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Abstract: A globalized world ask for mobilization of educators in view of 

the design of new curricula. Investigation and analysis of indigenous 

knowledge are needed in view of their possible integration with academic 

knowledge, to create an educational context where different cultures are 

equally valued and granted dignity. The investigation and the analysis are to 

refer also to mathematics, a discipline which cannot anymore be considered 

culture-free. In the paper, we try to give the readers the opportunity to ask 

themselves and answer the following questions: What is mathematics? How 

look like today’s classrooms? Which is the needed mathematics education? 

The author suggests a possible answer to the last question by the proposal of 

three teaching units originated by the analysis of examples of the 

mathematics of professionals, the mathematics of indigenous people, the 

history of mathematics 

 

Introduction 

Teaching Mathematics is not an easy task… It is not just a matter of 

communicating notions and concepts! Before entering the classroom, 

mathematics teachers should ask themselves a few questions: 

What contents to teach? [Curriculum] 

How? [Methodology] 

but also: 

Why to teach a given piece of content? [Motivation] 

What for? [Aims]  

School textbooks or popularizing books are primarily engaged in the 

"what" to teach; literature on mathematics education mainly devotes 

the attention to the "how". Rather scarce are publications which aim 

to reflect on the big and little "why" of mathematics teaching. 

(translated from Villani, 2003) 



The paper aims to provide mathematics teachers with opportunities to give 

their own answer to the above questions. In view of this, we present three 

more questions and try to answer them: 

What is mathematics? 

How look like today’s classrooms? 

Which is the needed mathematics education? 

 

What is mathematics? 

In the attempt to answer the first question, we start quoting a UNESCO 

(1997) document: 

Considering the central importance of mathematics and its 

applications in today's world with regard to science, 

technology, communications, economics and numerous 

other fields, 

Aware that mathematics has deep roots in many cultures 

and that the most outstanding thinkers over several 

thousand years contributed significantly to their 

development, and numerous other fields, 

Aware that the language and the values of mathematics are 

universal, thus encouraging and making it ideally suited for 

international cooperation, 

Stressing the key role of mathematics education, in 

particular at primary and secondary school level, both for 

the understanding of basic mathematical concepts and for 

the development of rational thinking, 

Welcomes the initiative of the International Mathematical 

Union (IMU) to declare the year 2000 the World 

Mathematical Year … 

It is said: mathematics has deep roots in many cultures. 

• If Mathematics has deep roots in many cultures, can we assume that 

many cultures have produced mathematical ideas? 

• If many cultures have produced mathematical ideas, can we assume that 

many cultures continue to produce mathematical ideas? 

• If many cultures continue to produce mathematical ideas, can we say 

that mathematics is a cultural product? 



• If mathematics is a cultural product, can we say that every culture has 

the ability to produce mathematical ideas? 

• If every culture has the ability to produce mathematical ideas, can we 

assume that every society in which a given culture develops is also able 

to organize them and make them accessible to its members? 

• If different societies are able to organize the mathematical ideas they 

produce, can we say that there are several different mathematics? 

• If there are several different mathematics, what is Mathematics that we 

started from? 

• What are these mathematics? 

• What is the relationship between these mathematics and the 

Mathematics? 

Before trying to answer these questions, let us consider another excerpt 

from the UNESCO quotation: the language and the values of mathematics 

are universal. 

• The language used by a society in the development and organization of 

its cultural products can be universal? 

• For the Mathematics and the several different mathematics are used the 

same languages? 

• The values assigned to a given cultural product can be universal? 

• The Mathematics and the mathematics are assigned the same values? 

• What they have in common, in terms of universality, the Mathematics 

and the mathematics? 

Mathematics is a tool created and used by humans to interact with the 

environment and with other men! But the environments and societies in 

which men live are different, they require the design and implementation of 

appropriate strategies and techniques of communication, which can not a 

priori be the same, independent of the context; on the contrary, in principle, 

they are different. It is in this way that, therefore, different mathematics are 

developed. 

