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A TASTE OF NONSTANDARD METHODS IN

COMBINATORICS OF NUMBERS

MAURO DI NASSO

Abstract. By presenting the proofs of a few sample results, we intro-

duce the reader to the use of nonstandard analysis in aspects of combi-

natorics of numbers.

Introduction

In the last years, several combinatorial results about sets of integers that
depend on their asymptotic density have been proved by using the techniques
of nonstandard analysis, starting from the pioneering work by R. Jin (see e.g.
[12, 13, 14, 16, 17, 6, 8, 9]). Very recently, the hyper-integers of nonstandard
analysis have also been used in Ramsey theory to investigate the partition
regularity of possibly non-linear diophantine equations (see [6, 19]).

The goal of this paper is to give a soft introduction to the use of non-
standard methods in certain areas of density problems and Ramsey theory.
To this end, we will focus on a few sample results, aiming to give the flavor
of how and why nonstandard techniques could be successfully used in this
area.

Grounding on nonstandard definitions of the involved notions, the pre-
sented proofs consist of arguments that can be easily followed by the intu-
ition and that can be taken at first as heuristic reasonings. Subsequently,
in the last foundational section, we will outline an algebraic construction of
the hyper-integers, and give hints to show how those nonstandard arguments
are in fact rigorous ones when formulated in the appropriate language.

Two disclaimers are in order. Firstly, this paper is not to be taken as a
comprehensive presentation of nonstandard methods in combinatorics, but
only as a taste of that area of research. Secondly, the presented results are
only examples of “first-level” applications of the nonstandard machinery;
for more advanced results one needs higher-level nonstandard tools, such as
saturation and Loeb measure, combined with other non-elementary mathe-
matical arguments.

2000 Mathematics Subject Classification. 03H05; 11B05; 05D10.
Key words and phrases. Nonstandard analysis, Density of sets of integers, Ramsey

theory, Partition regularity.
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2 MAURO DI NASSO

1. The hyper-numbers of nonstandard analysis

This introductory section contains an informal description of the basics
of nonstandard analysis, starting with the hyper-natural numbers. Let us
stress that what follows are not rigorous definitions and results, but only
informal discussions aimed to help the intuition and provide the essential
tools to understand the rest of the paper.1

One possible way to describe the hyper-natural numbers ∗N is the follow-
ing:

• The hyper-natural numbers ∗N are the natural numbers when seen
with a “telescope” which allows to also see infinite numbers beyond
the usual finite ones. The structure of ∗N is the essentially the same
as N, in the sense that ∗N and N cannot be distinguished by any
“elementary property”.

Here by elementary property we mean a property that talks about ele-
ments but not about subsets2, and where no use of the notion of infinite or
finite number is made.

In consequence of the above, the order structure of ∗N is clear. After the
usual finite numbers N = {1, 2, 3, . . .}, one finds the infinite numbers ξ > n
for all n ∈ N. Every ξ ∈ ∗N has a successor ξ+1, and every non-zero ξ ∈ ∗N
has a predecessor ξ − 1.

∗N =
{
1, 2, 3, . . . , n, . . .
︸ ︷︷ ︸

finite numbers

. . . , N − 2, N − 1, N,N + 1, N + 2, . . .
︸ ︷︷ ︸

infinite numbers

}

Thus the set of finite numbers N has not a greatest element and the set of
infinite numbers N∞ = ∗N \ N has not a least element, and hence ∗N is not
well-ordered. Remark that being a well-ordered set is not an “elementary
property” because it is about subsets, not elements.3

• The hyper-integers ∗Z are the discretely ordered ring whose positive
part is the semiring ∗N.

• The hyper-rationals ∗Q are the ordered field of fractions of ∗Z.

Thus ∗Z = −∗N ∪ {0} ∪ ∗N, where −∗N = {−ξ | ξ ∈ ∗N} are the negative
hyper-integers. The hyper-rational numbers ζ ∈ ∗Q can be represented as
ratios ζ = ξ

ν
where ξ ∈ ∗Z and ν ∈ ∗N.

As the next step, one considers the hyper-real numbers, which are instru-
mental in nonstandard calculus.

• The hyper-reals ∗R are an ordered field that properly extend both
∗Q and R. The structures R and ∗R satisfy the same “elementary
properties”.

1 A model for the introduced notions will be constructed in the last section.
2 In logic, this kind of properties are called first-order properties.
3 In logic, this kind of properties are called second-order properties.
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As a proper extension of R, the field ∗R is not Archimedean, i.e. it
contains non-zero infinitesimal and infinite numbers. (Recall that a number
ε is infinitesimal if −1/n < ε < 1/n for all n ∈ N; and a number Ω is infinite
if |Ω| > n for all n.) In consequence, the field ∗R is not complete: e.g., the
bounded set of infinitesimals has not a least upper bound.4

Each set A ⊆ R has its hyper-extension ∗A ⊆ ∗R, where A ⊆ ∗A. E.g., one
has the set of hyper-even numbers, the set of hyper-prime numbers, the set of
hyper-irrational numbers, and so forth. Similarly, any function f : A → B
has its hyper-extension ∗f : ∗A → ∗B, where ∗f(a) = f(a) for all a ∈ A.
More generally, in nonstandard analysis one considers hyper-extensions of
arbitrary sets and functions.

