q2]

Now, a client initiates two different transactions to interact independently with the

hotel and the airline. The new merge rule allows such transactions to be joined when

both flows of interaction terminate. In fact, the corresponding messages to the merge

names (i.e., RoomFound〈hotelOffer〉 and FlightFound〈airOffer〉) are generated when the

client transactions accept the offers proposed by the corresponding booking services. Let

us consider the monolithic code again (Figure 11). For instance, if the hotel offers a

convenient rate but the airline company does not, then the whole transaction is aborted.

Hence the client should start from the scratch by booking again a room and trying with

a different airline company. In the modular version, it would be enough to start a new

transaction for finding a flight, while the booked room will be still a valid reservation.

This feature may be interesting when client also may choose one of several available

booking services (as discussed in the next sections). For example, the client can try a

new airline booking (after an abort) while keeping the room booking. Note that this

example also shows how a typical nested transaction pattern is smoothly modelled as a

flat cJoin process.

A final remark is that the above decomposition of flows works only when both inter-

actions eventually finish by proposing the merge, otherwise one transaction may remain

cJoin: Join with communicating transactions 25

blocked for ever. When this is not ensured, the interaction that fails to find a suitable

reservation should notify the other transaction to abort (this situation can be handled

analogously to abortions of parallel activities explained in Section 4.3).

4.3. Speculative Computation

This section illustrates how to program a cJoin process that commits at most one of

several concurrent transactions. This programming pattern is called speculative execu-

tion or a-posteriori choice, and it is studied by several composition languages (Butler

et al., 2005b; Bruni et al., 2005; Laneve and Zavattaro, 2005). Speculative computation

is very much related to goal-oriented formalisms, like don’t know non-determinism in

concurrent logic programming, where several alternatives must be explored before one

can be selected. For example, when guarded Horn clauses are considered, the selection of

the rule to be applied next for reducing a goal is subordinated to successful evaluation

of the guard. Once a guarded clause is applied, all the other alternatives are pruned

out and that intermediate goal reduction is committed (never to be undone). As guard

evaluation can possibly trigger complex computations on its own and require further

clause selections giving rise to speculative computations, whose abort corresponds to the

non-satisfiability of the clause. One important difference though is that the linguistic

abstraction we are after is not a basic search mechanism, deemed to fail in most cases,

but rather a strategy language to increase the possibility of success and to handle search

failures when they happen.

Although this pattern is not a built-in operator of cJoin, it can be coded by using

merge definitions. For simplicity, we will consider just two concurrent transactions, but

the mechanism can be easily extended to larger sets.

We assume a client trying to book a room from one of two alternative hotels H1 and

H2 (in no particular order), but wishing to make a reservation in only one of them. The

system is described below.

R. Bruni, H. Melgratti and U. Montanari 26

HB ≡ def HotelSrv1〈r〉 | HotelReq1〈d , κ〉 I r〈d , κ〉 (1)

HotelSrv2〈r〉 | HotelReq2〈d , κ〉 I r〈d , κ〉 (2)

in H1 | H2 | C (3)

C ≡ def alt〈id〉 | booked1〈w〉 I cancelling2〈〉 (4)

∧ alt〈id〉 | booked2〈w〉 I cancelling1〈〉 (5)

∧ cancelling1〈〉 . [def w〈〉 . 0 in aborting1〈w〉 : 0] (6)

∧ cancelling2〈〉 . [def w〈〉 . 0 in aborting2〈w〉 : 0] (7)

∧ booked1〈i〉 | aborting1〈j〉 I abort (8)

∧ booked2〈i〉 | aborting2〈j〉 I abort (9)

∧ a〈〉 . [def w〈〉 . 0 in alt〈w〉 : a〈〉] (10)

in [def offer〈rate, κ〉 . κ〈card〉 | booked1〈offer〉 (11)

+ abort (12)

in HotelReq1〈data, offer〉 : Q1] (13)

| [def offer〈rate, κ〉 . κ〈card〉 | booked2〈offer〉 (14)

+ abort (15)

in HotelReq2〈data, offer〉 : Q2] (16)

| a〈〉 (17)

Lines (1)−(3) define the system, which is composed by hotel services H1 and H2 defined

as in previous examples, and a client component C. The client C consists in the concurrent

execution of two transactions (lines (11) − (13) and (14) − (16)) for dealing with each

booking service. They behave as in previous cases, but they finish the conversation by

generating the merge messages booked i〈offer〉 (lines (11) and (12)). Differently from multi-

way transactions (Section 11), those messages are used not for joining both transactions

but for encoding a kind of transactional internal choice. Let us suppose that both client

transactions complete successfully; then the state of the client can be seen as follow

def . . . (4− 10)

in [def . . . (11− 12)

in booked1〈offer〉 : Q1] (13′)

| [def . . . (14− 15)

in booked2〈offer〉 : Q2] (16′)

| [def w〈〉 . 0 in alt〈w〉 : a〈〉] (17′)

where definitions rules have been omitted since they remain unchanged. Line (17′) has

been obtained by firing the reaction rule in line (10) with message a〈〉 (line (17)). No

transaction can commit in this state because messages sent to merge ports carry on local

names (offer and w) – this is the standard way to force a transaction to join before

committing. At this point the merge rules in lines (1) and (2) are enabled. Assuming the

second one fires, the client state reduces to

cJoin: Join with communicating transactions 27

def . . . (4− 10)

in [def . . . (11− 12)

in booked1〈offer〉 : Q1] (13′)

| [def . . . (14− 15)

∧ w〈〉 . 0

in cancelling1〈〉 : a〈〉|Q2] (16′)

Assuming the hotel component also commits, then the second transaction commits by

releasing the message cancelling1〈〉, which enables the reaction rule in line (6). After

firing this rule, client state can be described as follow.

def . . . (4− 10)

in [def . . . (11− 12)

in booked1〈offer〉 : Q1] (13′)

| [def w〈〉 . 0 in aborting1〈w〉 : 0]

Above state enables the merge rule in line (8). Client component moves to the following

state when such rule is fired.

def . . . (4− 10)

in [def . . . (11− 12)

∧ w〈〉 . 0

in abort : Q1]

Finally, the remaining transaction aborts and the compensation Q1 is released. Hence,

the transaction with H2 has been committed while the conversation with H1 has been

aborted. The cases in which one transaction commits and the other aborts follow imme-

diately since rules defined in lines (8) and (9) are never used, and therefore the auxiliary

transaction generated by message cancelling i remains blocked.

We comment on reaction rule in line (10), which generates an auxiliary transaction for

selecting the committing interaction. Note that its compensation is set to a〈〉. Although

the scenario described so far assumes that the hotel component does not generate abort

after receiving client confirmation, this may not be the case in the most general setting.

Hence, if the selected transaction aborts after being chosen for committing, then the

compensation a〈〉 is released in order to allow the remaining alternative to be eligible

again.

5. Language implementation

This section addresses the problem of implementing the transactional primitives provided

by cJoin. For simplicity, we only consider flat cJoin, i.e., the sub-calculus of transactions

without nesting introduced in Definition 3.11. In particular, we show how flat cJoin can

be encoded into Join. For the sake of the simplicity we omit many technical details in

this presentation and provide just a sketch of the translation and the main results. The

R. Bruni, H. Melgratti and U. Montanari 28

formal definition of the encoding and its completeness and correctness results can be

found in (Melgratti, 2005).

Intuitively, transactional processes are implemented in Join by making explicit a com-

mit protocol used by several parties to reach an agreement. In particular, we rely on the

Distributed Two Phase Commit (d2pc) of (Bruni et al., 2002), because it is appropri-

ate for handling situations in which parties are not necessary aware of the whole set of

participants involved in the transaction. Nevertheless, the encoding is parametric w.r.t.

to the selected commit protocol, hence, the translation can be adapted to make partic-

ipants conform to other proposals such as the standards ws-atomic transaction or

ws-business activity. In what follows we call a coordinator any party performing the

selected commit protocol. We will denote coordinators by Coor. The formal definition for

the Join processes Coor used in our translation can be found in (Melgratti, 2005). The

code is also reported in the appendix for the interested reader, but we find unnecessary

here to illustrate its code in detail, because the d2pc is not the focus of this paper. Here,

let us just assume that a coordinator offers (a fresh instance of) the following ports to

communicate with:

Name Parameters Stands for

cmp m to set the compensation m to be delivered on abort

cmt κ to start the protocol by voting commit.

κ is the continuation to be released on commit

abt to start the protocol by voting abort

join coord to join the coordinator coord to the same transaction

The key strategy for encoding a transaction into a Join process is to assign a coordinator

to any execution thread of the transaction, i.e., any message sent to a transactional or

merge port is monitored by one coordinator. This is achieved by making any such message

carry on the ports that allows ones to interact with its coordinator. For instance, consider

the following cJoin transaction

T ≡ [def x〈〉 . P in x〈〉 : Q]

The corresponding Join term, denoted JT K, is defined as follows:

JT K ≡ def Coor

∧ x〈c, a, j〉 . JP Kc,a,j
∧ undo〈〉 . JQK
in x〈cmt, abt, join〉
| cmp〈undo〉

The transaction T is encoded as the process JT K, which introduces one fresh coordinator

Coor to monitor the unique execution thread of T (i.e., message x〈〉 in this particular

case). As mentioned before, Coor defines the fresh ports cmt, abt, join and cmp. The

message x〈〉 in T , which is monitored by Coor in the translation, is encoded as the mes-

cJoin: Join with communicating transactions 29

sage x〈cmt, abt, join〉, which carries on the names needed for interacting with Coor (the

usage of these names will be illustrated below). Note that the original definition of x

(rule x〈〉 . P) needs to be amended to take into account the three new parameters, i.e.,

the original definition is mapped to x〈c, a, j〉 . JP Kc,a,j . We highlight that the original

guarded process P is translated as JP Kc,a,j , where JP Kc,a,j denotes the encoding of the

process P that is being monitored by a coordinator identified by the ports c, a, j. Finally,

we introduce the new local port undo, which is used as the guard of the (encoded form

of the) compensation Q. Note that this name is used for setting up the compensation

of Coor (message cmp〈undo〉). We assume that Coor will deliver a message to its settled

compensation when the execution of the commit protocol finishes with abort. Conse-

quently, rule undo〈〉 . JQK will be enabled only when the commit protocol aborts. When

fired, the encoded form of the original compensation Q is activated.

We now analyse how a monitored processes P is translated into JP Kc,a,j . We start by

considering the encoding of the following five different forms of monitored processes.

— P ≡ 0. In this case the monitored process P has finished its execution successfully.