On this, albeit from different study experiences and lines of research, both 

D'Ambrosio and Bishop, substantially agree. The first, after having initially 

(D’Ambrosio, 1985) introduced the term ethnomathematics as 

the mathematics which is practised among identifiable 

cultural groups such as national-tribal societies, labour 

groups, children of a certain age bracket, professional 

classes and so on 



broadens (D’Ambrosio, 1992) its meaning to 

the arts or techniques developed by different cultures to 

explain, to understand, to cope with their environment.  

Bishop, for his part, notes that 

mathematics must now be understood as a kind of cultural 

knowledge, which all cultures generate but which need not 

necessarily ‘look’ the same from one cultural group to 

another. 

In his researches and studies on different mathematics, Bishop believes, 

however, to grasp a common element, as necessary and sufficient condition 

for the emergence and development of each of them: the use of the 

following six categories of activities 

Counting - Locating - Measuring - Designing - Playing - Explaining. 

He shows in detail that almost all of the ideas around which Mathematics 

has developed is based mainly on these cultural activities. 

So, it is the six categories of mathematical activities that may be seen as 

universal; at the same time must be judged universal the validity of any 

mathematical theory, regardless of the society in which it is developed. 

The foregoing leads to the need to reconsider one of the stereotypical 

qualities of mathematics, being culture-free, which is attributed to it as a 

result of being considered a universal knowledge. But we must also 

reconsider, consequently, its supposed to be value-free. How can we think 

in fact that a cultural product does not carry values? Similarly, as educating 

does not just mean teaching, even mathematics education cannot be 

separated from the consideration of the values that can be assigned to 

mathematical knowledge in different cultural contexts, mono- or multi-

cultural. 

The identification and definition of values is always difficult, as they carry 

strong elements of subjectivity. This difficulty is even more evident if we 

want to identify and define the values of cultural products that are foreign to 

the culture of the society in which we live and we were brought up. The 

same goes for mathematics or, better, to the body of knowledge that the use 

of the above six mathematical activities originate in different cultures. We 

are now aware of the risk of reading with 'Western' eyes knowledge and 

products of non-Western cultures, and of assigning values to them, even 

when it comes to mathematical knowledge. This risk was firstly highlighted 

by Vithal & Skovmose (1997), but more significantly, a little earlier, by 



Zevenbergen (1995) that, with explicit reference to Bishop, criticizes the 

tendency of Western scholars to describe indigenous activities, objects and 

relationships in terms of Western mathematics (Mathematics), stating that 

this compromises the inherent uniqueness of the indigenous culture. 

What is, therefore, possible, it is only trying to identify the values that can 

be assigned to the mathematics used by us, by us as members of a particular 

society that has developed a specific culture, mathematics included, and that 

this culture, mathematics included, has drawn elements which have allowed 

and allow its development. Although aware of the fact that no society can be 

considered mono-cultural, despite the homogeneity of family and social 

roots, at the macroscopic level we can say that the mathematics of the 

'Western' culture, that permeates our society, is essentially the Mathematics, 

the academic mathematics. 

In fact, even in 'our' society there are social groups for which the 

mathematical knowledge, that they also do have, do not coincide with the 

Mathematics. 

To sum up, a possible answer to the sequence of questions asked above 

could be: mathematics is not a unique set of contents; different cultures 

produced and keep producing different mathematics, which in turn 

contributed and keep contributing to form the academic mathematics, the 

Mathematics, not necessarily being entirely a part of it. 

It is of some interest to note that the choice of Bishop to indicate 

mathematics as the result of carrying out certain activities necessary to cope 

with the real life is opposed to what is suggested by several international 

and national educational bodies involved in the categorization of 

mathematical knowledge against which to evaluate the students’ 

competence.  

Here below a few classifications are shown: 

• Content categories (Overarching ideas): Space and Shape, Change and 

relationships, Quantity, Uncertainty and data [OECD/OCSE-PISA 2012] 

• Content domains: Number – Algebra – Geometry –Data and chance 

[TIMSS 2011] 

• Strands of content: Number and Operations – Algebra – Geometry – 

Measurement – Data Analysis and Probability [NCTM Standards 2000] 

• Nuclei Fondanti: Numbers – Space and Figures – Relations and 

Functions – Data and Predictions [Italian MIUR: National Guidelines - 

Indicazioni Nazionali 2012] 



How contrasting are these static categorizations to the active one proposed 

by Bishop! Contents vs Activities. Bishop’s view of mathematics is of 

different cultural products made for ... rather than made of ... 

