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Analytical models describing the motion of colloidal particles in given velocity

fields are presented. In addition to local approaches, leading to well known master

equations such as the Langevin and the Fokker-Planck equations, a global description

based on path integration is reviewed. This shows that under very broad conditions,

during its evolution a dissipative system tends to minimize its energy dissipation

in such a way to keep constant the Hamiltonian time rate, equal to the difference

between the flux-based and the force-based Rayleigh dissipation functions. At steady

state, the Hamiltonian time rate is maximized, leading to a minimum resistance

principle. In the unsteady case, we consider the relaxation to equilibrium of harmonic

oscillators and the motion of a Brownian particle in shear flow, obtaining results that

coincide with the solution of the Fokker-Planck and the Langevin equations.

I. INTRODUCTION

In classical thermodynamics, an isolated system tends to assume its stable equilibrium

configuration which, according to the second law, is unique and corresponds to the state x in

which the entropy functional S (x) is maximized. As in classical thermodynamics any system

has an infinite number of degrees of freedom, the equilibrium state is infinitely more probable

than any other state. On the other hand, finite systems fluctuate, as all configurations have

a finite probability to occur, equal to the Gibbs distribution, C exp [S (x) /k], where k is

Boltzmann’s constant, and C is a normalization factor.

Most of times, however, we deal with evolving dissipating systems, whose trajectories
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are described through appropriate master equations; in particular, we are interested either

in systems that are maintained at steady state through imposed boundary conditions, or

systems that are relaxing towards their state of stable equilibrium. Now, the evolution of

conservative systems can be described either through a mechanistic approach, by integrating

Newton’s equations of motion, or through the variational principle of least action, leading

to the Lagrangian and Hamiltonian formulations of classical mechanics. So, it is natural to

look for a global description of irreversible processes as well, that is finding some universal

function that could play the role of the action and the Lagrangian functionals in analytical

mechanics. Naturally, just like the principle of least action and Lagrangian mechanics are

equivalent to Newton’s equation of motion, this novel variational approach should constitute

a way to describe irreversible processes that is totally equivalent, although alternative, to

solving the usual master equations.

The first example of a similar variational law is due to Kirchhoff1, who in the mid nine-

teenth century demonstrated that the steady state transport of electric charge obeys the

principle of least dissipation of energy. This principle was generalized one hundred year

later by Prigogine2, stating that under given boundary conditions, a system will tend to

a state, in the eventual stationary process, that has a minimum of entropy production.

De Groot and Mazur3 applied this principle to heat conduction, basically using the same

approach as Kirchhoff’ in electrostatics, stressing however that the principle of minimum

entropy production is true only when the corresponding thermodynamic flux (i.e. the heat

flux, JQ ) is proportional to its conjugated force (i.e. the gradient of the inverse temper-

ature, ∇T−1) through a phenomenological coefficient that is constant, i.e., independent of

temperature4. A discussion about the history of this principle can be found in Jaynes5 and

in Müller and Weiss6.

An apparently opposite principle was proposed by Ziegler7, stating that when the thermo-

dynamic forces, F, are assigned, then the actual fluxes, J, maximize the entropy production

rate, Ṡ = J · F. This principle generalizes the maximum (plastic) dissipation theorem of

Mises, Taylor and Hill8 to all nonequilibrium thermodynamics. In particular, when thermo-

dynamic fluxes and forces are linearly related to one another, i.e. J = L ·F, with Lik = Lki

denoting a constant generalized conductivity, then this theorem reduces to the well known

principle, proposed by Onsager9 in 1931, stating that when the thermodynamic forces, F,

are assigned, the difference Ṡ −ΨJ between the entropy production rate and the flux-based
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Rayleigh’s energy dissipation function, ΨJ = 1
2
(J · L−1 · J), is maximized. Vice versa, when

thermodynamic fluxes are assigned, the difference Ṡ −ΨF between the entropy production

rate and the force-based Rayleigh’s energy dissipation function, ΨF = 1
2
(F · L · F), is max-

imized. Finally, for generic constraints, Onsager and Machlup10 and Gyarmati11 found that

the difference Ṡ−ΨJ −ΨF between the entropy production rate and the sum of the two the

energy dissipation functions, is maximized. This extremum property is generally referred

to as the maximum entropy production (MEP) principle; its implications are reviewed in

detail by Martyushev and Seleznev1213 and by Verhas14, showing, in particular, how the

parabolic equations appearing in heat and mass transport can be derived from it. Finally,

Beretta1516 extended the MET principle to far-from-equilibrium conditions, reformulating it

as the steepest entropy ascent (SEA) model.