Consequently, this thread can request its coordinator to initiate the commit protocol

by voting commit. Hence, the encoding of 0 is defined as follows

J0Kc,a,j = c〈〉

The encoded form of 0 is a message sent to the commit port of the monitor of the

thread. This message causes the coordinator to start the commit protocol by propos-

ing commit. If all involved parties in the transaction commit, then the transaction

finishes successfully. The coordinator monitoring P will finish silently, since no con-

tinuation is being set when message c〈〉 is sent (i.e., c〈〉 does not carry on any value).

— P = abort . In this case the thread being monitored reaches the abort condition. Con-

sequently, it informs its coordinator that the whole transaction must abort by sending

a message to the corresponding abort port. Hence, abort is encoded as follows

JabortKc,a,j = a〈〉

In this case the commit protocol will finish with abort because there is at least one co-

ordinator voting for abort. As a consequence, the coordinators in the transaction will

release their settled compensations. In fact the message cmp〈undo〉 will be consumed

to issue undo〈〉 and therefore trigger JQK.
— P is a message sent to a transactional or merge port. The encoding of a mon-

itored message sent to a transactional or a merge port is just obtained by extending

the parameters of the original message with the ports corresponding to the monitor

of the thread (as done for the initial thread of a transaction). Therefore, the encoding

of a transactional message is defined below

Jx〈~v〉Kc,a,j = x〈c, a, j, ~v〉

— P is a message sent to a non transactional port. As an example, consider the

transaction T ≡ [def x〈〉 . P in x〈〉 | R : Q] with P = z〈〉. A possible reduction for

T is T →∗ [def x〈〉 . P in z〈〉 | R : Q]. Note that the message z〈〉 produced inside of

the transaction will be delivered to its recipient only when the transaction commits.

R. Bruni, H. Melgratti and U. Montanari 30

Consequently, a rule like x〈〉 . z〈〉 above should be interpreted as a transactional

thread that is finishing its execution and expects to deliver z〈〉 if the transaction

finally commits. Hence, its encoding is defined as follows

Jz〈〉Kc,a,j = c〈z〉

The main difference with the encoding of 0 is that the commit message sent to the

coordinator sets z as the continuation. The coordinator will start the commit pro-

tocol by voting commit after receiving this message. If the commit protocol finally

terminates with commit, then this coordinator will release the message z〈〉.
— P has two execution threads. For instance, P = P1|P2. In this case, the translation

needs to dynamically generate a new coordinator because any thread needs to be

monitored by one coordinator. The encoding is defined as follows

JP1|P2Kc,a,j = def Coor in JP1Kcmt,abt,join | JP2Kc,a,j | j〈cmt, abt〉 | join〈c, a〉

Note that we generate a new coordinator Coor that provides the definition for the fresh

ports cmt, abt and join. Then, P1 will be monitored by the newly defined coordinator

(i.e., JP1Kcmt,abt,join) while P2 will be monitored by the coordinator already assigned

to the whole process P1|P2 (i.e., JP2Kc,a,j). Messages j〈cmt, abt〉 and join〈c, a〉 make

coordinators aware of each other: j〈cmt, abt〉 joins the new coordinator as a partici-

pant of the transaction being monitored by the coordinator identified by c, a, j, while

join〈c, a〉 works in the other way round.

We now focus on the encoding of firing rules. The encoding of reduction rules outside

of a transaction is simply the application of the encoding to the guarded process, i.e.,

JJ . P K = J . JP K

The translation treats similarly transactional and merge rules and we just consider two

different shapes for such kind of rules:

— Single-message join pattern. Such rules are either like x〈~v〉 . P or x〈~v〉 I P .

As mentioned before, rule x〈~v〉 . P is encoded by adding to the port x three new

parameters for identifying the coordinator associated with the thread. Moreover, that

coordinator will monitor also the execution of the guarded process P . The translation

is defined as follows

Jx〈~v〉 . P K = x〈c, a, j, ~v〉 . JP Kc,a,j
Analogously, the encoding of a merge rule is as follows

Jx〈~v〉 I P K = x〈c, a, j, ~v〉 . JP Kc,a,j

— Two-message join pattern. Reactions contain synchronisations, e.g., x〈〉|y〈〉 I P .

This rule is encoded as follows

x〈c1, a1, j1〉 | y〈c2, a2, j2〉 . JP Kc1,a1,j1 | j1〈c2, a2〉 | j2〈c1, a1〉 | c2〈〉

The translation selects one thread (in this case the first one) to continue. In fact, the

original guarded process P is assigned to the first coordinator because it is encoded as

JP Kc1,a1,j1 . The messages j1 and j2 makes coordinators part of the same transaction,

cJoin: Join with communicating transactions 31

as described previously. The last message c2〈〉 indicates that the second thread is

finished by notifying its coordinator to start the commit protocol with vote commit.

In the previous description of the encoding we just focused on a few forms of processes

(for instance, we have discarded all processes containing join patterns with more than

two messages). Nevertheless, it can be shown that this syntactical restriction, called the

class of canonical processes, does not change the expressiveness of cJoin (formal details

can be found in (Melgratti, 2005)). For the sake of clarity, we report below the formal

statement of the results ensuring the correctness and completeness of our encoding. We

will use→J and→cJ to distinguish reductions in Join from those in cJoin. Moreover, the

notion of process equivalence we use relies on barbs defined as follows.

Definition 5.1 (Barb). The observation predicate ↓x, also known as the strong barb,

detects whether a process emits on some free name x:

P ↓x iff ∃P ′, ~u : P ≡ def D in P ′|x〈~u〉 and x 6∈ dn(D)

Note the processes abort and [:] have no strong barbs. Moreover, merge names are

part of the defined names of a process, and hence not observable.

Lemma 5.2. For any canonical flat process P s.t. ` P : �1 we have ∀x.P ↓x⇔ JP K ↓x.

Correspondence results assumes the following property about the commit protocol:

compensations corresponding to every coordinator in a transaction are released when

at least one coordinator is required to abort while all continuations are released when

every coordinator in the transaction is required to commit. Otherwise, none coordina-

tor finishes, and none compensations nor continuations are released. It has been shown

in (Melgratti, 2005) that the d2pc used in our encoding satisfies above condition.

Theorem 5.3 (Correctness, part 1). Let P be a canonical flat process and ` P : �1.

If P →∗cJ P ′ either P ′ ≡ P or the following two conditions hold:

1 P ′ ≡ def D′ in M ′ | Πi∈1..n′Ni, where Ni are cJoin transactions,

2 ∃Q s.t. JP K →∗J Q and Q ≡ (def JD′K in JM ′K|Πi∈1..n′Ri)|def Dg in 0, where each

Ri is the standard Join negotiation† associated to Ni and Dg collects garbage defini-

tions corresponding to instances of the commit protocol that have terminated.

Proof Sketch. The proof follows by case analysis on P . Note that P cannot be of

the form [P ′ : Q′] because 6` [P ′ : Q′] : �1. If P has no local definitions (i.e., P 6≡
def D in M), then P is either abort , the inert process 0, or the parallel composition of

messages (containing only free names because there are no local definitions). In all three

cases, P ′ = P . Last case is when P contains local definitions, i.e., P ≡ def D in M . For

this case we show by induction on the length of the derivation of P →∗cJ P ′ that the

conditions 1 and 2 of the thesis hold (see Appendix).

† A standard Join negotiation is the Join counterpart of a cJoin transaction. It basically consists of the

set of transaction coordinators belonging to the same transaction and of all the execution threads

associated to those coordinators. Its formal definition can be found in (Melgratti, 2005).

R. Bruni, H. Melgratti and U. Montanari 32

Theorem 5.4 (Correctness, part 2). Let P be a canonical flat process and ` P : �1.

If P →∗cJ P ′ and ` P ′ : �1, then ∃Q s.t. JP K→∗J Q and ∀x.P ′ ↓x⇒ Q ↓x.

Proof Sketch. By Theorem 5.3, we know that either P ′ ≡ P or the following two

conditions hold:

1 P ′ ≡ def D′ in M ′ | Πi∈1..h′Ni, where Ni are cJoin transactions,

2 ∃Q s.t. JP K→∗J Q and Q ≡ (def JD′K in JM ′K|Πi∈1..h′Ri)|def Dg in 0,

If P ′ ≡ P then the thesis trivially follows by taking Q = JP K and applying Lemma 5.2.

Otherwise, P ≡ def D in M for some D and M , and by ` P ′ : �1, it must be the

case that P ′ ≡ def D′ in M ′ for some D′ and M ′.

By property above, ∃Q s.t. JP K→∗J Q = def JD′K in JM ′K | def Dg in 0. It is easy to

notice that ∀x : P ′ ↓x⇒ Q ↓x because the encoding ensures that fn(M ′) = fn(JM ′K) and

dn(JD′K) ∩ fn(M) = ∅.

Theorem 5.5 (Completeness). Let P be a canonical flat process and ` P : �1. If

JP K →∗J Q, then P →∗cJ P ′ and ∀x : norm(Q) ↓x⇒ P ′ ↓x, where norm(Q) denotes

the process obtained from Q by finishing the execution of all instances of the commit

protocol that can reach an agreement.

Proof. We proceed by case analysis on the structure of P . Since ` P : �1, then

P 6≡ [P ′ : Q′]. When P has no local definitions, then it is the parallel composition of

messages on free ports, the inert process 0 and abort . For any of these cases it holds that

JP K does not have any definition, and therefore JP K cannot reduce. The only possibility

is Q = norm(Q) = JP K, which trivially satisfies ∀x : Q ↓x⇒ JP K ↓x. If P ≡ def D in M ,

then we show that the following three conditions hold:

1 Q ≡ def JD′K in JM ′1K | Πi∈1..uR
′
i | Πk∈1..fT

′
k | def Dg in 0, where R′i are unfin-

ished Join negotiations (i.e., some transactional thread has not finished), while T ′k are

finished negotiations, with norm(Πk∈1..fT
′
k) ≡ JM2K|def Dc in 0.

2 P →∗cJ P ′ ≡ def D′ in M ′1 |M2 | Πi∈1..uNi where Ni is a standard cJoin transaction

corresponding to R′i.

3 norm(Q) ≡ def JD′K in JM ′1|M2K | norm(Πi∈1..uR
′
i) | def D′g in 0

Above conditions are proved by induction on the length of the derivation JP K →∗J Q
(see Appendix).

Finally, condition ∀x : norm(Q) ↓x⇒ P ′ ↓x immediately follows from conditions (2)

and (3).

