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The rendezvous problem between two active spacecraft is formulated as a two player 
nonzero-sum differential game. The local-vertical local-horizontal (LVLH) rotating 
reference frame is used to describe the dynamics of the game. Linear quadratic cooperative 
and noncooperative differential games are applied to obtain a feedback control law. A 
comparison between Pareto and Nash equilibria was then performed. The state-dependent 
Riccati equation (SDRE) method is applied to extend the Linear Quadratic differential game 
theory to obtain a feedback controller in the case of nonlinear relative motion dynamics. 
Finally, a multiplayer sequential game strategy is synthesized to extend the control law to the 
relative motion synchronization of multiple vehicles. 

I. Introduction 
ENDEZVOUS problems between spacecraft have attracted high research interest due to their important 
applications in future space missions. Rendezvous problems can be categorized into two groups depending on 

how the rendezvous maneuver is performed by the participating spacecraft for a given mission: active-passive and 
cooperative maneuvers. In an active-passive rendezvous problem involving two spacecraft, the first spacecraft, 
known as the target, does not apply any control force while following its trajectory.  The second spacecraft, which 
serves as an active spacecraft, is controlled in order to meet the target.  The control objective for the active 
spacecraft is matching the position and the velocity of the target spacecraft.  On the other hand, in a cooperative 
rendezvous maneuver, both spacecraft are controlled and guided to match the same position and velocity. Therefore, 
the solutions to both rendezvous problems consist of a sequence of control maneuvers or guidance laws, designed to 
bring the spacecraft to the same states, i.e., position and velocity. Based on the overall mission requirements, the 
control objective of the rendezvous can include additional constraints such as the total amount of propellant for each 
spacecraft or the mission time. 

The cooperative maneuver is formulated as two-player nonzero-sum differential game. In a nonzero-sum 
differential game the sum of the objective functions is not equal to zero. Two possible strategies can be used: 
noncooperative and cooperative. The typical solution of the noncooperative game is the well-known Nash 
equilibrium. Nash equilibrium can be interpreted as a state where no player has interest to unilaterally deviate from 
its strategy. 

A typical solution of the cooperative game is called Pareto efficient solution.  The so-called Pareto efficient 
solutions are based on the assumption that the cost any one specific player incurs is not uniquely determined, rather 
the solution is determined when the cost incurred by all players simultaneously cannot be improved. 

For nonlinear dynamics the analytical solution of the two players game is complicated by the resolution of 
Hamilton-Jacobi-Isaacs (HJI) partial differential equations. For a two-player zero-sum Linear Quadratic (LQ) 
differential game the solution is reduced to the solution of matrix Riccati differential equations. The state-dependent 
Riccati equation (SDRE) technique is a method to solve the infinite horizon nonlinear differential game. 
 In this work, a SDRE method is used to solve a nonzero-sum differential game for the spacecraft proximity 
operations and rendezvous. The dynamics of the spacecraft is expressed in the LVLH frame centered at an actual or 
a fictions spacecraft in an unperturbed orbit around the Earth. Both spacecraft use a continuous thrust engine and the 
control is computed by varying the thrust magnitude and direction. The mass of the spacecraft varies with the 
propellant consumption. A game time interval is fixed a priori and a perfect information structure is assumed. 
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II. Relative Motion Equations 
The motion of a deputy spacecraft relative to a chief spacecraft can be described with respect to the local-vertical 

local-horizontal (LVLH) rotating reference frame [1]. The origin of the LVLH frame is attached to the chief's center 

of mass. Its orientation is given by the unit vectors ˆ ˆ ˆ ˆ/ ,r= = ´i r j k i , where = ´h r v  is the chief's massless 

angular momentum vector while r  and v are the chief's position and the absolute velocity vectors in the inertial 

reference frame (see Fig. 1). By denoting the position vector of the deputy, relative to the chief, with 
T[ ]x y z=r the nonlinear equations of the relative motion (NERM), under the assumption of Keplerian two-

body problem, can be written as: 
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where  is the Earth's gravitational parameter, 2 2 2( )
D
r r x y z= + + +  is deputy distance from Earth, f is the 

chief's true anomaly, and its time derivative is given by 2/ .f h r=  The system can be written in state space form, 

nonlinear in the state, and affine in the control as: 
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where: [ ] [ ] [ ] .,T
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y z
x y z x y z u u u= = =   x ur r  

A. Linearized Equations of Relative Motion 
 
The NERM can be simplified through linearization around the origin of the chief orbit, and assuming that the 

relative orbit coordinates are smaller than the chief orbit radius, i.e.  << r.  The relative motion, under this 

assumption, can then be approximated by using the linear equations of the relative motion (LERM): 
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in state space form Eq. (3) becomes: 
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B. Hill-Clohessly-Wiltshire Equations 
 

A further simplification can be obtained assuming that the chief's orbit be circular in Eq. (3). The chief's orbit 

radius r and the true anomaly rate f  become constant, and the relative equations of motion can be reduced to a 

simple form known as Hill-Clohessy-Wiltshire (HCW) equations, 
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where n represents the chief's mean motion. The HCW equations in state-space form are expressed below: 
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For a chief spacecraft with nonzero eccentricity, HCW equations only provide an approximate solutions for r

and r . 