The general principle that hyper-extensions are indistinguishable from
the starting objects as far as their “elementary properties” are concerned,
is called transfer principle.

• Transfer principle: An “elementary property” P holds for the sets
A1, . . . , Ak and the functions f1, . . . , fh if and only if P holds for the
corresponding hyper-extensions:

P (A1, . . . , Ak, f1, . . . , fh) ⇐⇒ P (∗A1, . . . ,
∗Ak,

∗f1, . . . ,
∗fh)

Remark that all basic set properties are elementary, and so A ⊆ B ⇔
∗A ⊆ ∗B, A ∪B = C ⇔ ∗A ∪ ∗B = ∗C, A \B = C ⇔ ∗A \ ∗B = ∗C, etc.

As direct applications of transfer one obtains the following facts: The
hyper-rationals ∗Q are dense in the hyper-reals ∗R; every hyper-real number
ξ ∈ ∗R has an an integer part, i.e. there exists a unique hyper-integer µ ∈ ∗Z
such that µ ≤ ξ < µ+ 1; and so forth.

As our first example of nonstandard reasoning, let us see a proof of a
fundamental result which is probably the oldest one in infinite combinatorics.

Theorem 1 (König’s Lemma – 1927). If a finite branching tree has infinitely
many nodes, then it has an infinite branch.

Nonstandard proof. Given a finite branching tree T , consider the sequence
of its finite levels 〈Tn | n ∈ N〉, and let 〈Tν | ν ∈ ∗N〉 be its hyper-extension.
By the hypotheses, it follows that all finite levels Tn 6= ∅ are nonempty.
Then, by transfer, also all “hyper-levels” Tν are nonempty. Pick a node
τ ∈ Tν for some infinite ν. Then {t ∈ T | t ≤ τ} is an infinite branch of
T . �

4 Remark that the property of completeness is not elementary, because it talks about
subsets and not about elements of the given field. Also the Archimedean property is not

elementary, because it requires the notion of finite hyper-natural number to be formulated.
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2. Piecewise syndetic sets

A notion of largeness used in combinatorics of numbers is the following.

• A set of integers A is thick if it includes arbitrarily long intervals:

∀n ∈ N ∃x ∈ Z [x, x+ n) ⊆ A.

In the language of nonstandard analysis:

Definition. A is thick if I ⊆ ∗A for some infinite interval I.

By infinite interval we mean an interval [ν, µ] = {ξ ∈ ∗Z | ν ≤ ξ ≤ µ} with
infinitely many elements or, equivalently, an interval whose length µ− ν+1
is an infinite number.

Another important notion is that of syndeticity. It stemmed from dy-
namics, corresponding to finite return-time in a discrete setting.

• A set of integers A is syndetic if it has bounded gaps:

∃k ∈ N ∀x ∈ Z [x, x+ k) ∩A 6= ∅.

So, a set is syndetic means that its complement is not thick. In the
language of nonstandard analysis:

Definition. A is syndetic if ∗A ∩ I 6= ∅ for every infinite interval I.

The fundamental structural property considered in Ramsey theory is that
of partition regularity.

• A family F of sets is partition regular if whenever an element A ∈ F
is finitely partitioned A = A1 ∪ . . . ∪ An, then at least one piece
Ai ∈ F .

Remark that the family of syndetic sets fails to be partition regular.5

However, a suitable weaking of syndeticity satisfies the property.

• A set of integers A is piecewise syndetic if A = T ∩ S where T is
thick and S is syndetic; i.e., A has bounded gaps on arbitrarily large
intervals:

∃k ∈ N ∀n ∈ N ∃y ∈ Z ∀x ∈ Z [x, x+ k) ⊆ [y, y + n) ⇒ [x, x+ k) ∩A 6= ∅.

In the language of nonstandard analysis:

Definition. A is piecewise syndetic (PS for short) if there exists an infinite
interval I such that ∗A ∩ I has bounded gaps, i.e. ∗A ∩ J 6= ∅ for every
infinite interval J ⊆ I.

Several results suggest the notion of piecewise syndeticity as a relevant one
in combinatorics of numbers. E.g., the sumset of two sets of natural numbers

5 E.g., consider the partition of the integers determined by A =
⋃

n∈N
[2n, 2n−1), the

set of opposites −A = {−a | a ∈ A}, and their complements, none of which are syndetic.
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having positive density is piecewise syndetic6; every piecewise syndetic set
contains arbitrarily long arithmetic progressions; a set is piecewise syndetic
if and only if it belongs to a minimal idempotent ultrafilter7.

Theorem 2. The family of PS sets is partition regular.

Nonstandard proof. By induction, it is enough to check the property for 2-
partitions. So, let us assume that A = BLUE ∪ RED is a PS set; we have
to show that RED or BLUE is PS. We proceed as follows:

• Take the hyper-extensions ∗A = ∗BLUE ∪ ∗RED.

• By the hypothesis, we can pick an infinite interval I where ∗A has
only finite gaps.

• If the ∗blue elements of ∗A have only finite gaps in I, then BLUE is
piecewise syndetic.

• Otherwise, there exists an infinite interval J ⊆ I that only contains
∗red elements of ∗A. But then ∗RED has only finite gaps in J , and
hence RED is piecewise syndetic.