We chose not to report here the full details about the encoding since the formal defini-

tion gets quite complex because of the several alternatives to be considered in the most

general case. These alternatives came from the fact that the encoding of a guarded pro-

cess (in addition to what was explained before) may depend on the type of the received

names, in particular whether they are transactional or not. However, the increased com-

plexity of the notation makes it heavy with no evident conceptual benefit. The interested

reader can found the full details spelled out in (Bruni et al., 2003; Melgratti, 2005).

cJoin: Join with communicating transactions 33

6. t-JoCaml

We take advantage of the transactional mechanism of cJoin to extend a programming

language with transaction primitives. We have chosen JoCaml (Conchon and Le Fessant,

1999), one of the available implementations of Join. We start this section by giving an

overview of JoCaml. Then, we describe the transactional extension we propose, called

transactional JoCaml (t-JoCaml), and finally, we sketch the main aspects of t-JoCaml

implementation.

6.1. JoCaml

JoCaml adds Join primitives to Objective Caml (Ocaml), which is a functional language

with support for object oriented and imperative paradigms. JoCaml provides three main

abstractions: process, channels and join-patterns. Processes represent communication and

synchronisation tasks. Basic processes are asynchronous messages, while complex pro-

cesses are obtained by composing expressions and concurrent processes. Channels are

JoCaml abstractions corresponding to Join names. There are two different kind of chan-

nels: synchronous and asynchronous. Channels are defined as follows.

let def name[!](args) = P (args); ;

The above definition creates a channel (named name) and a receiver for it, which

will execute the guarded process P every time it receives a message. Any channel may

be defined either as asynchronous, when its name is suffixed with the symbol !, or as

synchronous, otherwise. Synchronous names must return a value, i.e., P must explicitly

define the return value v by using the sentence reply v. Finally, join-patterns define

several channels at the same time and state a synchronisation among them: the guarded

process may be activated only when all channels have pending messages. The following

is a possible join pattern definition

let def a!(x) | b!(y) = P (x, y)

or a!(x) | c!(z) = Q(x, z)

; ;

The process above introduces three new asynchronous ports, namely a, b and c. Like

join processes, the guarded process P (depending on variables x and y) can be activated

only when both a and b have pending messages. Similarly, Q(x, z) can be activated when

both a and c have pending messages. Moreover, when both rules are enabled, the selection

is unspecified.

Processes can also create fresh ports dynamically. Consider the following program

let def new process() =

let def a!() | b!() = P

or a!() | c!() = Q

in reply a, b, c

; ;

R. Bruni, H. Melgratti and U. Montanari 34

It declares a synchronous port new process (i.e., an ordinary function) that, when

called, creates a new process defining three fresh ports a, b and c. The caller is given

back the names of the created ports (by clause in reply a, b, c).

6.2. Transactions for JoCaml

In order to add transactions to JoCaml, we extend its syntax by allowing the definition

of a compensable transaction, abort decision, and merge definitions.

6.2.1. t-JoCaml syntax As already mentioned, we added two new forms of processes

to JoCaml: transactional processes and abort. A transactional process is written as

let trans P cmp Q, where P is an ordinary JoCaml program and Q may be either

an ordinary JoCaml process or a transactional one. For instance, the client component in

Figure 6 can be written

let trans def offer !(rate, k) = k(card)

or offer !(rate, k) = abort

in HotelReq(data, offer)

cmp Q

; ;

Note the straightforward correspondence with the cJoin definition in Figure 6. Similarly

to cJoin, transactional processes in t-JoCaml may decide to abort the execution of a

transaction by using the new primitive abort.

Merge patterns are defined by writing the keyword board in front of the corresponding

join patterns. Then, merge definition for the booking trip system in Figure 6 can be

written as below

let board HotelSrv !(r) | HotelReq !(d, k) = r(d, k) in . . .

As the corresponding Join definition, the above sentence introduces two merge ports

HotelSrv and HotelReq , with the guarded process r(d, k), which is required to be an

ordinary JoCaml process (i.e., without transaction primitives).

6.2.2. Extending JoCaml compiler As far as the compiler implementation is concerned,

we translate syntactically JoCaml programs with transactions into ordinary JoCaml code.

We do this by reusing the parsing phase of the JoCaml distribution by slightly modifying

the lexer and the parser in order to recognise processes built with the primitives trans,

comp, abort and board. After the construction of the parse tree, we generate a new

file containing the corresponding JoCaml source code that uses the encoding presented

in Section 5. The implementation is available at http://www.di.unipi.it/~melgratt/

cjoin.

The main limitation of the current prototype version is that it cannot handle the

compilation of separate units. This restriction relies on the fact that the translation is

parametric on the types of free names (i.e., whether they are ordinary or merge channels).

Current translation of a program assumes that the typing environment is initially empty

cJoin: Join with communicating transactions 35

and it is updated when new port definitions are introduced by the program. Consequently,

our prototype is unable to handle merge definitions introduced by different files. This

constraint could be overcame by adding a new primitive for importing declarations of

merge ports explicitly.

7. Big-Step Semantics and Serializability

In this section we introduce an alternative definition for the semantics of cJoin that

allows us to reason about transactional computations at different levels of abstraction.

The big-step semantics is intended to single out those computations of a system that

are not transient or, in other words, to describe the evolution of a system through states

that do not contain active transactions.

Example 8. Consider the cJoin process P ≡ def D in c〈a〉|c〈b〉 with D defined as

follows

D ≡ a〈x〉|b〈y〉 I ok〈〉
∧ a〈x〉|b〈y〉 I abort

∧ c〈x〉 . [def z . 0 in x〈z〉 : Q]

The process P may evolve as follows:

P → P1 ≡ def D in [def z . 0 in a〈z〉 : Q{a/x}] | c〈b〉
→ P2 ≡ def D in [def z . 0 in a〈z〉 : Q{a/x}] | [def z . 0 in b〈z〉 : Q{b/x}]
→ P3 ≡ def D in [def z . 0 ∧ z′ . 0 in ok〈〉 : Q{a/x}|Q{b/x}]
→ P4 ≡ def D in ok〈〉

(1)

Analogously,

P →∗ P2 → P5 ≡ def D in [def z . 0 ∧ z′ . 0 in abort : Q{a/x}|Q{b/x}]
→ P6 ≡ def D in Q{a/x}|Q{b/x}

Assuming Q does not have any active transaction, the computations above are the

only two possible evolutions of P to non-transient states, i.e., states that do not contain

running transactions. We are aimed at defining a reduction relation � in which any

multi-party transaction is described as a single computation step that fetches the mes-

sages needed to initiate all cooperating transactions and produces the processes released

at commit or abort. In this example, we expect two big-step reductions for P , each of

them describing one of the possible executions of the multi-party transaction, namely:

P � P4 and P � P6.

We define the big-step reduction relation for a particular class of processes, called

shallow. Shallow processes are given in terms of a syntactic restriction that imposes a

particular discipline for activating transactions. We start by introducing the class of

shallow processes.

Definition 7.1 (Nesting level). The nesting level (or just nesting) of P , written

nest(P), is defined by:

R. Bruni, H. Melgratti and U. Montanari 36

nest(0) = nest(abort) = nest(x〈y〉) = 0 nest([P : Q]) = nest(P) + 1

nest(def D in P) = nest(P) nest(P | Q) = max{nest(P),nest(Q)}

We remark that nest(P) counts only the nesting level of the active processes indepen-

dently from the nested transactions that may appear in definitions or compensations.

Consider P ≡ [x〈y〉 : 0] and Q ≡ [P : 0], then nest(P) = 1 and nest(Q) =

nest(P) + 1 = 2. Contrastingly, nest([0 : Q]) = 1 because [0 : Q] is a transaction that

has no active sub-transactions (note that the compensation Q is frozen, i.e., inactive).

Definition 7.2 (Shallow and stable processes). A basic definition D is a shallow

definition if it has one of the following forms
1. D = J . P , where nest(P) = 0 or P = [R : Q] ∧ nest(R|Q) = 0

2. D = J I P and nest(P) = 0
A process P is shallow if any basic definition in P is shallow. Moreover, we call a

shallow process P stable iff nest(P) = 0.

With P and Q as defined above, the process R ≡ def x〈y〉 .Q in x〈a〉 is stable (i.e.,

nest(R) = 0) because it does not have any active transaction (independently from the

fact that it may start a transaction in the future).

Shallowness is a constraint for the syntax of basic definitions contained by a process.

Condition 1 in Definition 7.2 ensures that the firing of a basic definition increases the

height of the nesting structure by at most one level, i.e., a basic definition produces either

a stable process or an activate transaction without any active sub-transaction. Condition

2 forbids the creation of sub-transactions while merging. We remark that shallowness

does not impose any constraint on the nesting level of active transactions. For instance,

let us consider Q ≡ [[x〈y〉 : 0] : 0] and R ≡ def x〈y〉 . Q in x〈a〉. The process Q

trivially satisfy shallowness condition because it does not have any definition. On the

contrary, the process R is not shallow because its unique definition x〈y〉 . Q does not

satisfy condition 1. In fact, nest([x〈y〉 : 0]|0) = 1 6= 0.

We highlight that any flat process is also shallow. It can be easily seen that shallowness

is preserved by reductions, while in general this is neither the case for the nesting of a

process nor for stability (i.e. any shallow process always reduces to shallow processes,

while some stable processes may reduce to non stable processes).

Moreover, it can be shown that any non-shallow definition can be encoded into a

shallow definition. Shallowness forbids definitions like D0 ≡ x〈y〉 . [[y〈x〉 : 0] : 0] and,

more generally, D1 ≡ J1 . P | [P1 :Q] and D2 ≡ J2 . [[P1 :Q1] : Q], they however

can be encoded as shallow definitions by using new local ports. The cases above can be

rewritten as D′0 ≡ x〈y〉 . [def z〈〉 . [y〈x〉 : 0] in z〈〉 : 0], D′1 ≡ J1 . z〈〉|P ∧ z〈〉 . [P1 :Q]

and D′2 ≡ J2 . [def z〈〉 . [P1 : Q1] in z〈〉 : Q] with z fresh. Note that the three new

definitions are shallow when P , P1, Q, Q1 are stable. Then, def D′1 in x〈a〉 is a shallow

process and reduces in two steps to def D′1 in [def z〈〉. [a〈x〉 : 0] in [a〈x〉 : 0] : 0], which

is shallow and contains nested transactions.