C. Virtual Chief Equations 
 
In the virtual chief (VC) method [2], a fictional satellite with zero eccentricity is used as the chief satellite for the 

HCW equations, with both the actual chief and deputy satellites treated as deputies. This virtual chief satellite is a 
circularized version of the actual chief satellite, and it is defined by setting its eccentricity to zero and all orbital 
element values equals to those of the chief. The VC method replaces the HCW assumption that the chief is in a 
circular orbit with the assumption that the chief is in a close proximity of a circular orbit. The VC equations in state-
space form are given below: 
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where, introducing the chief's mean anomaly M, 
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The out-of-plane components for the VC and HCW equations are identical. For the in-plane components, the VC 

equations can be considered as an approximation of the LERM with low eccentricity value. This fact will be used in 
the last section simulation. 

III. Nonzero-Sum Linear Quadratic Differential Games 
 
Game theory was originated from economics [3], and widely applied in many technological areas such as control 

system engineering, military and aerospace systems, power systems, communication networks and biomedical 
science, among others.  Game theory deals with strategic interactions among multiple decision makers called players 
or, in some contexts, agents.  The player's objective is captured in a cost function, which the players either minimize 
or maximize. The decision is called the player's strategy. In this paper, the so-called linear quadratic (LQ) 
differential games are considered, and the solution of cooperative and noncooperative nonzero-sum differential 
structures are used in the feedback form as applied to spacecraft relative motion control. Optimal control theory 
plays an important role in order to solve differential games, the background used here can be found in [4], [5], [6]. 

A. Cooperative LQ Differential Game 
 
In a two-player cooperative differential game, Player 1 and Player 2 cooperate in order to achieve their 

objectives.  In case of the infinite-horizon, the objective of each player is the minimization of the their own quadratic 
cost function.  Using standard notation: 
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subject to the dynamic constraints: 
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where the weighting matrices 
1 2
, n nQ Q ´Î   are assumed to be symmetric positive semidefinite, and 

1 1 2 2

1 2
,m m m mR R´ ´Î Î   are symmetric, positive definite. The objectives in Eq. (11) could be possibly conflicting. 

The players can communicate and can also enter into binding agreements.  It is assumed here that each player has all 
the information about the state dynamics and cost functions of its opponent.  The cooperative optimization problem 
(11)-(12) can be written as a multi-objective optimization problem: 
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subject to Eq. (12).  In cooperative games, Pareto efficient solutions are based on the assumption that the cost 

one specific player incurs, is not uniquely determined and, depending on how the players choose to divide their 

control effort, a player can incur in different minima.  A set of control strategies 
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ˆ ˆ ˆ( , ) U= Îu u u  is called Pareto 

efficient if the set of inequalities holds: 
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Existence of a solution yields 2
0 1 0 1 2 0 2

ˆ ˆ ˆ( , ) [ ( , ), ( , )]J J J= Î x u x u x u  and is called a Pareto solution [7], [8]. In 

case of the two players, the Pareto solution has a simple characterization depending on the set of control parameters: 
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The set of all cooperative Pareto solutions for the optimization problem in Eq. (13) is then given by: 
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solutions for the cooperative LQ differential game, an optimal linear regulator problem must be solved, which 
depends on a parameter .  The so-called Bargaining theory is the theory thanks to which it is possible to choose the 
best Pareto solution [8].  Bargaining Theory deals with the cases in which the players can realize, through the 
cooperation, other outcomes better than the ones achievable i in case of no cooperation. 