 

How look like today’s classrooms? 

Multiculturalism represents the biggest change in our societies and schools, 

but some school systems are not yet ready to give immigrants and minority 

pupils the needed opportunities to develop their knowledge and abilities. A 

big effort still has to be made, both in terms of financial and educational 

resources. As far as mathematics is concerned, a significant attention should 

be paid to initial and in-service education of teaching staff; they should 

become aware of the fact that multicultural classrooms oblige them to find 

new teaching methodologies. The universality of mathematics should no 

longer be seen as a value, but as a limit to be overcome in the teaching 

practice, thus allowing pupils with different backgrounds (and carrying 

different values!) and the entire class to take real advantage from the new 

educational context. 

When focusing their attention on the pupil's insertion into the class, teachers 

seem to be worried about the creation of a fair social setting, which should 

allow them to better act as educators; the risk is that the achievement of this 

fair social setting could be viewed, by a few teachers, as the single final aim, 

thus disregarding any additional attention to the methodologies to be used 

for an effective mathematics education of the whole class including 

minority pupils. 

Developing different didactical activities just for immigrant or minority 

pupils could also be risky! This approach could result in their educational 

and, likely, social exclusion: we would say that too much care is as 

dangerous as too little concern. The definition of a good balance between 

the individuals’ and the whole class educational needs is the real 

methodological challenge. Therefore, the promotion of actions aiming at 

creating an inclusive educational environment is the biggest challenge 

Inclusive education is a process of strengthening the 

capacity of the education system to reach out to all 

learners... As an overall principle, it should guide all 

education policies and practices, starting from the fact that 

education is a basic human right and the foundation for a 

more just and equal society (UNESCO, 2009a). 



In accordance to what stated in the 2009 Report of the UNESCO Experts 

Group
1
 on Enhancing Quality Inclusive Education, we can say that inclusive 

education (UNESCO, 2009b): 

• is an evolving concept; 

• is being broadened to refer to all marginalized groups, not just children 

with special needs; 

• is not just about children being in or out of school, but about them 

receiving a quality education whilst in school; 

• is based on the premise that all children can learn; 

• requires that schools respond positively to diversity among learners; 

• requires us to think about the question: ‘inclusion into what?’ 

In the perspective of the social inclusion, we can say that 

learning to live together begins with learning to learn together. 

From the pedagogical point of view the pupil is to be considered a person, 

not just an individual in the classroom; the pupil is to be at the centre of the 

educational process. 

 

Which is the needed mathematics education? 

As far as mathematics education is concerned, the inclusive educational 

approach was already promoted in the American NCTM Standards and 

Principles for School Mathematics – 2000, where we can find The Equity 

Principle: 

Excellence in mathematics education requires equity 

- high expectations and strong support for all 

students. 

All students, regardless of their personal characteristics, 

backgrounds, or physical challenges, must have 

opportunities to study - and support to learn - mathematics. 

This does not mean that every student should be treated the 

same. But all students need access each year they are in 

school to a coherent, challenging mathematics curriculum 

that is taught by competent and well-supported mathematics 

teachers. 

                                                 
1
 The author was a member in the Experts Group 



Similarly, in the Australian AAMT Standards for Excellence in Teaching 

Mathematics – 2002 we can read: 

Excellent teachers of mathematics have a thorough 

knowledge of the students they teach. This includes 

knowledge of students’ social and cultural contexts, the 

mathematics they know and use, their preferred ways of 

learning, and how confident they feel about learning 

mathematics. 

In the present globalized world everything is soaked in cultural products 

from diverse areas and societies. Therefore, inclusive education asks for 

integration of knowledge. 

New curricula are to be designed and implemented, rooted on the pillars of 

the education for the XXI century: 

Learning to know, Learning to do, Learning to be and live with others 

What is a curriculum? 

• The set of experiences that a school intentionally designs and 

implements for the pupil in order to achieve the set educational goals. 

• The design of a curriculum is the process through which the educational 

research and innovation develop and organize. 

Here below we suggest a few characteristics of and requirements for 

inclusive curricula: 

• Tool to foster tolerance and promotion of human rights, to go beyond 

linguistic, cultural, religious, and gender differences. 