In the following P and Q will denote shallow processes, D a shallow definition, S a

stable process, and B a shallow definition containing just merge rules. We abbreviate

def D in P as D ` P, and ` P as P. Terms are considered up-to structural equivalence

cJoin: Join with communicating transactions 37

(par)

D ` P _ D ` P ′ D ` Q _ D ` Q′

D ` P | Q _ D ` P ′ | Q′

(seq)

D ` P _ D ` P ′′ D ` P ′′ _ D ` P ′

D ` P _ D ` P ′

(global firing)

D ∧ J . P ` Jσ _ D ∧ J . P ` Pσ

(local firing)

B̃ ` S � B̃ ` S ′

D ∧ B ` [S : Q] _ D ∧ B ` [S ′ : Q]
(merge)

D ∧ΠiJi I S ` Πi[Di ` Jiσ | Si :Qi] _ D ∧ΠiJi IS ` [
∧
iDi `(ΠiSi)|Sσ : ΠiQi]

(local commit)

D ` [M | D′ ` 0 : S] _ D `M
(abort)

D ` [abort |P : S] _ D ` S
(idle)

D ` P _ D ` P
(serializable)

D ` S _ D ` S ′

D ` S � D ` S ′

Figure 12. Big-step semantics of cJoin.

generated by closure w.r.t. the equations for the associativity and commutativity of | and

∧, 0 the unit for |, and

D ` (P | def D′ in Q) = D ∧D′σdn ` P | Qσdn
range(σdn) ∩ (fn(D) ∪ fn(P) ∪ fn(def D′ in Q)) = ∅

The big-step reduction relation � is given by the inference rules in Figure 12 over

stable processes. The relation � is defined in terms of the auxiliary relation _ over

shallow processes. Rule serializable singles out as big steps those computation from

stable states to stable states. Note that computation steps can be composed in parallel

(par) and sequentially (seq), even with idle transitions (idle). Rule global firing,

abbreviated gf, corresponds to the firing of an ordinary definition in a top-level process.

Instead local firing states possible internal transitions of a running transaction. local

firing represents suitable sub-transactions as ordinary transitions at an abstract level.

In fact, the computations occurring at a lower level in the nesting hierarchy (premise of

local firing) that are relevant to its containing transaction are those relating stable

processes, i.e., S and S ′. A transaction has available, in addition to its own definitions,

the merge definitions introduced by its parent. In fact, a merge definition applied to a

single transaction behaves as an ordinary rule but defined in a global scope. The operator˜ transforms merge definitions in ordinary ones: J̃ I P = J . P and B̃ ∧ B′ = B̃ ∧ B̃′ .

Rules local commit (abbreviated lc) and abort handle the termination of a trans-

action, whereas merge describes the interaction among sibling transactions. This time,

transactions can be joined only if they do not contain running transactions.

Example 9. Consider the process P introduced in Example 8. Processes P , P4 and P6

are stable and it can be easily checked that P � P4 and P � P6 as expected. A

proof for the big-step reduction corresponding to the small-step reduction shown in Equa-

tion (1) of Example 8 can be built as follows. First, the small step P → P1 corresponds

R. Bruni, H. Melgratti and U. Montanari 38

P |P4
// //

))))SSS
S P4|P4

P |P
66 66llll

((((RRR
R

%% %%

99 99

// P4|P6

P |P6
// //

55 55kkkk
P6|P6

Figure 13. Big-step reductions for the Example 8.

to the following proof

D ` c〈a〉 _ D ` [def z . 0 in a〈z〉 : Q{a/x}] gf D ` c〈b〉 _ D ` c〈b〉 idle

P = D ` c〈a〉|c〈b〉 _ P1 = D ` [def z . 0 in a〈z〉 : Q{a/x}]|c〈b〉
par

The proof for P1 _ P2 is built analogously. Then, the proof for P � P4 can be

completed as follows.

...

P _ P1

...

P1 _ P2

P _ P2

seq P2 _ P3 merge

P _ P3

seq P3 _ P4 global commit

P _ P4

seq

P � P4

serializable

Consider now the process P |P . Figure 13 shows the possible evolutions of P |P . The

graph illustrates how the result of a computation involving the (possible interleaved)

execution of several multi-party transactions, e.g., P |P � P4|P6, can be also obtained

by executing one transaction at a time. For P |P � P4|P6 we can sequentially compute

either P |P � P |P4 � P4|P6 or P |P � P |P6 � P4|P6.

It is in this sense that the big-step reduction relation enforces serializability and allows

us to analyse the behaviour of a set of interacting transactions independently from the

rest of the system. Moreover, when considering nested transactions, the transactions

completed at a particular level of nesting can be treated as ordinary transitions at the

upper level.

The remaining of this section is devoted to show the correspondence between both

semantics for shallow processes, which ensures that small-step reductions are serializable

for shallow processes.

The next auxiliary result shows that any derivation in cJoin starting from a shallow

process without nested transactions has an equivalent cJoin reduction that only merges

transactions without ongoing sub-transactions.

cJoin: Join with communicating transactions 39

Proposition 7.3. If D,S,⊗k[S ′k : S ′′k] →∗ D′,⊗i[Pi : Si] → D′, [P : ||iSi], then there

exists a derivation D,S,⊗k[S ′k : S ′′k] →∗ D′,⊗i[S ′′′i : Si] → D′, [S ′ : ||iSi] →∗ D′, [P :

||iSi].

Proof. By induction on the length of the derivation D,S,⊗k[S ′k : S ′′k] →n D′,⊗i[Pi :

Si]. The base case follows immediately by taking S = ∅ and k = i. The inductive

step follows by noting first that any reduction D,Q → D′, x〈~v〉,Q′ implies either (i)

Q = x〈~v〉|Q′′ or (ii) Q = [S1 : S2]|Q′′ and [S1 : S2]→ D′′, x〈~v〉|S0 (this can be shown by

case analysis on the applied rule). This property tell us that the generation of a message

does not imply the generation of a new transaction. Then, note that the only possibility

for the last reduction D′,⊗i[Pi : Si]→ D′, [P : ||iSi] is due to the application of a merge

reaction involving all transactions. Therefore, any [Pi : Si] is such that Pi = Mi|P ′i. If all

Pi are stable we are done. Otherwise, we proceed by noting that any [Pi : Si] has been

generated from the elements of the original solution D,S,⊗k[S ′k : S ′′k]. The interesting

case is when the whole reduction cannot be divided into sequences like D,S,⊗k[S ′k :

S ′′k] →∗ D′′, S′′,⊗h[Ph : Ph] →∗ D′,⊗i[Pi : Si] (these cases can be handled by using

inductive hypothesis). Therefore, we note that there exists a partition of S,⊗k[S ′k : S ′′k]

s.t. for each i there exists some I in the partition and D, I →∗ D′′, [Pi : Si]. By using

inductive hypothesis we can build D, I →∗ D′′,⊗ki
[Rki

: R′ki
] → D′′, [R : R′] →∗

D′′, [Pi : Si]. Since Pi = Mi|P ′i, we can show (by repeatedly using the property that

ensures that transactions are not generated together with messages) that Rki
= Mi|Rki

.

Consequently, we can build a reduction that merges first all [Rki : R′ki
], and then reduces

to the final configuration.

In particular, serializable transactions can postpone the activation of each sub-transaction

until all other cooperating sub-transactions needed to commit can be activated.

Next results state the correspondences between both semantics.

Lemma 7.4. D,⊗i[Si : Pi],S →∗ D,⊗j [S ′j : P ′j],S ′ if and only if D ` ||i[Si : Pi] | S _
D ` ||j [S ′j : P ′j] | S ′.

Proof. (⇒) By induction on the length of the derivation. The base case corresponds to

the idle axiom. The inductive step follows by case analysis of the first applied reduction.

The interesting case is the application of red, which presents two cases: (i) when it

is applied at top level, i.e., producing a new transaction or a new stable process, and

(ii) when it generates a sub-transaction in one of the existing transactions. First case is

immediate by inductive hypothesis and seq. In the second case, there is a transaction k,

i.e., [Sk : Pk], that reduces to [[S ′′ : P ′],S ′k : Pk]. At this point, there are two possibilities.

First, consider that [[S ′′ : P ′],S ′k : Pk] reduces to [S ′′k : Pk], then it is possible to build

the proof shown in Figure 14, and then the proof follows by using idle for the non-

modified processes and inductive hypothesis and seq. The remaining possibility is when

sub-transaction [S ′′ : P ′] can finish only after the parent transaction is merged. Then

by Proposition 7.3 an equivalent derivation D,⊗i[Si : Pi], S →∗ D, [S′′ : ||iPi], S
′′′ →∗

D, [P : ||iPi], S
′′′ →∗ D,⊗j [S ′j : P ′j],S ′ that merges only transactions not containing

sub-transactions can be found. Then, proof follows by applying inductive hypothesis for

R. Bruni, H. Melgratti and U. Montanari 40

... global firing,idle,par

B̃ ` Sk _ B̃ ∧ D′′ ` [S ′′ : P ′] | S ′
k

B̃ ∧ D′′ ` [S ′′ : P ′] | S ′
k _ B̃ ` S ′′

k ind. hyp.

B̃ ` Sk _ B̃ ` S ′′
k

seq

D′ ∧ B ` [Sk : Pk] _ D′ ∧ B ` [S ′′
k : Pk]

local firing

Figure 14. Proof sketch for Lemma 7.4.

both parts D,⊗i[Si : Pi], S →∗ D, [S′′ : ||iPi], S
′′′ and D, [S′′ : ||iPi], S

′′′ →∗ D, [P :

||iPi], S
′′′ →∗ D,⊗j [S ′j : P ′j],S ′.

(⇐) By induction on the structure of the proof.

Theorem 7.5. Let S,S ′ be stable processes. Then S →∗ S ′ iff ` S � ` S ′.

Proof. Immediate by Lemma 7.4.

An informal explanation of the serializability result can be given by colouring trans-

action scopes and reductions as explained below. Let S,S ′ be stable processes such that

there exists P0, P1, ..., Pk with S ≡ P0 → P1 → ...→ Pk ≡ S ′. We traverse the computa-

tion backward, one reduction Pi → Pi+1 at the time. If the reduction is originated from

a commit or abort, then we assign it a fresh colour and use the same colour to paint

the brackets of the corresponding transaction scope in Pi. If the reduction is originated

from the merge of several transactions, then we paint the reduction and all the involved

transaction scopes in Pi with the same colour as the merged transaction scope in Pi+1. If

the reduction is an ordinary one, then we paint it with the same colour as the one of the

immediately enclosing brackets of its target term in Pi+1 and we use the same colour to

paint the immediately enclosing brackets of its source term in Pi, if any. At each step, we

paint with the same colours as in Pi+1 all the transaction scopes that are not directly in-

volved in the step. Then each colour can be viewed as representing activities of a distinct

transaction, and we say that c1 is a sub-colour of c2 if the transaction associated with

c1 is a sub-transaction of the one associated with c2. The serializability result essentially

guarantees that another sequence of reductions S ≡ Q0 → Q1 → ... → Qk ≡ S ′ can be

found, such that all steps of different colours are either contiguous or separated by steps

of some sub-colour.