B.  Noncooperative LQ Differential Game 
 
In noncooperative nonzero-sum LQ differential games, the objective of each player is to minimize their own 

quadratic cost function: 
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where the weighting matrices 
1 2
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,m m m mR R´ ´Î Î   are positive definite.  The noncooperative aspect of the game implies that the players are 

assumed to not collaborate to attain their goal.  The model and the objective functions are assumed to be common 

knowledge.  An admissible set of control actions * *

1 2
( , )u u  is a Nash equilibrium for a two-player game in Eqs. (15)-

(16) if, for all admissible 
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Nash equilibrium is defined such that there is no incentive for any unilateral deviation by anyone of the players. In 

general, the Nash equilibrium is not unique. It is easily verified that, whenever * *
1 2

( , )u u  is a Nash equilibrium for a 

game with cost functions 
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,J J  respectively, it is also a Nash equilibrium for the game with cost functions 

1 1 2 2 1 2
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IV. Two-Player Game for Rendezvous in Orbit 
In this section the rendezvous problem between two active deputy spacecraft in a LVLH frame is formulated as a 

cooperative and noncooperative nonzero-sum differential game.  The relative equations of motion of Deputy 1 and 
Deputy 2 are written with respect to the same chief by using the NERM.  The chief becomes, in this context, a 
virtual chief  in order to have a reference orbit during the maneuver. 

The SDRE method [9] is used to extend the application of the LQ game theory to the rendezvous problem 
between two active spacecraft in the LVLH frame.  

A. State Dependent Coefficient Parametrization 
 
From section II, the nonlinear dynamics of Deputy 1 and Deputy 2 can be written as: 
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defining the game state vector as 
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= -x x x  we can write: 
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by introducing the following time-varying parameters: 
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we can construct a state dependent coefficient (SDC) parametrization as: 
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The mass variation of the deputies has been introduced according to the standard mathematical model: 

0
/ ( )

i i sp
m u g I= , where 

sp
I  is the specific impulse and 

0
g  is the gravity acceleration at the sea level. Fig. 1 shows 

a general configuration for our problem. 
 

 
Fig. 1: Two-Player Dynamics in the LVLH Frame 

B. Nonlinear Cooperative Control Strategy 
 
The state feedback cooperative control law obtained from Eq. (13) is given by: 
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( , )P ax  is the unique, symmetric, positive-definite pointwise stabilizing solution of the following continous time 

state-dependent algebraic Riccati equation (ARE): 
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The resulting cooperative closed-loop controlled trajectory for the two players differential game is 
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where the state-dependent closed-loop matrix is pointwise Hurwitz "x . In the next simulations, a combination 

of Schur and Kleimann recursive algorithms [10] is used to solve the Eq. (23) at each time step. 

C. Nonlinear Noncooperative Control Strategy 
 
The nonzero-sum Nash control law for Deputy 1 and Deputy 2 are respectively: 
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where 
1 2

( ( ), ( ))P Px x  are the pointwise stabilizing solutions of the state-dependent coupled AREs: 
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the following shorthand notation is used in Eqs. (26): 
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The state-dependent closed-loop trajectory for the Deputies choosing a Nash strategy is then: 
 

 1 T 1 T

1 11 1 1 2 22 2 2
( ) [ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )] ( ) t A B R B P B R B P t- -= - -x x x x x x x x x x x  (28) 

 
The solution of the coupled Riccati equations in Eq. (26) requires numerical iteration [11], [12].  The iterative 

procedure is based on a sequential stepwise decoupling, yielding the solution of two standard equations at each 
iteration. Two stopping conditions are used: the first is the required accuracy of the solution, while the second limits 
the maximum number of iterations in order to have an acceptable execution time. 

D. Simulation Results 
 
In this section we present a sample numerical simulation in order to compare both cooperative and 

noncooperative approaches. A rendezvous cooperative maneuver scenario was considered, where both spacecraft are 
controlled and guided in order to match the same position and velocity at final time. In this scenario, the 
performance of the cooperative and noncooperative differential game strategies were evaluated and compared. 

The control law performance were evaluated over one chief's orbit period T, and numerical integration used a 4th 
order Runge- Kutta integration algorithm, with step size of / 1000T . For performance comparison consistency, the 

noncooperative control law was evaluated taking into account the case of the Identical Goal Game [13] that occurs 
when two players cooperate in order to minimize the same performance functions given in Eq. (15). 

The final distance between the deputies 
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( ) || ( ) ( ) ||T T Tr = -r r , the total control usage 
i
vD  with 1,2i = , and 

the maneuver time to reach the proximity operations range, 10 100mr< < , were the performance metrics used for 

comparison. 
The initial conditions in the LVLH frame are (units in Km and Km/sec): 
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For Deputy 1 and Deputy 2 respectively. The chief’s orbital parameters correspond to an elliptical orbit with the 
following orbital parameters: 
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The performance of the two control strategies are shown in Table A. 
 

Table A. Control Effort (m/sec), Final Distance (M), Maneuver Time (in Periods) 

 
 
The trajectories in the LVLH frame are shown in Fig. 2. 
 

 
Figure 2. Spacecraft Trajectories using initial Conditions from Eq. (29) 

 
The cooperative control law requires greater control effort, and the final distance between Deputy 1 and Deputy 2 is 
smaller in the cooperative case. The two deputies reach the same orbit both in cooperative and in the noncooperative 
cases. From the results, cooperation appears better, although a noncooperative approach yields good results, and 
could be used in the case of communications failures between the spacecraft. 

