
Decentralized Multi-cell Beamforming with QoS
Guarantees via Large System Analysis
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§ Mathematical and Algorithmic Sciences Lab, Huawei France, Paris, France

Abstract—This work focuses on the power minimization prob-
lem while ensuring target rates in the downlink of a multi-cell
multi-user MIMO system wherein L base stations (BSs) of N
antennas serve in total K single-antenna user equipments. We
assume that the transmit antennas at each BS are correlated and
propose a decentralized solution to compute an approximation
of the optimal beamforming vectors. The analysis is conducted
in the asymptotic regime in which N and K grow large with
a given ratio K/N . In particular, the proposed solution relies
on the exchange of intercell interference terms whose large
system approximations are computed at each BS using knowledge
of local transmit correlation matrices and non-local pathlosses.
Numerical results are used to evaluate the performance loss of the
proposed solution compared to the optimal one and to investigate
its accuracy in systems of finite size.

I. INTRODUCTION

The road forward for satisfying the increasing number of
users and high rates expectations in 5G systems is very high
spatial utilization. Among the different technologies in this
context, massive MIMO is considered as one of the most
promising [1]. Under the assumption of uncorrelated channels,
if the number of antennas N goes to infinity and the number of
UEs K is maintained fixed, the performance of massive MIMO
systems become limited only by pilot contamination and
simple matched filter (MF) and maximum ratio transmission
(MRT) with no cooperation among cells can entirely eliminate
the uplink and downlink multicell interference. However, the
maximum number of antennas at each base station (BS) is
limited in practice. In such a case, interference-aware precoder
design with cooperation among cells should be applied for
optimal handling of the remaining inter-cell interference (ICI).

Coordinated multi-cell resource allocation is generally for-
mulated as optimization problems in which a desired net-
work utility is maximized subject to some requirements [2],
[3]. In particular, the coordinated multi-cell minimum power
beamforming approach aims to satisfy a given signal-to-
interference-plus-noise ratio (SINR) for all users while min-
imizing the total transmitted power [2]. In the last years,
different centralized and decentralized solutions have been
suggested to tackle this problem [2]–[4]. All these solutions
require some exchange of information that depends on the
actual channel conditions. This makes them unsuited for
scenarios with highly varying channels or with large values
of N and K (as envisioned in 5G networks).

A possible way out to the above issue relies on conducting
the analysis in the large system regime in which N and
K grow large with a non-trivial ratio K/N . In these cir-

cumstances, tools from random matrix theory allow to get
explicit expressions, that depend only on the large-scale fading
components, for (most) performance metrics. The large system
analysis of the minimum power beamforming problem was
first addressed in [5] for a simple two-cell network with perfect
channel state information (CSI). Some more recent results can
be found in [6]–[10]. A common drawback of these works is
that the target rates are not guaranteed to be achieved when N
is finite and relatively small. This is because the approximation
errors translate into fluctuations in the resulting SINR values.

To overcome this issue, in [11] the authors consider the
case of uncorrelated antennas at the BSs and extend the results
in [3] to decompose the multicell beamforming problem into
different subproblems (one for each BS) coupled only by
the intercell interference among BSs. The large dimension
approximation for the ICI terms is then used to derive an
approximately optimal distributed algorithm that relies only
on the exchange, among nearby BSs, of the large-scale fad-
ing components. Compared to the centralized solution, [11]
requires lower backhaul exchange and processing load but
a slightly higher transmit power. If the per-user correlation
matrix model is used [12], then correlation matrices must
be also exchanged via the backhaul links. This might be a
potential problem when the dimension of the network is large.

To avoid such a potential issue, this work proposes a
heuristic simplification of the algorithm presented in [12].
In particular, we assume that only partial knowledge of the
non-local statistics is available at each BS. More specifically,
each BS b is assumed to estimate the correlation matrices
for all local channels (from BS b to all users) while the
correlation matrices from all other BSs i 6= b to all users
are not known locally at the given BS b. Only the large-
scale attenuation (due to pathloss and fading) are available
for the non-local channels. The latter are then sent to the
corresponding BSs for computing powers and beamforming
vectors so as to meet SINR constraints. Numerical results
show that the penalty from using partial non-local statistics
is slightly higher transmission power than in [12].