8. Related Work and Concluding Remarks

We have proposed cJoin as a formal framework for designing and programming multiparty

LRTs. Our calculus features name mobility, asynchronous communication and has a pro-

totype implementation called t-JoCaml. We have included several examples that witness

the flexibility of the calculus, together with a serializability result that hold for a wide

range of processes, called shallow. The encodability of full cJoin in Join is an open issue,

for which we have found no solution yet, because it would require the implementation of a

scoping discipline for restricting communication over distributed processes. Nevertheless,

cJoin: Join with communicating transactions 41

in Sections 3 and 4 we have shown that the implemented fragment is valuable enough

to model a large variety of frequently used patterns. Section 8.1 also witnesses that our

proposal is quite original w.r.t. other ones found in the literature.

Transactions have been largely studied by the database community as the main mech-

anism for ensuring data consistency when executing concurrent sequences of opera-

tions (Eswaran et al., 1976). Many different models were proposed to meet the so-called

acid properties (i.e., all or nothing transactions) such as the flat model (Eswaran et al.,

1976), flat transactions with save-points and chained transactions (Gray and Reuter,

1993), nested transactions (Moss, 1981) and the multi-level model (Lomet, 1992; Schek

and Weikum, 1992; Weikum, 1991) among others. These models are based on locking

mechanisms that prevent concurrent transactions from accessing shared objects simul-

taneously (Bernstein et al., 1987; Kohler, 1981; Fekete et al., 1994; Gray and Reuter,

1993). Hence, the execution of a transaction may suffer considerable delays while waiting

for others transactions to commit. Therefore, acid transactions are regarded suitable

only for handling transactions with short duration. Alternative models for long running

transactions leave out acid properties by relying on weaker notions of atomicity. The

seminal proposal in this direction is Sagas (Garcia-Molina and Salem, 1987), which in-

troduces the model of multistep transactions with programmed compensations described

in Section 4.1. This model has been generalised by Open Nested transactions (Schek

and Weikum, 1992), in which compensable steps can be organised hierarchically. Several

other models have appeared in the literature for allowing a flexible description of steps

dependencies, such in (Kaiser and Pu, 1992; Hutchinson et al., 1988; Elmagarmid et al.,

1990).

As previously mentioned, the main goal of the above research line is to ensure consistent

database updates. Differently, transactions in composition languages are aimed at coordi-

nating atomic executions of independent activities. In this sense, composition languages

are directly related to workflow management systems (wms) (see (Georgakopoulos et al.,

1995; Rusinkiewicz and Sheth, 1995) for a detailed description of wms). Transactional

execution of workflows has been an active research topic for wms community, as testified

by several existing transactional wms, like Contracts (Reuter and Wächter, 1992), me-

teor (Krishnakumar and Sheth, 1995) or meteor2 (Kochut et al., 1996)). Recently, the

works in (Butler et al., 2002; Butler et al., 2005b; Bruni et al., 2005; Butler et al., 2005a),

further improved in (Ripon, 2008; Bruni et al., 2011), have formally studied the semantics

of orchestration languages with transactions. Differently from workflow community, this

new research line is concerned about workflow systems as programming languages, and

thus the focus is on giving precise, formal syntax, semantics and reasoning techniques

for transaction primitives in orchestration.

Like previous approaches, cJoin is aimed at using programming language approach to

study transactional composition. Nevertheless, it is targeted to the study of transactions

for choreographies by adding transactions to a calculus for communicating processes. We

devote the remaining part of this section to compare cJoin with other proposals from the

literature that have similar aims.

R. Bruni, H. Melgratti and U. Montanari 42

8.1. Language Comparison

In order to systematically analyse the proposals appeared in the literature we first identify

a set of aspects or choices for extending communicating processes calculi with transac-

tions. Then, we present a comparison of the different approaches in terms of those selected

features.

8.1.1. Undoability. A transactional mechanism provides a way for repairing the effects

of the partial executions of aborted transactions. There are three main design options:

1 Automatic Roll-back: If a transaction [P] aborts, then the scope [] ensures that all

the effects of the partial execution of P are automatically removed from the state.

2 Static Programmable Roll-back: A transactional process P is associated statically with

another process Q such that Q is activated whenever P aborts. Programmers are

responsible for writing Q in such a way that the effects of the partial executions of P

are compensated for.

3 Dynamic Programmable Roll-back: Differently from static programmable roll-back,

compensations are built during execution. Programmers are responsible for describing

how compensations change when transactions execute.

4 Pre-committed Compensation: A lrt is divided into several steps. The successful

execution of a step (i.e., it commits) may install ad hoc programs to be run only

when the whole lrt aborts.

8.1.2. Permeability. Permeability refers to the degree of isolation provided by transac-

tional scopes, i.e., whether messages can cross transactional scopes or not.

1 Impermeable: Messages cannot flow across transactional boundaries, e.g., in P ≡
x!z.0 | y?v.0 | [x?w.P | y!z.Q] no communication is possible on x and y.

2 Permeable in input: Messages generated outside transactions can be received by trans-

actional processes, e.g., process P above can reduce by communicating over x but not

over y.

3 Permeable in output: Transactional processes may send messages to receivers outside

the transaction. In the previous example, P can communicate on y but not on x.

4 Permeable: Messages freely flow across transactional boundaries. The previous process

P may communicate on both x and y.

5 Selective Permeability: Messages may flow across transactional boundaries only when

sent over channels that are in some particular class.

8.1.3. Dynamicity. Dynamicity characterizes the way in which the execution of a trans-

actional scope may relate with the execution of other scopes.

1 Static: A static scope has no relation with other scopes, i.e., after being created it

can neither affect nor be affected by the behaviour of other scopes.

2 Joinable: A scope is joinable if its abortion or commitment may condition or may be

conditioned by the abortion or commitment of other scopes.

3 Splittable: A scope [P] is splittable if it is possible to take a part of P and run it as

an independent scope.

cJoin: Join with communicating transactions 43

4 Dynamic: A dynamic scope is both joinable and splittable.

8.1.4. Naming. The naming policy indicates the way in which transactional scopes are

identified. In particular, they can be

1 Anonymous: Scopes have no explicit identification. This mean that transactional pro-

cesses do not refer scopes explicitly.

2 Named: Scopes have a name and processes refer to them explicitly. Usually a trans-

action is aborted by sending a message to its scope name. In addition, scope names

may be unique, i.e., a name unequivocally identify a transactional scope; or multiple,

i.e., a name may refer to several transactional scopes.

8.1.5. Interaction model. Transactional process calculi differ on the underlying interac-

tion model. We use here a coarse-grain distinction in two main categories.

1 Shared Dataspaces: Processes communicate by writing to and reading from a shared

blackboard.

2 Message Passing: Processes communicate by sending and receiving messages on spe-

cific ports or channels.

8.1.6. Nesting. Nesting relates to the capability of decomposing the execution of a trans-

action into a hierarchy of sub-transactions. In this scheme, any sub-transaction executes

atomically and concurrently with respect to its parent and siblings, deciding freely to

commit or abort. Nevertheless, if the parent aborts all its sub-transactions are also un-

done.

8.1.7. Preemption. Following the classification in (Berry, 1993), the abortion of an exe-

cution may take two different styles of preemption. Abortion may be (i) may-preemptive,

i.e., a transaction may take an arbitrary number of internal computation steps before

handling the abort condition, or (ii) must-preemptive, i.e., no further internal compu-

tation steps are allowed when a transaction reaches the abort (abortion is honoured

immediately).

8.1.8. Comparison. We will use the previous seven categories to compare cJoin against

the closest process calculi appeared in the literature: PLinda (Anderson and Shasha,

1992), TSpaces (Busi and Zavattaro, 2002), TraLinda (Bruni and Montanari, 2004),

πt (Bocchi et al., 2003), Webπ∞ (Lucchi and Mazzara, 2004), RCCS (Danos and Kriv-

ine, 2004), ρπ (Lanese et al., 2010a), dcπ (Vaz et al., 2008) and TransCCS (de Vries

et al., 2010). Figure 15 summarises the features of all selected approaches. We remark

that all considerations made for Webπ∞ are still valid for its timed version (Laneve and

Zavattaro, 2005).

Languages PLinda and TSpaces are aimed at providing a model for traditional seri-

alizable (i.e., acid) transactions, hence they provide input permeability by allowing a

transaction to read or to consume data from a shared dataspace (i.e., the communica-

tion models represents a shared database). Differently, when the transaction produces

R. Bruni, H. Melgratti and U. Montanari 44

Undoability Permeability Dynamicity Naming Interaction Nesting Preemption

PLinda Automatic; Input Static Anonym. DataSpaces No May

Static

TSpaces − Input Static Unique DataSpaces No −

TraLinda Automatic Impermeable Joinable Anonym. DataSpaces No May

πt Static; Permeable Static Anonym.Msg Passing Y es May

Precomm.

webπ∞ Static Permeable Splittable Multiple Msg Passing No May

RCCS Automatic Permeable Joinable Anonym.Msg Passing No −

ρπ Automatic Permeable Joinable Anonym.Msg Passing No −

dcπ Dynamic Permeable Static Unique Msg Passing Y es Must/

May

TransCCS Automatic Permeable Joinable Unique Msg Passing Y es −
Static

cJoin Static Selective Joinable Anonym.Msg Passing Y es May

Figure 15. Comparison of Transactional Process Calculi

a new datum, it is locked until the transaction commits and hence there is no output

permeability. In both cases transaction scopes are defined statically and cannot change

dynamically. Transactions have no name in PLinda, while they are named in TSpaces.

Names in TSpaces are included as a handy way for defining the semantics of the lan-

guage, nevertheless programmers do not need to be aware of them. Although the syntax

of TSpaces allows transaction names to be duplicated, its operational semantics ensures

that each transactional name is treated as unique. None of those languages allows nesting

(the syntax of TSpaces allows it but its semantics does not). Transactions in PLinda have

an automatic, perfect roll-back. Moreover, programmers have the possibility of specifying

ad hoc programs to be run after roll-back when a transaction aborts. Abortion is not

considered in TSpaces.

TraLinda adds joinable transactions to a shared dataspace coordination language.

Multi-way transactions of cJoin are analogous to TraLinda. Nevertheless, cJoin consider

programmable compensations instead of perfect roll-back, nested transactions instead of

flat ones, and message passing communication instead of shared dataspace.

cJoin: Join with communicating transactions 45

Both πt and Webπ∞ are similar in spirit to cJoin. The main differences rely on the poli-

cies adopted for transactional scopes. While πt and Webπ∞ allows transactional processes

to freely interact with other processes, cJoin imposes a more strict policy: transactional

processes may interact over selected channels only with transactional process but, in this

case, they should reach the same decision (i.e., commit or abort). These differences come

from the fact that scopes in πt and Webπ∞ are permeable, while they are selective per-

meable and joinable in cJoin. All three languages provide a mechanism for programmable

compensation (it is called fault handler in πt). In addition, πt provides a mechanism for

undoing precommitted subtransactions. Both πt and cJoin have nesting, while Webπ∞
has not. Word nesting is used in Webπ∞ to refer to splittable scopes.