• Break of gender stereotypes, not only in textbooks but also in teachers’ 

attitudes and expectations. 

• Design of educational and training modules adapted to the needs of 

pupils at risk of exclusion, but consistent with the formal education that 

the school system requires. 

• Educational paths attentive to the individual, not for the individual. 

• Attention to diversity, valuing diversity. 

• Greater emphasis on practical, experience-based, active and cooperative 

learning. 

• Participatory approaches that refer to traditional and indigenous 

knowledge. 



In the next part of the paper we introduce examples of the way the last of 

the above mentioned qualities of an inclusive mathematics curriculum could 

be achieved. 

Inclusive curricula for mathematics call for search and exploitation of 

mathematical activities in culturally different contexts. The search activities 

can be conducted under different strands: historical, ethnographical, 

anthropological. Some search results could represent the starting point for 

the design of a curriculum where mathematics are valued and granted the 

same dignity as Mathematics. Integrating indigenous and academic 

mathematical knowledge is not a easy task, is a real challenge. 

This is still an under-researched area compared to the 

above strands. Perhaps this is because it is in this area that 

ethnomathematics faces its most difficult challenge – that of 

impacting on the school mathematics curriculum. 

The above remark by Vithal and Skovmose (1997) about ethnomathematics 

and mathematics education seems to be still to date… 

The main question is: How to harmonize the knowledge acquired from 

research about mathematics with Mathematics curricula designed and 

implemented for decades, and often rigidly structured in the educational 

systems of different countries? 

Hereafter, three proposals for teaching units to be used in primary and lower 

secondary mathematics classes are briefly presented. 

 

The mathematics of professional groups: The zampoña micro-project 

The research carried out in Italy as part of a project about teaching 

mathematics in multicultural contexts, funded by the European Union, led, 

inter alia, to the creation of a micro-project, zampoña (the Andean pipes), 

whose materials were collected in a multimedia CD-ROM (Favilli, 2004). 

The term micro-project is introduced to refer to a teaching unit, whose main 

aims are to promote intercultural and interdisciplinary education, while 

offering pupils in multicultural classes the opportunity to appropriate and 

develop mathematical concepts and skills. The teaching unit has been 

developed from a craft activity typical of a specific culture: the construction 

of a zampoña. 

As far as mathematics is concerned, the project is based on the coexistence 

of three kinds of mathematics "hidden" in the zampoña: 



• the mathematics implicit in the very construction of the instrument, 

which the craftsman uses, in a more or less consciously, to create it; 

• the explicit mathematics, embodied by the same zampoña; 

• the external mathematics, proper to the person who observes and 

analyzes the craft, and associates to it his own mathematics, partly 

imposing it while he catches the craftsmanship implicit mathematical 

ideas and the instrument explicit ones. 

It is therefore three different mathematical lectures, inextricably linked and 

intertwined with each other in the investigation, that, together, contribute to 

broaden the horizon of mathematics, freeing it from the idea that there is 

only one mathematics, and therefore that it is universal. 

These considerations in mind, it is possible to extract several mathematical 

contents from the investigated activity, such as: 

The methodology chosen and primarily suggested is learning by discovery 

and group work. Therefore, the teaching unit can be developed 

implementing a sequence of manual and reflective activities, followed by a 

formalization, divided into the following three main stages: 

• discovering the zampoña: pupils are asked to emulate all phases of the 

work of the craftsman (as they are shown in the pictures below) and 

construct their own zampoña, thus appropriating some of the 

mathematical concepts embedded in them; at the same time, pupils 

acquire knowledge about the culture within which the craft is placed, 

thus making the activity an interdisciplinary one; 

    

 



        

 

                            

 

• let’s know the zampoña better: pupils should carry out an initial 

qualitative analysis of the instrument they have built, grasping, for 

example, the notion of function underlying the nature of the product and 

then extend it to other situations both real and inherent in the 

mathematical theory; other mathematical notions related to the zampoña 

and its construction that could emerge are: relations – sequences – order 

– classifying – measurement – mean average, mode and median – 

cylinder – circle; 

• what if we want to make a bigger zampoña?: the problematic proposal 

aims to introduce the students to a quantitative analysis of the 

instrument, evoking the idea of measurement, and involving, during the 

analysis of data collected or provided by the teacher the concepts, 

among others, of ratio and proportionality. 