In this article, without trying to solve this fundamental problem in its entirety, we con-

centrate on a particular case, namely the time evolution of a fluctuating system, subjected

to conservative forces. Apart from its simplicity, the great advantage of this problem is that

for linear forces it reduces to the Ornstein-Uhlenbeck problem17, therefore providing a way

to check the validity of our results. The novelty of the approach presented here is that we

use the path integral formulation, thus providing an alternate point of view which might

help to solve similar problems in the future.

II. DESCRIPTION OF THE MODEL

Consider a diffusing Brownian particle, subjected to a conservative force F = −∇φ0,

satisfying the Langevin equation,

ζ · (ẋ−V) = f , (1)

where the dot indicates time derivative, ζ is the resistance dyadic and we have defined the

velocity V = L · F, with L = ζ−1 denoting a mobility tensor. Here, the Brownian force

f results from the sum of a large number of collisions of the particle with the surrounding

fluid, each occurring randomly and independently of the others, so that, according to the

fluctuation-dissipation theorem, we obtain3:

〈f (t)〉 = 0; 〈f (t) f (t+ τ)〉 = 2kT ζ δ (τ) . (2)
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In general, using non-equilibrium thermodynamics notations, ẋ can be identified with a

generalized flux, J, while ζ · V is a generalized force, F; accordingly, L = ζ−1 is the On-

sager coefficient relating generalized fluxes and forces through the phenomenological linear

relation, J = L · F. Therefore, the generalized Langevin equation reads:

J− L · F = J̃, (3)

where J̃ represents the fluctuating part of the flux, with,

〈
J̃ (t)

〉
= 0;

〈
J̃ (t) J̃ (t + τ)

〉
= 2kTLδ (τ) . (4)

Note that, by applying the fluctuation-dissipation theorem, we have tacitly assumed that

the generalized force is conservative, i.e. F = −∇φ0
18. For example, when we describe the

motion of charged particles in electrostatics, J is the electric current (equal to the mean

particle velocity ẋ per unit charge), while F = −∇φ0 is the electric field induced by an

electric potential, φ0; in the same way, J can be a heat flux and F = −∇T−1 the inverse

temperature gradient.

Now, following the approach by Feynman and Hibbs19 and applying the central limit

theorem, we see that the probability of observing a certain Brownian force function f (t)

consists of the following Gaussian distribution,

Π [f (t)] ∝ exp

[
−
1

2

∫∫
[f (t) ·B (τ) · f (t + τ)] dtdτ

]
, (5)

where B is a sort of inverse of the variance of the process,

B (τ) = 〈f (t) f (t + τ)〉−1 =
1

2kT
ζ−1δ (τ) . (6)

Equations (2), (5) and (6) reveals that, as the intensity of the fluctuating force is pro-

portional to the local resistance, particles tend to diffuse from regions of high to regions of

low fluctuations and, accordingly, a system will tend to move along the paths of minimum

resistance.

Now, since f (t) and x (t) are linearly related to one another through the Langevin equa-

tion (1), the probability Π [x (t)] that the particle follows the path x (t) is proportional to

Π [f (t)]. Consequently, substituting Eqs. (1) and (6) into (5 ), we obtain:

Π [x (t)] = G (x, t|x0) exp


−

1

4kT

∫

x(t)

(ẋ−V) · ζ · (ẋ−V)dt


 , (7)
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where the normalizing term G is the Jacobian20, depending only on the end points (see the

end of Chapter III).

Finally, the conditional probability Π (x, t|x0) that the particle moves from an initial state

x0 at time t = 0 to a final state x at time t will be equal to the sum of the contributions (6)

of all paths connecting the two events, obtaining

Π (x, t|x0) = G (x, t|x0)

∫
exp

[
−
E [x (τ)]

2kT

]
D [x (τ)] , (8)

where the integral is taken over all paths (note that path integrals can be defined rigorously

even when the paths x(τ) are not continuous functions21) such that x (0) = x0 and x (t) = x,

with,

E [x (t)] =

t∫

0

L [x (τ) , τ ] dτ, (9)

and,

L [x (τ) , τ ] =
1

2
(ẋ−V) · ζ · (ẋ−V) . (10)

In general, L [x (τ) , τ ] is (one half of) the rate of energy dissipation at time τ as the

system follows the path x (τ), and E [x (t)] coincides with (one half of) the energy dissipated

along that trajectory during the time interval [0 − t]. Due to the obvious analogy with

analytical mechanics, we could also denote L by Lagrangian time rate and E by action time

rate.