II. SYSTEM MODEL

Consider the downlink of a multi-cell multi-user MIMO
system composed of L cells where each BS has N antennas. A
total number of K single-antenna UEs are randomly dropped
in the coverage area. We assume that each UE is attached to a
single BS while receiving interfering data from other BSs. We
call Ub the set of UEs served by BS b and denote bk the index



of the BS associated to UE k. The set of all UEs is denoted by
U whereas B collects all BS indexes. Under this convention,
we define hb,k ∈ CN as the channel from BS b to UE k. The
per-user channel correlation model is adopted [13]. Then, we
have that hb,k = Θ

1/2
b,k zb,k where zb,k ∼ CN (0, 1/NIN ) is

the small-scale fading channel and Θb,k ∈ CN×N accounts
for the correlation among antennas at the BS. The matrices
Θb,k are assumed to change slowly compared to the channel
coherence time. The above per-user channel correlation model
is quite general and allows to model different propagation
environments that naturally arise in cellular networks [13]. In
the simple i.i.d case, the correlation matrix Θb,k reduces to
ab,kIN where ab,k is the large-scale attenuation from BS b to
UE k due to pathloss and shadowing.

Denoting by wk ∈ CN the precoding vector of UE k from
its intended BS, the received signal can be written as

ybk,k = hHbk,kwksk +
∑

i∈Ubk\k

hHbk,kwisi+

+
∑

b∈B\bk

∑
l∈Ub

hHb,kwlsl + nk (1)

where si is the symbol transmitted to UE i with E{|si|2} = 1,
and nk is the thermal noise that follows ∼ CN (0, σ2).

III. PROBLEM FORMULATION

The optimization problem for attaining the optimal beam-
forming vectors {wk} as proposed by [3] can be stated as

min
{wk},{εb,k}

K∑
k=1

µk ‖wk‖2 (2)

subject to SINRk ≥ γk ∀k∑
l∈Ub

∣∣hHb,kwl

∣∣2 ≤ εb,k ∀b,∀k /∈ Ub

where the SINR takes the form

SINRjk =

∣∣∣hHbk,kwk

∣∣∣2∑
i∈Ubk\k

∣∣∣hHbk,kwi

∣∣∣2 +
∑

b∈B\bk
εb,k + σ2

(3)

and εb,k accounts for the interference experienced by UE k
from BS b. Also, {γk} represent the target SINRs whereas
the weights {µk} reflect the different power budget at each
BS. As mentioned in the Introduction, the above problem can
be solved using different approaches based for example on
centralized SOCP formulation [3] and standard dual or primal
decomposition techniques [3], [14]. Next, we first revise the
uplink-downlink duality approach and then provide the main
results from its large system analysis that will be instrumental
to derive a distributed beamforming algorithm.

A. Solution via uplink-downlink duality
Using the uplink-downlink duality [2], the optimal wk is

found to be wk =
√
δkvk with

vk =

 ∑
l∈U\k

λlhbk,lh
H
bk,l

+ µkIN

−1

hbk,k (4)

where {λk} correspond to the dual uplink powers and {δk}
are weighting coefficients from which the downlink powers
{pk} are obtained as pk = δk ‖vk‖2. The values of {δk} must
be computed as

δ = σ2G−11K (5)

where the (i, j)th element of G ∈ CK×K is

[G]i,k =

{
1
γk
|hHbk,kvk|

2 for i = k

−|hHbk,ivk|
2 for i 6= k.

(6)

The dual uplink powers {λk} can be calculated iteratively as
follows

λk(t+ 1) = λk(t)
γk

Γk(t)
(7)

where t is the iteration index and Γk(t) is given by

Γk(t) = λk(t)hHbk,k

∑
l∈U\k

λl(t)hbk,lh
H
bk,l

+ µkIN

−1

hbk,k (8)

which corresponds to the SINR at iteration t for the set of
uplink powers {λk(t)}. The above set of equations defines an
algorithm, which gives the optimal precoding vectors {wk}.
However, the evaluation of (5) requires a global channel state
information, which makes its distributed implementation a
difficult task, especially when N and K are large.

B. Solution via large system analysis
To overcome the above issues, we assume that N,K →
∞ with K/N ∈ (0, L) and use the large system analysis to
compute the so-called deterministic equivalents of {λk} and
{δk}. For technical reasons [13], the following assumption is
made.
Assumption 1. The spectral norm of {Θb,k} is uniformly
bounded:

lim sup
N,K→∞

max
∀b,k

{‖Θb,k‖} <∞.

Then, the following result is found [15].