�

3. Banach and Shnirelmann densities

An important area of research in number theory focuses on combinato-
rial properties of sets which depend on their density. Recall the following
notions:

• The upper asymptotic density d(A) of a set A ⊆ N is defined by
putting:

d(A) = lim sup
n→∞

|A ∩ [1, n]|

n
.

• The upper Banach density BD(A) of a set of integers A ⊆ Z gener-
alizes the upper density by considering arbitrary intervals in place
of just initial intervals:

BD(A) = lim
n→∞

(

max
x∈Z

|A ∩ [x+ 1, x+ n]|

n

)

= inf
n∈N

{

max
x∈Z

|A ∩ [x+ 1, x+ n]|

n

}

.

In order to translate the above definitions in the language of nonstandard
analysis, we need to introduce new notions.

In addition to hyper-extensions, a larger class of well-behaved subsets of
∗Z that is considered in nonstandard analysis, is the class of internal sets.

6 This is Jin’s theorem, proved in 2000 by using nonstandard analysis (see [13]).
7 See [11] §4.4.
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All sets that can be “described” without using the notions of finite or infinite
are internal. Typical examples are the intervals

[ξ, ζ] = {x ∈ ∗Z | ξ ≤ x ≤ ζ} ; [ξ,+∞) = {x ∈ ∗Z | ξ ≥ x} ; etc.

Also finite subsets {ξ1, . . . , ξn} ⊂ ∗Z are internal, as they can be de-
scribed by simply giving the (finite) list of their elements. Internal subsets
of ∗Z share the same “elementary properties” of the subsets of Z. E.g.,
every nonempty internal subset of ∗Z that is bounded below has a least
element; in consequence, the set N∞ of infinite hyper-natural numbers is
not internal. Internal sets are closed under unions, intersections, and rel-
ative complements. So, also the set of finite numbers N is not internal, as
otherwise N∞ = ∗N \ N would be internal.

Internal sets are either hyper-infinite or hyper-finite; for instance, all inter-
vals [ξ,+∞) are hyper-infinite, and all intervals [ξ, ζ] are hyper-finite. Every
nonempty hyper-finite set A ⊂ ∗Z has its internal cardinality ‖A‖ ∈ ∗N; for
instance ‖[ξ, ζ]‖ = ζ − ξ + 1. Internal cardinality and the usual cardinality
agree on finite sets.

If ξ, ζ ∈ ∗R are hyperreal numbers, we write ξ ∼ ζ when ξ and ζ are
infinitely close, i.e. when their distance |ξ− ζ| is infinitesimal. Remark that
if ξ ∈ ∗R is finite (i.e., not infinite), then there exists a unique real number
r ∼ ξ, namely r = inf{x ∈ R | x > ξ}.8

We are finally ready to formulate the definitions of density in nonstandard
terms.

Definition. For A ⊆ N, its upper asymptotic density d(A) = β is the
greatest real number β such that there exists an infinite ν ∈ ∗N with

‖∗A ∩ [1, ν]‖/ν ∼ β

Definition. For A ⊆ Z, its upper Banach density BD(A) = β is the greatest
real number β such that there exists an infinite interval I with

‖∗A ∩ I‖/‖I‖ ∼ β

Another notion of density that is widely used in number theory is the
following.

• The Schnirelmann density σ(A) of a set A ⊆ N is defined by

σ(A) = inf
n∈N

|A ∩ [1, n]|

n
.

Clearly BD(A) ≥ d(A) ≥ σ(A), and it is easy to find examples where
inequalities are strict. Remark that σ(A) = 1 ⇔ A = N, and that BD(A) =
1 ⇔ A is thick. Moreover, if A is piecewise syndetic then BD(A) > 0, but
not conversely.

8 Such a real number r is usually called the standard part or the shadow of ξ.
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Let us now recall a natural notion of embeddability for the combinatorial
structure of sets:9

• We say that X is finitely embeddable in Y , and write X ≤fe Y , if
every finite F ⊆ X has a shifted copy t+ F ⊆ Y .

It is readily seen that transitivity holds: X ≤fe Y and Y ≤fe Z imply
X ≤fe Z. Notice that a set is ≤fe-maximal if and only if it is thick. Finite
embeddability preserves fundamental combinatorial notions:

• If X ≤fe Y and X is PS, then also Y is PS.

• If X ≤fe Y and X contains an arithmetic progression of length k,
then also Y contains an arithmetic progression of length k.

• If X ≤fe Y then BD(X) ≤ BD(Y ).

Remark that while piecewise syndeticity is preserved under ≤fe, the prop-
erty of being syndetic is not. Similarly, the upper Banach density is pre-
served or increased under ≤fe, but upper asymptotic density is not.

Other properties that suggest finite embeddability as a useful notion are
the following:

• If X ≤fe Y then X −X ⊆ Y − Y ;

• If X ≤fe Y and X ′ ≤fe Y
′ then X −X ′ ≤fe Y − Y ′ ; etc.

In the nonstandard setting, X ≤fe Y means that a shifted copy of the
whole X is found in the hyper-extension ∗Y .

Definition. X ≤fe Y if ν +X ⊆ ∗Y for a suitable ν ∈ ∗N.

Remark that the key point here is that the shift ν could be an infinite
number.

The sample result that we present below, due to R. Jin [12], allows to
extend results that hold for sets with positive Schnirelmann density to sets
with positive upper Banach density.