The exponential dependence of the path probability on the action time rate has been

demonstrated directly by Wang and El Kaabouchiu22 through the direct simulation of the

random motion of 109 Brownian particles in a linear force field.

In the particular case of linear velocity fields, the same result was obtained by Onsager

and Machlup10, starting from the Fokker-Planck equation and following Wiener’s original

derivation of path integration23. In fact, the rate of energy dissipation (10) coincides, apart

from the sign, with the Onsager-Machlup function,

L [x (τ) , τ ] = −
(
Ṡ −ΨJ −ΨF

)
, (11)

where,

Ṡ = J · F; ΨJ = 1
2
J · L−1 · J; ΨF = 1

2
F · L · F, (12)

with J = ẋ, F = ζ ·V and L = ζ−1 denoting the generalized flux, the generalized force and

the Onsager coefficient, respectively. Here, Ṡ is the entropy production rate, while ΨJ and
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ΨF are Rayleigh’s flux-based and force-based dissipation potentials, depending respectively

on the rate of change and on the state of the system.

Considering that

∫ t

0

Ṡdt =

∫ t

0

F · ẋdt = −

∫ t

0

∇φ0 · dx = −∆φ = − (φ(x)− φ(x0)) , (13)

we see that the action time rate (9) can also be written in the following form,

E [x (t)] = ∆ (φ) +

t∫

0

L′ [x (τ) , τ ] dτ, (14)

where

L′ [x (τ) , τ ] =
1

2
ẋ · ζ · ẋ+

1

2
V · ζ ·V = ΨJ +ΨF . (15)

It is worth observing that, for imaginary t = −iu, with u real, these equations just give

Feynman’s path integral representation of a probability amplitude19.

III. MINIMUM PATH.

Among all paths, let us denote by y (τ) the one that minimizes E . According to the

Hamilton-Jacobi formalism of classical mechanics, the momentum time rate p along the

minimum path can be defined as,

p =

[
∂L

∂ẋ

]

x=y

= ζ · [ẏ −V (y)] . (16)

Clearly, p has the units of a generalized force and, in fact, it coincides with the Brownian

force f along the minimum path, i.e., p ≡ fmin, where the subscript ”min” indicates that

the quantity is defined along the minimum path.

Now, define the Hamiltonian time rate H (in fact, H has the units of an energy per unit

time) as H = p · ẏ − Lmin, where Lmin is (one half of) the rate of energy dissipation along

the minimum path, i.e.,

Lmin = L [y (τ) , τ ] =
1

2
(ẏ −V) · ζ · (ẏ −V) . (17)

Thus, we obtain:

H =
1

2
(ẏ +V) · ζ · (ẏ−V) =

1

2
ẏ · ζ · ẏ−

1

2
V · ζ ·V, (18)
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where V = V (y), that is, using Rayleigh’s dissipation potentials defined in Eq. (12),

H = (ΨJ −ΨF )min . (19)

Note that, if we minimize the action time rate (14) by defining the momentum time rate

p′ = ζ · ẏ, at the end we would obtain again the Hamiltonian time rate (19).

Here we see that, when t → −t, then ẏ → −ẏ, while V(y) → V(y), showing that H is

time-invariant along the minimum path24. Indeed, it is intriguing that the evolution of a

dissipative system can be described in terms of the conservative motion of a pseudo-system,

whose ”energy” H is constant.

Expressing H in terms of the generalized momenta (16), we have:

H (y,p) = p ·

(
V +

1

2
ζ−1 · p

)
. (20)

Now, substituting the expression (20) into the the canonical equation, ṗ = −∂H/∂y,

the minimum path can be determined explicitly. In particular, in the linear case, when ζ is

constant we obtain:

ṗ+ (∇V) · p = 0. (21)

This is the Euler-Lagrange equation, obtained by minimizing the energy dissipated (9). Note

that, in the isotropic case, when ζ = I, Eq. (21) can be rewritten in the following simple

form,

ÿ = ∇U + ẏ ×B, (22)

where

U =
1

2
V 2; B = −∇×V. (23)

Similar results were obtained by Wiegler,25 who studied the motion of Brownian particles in

irrotational velocity fields, where B = 0. So, the minimum path describes the trajectory of

a pseudo-particle of unit mass and unit electric charge immersed in an electric field U and

a magnetic field B.