Theorem 1. Let Assumption 1 hold. If N,K → ∞ with
K/N ∈ (0, L), then λk − λ̄k → 0 almost surely where λ̄k
is given by

λ̄k =
γk
ebk,k

(9)

and can be computed through the following recursive proce-
dure. Let t be the iteration index, then limt→∞ λ̄k(t) = λ̄k
and limt→∞ eb,k(t) = eb,k where

λ̄k(t+ 1) = λ̄k(t)
γk

ebk,k(t)
(10)



with {ebk,i(t)} being obtained as the unique nonnegative
solution of the following system of equations ∀i:

ebk,i(t)=
λ̄i(t)

N
Tr

Θbk,i

(
1

N

∑
l∈U

λ̄l(t)Θbk,l

1 + ebk,l(t)
+ µkIN

)−1
. (11)

Then, we have the following result [15].

Theorem 2. Let Assumption 1 hold. If N,K → ∞ with
K/N ∈ (0, L), then [G]i,k −

[
Ḡ
]
i,k
→ 0 almost surely with

[
Ḡ
]
i,k

=


γk

(λ̄k)2
for i = k

− 1
N

e′bk,i

λ̄k(1+ebk,i)
2 for i 6= k

(12)

where {λ̄i} and {eb,i} are given by Theorem 1. The vector
e′bk is computed as e′bk = (IN − Lbk)

−1
ubk where

[Lbk ]j,i =
λ̄j λ̄i
N2

tr (Θbk,jTbkΘbk,iTbk)

(1 + ebk,i)
2

(13)

and

ubk =
[ λ̄1

N
tr (Θbk,1TbkΘbk,kTbk) , . . . ,

λ̄K
N

tr (Θbk,KTbkΘbk,kTbk)
]T

(14)

with Tb being the solution of

Tb =

(
1

N

∑
l∈U

λ̄lΘb,l

1 + eb,l
+ µbIN

)−1

. (15)

A known problem with any algorithm relying only on the
asymptotic analysis is that the approximation errors translate
into fluctuations in the resulting SINR values. Therefore, the
target rates are not guaranteed to be achieved when N is finite
and relatively small. This issue is addressed in the next section.

IV. DISTRIBUTED OPTIMIZATION

We begin by observing that any fixed ICI term in (2) results
in a suboptimal solution that, however, always satisfies the
SINR constraints. The price to pay, compared to the optimum,
is an increase of the transmit power [11], [12]. Next, we look
for a possible solution providing a good approximation of the
ICI values by means of a distributed algorithm.

Note that the ICI from BS b to UE k can be rewritten as

εb,k =
∑
l∈Ub

∣∣hHb,kwl

∣∣2 =
∑
l∈Ub

δl
∣∣hHb,kvl∣∣2 . (16)

An approximation of the coefficients {δl} can be computed as

δ̄ = σ2Ḡ−11K (17)

where Ḡ is obtained through Theorem 2. The terms |hHb,kvl|2
in (16) correspond to the non-diagonal elements of G. There-
fore, εb,k can be reasonably approximated as

εb,k ≈ −
∑
l∈Ub

δ̄l[Ḡ]k,l. (18)

A close inspection of Theorems 1 and 2 reveals that the
computation of {λ̄l} and Ḡ requires knowledge of {Θb,k}.
Although each Θb,k changes slowly in time compared to
small-scale fading components and can be usually represented
by simple mathematical models (depending on a small number
of system parameters), the exchange of such information
among coupled BSs via backhaul links may not be practical
when the network size becomes large.

To overcome this potential issue, we propose to compute
an approximation of the ICI values using full knowledge
of local statistics and only partial knowledge of the non-
local ones. More specifically, we assume that each BS b is
able to estimate (perfectly) the channel correlation matrices
Θb,k ∀k while the correlation matrices Θi,k ∀k from all other
BSs i 6= b are not known locally at BS b. Only the large-
scale attenuation (due to pathloss and fading) is available
for the non-local channels. The first assumption relies on the
observation that the correlation matrix remains constant for a
sufficiently large number of reception phases to be accurately
estimated at the BS. The second one is motivated by the
observation that most current standards require the users to
periodically report Received Signal Strength Indication (RSSI)
values to their serving BSs (usually using orthogonal uplink
resources). Under the assumption that nearby BSs are also
able to receive such RSSI measurements, a partial knowledge
of the non-local channel statistics can be obtained without any
information exchange through backhaul links.

Under the above assumptions, each BS can locally compute
(through Theorems 1 and 2) approximations for {λ̄l} and Ḡ.
The latter can thus be used in (18) to locally obtain ICI values.
Finally, each BS must send the UE specific ICI values to the
respective BSs. The solution is summarized in Algorithm 1.