Theorem 3. Let BD(A) = β > 0. Then there exists a set E ⊆ N with
σ(E) ≥ β and such that E ≤fe A.

Nonstandard proof. By the nonstandard definition of Banach density, there
exists an infinite interval I such that the relative density ‖∗A∩ I‖/‖I‖ ∼ β.
By translating if necessary, we can assume without loss of generality that
I = [1,M ] where M ∈ N∞. By a straight counting argument, we will prove
the following:

• Claim. For every k ∈ N there exists ξ ∈ [1,M ] such that for all
i = 1, . . . , k, the relative density ‖∗A ∩ [ξ, ξ + i)‖/i ≥ β − 1/k.

9 This notion is implicit in I.Z. Ruzsa’s paper [20], and has been explicitly considered
in [6] §4. As natural as it is, it is well possible that finite embeddability has been also
considered by other authors, but I am not aware of it.
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We then use an important principle of nonstandard analysis, namely:

• Overflow : If A ⊆ ∗N is internal and contains all natural numbers,
then it also contains all hyper-natural numbers up to an infinite ν:

A internal & N ⊂ A =⇒ ∃ν ∈ N∞ [1, ν] ⊆ A.

By the Claim, the internal set below includes N:

A = {ν ∈ ∗N | ∃ξ ∈ [1,M ] ∀i ≤ ν ‖∗A ∩ [ξ, ξ + i)‖/i ≥ β − 1/ν}.

Then, by overflow, there exists an infinite ν ∈ ∗N and ξ ∈ [1,M ] such
that ‖∗A ∩ [ξ, ξ + i)‖/i ≥ β − 1/ν for all i = 1, . . . , ν. In particular, for
all finite n ∈ N, the real number ‖∗A ∩ [ξ, ξ + n)‖/n ≥ α because it is
not smaller than β − 1/ν, which is infinitely close to β. If we denote by
E = {n ∈ N | ξ + n ∈ ∗A}, this means that σ(E) ≥ β. The thesis is reached
because ξ + E ⊆ ∗A, and hence E ≤fe A, as desired.

We are left to prove the Claim. Given k, assume by contradiction that for
every ξ ∈ [1,M ] there exists i ≤ k such that ‖∗A∩ [ξ, ξ + i)‖ < i · (β − 1/k).
By “hyper-induction” on ∗N, define ξ1 = 1, and ξs+1 = ξs+ns where ns ≤ k
is the least natural number such that ‖∗A∩ [ξs, ξs+ns)‖ < ns ·(β−1/k); and
stop at step N when M − k ≤ ξN < M . Since k is finite, we have k/M ∼ 0
and ξN/M ∼ 1. Then:

β ∼
1

M
·
∥
∥∗A∩ [1,M ]

∥
∥ ∼

1

M
·
∥
∥∗A∩ [ξ1, ξN )

∥
∥ =

1

M
·
N−1∑

s=1

∥
∥∗A∩ [ξs, ξs+1)

∥
∥

<
1

M
·

(
N−1∑

s=1

ns ·

(

β −
1

k

))

=
ξN − 1

M
·

(

β −
1

k

)

∼ β −
1

k
,

a contradiction. �

The previous theorem can be strengthened in several directions. For
instance, one can find E to be “densely” finitely embedded in A, in the
sense that for every finite F ⊆ X one has “densely-many” shifted copies
included in Y , i.e. BD ({t ∈ Z | t+ F ⊆ Y }) > 0.10

4. Partition regularity problems

In this section we focus on the use of hyper-natural numbers in partition
regularity problems. Differently from the usual approach to nonstandard
analysis, here it turns out useful to work in a framework where hyper-
extensions can be iterated, so that one can consider, e.g.:

• The hyper-hyper-natural numbers ∗∗N ;

• The hyper-extension ∗ξ ∈ ∗∗N of an hyper-natural number ξ ∈ ∗N ;

10 See [6, 9] for more on this topic.
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and so forth. We remark that working with iterated hyper-extensions re-
quires caution, because of the existence of different levels of extensions.11

Here, it will be enough to notice that, by transfer, one has that ∗N  ∗∗N,
and if ξ ∈ ∗N \ N then ∗ξ ∈ ∗∗N \ ∗N; and similarly for n-th iterated hyper-
extensions.12

Let us start with a nonstandard proof of the classic Ramsey theorem for
pairs.

Theorem 4 (Ramsey – 1928). Given a finite colouring [N]2 = C1 ∪ . . .∪Cr

of the pairs of natural numbers, there exists an infinite set H whose pairs
are monochromatic: [H]2 ⊆ Ci.

Nonstandard proof. Take hyper-hyper-extensions and get the finite coloring

[∗∗N]2 = ∗∗([N]2) = ∗∗C1 ∪ . . . ∪
∗∗Cr.

Pick an infinite ξ ∈ ∗N, let i be such that {ξ, ∗ξ} ∈ ∗∗Ci, and consider the
set A = {x ∈ N | {x, ξ} ∈ ∗Ci}. Then ξ ∈ {x ∈ ∗N | {x, ∗ξ} ∈ ∗∗Ci} = ∗A.
Now inductively define the sequence {a1 < a2 < . . . < an < . . .} as follows:

• Pick any a1 ∈ A, and let B1 = {x ∈ N | {a1, x} ∈ Ci}. Then
{a1, ξ} ∈ ∗Ci and ξ ∈

∗B1.