RCCS and ρπ provide transactions relying on a built-in distributed backtracking mech-

anism, which can achieve perfect roll-back. Transactions are joinable in the sense that

processes that have communicated are required to backtrack together. RCCS is an ex-

tension of CCS (Milner, 1980), therefore the underlying communication is just process

synchronisation. On the contrary, ρπ supports higher order communication (in fact, ρπ

extends RCCS to higher-order π). Differently from cJoin, RCCS and ρπ do not support

nesting, scopes are permeable, and transactions are automatically rolled-back. Abortion

can be fired spontaneously (the execution of a transaction can be aborted at any time).

Compensations in cJoin are statically defined while they are dynamically built in dcπ.

The main idea behind dcπ is that any input prefix is associated with a compensation.

Then, any time a process executes an input action, it also installs a compensation that

will be activated if the corresponding transaction aborts. As shown in (Lanese et al.,

2010b), dynamic compensations are more expressive than static compensations. Trans-

actions in dcπ are completely permeable and static, like in πt and Webπ∞. Hence, the

commitment or abortion of one transaction does not affect the behaviour of the others.

As for Webπ∞, transactional scopes are named and their names are used for signalling

abortion. Consequently, transaction in dcπ can be aborted internally or externally, while

in cJoin the abort condition can be reached only internally. Moreover, dcπ adopts may-

preemption for handling abortion generated externally and must-preemption for internal

abort. On the contrary, aborts are only internal and may-preemptive in cJoin. The main

reason for this choice is that a transaction in cJoin can be the consequence of merging

several independent, possible distributed transactions. Thus, the implementation of a

must-preemptive abortion would be problematic in a distributed setting without central

coordination.

The only joinable mechanism for transactions that we are aware of is the one proposed

in TransCCS. As in cJoin, a transaction in TransCCS can be merged with other trans-

actions during execution. Merging is completely symmetric in cJoin, i.e., the abort of a

merged transaction releases the compensations corresponding to all original transactions.

Differently, the merging of transactions in TransCCS generates a nested transaction (i.e.,

one transaction is included as sub-transaction of the other). Then, the abortion of one

transaction in this hierarchy releases the compensation of the original transaction and

automatically rolls back the original state of the transactions that has been included as

a subtransaction. Finally, abort is spontaneous in TransCCS.

We remark that other interesting approaches such as Pike (Chothia and Duggan, 2004)

R. Bruni, H. Melgratti and U. Montanari 46

and Transactional Linda (Jagannathan and Vitek, 2004) have been left out from our

discussion, since they are parametric frameworks in which the behaviour of a transaction

does not rely on language primitives. Roughly, transactional processes in those calculi

are associated with particular structures that record all process activities. Then, before

granting a process the possibility of executing an action, the requested action is checked

against the execution history to determine whether it will preserve consistency or not.

Hence, different log definitions (in particular, the inference rules that check consistency)

can provide different flavours of transactions.

Similarly we leave out of the comparison the interesting work in (Bocchi and Tuosto,

2010), where the basis are set for a theory of testing equivalence for distributed transac-

tions in the presence of transactional attribute (inspired by the Java Transaction API).

Transaction attributes discipline how services are executed with respect to the transac-

tional scope of the invoking party. However, the calculus proposed in (Bocchi and Tuosto,

2010) does define a notion of commit, but mostly focuses on compensation handling.

Acknoweledgements We want to thank Nick Benton, Luca Cardelli, Cédric Fournet and

Cosimo Laneve with whom we discussed preliminary versions of cJoin. We are very

much indebted to the anonymous reviewers of this special issue for their careful revisions

and detailed comments that helped us to improve the presentation and eliminate some

technical inaccuracies. Finally, we thank Ivan Lanese and Davide Sangiorgi, the editors

of this special issue, for inviting us to submit this contribution.

References

Anderson, B. and Shasha, D. (1992). Persistent linda: Linda + transactions + query processing.

In Research Directions in High-Level Parallel Programming Languages, pages 93–109. Springer

Verlag.

Benton, N., Cardelli, L., and Fournet, C. (2002). Modern concurrency abstractions for C]. In

Proceedings of ECOOP 2002, volume 2374 of Lect. Notes in Comput. Sci., pages 415–440.

Springer Verlag.

Bernstein, P., Hadzilacos, V., and Goodman, N. (1987). Concurrency, Control and Recovery in

Database Systems. Addison-Wesley Longman.

Berry, G. (1993). Preemption in concurrent systems. In Proceedings of FSTTCS’93, volume 761

of Lect. Notes in Comput. Sci., pages 72–93. Springer Verlag.

Berry, G. and Boudol, G. (1992). The chemical abstract machine. Theoret. Comput. Sci.,

96(1):217–248.

Bocchi, L., Laneve, C., and Zavattaro, G. (2003). A calculus for long-running transactions.

In Proceedings of FMOODS’03, volume 2884 of Lect. Notes in Comput. Sci., pages 124–138.

Springer Verlag.

Bocchi, L. and Tuosto, E. (2010). Testing attribute-based transactions in SOC. In Proceedings of

FMOODS/FORTE 2010, volume 6117 of Lect. Notes in Comput. Sci., pages 87–94. Springer

Verlag.

Boreale, M., Bruni, R., De Nicola, R., and Loreti, M. (2008). Sessions and pipelines for structured

service programming. In Barthe, G. and de Boer, F. S., editors, Proceedings of FMOODS’08,

volume 5051 of Lect. Notes in Comput. Sci., pages 19–38. Springer Verlag.

cJoin: Join with communicating transactions 47

BPEL (2003). bpel Specification. version 1.1. Available at http://www.ibm.com/

developerworks/library/ws-bpel.

BPMN (2010). Business process modelling notation (bpmn). Available at http://www.bpmi.org.

Bruni, R., Kersten, A., and Lanese, I. (2011). A new strategy for distributed compensations

with interruption in long-running transactions. In Proceedings of WADT 2010, Lect. Notes

in Comput. Sci. Springer Verlag. To appear.

Bruni, R., Laneve, C., and Montanari, U. (2002). Orchestrating transactions in join calculus. In

Proceedings of CONCUR 2002, volume 2421 of Lect. Notes in Comput. Sci., pages 321–336.

Springer Verlag.

Bruni, R., Melgratti, H., and Montanari, U. (2003). Flat committed join in join. In Proceedings of

CoMeta 2003, volume 104 of Elect. Notes in Th. Comput. Sci., pages 39–59. Elsevier Science.

Bruni, R., Melgratti, H., and Montanari, U. (2004). Nested commits for mobile calculi: extending

Join. In Proceedings of the 3rd IFIP-TCS 2004, pages 569–582. Kluwer Academic Publishers.

Bruni, R., Melgratti, H., and Montanari, U. (2005). Theoretical foundations for compensations

in flow composition languages. In Proceedings of POPL 2005, pages 209–220. ACM Press.

Bruni, R. and Montanari, U. (2004). Concurrent models for linda with transactions. Math.

Struct. in Comput. Sci., 14(3):421–468.

Busi, N. and Zavattaro, G. (2002). On the serializability of transactions in shared dataspaces

with temporary data. In Proceedings of SAC 2002), pages 359–366. ACM Press.

Butler, M., Bruni, R., Ferreira, C., Hoare, T., Melgratti, H., and Montanari, U. (2005a). Com-

paring two approaches to compensable flow composition. In Proceedings of CONCUR 2005,

volume 3653 of Lect. Notes in Comput. Sci., pages 383–397. Springer Verlag.

Butler, M., Chessell, M., Ferreira, C., Griffin, C., Henderson, P., and Vines, D. (2002). Extending

the concept of transaction compensation. IBM Systems Journal, 41(4):743–758.

Butler, M. and Ferreira, C. (2004). An operational semantics for StAC, a language for modelling

long-running business transactions. In Proceedings of Coordination 2004, volume 2949 of Lect.

Notes in Comput. Sci., pages 87–104. Springer Verlag.

Butler, M., Hoare, T., and Ferreira, C. (2005b). A trace semantics for long-running transactions.

In Proceedings of 25 Years of CSP, volume 3525 of Lect. Notes in Comput. Sci., pages 133–150.

Springer Verlag.

Caires, L., Ferreira, C., and Vieira, H. T. (2009). A process calculus analysis of compensations.

In Kaklamanis, C. and Nielson, F., editors, Proceedings of TGC’08, volume 5474 of Lect.

Notes in Comput. Sci., pages 87–103. Springer Verlag.

Chothia, T. and Duggan, D. (2004). Abstractions for fault-tolerant global computing. Theor.

Comput. Sci., 322(3):567–613.

Conchon, S. and Le Fessant, F. (1999). Jocaml: Mobile agents for Objective-Caml. In Proceedings

of ASA/ MA’99, pages 22–29. IEEE Computer Society.

Danos, V. and Krivine, J. (2004). Reversible communicating systems. In Proceedings of CON-

CUR 2004, volume 3170 of Lect. Notes in Comput. Sci., pages 293–307. Springer Verlag.

de Vries, E., Koutavas, V., and Hennessy, M. (2010). Communicating transactions - (extended

abstract). In Gastin, P. and Laroussinie, F., editors, Proceedings of CONCUR’10, volume

6269 of Lect. Notes in Comput. Sci., pages 569–583. Springer Verlag.

Eisentraut, C. and Spieler, D. (2009). Fault, compensation and termination in ws-bpel 2.0 - a

comparative analysis. In Bruni, R. and Wolf, K., editors, Proceedings of WS-FM’08, volume

5387 of Lect. Notes in Comput. Sci., pages 107–126. Springer Verlag.

Elmagarmid, A., Leu, Y., Litwin, W., and Rusinkiewicz, M. (1990). A multidatabase transaction

model for interbase. In Proceedings of VLDB’90, pages 507–518. Morgan Kaufmann.

R. Bruni, H. Melgratti and U. Montanari 48

Eswaran, K., Gray, J., Lorie, R., and Traiger, I. (1976). The notions of consistency and predicate

locks in a database system. Communications of the ACM, 19(11):624–633.

Fekete, A., Lynch, N., Merritt, M., and Weihl, W. (1994). Atomic Transactions. Morgan

Kaufmann Publishers.