In the construction of the zampoña, pupils are given two data tables that 

correspond to the measures carried out by the artisan to the end of its 

construction, the length and diameter of each of the (two sets of) rods he cut 

and used to construct the musical instrument. 

In fact the craftsman measures the length of the rods to be cut through a 

wooden strip, of length and width compared to the size of the zampoña he 



wants to build; on this strip there are notches, corresponding to the musical 

notes. This way of measuring, which occurs to some sort of scale built on 

the basis of individual experience, is itself a reason for reflection and 

comment in the classroom, for the implicit knowledge and mathematical 

activities brought into play by the craftsman! In fact, the measurements 

were made by him using a linear meter only at the end of the construction 

and at the express request of the author. The comparison between 

mathematics used inside and outside the school and the different 

mathematical skills of students and illiterate workers were investigated, for 

example, by Nunes et alii (1993). 

And what about the wealth of links to other disciplines starting from 

zampoña? 

If we want just consider the experimental sciences, there is a clear chance to 

talk about: 

• bamboo canes and soils and climates in which they grow better, their 

habitats, 

• morphological characteristics and climatic conditions of the Andean 

region, 

• flora and fauna characteristic of those places, 

• the Amazon River that rises from the Andes and the vast Amazon 

region, 

• the effect that this region has on the climate of the South American 

continent and the entire Earth planet, etc.. 

With regard to physics, albeit not in detail, can be introduced 

• the laws governing the propagation of sound (in particular through a 

closed pipe), 

• the concepts of wave length and frequency. 

Regarding the human sciences it is possible to talk about 

• the functionality of the ear, 

• the physiology of the respiratory system. 

 

The mathematics of indigenous people: Sona sand drawings 
2
 

The story-tellers from the Tchockwe people, in Eastern Angola, and Tamil 

people, in South India, make use of the sona (singular: lusona), sand 

drawings, to give a better and more attractive description of their stories. 

                                                 
2
 The teaching unit is described also through quotations from Maffei and Favilli, 2006 



 
3
   

 

As in the case of many other findings from ethnographic researches (see, for 

example, Zaslavsky, 1973, for Africa), the sona drawing attracted the 

attention of a few mathematics educators. Their aim was not only to observe 

and describe the specific mathematical knowledge which the story-tellers 

where making use of, both explicitly and implicitly, but also to investigate 

the further mathematical notions and concepts that, in such activity, could 

be seen or deduced. Gerdes’ investigations on the sona drawings (see, for 

example, Gerdes, 1999) represent the most significant and precious 

reference for anybody interested in the relationships between sona and 

mathematics. 

The possible use of this cultural activity, the sona drawing, as a didactical 

tool for the introduction of some of those mathematical notions and 

concepts in a school context have been and are still under investigation. 

One of the first properties is that the number of lines (polygonals) necessary 

to complete each given sona, in accordance with a short list of drawing rules, 

exactly corresponds to the GCD of the two positive numbers representing the 

sona dimensions. 

The didactic goal of the project is to engage pupils in reflective activities. In 

fact, it is well known that the students’ main complaint about mathematics is 

that it is too mechanical and inflexible. Students very often try to solve 

problems by only applying memorized rules, with poor understanding of the 

concept involved. We believe that a more attractive approach to some 

mathematical concepts could be a solution. 

 

                                                 
3
 http://ghezzig.wordpress.com/2009/10/22/il-cantastorie-sona/ 



        

 

In view of that, a non-standard didactic proposal for the introduction of the 

Greatest Common Divisor between positive natural numbers has been 

developed, under the assumption that GCD is too often introduced by 

teachers only in a technical and algorithmic way. Pupils, therefore, hardly 

realize the meaning and the potential of this concept, because GCD is usually 

associated just to fractions and their operations. The final result is poor 

attention and lack of interest which, in turn, cause hard comprehension of the 

concept. 

As said, , using Java Programming Language, a graphical programme – 

SonaPolygonals_1.0 – has been implemented (Maffei and Favilli, 2006) 

which draws, in movement, the lusona and computes the number N of lines 

necessary to complete a sona of PxQ points. 