• ξ ∈ ∗A ∩ ∗B1 ⇒ A ∩ B1 is infinite.13 Then pick a2 ∈ A ∩ B1 with
a2 > a1.

• a2 ∈ B1 ⇒ {a1, a2} ∈ Ci.

• a2 ∈ A⇒ {a2, ξ} ∈ ∗Ci ⇒ ξ ∈ ∗{x ∈ N | {a2, x} ∈ ∗C1} = ∗B2.

• ξ ∈ ∗A ∩ ∗B1 ∩ ∗B2 ⇒ we can pick a3 ∈ A ∩B1 ∩B2 with a3 > a2.

• a3 ∈ B1 ∩B2 ⇒ {a1, a3}, {a2, a3} ∈ Ci, and so forth.

Then the infinite set H = {an | n ∈ N} is such that [H]2 ⊆ Ci. �

We now give some hints on how iterated hyper-extensions can be used in
partition regularity of equations. Recall that:

• An equation E(X1, . . . ,Xn) = 0 is [injectively] partition regular on
N if for every finite coloring N = C1 ∪ . . . ∪ Cr one finds [distinct]
monochromatic elements a1, . . . , an ∈ Ci that are a solution, i.e.
E(a1, . . . , an) = 0.

11 See [7] for a discussion of the foundations of iterated hyper-extensions.
12 Notice also that ∗N is an initial segment of ∗∗N, i.e. ξ < ν for every ξ ∈ ∗N and for

every ν ∈ ∗∗N \ ∗N (this property is not used in this paper).
13 Here we use the fact that the hyper-extension ∗X of a set X ⊆ N contains infinite

numbers if and only if X is infinite.
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A useful nonstandard notion in this context is the following:

Definition. We say that two hyper-natural numbers ξ, ζ ∈ ∗N are indis-
cernible, and write ξ ≃ ζ, if they cannot be distinguished by any hyper-
extension, i.e. if for every A ⊆ N one has either ξ, ζ ∈ ∗A or ξ, ζ /∈ ∗A.14

In nonstandard terms:

Definition. An equation E(X1, . . . ,Xn) = 0 is [injectively] partition regular
on N if there exist [distinct] hyper-natural numbers ξ1 ≃ . . . ≃ ξn such that
E(ξ1, . . . , ξn) = 0.

The following result recently appeared in [5].

Theorem 5. The equation X + Y = Z2 is not partition regular on N.

Nonstandard proof. Assume by contradiction that there exist α ≃ β ≃ γ
in ∗N such that α + β = γ2. By the hypothesis of indiscernibility, α, β, γ
belong to the same congruence class modulo 5, say α ≡ β ≡ γ ≡ i mod 5
with 0 ≤ i ≤ 4. The equality α+ β = γ2 implies that either i = 0 or i = 2.
Now write the numbers in the forms:

α = 5a · α1 + i ; β = 5b · β1 + i ; γ = 5c · γ1 + i

where a, b, c > 0 and α1, β1, γ1 are not divisible by 5. Observe that since
α ≃ β ≃ γ, also α1 ≃ β1 ≃ γ1 are indiscernible, and so α1 ≡ β1 ≡ γ1 ≡ j 6≡ 0
mod 5 are congruent. We now reach a contradiction by showing that the
equality α+ β − 2i = γ2 − i2 is impossible.

If a > b then α + β − 2i = 5b(5a−bα1 + β1) where 5a−bα1 + β1 ≡ j 6≡ 0
mod 5; and similarly, if a < b then α + β − 2i = 5a(α1 + 5b−aβ1) where
α1+5b−aβ1 ≡ j 6≡ 0 mod 5. If a = b, then α+β−2i = 5a(α1+β1) ≡ 2j 6≡ 0
mod 5. As for the other term, if i = 0 then γ2−i2 = 52cγ21 where γ21 ≡ j2 6≡ 0
mod 5; and if i = 2, then γ2− i2 = 5c(5cγ21 +4γ1) where 5

cγ21 +4γ1 ≡ 4j 6≡ 0
mod 5. In conclusion, the equality α + β − 2i = γ2 − i2 would imply one
of the following four possibilities: j ≡ j2 or j ≡ 4j or 2j ≡ j2 or 2j ≡ 4j
mod 5. In each case, it would follow j ≡ 0 mod 5, a contradiction. �

The notion of indiscernibility naturally extends to the iterated hyper-
extensions of the natural numbers. E.g., if Ω,Ξ ∈ ∗∗N then Ω ≃ Ξ means
that for every A ⊆ N one has either Ω,Ξ ∈ ∗∗A or Ω,Ξ /∈ ∗∗A. Notice that
α ≃ ∗α for every α ∈ ∗N.

In the sequel, a fundamental role will be played by the following special
numbers.

14 The name “indiscernible” is borrowed from mathematical logic. Recall that in model
theory two elements are named indiscernible if they cannot be distinguished by any first-
order formula.
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Definition. A hyper-natural number ξ ∈ ∗N is idempotent if ξ ≃ ξ + ∗ξ.15

Recall van der Waerden Theorem: “Arbitrarily large monochromatic arith-
metic progressions are found in every finite coloring of N”. Here we prove a
weakened version, by showing the partition regularity of the linear equation
for the 3-term arithmetic progressions.