Now, in general, the domain of integration of the path integral is composed of all paths

whose distance from the minimum path is of order δ ∼ kT/ζ̃Ṽ or less, where ζ̃ and Ṽ are

typical values of ζ and V, respectively. Therefore, expressing any path x (τ) as the ”sum”

of the minimum path y (τ) and a ”fluctuating” part x̃ (τ)26,

x (τ) = y (τ) + x̃ (τ) , (24)



8

where x̃ (0) = x̃ (t) = 0, then E [x (t)] can be expanded formally around y (τ) as:

E [x (t)] = Emin +
1

2
x̃x̃:

[
∂2E

∂x̃ ∂x̃

]

x=y

+ . . . , (25)

with Emin = E [y (t) , t], where we have considered that the first order derivative is identically

zero. Accordingly, we see that, if within distances of O (δ) from the minimum path, x can

be approximated as a linear function, then E is a quadratic functional, and therefore the

expansion (25) terminates after the second derivative, with the last term being a function of

x̃ only, and not of y26. Finally, substituting (25) into (8)-(10), with x(τ) = y(τ), we obtain:

Π (x, t|x0) = G (x, t|x0) exp


− 1

2kT

t∫

0

Lmin (τ) dτ


 , (26)

where the normalization function G depends only on the end points.

Subjected to a posteriori verification, we have:

G (x, t|x0) = exp



−1

2

t∫

0

∇ · (ẋ+V) dt



 . (27)

Therefore, substituting this expression into Eq. (26), we obtain:

Π (x, t|x0) = exp

[
−

φ

kT

]
; φ =

1

2
E
(t)
min =

t∫

0

L
(t)
min (τ) dτ, (28)

with,

L
(t)
min =

1

2
(ẏ −V) · ζ · (ẏ −V) + kT∇ · (ẏ +V) , (29)

and y(t) represents the trajectory (21) along the minimum path. Note that the last term

in the RHS of Eq. (29) does not enter the minimization process, as its contribution only

depends on the end points.

This result shows that under very general conditions the path integral is determined

exclusively by the minimum path (21), determining the Boltzmann-like distribution (28).

When compatible with the end points, the minimum path is obviously ẏ = V.

Note that here, since the force field is conservative, i.e., F = ζ · V = −∇φ0, with

φ0 = φ0(x) denoting a time-independent potential, we obtain: ẏ · ζ · V = −dφ0/dt.

Then, the steady state, equilibrium probability distribution of unconstrained systems can

be obtained considering the reverse minimum path, ẏ = −V, assuming that initially the
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system is at equilibrium, i.e., x (t = 0) = x0 = 0, with φ0(0) = 0, while x (t) = x.

At the end, since Lmin = ẏ · ∇φ0 = φ̇0, we obtain the usual Boltzmann distribution,

Π(x) = W exp [−φ0(x)/kT ].

IV. THE FOKKER-PLANCK EQUATION.

Now, instead of keeping both the lower and the upper limit of (28) fixed, let us compare

the different values of φ corresponding to trajectories having the same initial configuration,

but with variable final configurations, i.e. when δx(0) = 0 and δx(t) = δx. In this case,

instead of δφ = 0, we obtain δφ = 1
2
p · δx, and therefore,

∇φ =
1

2
p. (30)

In the same way, φ can be seen as a function of time, i.e. we consider the trajectories

starting from the same initial configuration and ending at the same final configuration, but

at a different time. From Eqs. (9) and (28), we se that the total derivative of φ is:

dφ

dt
=

1

2
L

(t)
min. (31)

Note that, as the upper limit of the trajectory is free, the full expression (29) of the

Lagrangian has to be considered. Therefore, expressing the action rate, φ, as a function of

both spatial and temporal coordinates of the upper limit, i.e., φ = φ (x, t), we find:

dφ

dt
=

∂φ

∂t
+

∂φ

∂x
· ẋ =

∂φ

∂t
+

1

2
p · ẋ, (32)

thus obtaining the following Hamilton-Jacobi equation,

∂φ

∂t
+

1

2
H(t) (x,∇φ, t) = 0. (33)

Here, H(t) is the total Hamiltonian time rate,

H(t) (x,p, t) = p · ẋ− L
(t)
min = p ·

(
1

2
ζ−1 · p+V

)
− 2kT ∇ ·

(
1

2
ζ−1 · p+V

)
, (34)

with p = 2∇φ. Therefore, Eq. (33) becomes,

∂φ

∂t
+∇φ ·

(
ζ−1 · ∇φ+V

)
= kT∇ ·

(
ζ−1 · ∇φ+V

)
. (35)
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Now, considering that the conditional probability is related to the generalized potential,