Fournet, C. and Gonthier, G. (1996). The reflexive chemical abstract machine and the Join

calculus. In Proceedings of POPL’96, pages 372–385. ACM Press.

Fournet, C., Gonthier, G., Lévy, J.-J., Maranget, L., and Rémy, D. (1996). A calculus of mobile

agents. In Proceedings of CONCUR’96, volume 1119 of Lect. Notes in Comput. Sci., pages

406–421. Springer Verlag.

Garcia-Molina, H. and Salem, K. (1987). Sagas. In Proceedings of the ACM Special Interest

Group on Management of Data Annual Conference, pages 249–259. ACM Press.

Georgakopoulos, D., Hornick, M., and Sheth, A. (1995). An overview of workflow manage-

ment: From process modeling to workflow automation infrastructure. Distributed and Parallel

Databases, 3(2):119–153.

Gray, J. and Reuter, A. (1993). Transaction Processing: Concepts and Techniques. Morgan

Kaufmann.

Hutchinson, N., Kaiser, G., and Pu, C. (1988). Split-transactions for open-ended activities. In

Proceedings of VLDB’88, pages 26–37. Morgan Kaufmann.

Jagannathan, S. and Vitek, J. (2004). Optimistic concurrency semantics for transactions in

coordination languages. In Proceedings of COORDINATION 2004, volume 2949 of Lect.

Notes in Comput. Sci., pages 183–198. Springer Verlag.

Kaiser, G. and Pu, C. (1992). Dynamic restructuring of transactions. In Database Transaction

Models for Advanced Applications, pages 265–295. Morgan Kaufmann.

Kochut, K., Miller, J., Sheth, A., and Wang, X. (1996). Corba-based run-time architectures for

workflow management systems. Journal of Database Management, Special Issue on Multi-

databases, 7(1):16–27.

Kohler, W. (1981). A survey of techniques for synchronization and recovery in decentralized

computer systems. ACM Computing Surveys, 13(2):149–183.

Krishnakumar, N. and Sheth, A. (1995). Managing heterogeneous multi-system tasks to support

enterprise-wide operations. Distributed and Parallel Databases, 3(2):155–186.

Lanese, I., Mezzina, C., and Stefani, S. (2010a). Reversing higher-order pi. In Proceedings of

CONCUR’10, volume 6269 of Lect. Notes in Comput. Sci., pages 478–493. Springer Verlag.

Lanese, I., Vaz, C., and Ferreira, C. (2010b). On the expressive power of primitives for com-

pensation handling. In Proceedings of ESOP’10, volume 6012 of Lect. Notes in Comput. Sci.,

pages 366–386. Springer Verlag.

Laneve, C. and Zavattaro, G. (2005). Foundations of web transactions. In Proceedings of

FOSSACS 2005, volume 3441 of Lect. Notes in Comput. Sci., pages 282–298. Springer Verlag.

Leymann, F. (2001). wsfl Specification. version 1.0. Available at http://www-306.ibm.com/

software/solutions/webservices/pdf/WSFL.pdf.

Lomet, D. (1992). MLR: A recovery method for multi-level systems. In Proceedings of the

1992 ACM SIGMOD International Conference on Management of Data, pages 185–194. ACM

Press.

Lucchi, R. and Mazzara, M. (2004). A framework for generic error handling in business processes.

In Proceedings of WS-FM 2004, volume 105 of Elect. Notes in Th. Comput. Sci., pages 133–

145. Elsevier Science.

Melgratti, H. (2005). Models and Languages for Global Computing Transactions. PhD thesis,

Computer Science Department, University of Pisa.

cJoin: Join with communicating transactions 49

Milner, R. (1980). A Calculus of Communicating Systems, volume 92 of Lect. Notes in Comput.

Sci. Springer Verlag.

Milner, R., Parrow, J., and Walker, J. (1992). A calculus of mobile processes, I and II. Inform.

and Comput., 100(1):1–40,41–77.

Moss, J. (1981). Nested Transactions: An Approach to Reliable Distributed Computing. PhD

thesis, Dept. of Electrical Engineering and Computer Science, MIT.

Reuter, A. and Wächter, H. (1992). Transaction Models for Advanced Applications, chapter The

Contract Model, pages 219–263. Morgan Kaufmann.

Ripon, S. (2008). Extending and Relating Semantic Models of Compensating CSP. PhD thesis,

School of Electonics and Computer Science, University of Southampton.

Rusinkiewicz, M. and Sheth, A. (1995). Specification and execution of transactional workflows.

In Modern Database Systems: The Object Model, Interoperability, and Beyond, pages 592–620.

ACM Press and Addison-Wesley.

Schek, H.-J. and Weikum, G. (1992). Concepts and applications of multilevel transactions and

open nested transactions. In Database Transaction Models for Advanced Applications, pages

515–553. Morgan Kaufmann.

Thatte, S. (2001). xlang: Web Services for Business Process Design. Available at http:

//www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm.

Vaz, C., Ferreira, C., and Ravara, A. (2008). Dynamic recovering of long running transactions.

In Proceedings of TGC 2008, volume 5474 of Lect. Notes in Comput. Sci., pages 201–215.

Springer Verlag.

Weikum, G. (1991). Principles and realization strategies of multilevel transaction management.

ACM Transactions on Database Systems, 16(1):132–180.

WSCDL (2004). Web Services Choreography Description Language. Version 1.0. Available at

http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/.

WSCI (2002). wsci Specification. version 1.0. Available at http://www.w3.org/TR/wsci/.

Appendix A. Correctness and completeness of the implementation

Regarding the proofs of the theorems stating the correctness and completeness of the

encoding of flat cJoin in Join, we report here the details omitted from the proof sketches

in Section 5.

A.1. Correctness, part 1

Proof of Theorem 5.3. The proof follows by case analysis on P . Note that P cannot

be of the form [P ′ : Q′] because 6` [P ′ : Q′] : �1. If P has no local definitions (i.e.,

P 6≡ def D in M), then P is either abort , the inert process 0, or the parallel composition

of messages (containing only free names because there are no local definitions). In all three

cases, P ′ = P . Last case is when P contains local definitions, i.e., P ≡ def D in M . We

show that for any derivation P →∗cJ P1 the following two conditions hold:

— P1 ≡ def D′ in M ′ | Πi∈1..nNi, where Ni are cJoin transactions,

— ∃Q1 s.t. JP K →∗J Q1 and Q1 ≡ (def JD′K in JM ′K|Πi∈1..nRi)|def Dg in 0, where

each Ri is the standard Join negotiation associated to Ni. Besides, Dg are garbage

definitions corresponding to instances of the commit protocol that have terminated.

R. Bruni, H. Melgratti and U. Montanari 50

The proof follows by induction on the length of the derivation P →∗cJ P1. Base case

(m = 0) follows immediately (since P1 = P , it is enough to take Q1 = JP K). For the

inductive step (m = k + 1) we consider reductions P →k
cJ P ′1 →cJ P1. By inductive

hypothesis on P →k
cJ P

′
1 we know that

1 P ′1 ≡ def D′′ in M ′′ | Πi∈1..n′′N ′′i ,

2 ∃Q′1 s.t. JP K →∗J Q′1 and Q′1 ≡ (def JD′′K in JM ′′K|Πi∈1..n′′R′′i)|def D′′g in 0, where

each R′′i is the standard Join negotiation associated to N ′′i .

We proceed by case analysis on the applied rule for P ′1 →cJ P1. Interesting cases are

those that terminate a cJoin transaction, i.e., when rule (commit) or (abort) are used.

Rule (commit) can be only applied when P ′1 has a transaction N1 that does not contain

abort , messages to local ports nor messages with local names as parameters. In this case,

there exists M ′′1 such that N ′′1 →cJ M ′′1 and P1 ≡ def D′′ in M ′′ | M ′′1 | Πi∈2..n′′N ′′i .

By definition of a standard Join negotiation, R′′1 is such that all coordinators have been

asked to commit and the set of continuations of such coordinators is JM ′′1 K. We rely

on a commit protocol that is ensured to terminate by releasing all continuations when

all coordinators are asked to commit, then R′′1 →∗ JM ′′1 K | def Dg1 in 0. Therefore,

Q′1 →∗ Q1 ≡ (def JD′′K in JM ′′K|JM ′′1 K|Πi∈2..n′′R′′i)|def D′′g in 0|def Dg1 in 0. Then, it

is enough to take D′ = D′′, M ′ = M ′′|M ′′1 , n = n′′ − 1 with N ′i = N ′′i+1 and R′i = R′′i+1,

and Dg = D′′g ∧Dg1.

The case for (abort) follows analogously.

A.2. Completeness

Proof of Theorem 5.5. We proceed by case analysis on the structure of P . Since `
P : �1, then P 6≡ [P ′ : Q′]. When P has no local definitions, then it is the parallel

composition of messages on free ports, the inert process 0 and abort . For any of these

cases it holds that JP K does not have any definition, and therefore JP K cannot reduce.

The only possibility is Q = norm(Q) = JP K, which trivially satisfies ∀x : Q ↓x⇒ JP K ↓x.

If P ≡ def D in M , then we show that the following three conditions hold:

1 Q ≡ def JD′K in JM ′1K | Πi∈1..uR
′
i | Πk∈1..fT

′
k | def Dg in 0, where R′i are unfin-

ished Join negotiations (i.e., some transactional thread has not finished), while T ′k are

finished negotiations, with norm(Πk∈1..fT
′
k) ≡ JM2K|def Dc in 0.

2 P →∗cJ P ′ ≡ def D′ in M ′1 |M2 | Πi∈1..uNi where Ni is a standard cJoin transaction

corresponding to R′i.

3 norm(Q) ≡ def JD′K in JM ′1|M2K | norm(Πi∈1..uR
′
i) | def D′g in 0

Above conditions can be shown by induction on the length of the derivation JP K→n
J Q.

— Base case Q = JP K. It is enough to take P ′ = P . Clearly P →∗cJ P ′ = P . Since

` P : �1, then Q = JP K has no coordinators (i.e., n = 0 and f = 0).

— Inductive step JP K→k
J Q

′′ →J Q. By inductive hypothesis on JP K→k
J Q

′′

1 Q′′ ≡; def JD′′K in JM ′′1 K | Πi∈1..uR
′′
i | Πk∈1..F T

′′
k | def D′′g in 0, where R′′i are

unfinished Join negotiations, T ′′k are finished negotiations and norm(Πk∈1..f T
′′
k) ≡

JM ′′2 K|def D′′c in 0.

cJoin: Join with communicating transactions 51

2 P →∗cJ P ′′ ≡ def D′′ in M ′′1 | M ′′2 | Πi∈1..uN ′′i where N ′′i is the standard cJoin

transaction corresponding to R′′i .