Theorem 6. The diophantine equation X1 − 2X2 + X3 = 0 is injectively
partition regular on N, which means that for every finite coloring of N there
exists a non-constant monochromatic 3-term arithmetic progression.

Nonstandard proof. Pick an idempotent number ξ ∈ ∗N. The following three
distinct numbers in ∗∗∗N are a solution of the given equation:

ν = 2ξ + 0 + ∗∗ξ ; µ = 2ξ + ∗ξ + ∗∗ξ ; λ = 2ξ + 2∗ξ + ∗∗ξ.

That ν ≃ µ ≃ λ are indiscernible is proved by a direct computation. Pre-
cisely, notice that by the idempotency hypothesis ∗ξ ≃ ξ + ∗ξ and so, for
every A ⊆ N and for every n ∈ N, we have that

∗ξ ∈ ∗∗A− n = ∗∗(A− n) ⇔ ξ + ∗ξ ∈ ∗∗(A− n).

In consequence, the properties listed below are equivalent to each other:

• 2ξ + ∗ξ + ∗∗ξ ∈ ∗∗∗A
• 2ξ ∈ (∗∗∗A− ∗∗ξ − ∗ξ) ∩ ∗N = ∗[(∗∗A− ∗ξ − ξ) ∩ N]
• 2ξ ∈ ∗{n ∈ N | ξ + ∗ξ ∈ ∗∗(A− n)}
• 2ξ ∈ ∗{n ∈ N | ∗ξ ∈ ∗∗(A− n)}
• 2ξ ∈ ∗[(∗∗A− ∗ξ) ∩ N] = (∗∗∗A− ∗∗ξ) ∩ ∗N
• 2ξ + ∗∗ξ ∈ ∗∗∗A.

This shows that ν ≃ µ. The other relation µ ≃ λ is proved in the same
fashion.16 �

One can elaborate on the previous nonstandard proof and generalize the
technique. Notice that the considered elements µ, ν, λ were linear combi-
nations of iterated hyper-extension of a fixed idempotent number ξ, and so
they can be described by the corresponding finite strings of coefficients in
the following way:

• ν = 2ξ + 0 + ∗∗ξ  〈2, 0, 1〉

15 The name “idempotent” is justified by its characterization in terms of ultrafilters:
“ξ ∈ ∗N is idempotent if and only if the corresponding ultrafilter Uξ = {A ⊆ N | ξ ∈ ∗A} is

idempotent with respect to the “pseudo-sum” operation: A ∈ U ⊕V ⇔ {n | A−n ∈ V} ∈ U
where A − n = {m | m + n ∈ A}”. The algebraic structure (βN,⊕) on the space of
ultrafilters βN and its related generalizations have been then deeply investigated during
the last forty years, revealing a powerful tool for applications in Ramsey theory and
combinatorial number theory (see the comprehensive monography [11]). In this area of
research, idempotent ultrafilters are instrumental.

16 Here we actually proved the following result ([3] Th. 2.10): “Let U be any idempotent

ultrafilter. Then every set A ∈ 2U ⊕ U contains a 3-term arithmetic progression”.
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• µ = 2ξ + ∗ξ + ∗∗ξ  〈2, 1, 1〉
• λ = 2ξ + 2∗ξ + ∗∗ξ  〈2, 2, 1〉

Indiscernibility of such linear combinations is characterized by means of a
suitable equivalence relation ≈ on the finite strings, so that, e.g., 〈2, 0, 1〉 ≈
〈2, 1, 1〉 ≈ 〈2, 2, 1〉.

Definition. The equivalence ≈ between (finite) strings of integers is the
smallest equivalence relation such that:

• The empty string ≈ 〈0〉.
• 〈a〉 ≈ 〈a, a〉 for all a ∈ Z.
• ≈ is coherent with concatenations, i.e.

σ ≈ σ′ and τ ≈ τ ′ =⇒ σ⌢τ ≈ σ′⌢τ ′.

So, ≈ is preserved by inserting or removing zeros, by repeating finitely
many times a term or, conversely, by shortening a block of consecutive equal
terms. The following characterization is proved in [7]:

• Let ξ ∈ ∗N be idempotent. Then the following are equivalent:

(1) a0ξ + a1
∗ξ + . . .+ ak ·

k∗ξ ≃ b0ξ + b1
∗ξ + . . . + bh · h∗ξ

(2) 〈a0, a1, . . . , ak〉 ≈ 〈b0, b1, . . . , bh〉.

Recall Rado theorem: “The diophantine equation c1X1 + . . .+ cnXn = 0
(ci 6= 0) is partition regular if and only if

∑

i∈F ci = 0 for some nonempty
F ⊆ {1, . . . , n}”. By using the above equivalence, one obtains a nonstandard
proof of a modified version of Rado theorem, with a stronger hypothesis and
a stronger thesis.

Theorem 7. Let c1X1 + . . . + cnXn = 0 be a diophantine equation with
n ≥ 3. If c1 + . . . + cn = 0 then the equation is injectively partition regular
on N.