φ, through Π ∝ exp (−φ/kT ), it is easy to see that the Hamilton-Jacobi equation (35) is

identical to the Fokker-Planck equation,

∂Π

∂t
+∇ · J = 0; J = VΠ− kTζ−1 · ∇Π, (36)

where J is the probability flux. Therefore, we see that the quadratic approximation (28), i.e.

assuming that the minimum path is the only trajectory that contributes the path integral, is

equivalent to assuming that the Fokker-Planck equation is a valid approximation to describe

the random process. This result justifies assuming the expression (27) for the normalization

term.

V. STEADY STATE.

In this section we consider a system that is kept in a state of non-equilibrium through

a set of constraints about its generalized forces or fluxes. In this case, considering that the

time integral in Eq. (9) reduces to a simple product, i.e., E = Lt, the rule of least energy

dissipation becomes:

L (x, ẋ) =
1

2
[ẋ−V (x)] · ζ · [ẋ−V (x)] = min (37)

This leads to Onsager’s principle,

− L =
(
Ṡ −ΨJ −ΨF

)
= max, (38)

where Ṡ, ΨJ and ΨF are defined in (12). In addition, considering that at steady state

dφ/dt = ∂φ/∂t = 1
2
L

(t)
min, Eq. (33) becomes:

L
(t)
min +H(t) = 0, (39)

so that we obtain:

p · ẏ = 0. (40)

Consequently, considering that [cfr. Eq. (16)] p = ζ · (ẏ−V), we see that Ṡ = 2ΨJ , so that

Eq. (38) can be rewritten as:

H = (ΨJ −ΨF ) = max, (41)
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where Eq. (19) has been considered. This shows that at steady state a system tends to

maximize its Hamiltonian time rate. The same result could be obtained from Eq. (20), (38)

and (39).

Equation (41) expresses a principle of minimum resistance, revealing that if in a process

the generalized forces, F, are fixed, then the fluxes, J, are maximized, while when the gen-

eralized fluxes are fixed, then the forces are minimized. This confirms that, since from Eqs.

(2), (5) and (6) the intensity of the fluctuating force is proportional to the local resistance,

a system will tend to move along the paths of minimum resistance. So, for example, if the

temperature (or concentration) difference between two regions is fixed, heat (or chemical

species) will tend to flow across regions of low resistance (or large conductivity), thus max-

imizing the flux. In that case, therefore, the entropy production rate will be maximized

and, in fact, this behavior satisfies the maximum flux principle. Alternatively, when the

heat flux is fixed, the rule of minimum resistance leads to minimizing the temperature (or

concentration) difference, so that entropy production rate will be minimized.

Studying a similar problem, Martiouchev and Seleznev27 showed that the morphologies

selected during crystallization tend to maximize the entropy production. Similar results

were obtained by Molin and Mauri28, who simulated the spinodal decomposition of a binary

mixture confined between two walls that are quenched below the critical temperature. This

rule was demonstrated in great generality by Dewar29 using nonequilibrium statistical me-

chanics, showing that it applies to all cases where macroscopic fluxes are free to vary under

imposed constraints. Similar results were obtained by Favretti30. Accordingly, despite its

name, this law generalizes Onsager’s principle of least energy dissipation9 to cases where

systems are far from equilibrium and, in fact, it agrees with the steepest entropy ascent

(SEA) model developed by Beretta16.

VI. UNSTEADY CASES.

A. Relaxation to equilibrium.

In this section we consider unconstrained systems that relax towards equilibrium. In

this case, since at equilibrium p = V = 0, then H = 0. Therefore, considering that

H is constant along the minimum path, we conclude that during its relaxation towards
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equilibrium a system satisfies the following relation:

H = 0 → ΨJ = ΨF , (42)

where Eq. (19) has been considered.

As a simple example of application, consider a typical Ornstein-Uhlenbeck process, where

a Brownian particle, with drag coefficient ζij = ζδij and diffusivity D = kT/ζ , is immersed in

a quiescent fluid and is subjected to a linear potential force, (i.e., it is a harmonic oscillator),

attracting the particle towards the origin, with F = ζV = −ζM · x, where Mij = Mji.