 

Further investigations and results about sona drawings and their relations to 

graph theory can be found in Pavanello (2013). 

 

History of mathematics: Yupana, the Inka abacus
4
 

In the present paper, we introduce an electronic version of the yupana, the 

Inka abacus. One of our main aims is to show that it is possible to make 

attractive and usable ancient mathematical artefacts, which still clearly 

prove their didactic utility. The electronic yupana, in our view, represents an 

attempt to link tradition and modernity, indigenous and scientific 

knowledge, poor and rich cultures. It aims to represent an educational 

                                                 
4
 The teaching unit is described also through quotations from Fiorentino and Favilli, 2006 



environment, where pupils and students can find a friendly tool throughout 

which they can achieve the notion of natural number, compute basic 

operations, familiarize with positional notation and base change and develop 

personal “computational algorithms”. 

There is very little information about yupana and its use, mainly because the 

Spanish conquistadores destroyed most Inka cultural heritage. The only 

available representation of a yupana is part of a design drawn by the 

Spanish priest Guaman Poma de Ayala (1615) in his chronicle of the Inka 

empire submission. 

 

The yupana is represented together with the quipu (a statistical tool made by 

knotted strings). Only recently, mainly thanks to M. and R. Ascher (1980), 

mathematics researchers and historians have focused their attention into 

such mathematical instruments from the Inka culture. As far as we know, 

mathematics educators have paid poor attention to them so far…  

 

   
Ancient and modern (wooden) yupana 



In modern yupana, numbers are represented as configurations of wood 

pieces on the board, using different colours for units, tens and hundreds. In 

the lower part of the board, rectangular areas are used either as a pieces 

repository or as the starting place for the second operand in arithmetic 

operations. As far as didactics is concerned, the presence of these 

rectangular areas is a weak point of the yupana. In fact, these areas allow a 

different representation for the same entities (the numbers and the digits) 

and can be confusing for children whose concept of number is developing.  

In the implementation of the electronic yupana, such difficulty is overcome 

by considering a digit only a whole column configuration. Consequently, 

the computer yupana is made of two complete traditional yupanas, as shown 

here below: 

 

 

 

In this way, all operands are represented in the same manner and both are 

immediately visible in the double yupana. For instance, the double yupana 

above represents the numbers 6355 and 5248. 

A different unifying approach arises from the only modus operandi that the 

computer yupana allows and enforces: the drag-and-drop activity. By 

dragging one piece at a time, the concept of number is induced by repetition 

of unitary increment/decrement steps. As in the wooden yupana shown 

above, the pupil is introduced to positional notation/arithmetic with the help 

of colour correspondences between the two yupanas: pieces with the same 

positional weight are given the same colour. This allows the user to perform 

positional arithmetic by moving pieces of the same colour to equivalent 

positions. In fact, the program allows drag-and-drops involving pieces/holes 

with the same positional weight only. In this way, positional arithmetic is 

actually a by-product! Moreover, the teacher can change the colour scheme 

to avoid unconscious colour/weight associations. 



The drag-and-drop activity, coupled with the general statement “operation 

is over when one of the two yupanas is empty”, provides another simple 

unifying framework for three basic mathematical operations: sum, 

subtraction and base change. 

The sum is performed by dragging all the pieces from one yupana to the 

empty spaces in the other one. Whenever a yupana is empty the pieces in 

the other one represent the result. 

Subtraction is accomplished by “eliminating” pieces with the same weight 

on both yupanas, i.e. by dragging pieces to equivalent pieces. It is worth 

noting that, in this case, the (upper or lower) position of the yupana that is 

empty at the end of the process gives appropriate information about the sign 

of the result! 

Base changing is executed with the same rules as the sum, with two main 

differences: 

• the number of positions (the holes) for each digit on the two yupanas is 

different (any base between 2 and 10 can be used); 

• more colours are normally involved, leading to unitary operations only 

in the worst case (when the two bases are co-prime) but also to 

interesting “diagonal drags” (as in the case of bases 2 and 4, when a 

piece of weight 4 is moved). 

These features make the electronic yupana a solid mathematical tool upon 

which a child may build his/her own mathematical foundations in his/her 

most appropriate and distinctive way: playing! 
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