Nonstandard proof. Fix ξ ∈ ∗N an idempotent element, and for simplicity
denote by ξi = i∗ξ the i-th iterated hyper-extension of ξ. For arbitrary
a1, . . . , an−1, consider the following numbers in n∗N:

µ1 = a1ξ + a2ξ1 + a3ξ2 + . . . + an−2ξn−3 + an−1ξn−2 + an−1ξn−1

µ2 = a1ξ + a2ξ1 + a3ξ2 + . . . + an−2ξn−3 + 0 + an−1ξn−1

µ3 = a1ξ + a2ξ1 + a3ξ2 + . . . + 0 + an−2ξn−2 + an−1ξn−1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

µn−2 = a1ξ + a2ξ1 + 0 + a3ξ3 + . . . + an−2ξn−2 + an−1ξn−1

µn−1 = a1ξ + 0 + a2ξ2 + a3ξ3 + . . . + an−2ξn−2 + an−1ξn−1

µn = a1ξ + a1ξ1 + a2ξ2 + a3ξ3 + . . . + an−2ξn−2 + an−1ξn−1

Notice that µ1 ≃ . . . ≃ µn because the corresponding strings of coefficients
are all equivalent to 〈a1, . . . , an−1〉. Moreover, it can be easily checked that
the µis are distinct. To complete the proof, we need to find suitable coeffi-
cients a1, . . . , an−1 in such a way that c1µ1 + . . . + cnµn = 0. It is readily
seen that this happens if the following conditions are fulfilled:
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(c1 + . . .+ cn) · a1 = 0

(c1 + . . .+ cn−2) · a2 + cn · a1 = 0

(c1 + . . .+ cn−3) · a3 + (cn−1 + cn) · a2 = 0
...

c1 · an−1 + (c3 + . . . + cn) · an−2 = 0

(c1 + . . .+ cn) · an−1 = 0

Finally, observe that the first and last equations are trivially satisfied
because of the hypothesis c1+. . .+cn = 0; and the remaining n−2 equations
are satisfied by infinitely many choices of the coefficients a1, . . . , an−1, which
can be taken in N.17 �

More results in this direction, including partition regularity of non-linear
diophantine equations, have been recently obtained by L. Luperi Baglini
(see [19]).

5. A model of the hyper-integers

In this final section we outline a construction for a model where one can
give an interpretation to all nonstandard notions and principles that were
considered in this paper.

The most used single construction for models of the hyper-real numbers,
and hence of the hyper-natural and hyper-integer numbers, is the ultra-
power.18 Here we prefer to use the purely algebraic construction of [2],
which is basically equivalent to an ultrapower, but where only the notion of
quotient field of a ring modulo a maximal ideal is assumed.

• Consider Fun(N,R), the ring of real sequences ϕ : N→ R where the
sum and product operations are defined pointwise.

• Let I be the ideal of the sequences that eventually vanish:

I = {ϕ ∈ Fun(N,R) | ∃k ∀n ≥ k ϕ(n) = 0}.

• Pick a maximal ideal M extending I, and define the hyper-real num-
bers as the quotient field:

∗R = Fun(N,R)/M.

17 Here we actually proved the following result ([7] Th.1.2): “Let c1X1+ . . .+cnXn = 0
be a diophantine equation with c1+. . .+cn = 0 and n ≥ 3. Then there exists a1, . . . , an−1 ∈
N such that for every idempotent ultrafilter U and for every A ∈ a1U ⊕ . . .⊕ an−1U there

exist distinct xi ∈ A such that c1x1 + . . .+ cnxn = 0”.
18 For a comprehensive exposition of nonstandard analysis grounded on the ultrapower

construction, see R. Goldblatt’s textbook [10].
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• The hyper-integers are the subring of ∗R determined by the sequences
that take values in Z:

∗Z = Fun(N,Z)/M ⊂ ∗R.

• For every subset A ⊂ R, its hyper-extension is defined by:
∗A = Fun(N, A)/M ⊂ ∗R.

So, e.g., the hyper-natural numbers ∗N are the cosets ϕ +M of se-
quences ϕ : N → N of natural numbers; the hyper-prime numbers
are the cosets of sequences of prime numbers, and so forth.

• For every function f : A→ B (where A,B ⊆ R), its hyper-extension
∗f : ∗A→ ∗B is defined by putting for every ϕ : N→ A:

∗f(ϕ+M) = (f ◦ ϕ) +M.

• For every sequence 〈An | n ∈ N〉 of nonempty subsets of R, its hyper-
extension 〈Aν | ν ∈ ∗N〉 is defined by putting for every ν = ϕ+M ∈
∗N:

Aν = {ψ +M | ψ(n) ∈ Aϕ(n) for all n} ⊆ ∗R.

It can be directly verified that ∗R is an ordered field whose positive el-
ements are ∗R+ = Fun(N,R+)/M. By identifying each r ∈ R with the
coset cr +M of the corresponding constant sequence, one obtains that ∗R
is a proper superfield of R. The subset ∗Z defined as above is a discretely
ordered ring having all the desired properties.

Remark that in the above model, one can interpret all notions used in
this paper. We itemize below the most relevant ones.

Denote by α = ı+M ∈ ∗N the infinite hyper-natural number correspond-
ing to the identity sequence ı : N→ N.