Algorithm 1 Distributed optimization
1: loop
2: if Any change in the user statistics or during the intial

stage then
3: Users broadcast the pathloss information to the

nearby BSs using uplink resources.
4: Each BS b gets the approximation for uplink and

downlink powers using Theorems 1 and 2 where BS
b locally assumes Θi,k = ai,kIN ∀k for all i 6= b.

5: ICI values are computed from (18) at each BS.
6: Each BS b sends the ICI values εb,k,∀k 6∈ Ub to their

corresponding serving BSs.
7: end if
8: Use the approximated ICI values as fixed εb,k in (2) and

solve the sub-problems locally to get the approximately
optimal downlink beamformers.

9: end loop

The exchange rate of Algorithm 1 results to be significantly
lower than that required by [12]. This is because only some
UE specific scalars (ICI values) must be sent to their serving
BSs at each update interval while correlation matrices must
be exchanged in [12].



V. NUMERICAL ANALYSIS

Monte Carlo simulations are now used to validate the perfor-
mance of the proposed solution. We consider a network with
L = 7 cells and assume that UEs are equally distributed among
cells. The pathloss function is modelled as ab,k = (d0/db,k)2.5

where db,k represents the distance between BS b and UE k
and d0 = 1 m is the reference distance. The pathloss from
a generic BS to the boundary of the reference distance of
the neighboring BS is fixed to 75 dB (corresponding to a
1000 m distance between BSs). The correlation among channel
entries is modeled by assuming a diffuse 2-D field of isotropic
scatterers around the receivers [13], [16]. The waves arrive
from an angular spread from ϕmin to ϕmax. The correlation
matrix for an antenna element spacing of ∆ is given by [16]:

[Θb,k]j,l =
1

ϕmax
b,k − ϕmin

b,k

∫ ϕmax
b,k

ϕmin
b,k

ei
2π
w ∆|j−l|cos(ϕ) dϕ (19)

where w is the wavelength and the antenna element spacing
is fixed to half the wavelength ∆ = 1/2w. In order to study
the performance of the algorithm for both rank-deficient and
well-conditioned matrices, we choose ϕmin

b,k = −π and assign
the ϕmax

b,k based on the position of UE k with respect to BS b.
This results in various angular spreads for UEs depending on
their positions.

Fig. 1 shows the transmit SNR in dB (defined as the
transmit power normalized to the noise variance σ2) for the
proposed algorithm labeled as “partial statistical information”
when K/N = 1/2 and γk = 0 dB ∀k. Comparisons are
made with the simple ZF beamforming, the optimal centralized
solution [3] and the decentralized solution with full statistical
information [12]. Looking at (11), it can be seen that ebk,k(t)
(and thus λk) is directly linked to local statistics while it
depends on non-local statistics via non-local uplink powers.
Thus, providing an approximation for non-local uplink powers
based on pathloss information, we can get a solution close to
the case with full statistical information as shown in Fig. 1.
However, ignoring the local statistics and relying only on the
exchanged pathloss information gives a fully i.i.d decentralized
solution subject to at least 2dB performance loss as depicted
in Fig. 1 . In this case the ICI values calculated at all BSs are
the same globally, thus, there is no need to exchange the ICI
values on the backhaul.

VI. CONCLUSION

This work focused on the power minimization problem
in multicell MU-MIMO networks and proposed a heuristic
distributed beamforming algorithm that inherits the benefits
of [12] without requiring the exchange of correlation matrices.
Numerical results indicated that the proposed solution achieves
the same performance as the case in which correlation matri-
ces are exchanged. This is achieved even for small system
dimensions with a reasonable performance loss with respect
to the optimal one.
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[11] H. Asgharimoghaddam, A. Tölli, and N. Rajatheva, “Decentralizing the
optimal multi-cell beamforming via large system analysis,” in Proc.
IEEE Int. Conf. Commun., Sydney, Australia, Jun. 2014.

[12] H. Asgharimoghaddam, A. Tolli, and N. Rajatheva, “Decentralized
multi-cell beamforming via large system analysis in correlated chan-
nels,” in Signal Processing Conference (EUSIPCO), 2013 Proceedings
of the 22nd European, 2014, pp. 341–345.

[13] S. Wagner, R. Couillet, M. Debbah, and D. Slock, “Large system
analysis of linear precoding in correlated MISO broadcast channels
under limited feedback,” IEEE Trans. Inf. Theory, vol. 58, no. 7, pp.
4509–4537, July 2012.

[14] H. Pennanen, A. Tolli, and M. Latva-aho, “Multi-cell beamforming with
decentralized coordination in cognitive and cellular networks,” IEEE
Transactions on Signal Processing, vol. 62, no. 2, pp. 295–308, 2014.
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