Then the proof proceeds by case analysis of applied rule for reducing Q′′ →J Q.

– for some h ∈ 1..u′′, R′′h →J R
′
h. There are two different cases:

1 The applied rule corresponds to the commit protocol. Since the protocol is

confluent, then norm(R′h) = norm(R′′h). Then, it is enough to take P ′ = P ′′,

which satisfies all conditions.

2 The applied rule is not part of the commit protocol. Consequently, the applied

rule is the encoding of some rule in P , and has the following shape Jx〈~u〉.P3K or

Jx〈~u〉|x1〈~u1〉.P3K. We consider here the last case, which is the most interesting

one. Hence, there exists a definition

x〈c1, a1, j1〉 | y〈c2, a2, j2〉 . JP Kc1,a1,j1 | j1〈c2, a2〉 | j2〈c1, a1〉 | c2〈〉

Moreover, R′′h contains the messages for activating the rule. The application

of the rule removes the consumed messages and activates the guarded process.

The application of the rule will cause the two coordinators j1 and j2 to be

joined to the same transaction. The effect of normalisation will depend on the

structure of P3

(a)P3 = y〈~v〉, s.t. y is a message to a local port, then R′h contains y〈c1, a1, j1〉
and the obtained transaction is unfinished. Clearly, this reduction corre-

sponds to a reduction that merges two cJoin transactions.

(b)If P3 consists of a message to a merge port, then the proof is analogous to

the previous case.

(c)JP3Kc1, a1, j1 produces a commit vote, there are two cases: (i) if the vote is

the last one, then, by normalising, Ri commits. It is easy to notice that this

case corresponds to the case in which all local names have been consumed,

then there exist P ′ s.t. P ′′ →cJ P
′ by using commit; (ii) if some coordinators

still wait the vote, then it is enough to take P ′ = P ′′.

(d)P3 = abort, then the encoding JP3Kc1, a1, j1 produces a commit vote to

on the port a1. The normalisation makes all coordinators in R′′h to abort

and to release the compensations. It is easy to notice that this corresponds

to P ′′ →∗cJ P ′ by producing first the abort in the negotiation h and then

applying rule (abort), which releases all compensations.

3 If the reduction is Πk∈1..f T
′′
k →J R. Since all T ′′k are finished negotiations and

that normalisation procedure is confluent, then norm(Πk∈1..f T
′′
k) = norm(R).

Therefore, it is enough to take P ′ = P ′′.

4 The applied rule is a definition in JD′′K:

(a)The applied rule is part of the encoding of an ordinary definition:

• messages are in JM ′′1 K, then immediate by reducing P ′′ by consuming

messages in M ′′1 .

• if a message is in some T ′′k . This is possible only if some coordinator has

R. Bruni, H. Melgratti and U. Montanari 52

finished and released the continuation or the compensation, by correct-

ness of the commit protocol, the message is in JM ′′2 K, hence it is possible

to fire the corresponding rule in P ′′.

Note that messages cannot be part of some Rh because those transactions

have not reached a decision, so global messages are kept by coordinators.

(b)the applied rule is part of the encoding of a merge definition. This case is

similar to the reduction internal to a negotiation and follows by analysing

the pattern of the applied rule.

Finally, condition ∀x : norm(Q) ↓x⇒ P ′ ↓x immediately follows from conditions (2)

and (3).

Appendix B. Formal definition of Coor

Before giving the full Join code for coordinators, we describe intuitively their behaviour

with the transition state diagram in Figure 16. The initial state is called state. While

in the initial state, a coordinator may accept requests for being joined (event join) with

another participants. Any request is confirmed either with okjoin or nojoin. In both cases

the coordinator returns to the initial state. In the initial state the coordinator can also

receive the message to start the execution of the protocol, either with cmt (i.e., commit)

or abt (i.e., abort). After receiving cmt the coordinator goes to the state commit. While

in state commit, a coordinator behaves like in the original protocol, i.e. by notifying all

known parties and by receiving commit confirmation until all parties commit. In such

case, the coordinator reaches the state finished. Instead, if the coordinator receives the

message abt when being in state or commit, it goes to state abort. While in abort, coor-

dinators notify all known parties and discover the whole set of participants (analogously

to commit). When all abort confirmations are received, the coordinator reaches the final

state finished.

The Join code defining coordinators Coor is presented in Figure 17. Rule (0) fixes the

initial state of the coordinator and is the only initially enabled rule of our encoding. This

rule consumes the message cmp〈x 〉 and sets x as the compensation to be activated on

abort. The current state of the coordinator is represented with the message state〈α, β〉,
where α is the compensation to be released on abort and β is the list containing the

channels corresponding to the coordinators of other parties in the same transaction (note

that β is initially empty). The following three rules (i.e., (1)-(3)) handle the joining of

new parties in the transaction. When the coordinator is in the state state〈α, β〉 and

receives a request join〈t , f 〉 for updating the state, it may accept the request (rule (1))

by passing to the state waitjoin and sends on t the private ports on which it expects the

update confirmation (i.e., message okjoin) or the cancellation (i.e., message nojoin). Rule

(2) handles the reception of a join confirmation, which updates the set of known parties,

while rule (3) deals with the cancellation. In both cases the coordinator transits to the

initial state (possibly updating it).

Remark B.1. For simplicity, we abstract away from this two-step communication in

cJoin: Join with communicating transactions 53

the presentation of Section 5 and we simply described join as a one-way message com-

munication on port join.

Rule (4) starts the protocol with the commit vote, while rules (5)–(7) handle commit-

ting phase, and are analogous to the d2pc of (Bruni et al., 2002). There are two subtle

differences: (i) channels state and commit have the extra parameter β, which is a list of

the ports abti of known participants to be used only if the state abort is reached; and (ii)

coordinators goes to state finished after commit (rule (7)). Nevertheless, the behaviour

for committing coordinators are as in the original proposal in (Bruni et al., 2002).

The behaviour for the aborting phase is given by rules (8)–(13). Rules (8) and (9)

start the aborting phase when the coordinator receives a message on channel abt and it

is either in the initial state (rule (8)) or in the commit phase (rule (9)). In both cases

the coordinator triggers a message abort〈β, β′, β′′, α〉, which carries the following values:

— β records the set of abt ports of known participants that must still be contacted

(analogous to `);

— β′ stores the list of ports abti of known participants involved in the same transaction,

which is typically augmented during the d2pc with the sets sent by other participants

(analogous to `′);

— β′′ records the parties who have already sent their consensus for abort (analogous to

`′′);

— α store the messages to be released when aborting, i.e., the activation of the compen-

sation.

Note that the behaviour for the aborting phase (rules (10)–(13)) is analogous to the

committing phase, and it can be described as follow:

1 first phase. The participant sends the abort vote to every known thread in β (rule

(10)). The message contains the list β′ of all known participants, and the sender

identification abt.

2 second phase. The participant collects the messages sent by other parties and up-

dates its own synchronisation set (rule (11) and (12)). A request will be also sent to

the new items in the synchronisation set (by repeating the first phase for them).

3 When the set of aborting parties is transitively closed, the protocol terminates locally

and the coordinator transits to the state finished and releases the compensation α

(rule (13)).

Rules (14)–(16) are for collecting garbage, and state that messages received when

the protocol has finished are ignored. Moreover rules (17)-(19) state that the state of a

coordinator cannot be updated when the protocol has begun.

R. Bruni, H. Melgratti and U. Montanari 54

X_ŶZ][\

okjoin|nojoin
vv

waitjoin

X_ŶZ][\

join

66

cmt

~~

abt

state

X_ŶZ][\ abt //

((

commit X_ŶZ][\

vv

abort

X_ŶZ][\finished

Figure 16. States of coordinators

cJoin: Join with communicating transactions 55

(0) Coor ≡ cmt〈x 〉 . state〈{x}, ∅〉

(1) ∧ state〈α, β〉 | join〈t , f 〉 . t〈okjoin,nojoin〉 |waitjoin〈α, β〉

(2) ∧ waitjoin〈α, β〉 | okjoin〈β′〉 . state〈α, β ∪ β′〉

(3) ∧ waitjoin〈α, β〉 |nojoin〈〉 . state〈α, β〉

(4) ∧ state〈α, β〉 | cmt〈`, κ〉 . commit〈` \ {lock}, `, {lock}, α, κ, β〉

(5) ∧ commit〈{l} ∪ `, `′, `′′, α, κ, β〉 . commit〈`, `′, `′′, α, κ, β〉 | l〈`′, lock , abt〉

(6) ∧commit〈`, `′, `′′, α, κ, β〉 | lock〈`′′′, l , a〉 .
commit〈` ∪ (`′′′ \ `′), `′ ∪ `′′′, `′′ ∪ {l}, α, κ, β ∪ {a}〉

(7) ∧ commit〈∅, `, `, α, κ, β〉 . release〈κ〉 |finished〈〉

(8) ∧ state〈α, β〉 | abt〈β′, a〉 . abort〈(β ∪ β′)\{abt}, β ∪ β′, {abt , a}, α〉

(9) ∧ commit〈∅, `′, `′′, α, κ, β〉 | abt〈β′, a〉 .
abort〈(β ∪ β′)\{abt}, β ∪ β′, {abt , a}, α〉 | a〈β, abt〉

(10) ∧ abort〈{a} ∪ β, β′, β′′, α〉 . abort〈β, β′, β′′, α〉 | a〈β′, abt〉

(11) ∧ abort〈β, β′, β′′, α〉 | lock〈`′′′, l , a〉 . abort〈β ∪ ({a}\β′), β′ ∪ {a}, β′′, α〉

(12) ∧ abort〈β, β′, β′′, α〉 | abt〈β′, a〉 .
abort〈β ∪ (β′′′\(β′′ ∪ {a})), β ∪ β′′′, β′′ ∪ {a}, α〉

(13) ∧ abort〈∅, β, β, α〉 . α〈〉 |finished〈〉

(14) ∧ finished〈〉 | cmt〈`, cnt〉 . finished〈〉

(15) ∧ finished〈〉 | lock〈`, l , a〉 . finished〈〉

(16) ∧ finished〈〉 | abt〈β, a〉 . finished〈〉

(17) ∧ finished〈〉 | join〈t , f 〉 . f 〈〉 |finished〈〉

(18) ∧ commit〈`, `′, `′′, α, κ, β〉 | join〈t , f 〉 . f 〈〉 | commit〈`, `′, `′′, α, κ, β〉

(19) ∧ abort〈β, β′, β′′, α〉 | join〈t , f 〉 . f 〈〉 | abort〈β, β′, β′′, α〉

Figure 17. Join code of coordinators.