• The nonempty internal sets B ⊆ ∗R are the sets of the form B = Aα

where 〈An | n ∈ N〉 is a sequence of nonempty sets. When all An are
finite, B = Aα is called hyper-finite; and when all An are infinite,
B = Aα is called hyper-finite.19

• If B = Aα is the hyper-finite set corresponding to the sequence of
nonempty finite sets 〈An | n ∈ N〉, then its internal cardinality is
defined by setting ‖B‖ = ϑ+M ∈ ∗N where ϑ(n) = |An| ∈ N is the
sequence of cardinalities.

• If ϕ,ψ : N → Z and the corresponding hyper-integers ν = ϕ + M

and µ = ψ + M are such that ν < µ, then the (internal) interval
[ν, µ] ⊆ ∗Z is defined as Aα where 〈An | n ∈ N〉 is any sequence of
sets such that An = [ϕ(n), ψ(n)] whenever ϕ(n) < ψ(n).20

19 It is proved that any internal set A ⊆ ∗R is either hyper-finite or hyper-infinite.
20 One can prove that this definition is well-posed. Indeed, if ϕ + M < ψ + M and

〈An | n ∈ N〉 and 〈A′

n | n ∈ N〉 are two sequences of nonempty sets such that An = A′

n

whenever ϕ(n) < ψ(n), then Aα = A′

α.
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In full generality, one can show that the transfer principle holds. To
show this in a rigorous manner, one needs first a precise definition of “ele-
mentary property”, which requires the formalism of first-order logic. Then,
by using a procedure known in logic as “induction on the complexity of
formulas”, one proves that the equivalences P (A1, . . . , Ak, f1, . . . , fh) ⇔
P (∗A1, . . . ,

∗Ak,
∗f1, . . . ,

∗fh) hold for all elementary properties P , sets Ai,
and functions fj.

Remark that all the nonstandard definitions given in this paper are ac-
tually equivalent to the usual “standard” ones. As examples, let us prove
some of those equivalences in detail.

Let us start with the definition of a thick set A ⊆ Z. Assume first that
there exists a sequence of intervals 〈 [an, an+n] | n ∈ N 〉 which are included
in A. If 〈 [aν , aν + ν] | ν ∈ ∗N 〉 is its hyper-extension then, by transfer,
every [aν , aν + ν] ⊆ ∗A, and hence ∗A includes infinite intervals. Conversely,
assume that A is not thick and pick k ∈ N such that for every x ∈ Z the
interval [x, x + k] * A. Then, by transfer, for every ξ ∈ ∗Z the interval
[ξ, ξ + k] * ∗A, and hence ∗A does not contain any infinite interval.

We now focus on the nonstandard definition of upper Banach density. Let
BD(A) ≥ β. Then for every k ∈ N, there exists an interval Ik ⊂ Z of length
|Ik| ≥ k and such that |A ∩ Ik|/|Ik| > β − 1/k. By overflow, there exists an
infinite ν ∈ ∗N and an interval I ⊂ ∗Z of internal cardinality ‖I‖ ≥ ν such
that the ratio ‖∗A ∩ I‖/‖I‖ ≥ β − 1/ν ∼ β. Conversely, let I be an infinite
interval such that ‖∗A ∩ I‖/‖I‖ ∼ β. Then, for every given k ∈ N, the
following property holds: “There exists an interval I ⊂ ∗Z of length ‖I‖ ≥ k
and such that ‖∗A∩I‖/‖I‖ ≥ β−1/k”. By transfer, we obtain the existence
of an interval Ik ⊂ Z of length |Ik| ≥ k and such that |A∩Ik|/|Ik| ≥ β−1/k.
This shows that BD(A) ≥ β, and the proof is complete.

Let us now turn to finite embeddability. Assume that X ≤fe Y , and
enumerate X = {xn | n ∈ N}. By the hypothesis,

⋂n
i=1(Y − xi) 6= ∅ for

every n ∈ N and so, by overflow, there exists an infinite µ ∈ ∗N such that the
hyper-finite intersection

⋂µ
i=1(

∗Y −xi) 6= ∅. If ν is any hyper-integer in that
intersection, then µ+X ⊆ ∗Y . Conversely, let us assume that ν +X ⊆ ∗Y
for a suitable ν ∈ ∗Z. Then for every finite F = {x1, . . . , xk} ⊂ X one has
the elementary property: “∃ν ∈ ∗Z (ν + x1 ∈ ∗Y & . . . & ν + xk ∈ ∗Y )”.
By transfer, it follows that “∃t ∈ Z (t+ x1 ∈ Y & . . . & t+ xk ∈ Y )”, i.e.
t+ F ⊆ Y .21

We finish this paper with a few suggestions for further readings. A rigor-
ous formulation and a detailed proof of the transfer principle can be found

21 For the equivalence of the nonstandard definition of partition regularity of an
equation, one needs a richer model than the one presented here. Precisely, one needs
the so-called c

+-enlargement property, that can be obtained in models of the form
∗R = Fun(R,R)/M where M is a maximal ideals of a special kind (see [2]).
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in Ch.4 of the textbook [10], where the ultrapower model is considered.22 See
also §4.4 of [4] for the foundations of nonstandard analysis in its full gen-
erality. A nice introduction of nonstandard methods for number theorists,
including a number of examples, is given in [15] (see also [12]). Finally, a full
development of nonstandard analysis can be found in several monographies
of the existing literature; see e.g. the classical H.J. Keisler’s book [18], or
the comprehensive collections of surveys in [1].
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