Accordingly, we can choose a reference frame where the axes coincide with the principal

directions of the M matrix, so that Mij = Miδij , with Mi > 0.

Now, the conditional probability function Π (x, t|0) that describes the motion of this

Brownian particle is given by Eqs. (28)-(29). Here, the minimum path equation (22) reduces

to:

ÿi = M2
i yi, (43)

which, coupled to the conditions yi(0) = 0 and yi(t) = xi, yields:

yi(τ) = xi
sinh (Miτ)

sinh (Mit)
. (44)

Substituting this result into Eq. (29), i.e. Lmin = ζ (ẏ −V)2, we obtain:

Lmin = ζ
∑

i

M2
i x

2
i

sinh2 (Mit)
(cosh (Miτ) + sinh (Miτ))

2 + C(τ), (45)

where C(τ) is an irrelevant time-dependent function, independent of the endpoints. Finally,

from Eq. (28) we find the following Gaussian distribution31:

Π (x, t|0) = W (t) exp

[
−

1

4D

∑

i

Mix
2
i [1 + coth(Mit)]

]
, (46)

where W (t) is a normalization factor, which is independent of the endpoints. In particular,

for long times, t ≫ M−1, this solution tends to the equilibrium distribution,

Π (x) = W exp

[
−

1

2kT

∑

i

gix
2
i

]
(47)

where gi = ζMi represents the spring constant along the i-th direction. This is the well-

known Ornstein-Uhlenbeck solution17, obtained by solving the Fokker-Planck equation;

clearly, this result is not surprising, since in Eqs. (35) and (36) we saw that the Fokker-

Planck equation is equivalent to the Hamilton-Jacobi equation for the mininum path.



13

VII. UNIFORM VELOCITY FIELD AND SIMPLE SHEAR FLOW.

In this section we want to show that the path integral approach can also be applied to

cases where there is no steady state. The simplest case is the diffusion of a Brownian particle

in a uniform velocity field, i.e., when V is a constant vector. In this case, the minimum

path y(τ) satisfies the Euler-Lagrange equation (22), ÿ = 0, with y(0) = 0 and y(t) = x,

obtaining: y(τ) = xτ/t. Thus, the minimum path corresponds to a trajectory with uniform

velocity, which of course has nothing to do with the ”real” velocity of a diffusing Brownian

particle. Now, substituting this result into (28)-(29) we obtain the well known result:

Π (x, t|0) = W (t) exp

[
−
(x−Vt)2

4Dt

]
, (48)

where W (t) = (4πDt)−3/2 is a normalization factor, independent of the endpoints.

A more complex case consists of a Brownian particle immersed in a simple shear flow

field, V1 = γx2; V2 = V3 = 0. As shown in Mauri and Haber32, following the same procedure

as before, we see that the minimum path equation (22) reduces to:

ÿ1 − γẏ2 = 0; ÿ2 + γẏ1 − γ2y2 = 0; ÿ3 = 0, (49)

which, coupled to the conditions yi(0) = 0; yi(t) = xi, yields:

y1(τ) = C1

(
τ̃ 3 − 6τ̃

)
+ C2τ̃

2; y2(τ) = 3C1τ̃
2 + 2C2τ̃ ; y3(τ) = Y3τ/t, (50)

with τ̃ = γτ , where

C1 =
t̃x2 − 2x1

t̃
(
t̃2 + 12

) ; C2 =

(
6− t̃2

)
x2 + 3t̃x1

t̃
(
t̃2 + 12

) , (51)

and t̃ = γt. Substituting this result into Eqs. (28) and (29), we find the following Gaussian

distribution:

Π (x, t|0) = W (t) exp

[
−
3γ

(
2x1 − t̃x2

)2

4Dt̃
(
t̃2 + 12

) −
x2
2 + x2

3

4Dt

]
. (52)

Therefore, the variances of this distribution are:

〈x2
1〉 = 2Dt

[
1 +

1

3
(γt)2

]
; 〈x1x2〉 = Dγt2; 〈x2

2〉 = 〈x2
3〉 = 2Dt. (53)

Here we see that, as expected, the mean freedisplace ment in the flow direction grows like

t3. Again, as expected, this result coincides with that by Foister and Van de Ven33 and by
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Katayama and Terauti34, who obtained it by solving the Fokker-Planck and the Langevin

equations, respectively.
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