V. Multiplayer Motion Synchronization 
 

The study of differential games involving multiple players is somewhat limited due to the difficulty in the 
mathematical formulation and formal treatment.  In the literature, most of the studies on the multiplayer differential 
games are concentrated on the multiple pursuers and evaders scenario, see for instance [14], [15], [16]. 

A multiplayer differential game is considered in this section as a possible approach to the synchronization of the 
relative motion among multiple spacecraft.  A general nonzero-sum differential game with n players is decomposed 

into 1n -  sequential games in time, between two players that are closely engaged.  In this case the overall control 
structure consists of a higher level strategy responsible for establishing an a priori engagement scheme among the 
players, and a lower level strategy given by a two-player differential game.  The latter can be viewed as a natural 
hierarchical structure in decision-making between the players. 

Fig. 3 shows an example of an open loop sequential multiplayer strategy.  To achieve sequentiality, once a two-

player game ends, their common state (for example their common center of mass) 
cm
x  becomes a single new player 

for the next game.  The procedure outlined above is of course heuristical, and suboptimal with respect to a 
simultaneous multiplayer game. 
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Figure 3. High Level sequential Multiplayer Control Management Strategy 

A. On-Orbit Autonomous Assembly Mission 
 
From the space application point-of-view, the multiplayer differential game can be viewed as a strategy for on-

orbit assembly of modular spacecraft.  The next-generation of human space exploration programs, in fact, should be 
designed for both sustainability and affordability. The cost of such programs can be reduced through the use of 
flexible infrastructures supporting various aspects of manned spaceflight. 

On-orbit assembly of separate launched spacecraft modules, is an important component of the infrastructure 
enabling human access to space.  New technologies and architecture concepts are being developed that make the 
robotic autonomous assembly more feasible today with respect to the past.  Specifically, the modular spacecraft 
design is a key enabling  concept for robotic on-orbit and rendezvous assembly, because it reduces the complexity of 
the task.  Assembly of separate modules, by docking them together, is simpler than attaching individual trusses and 
solar panels, or assemblage large mirrors in space. 

In a classical strategy for on-orbit assembly and rendezvous, the chief or target spacecraft is a passive vehicle 
that does not apply any control force while following its trajectory and the second spacecraft is an active vehicle, 
which is controlled in such a way to meet the target spacecraft.  In a cooperative maneuver, both spacecraft are 
controlled and guided to match the same position and velocity.  Two possible strategies using multiple spacecraft are 
illustrated in Fig. 4. 

 

 
Figure 4. Self Assembly Strategies 

 
A numerical simulation campaign was performed using the cooperative non-zero sum differential game approach 

described earlier.  Simulations were performed for the nonlinear and linear cases.  A comparison  between the 
trajectories obtained using different linear approximations, such as HCW, LERM and VC equations, is shown. 

In the simulations, the sample time was set to / 1000T , and 4th order Runge-Kutta integration algorithm used. 

The number of spacecraft considered for the sequential game strategy test is 4.  Each spacecraft, at the beginning of 
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the engagement, has a fuel mass of 90
prop
m =  Kg and a specific impulse of 310

sp
I =  seconds.  The mass 

variation as a function of the propellant consumption was also considered in the simulations. 
The docking operation range used to determine the final state of each two-player game was 10r < m [17] in 

thesis], where r  is the distance between the two deputies.  At the end of each game, the center of mass of the two 

deputies is considered as the common state, and given by: 
 

 1 1 2 2

1 2

( ) ( )

( ) ( )
f f

cm

f f

m t m t

m t m t

+
=

+

x x
x  (30) 

 

where ( )
i f
m t , with 1,2i =  is the final mass of the deputies, and the time 

f
t  is the final time of the two-player 

game.  The engagement was optimized by selecting the sequence of the two-player game in order to minimize the 
maneuver time in each game.  The set of weighting matrices were selected for the 3 sequential games to minimize 
the propellant consumption.  The Pareto parameter a  was chosen for each game to yield the same mass between the 

deputies at the final time 
f
t .  The mission length was simulated over 2 chief’s orbital periods and only in-plane 

motion is shown in Fig. 5.  The following Cartesian initial conditions were used for the four spacecraft (units are in 
m and m/sec): 

 
3

1

2

4

(0) [ 75.0003 67.4992 0 0.1710]

(0) [ 150.0013 134.9970 0 0.3419

(0) [ 225.0030 202.4932 0 0.5129

(0) [ 300.0054 269.988 0 0.683

]

]9

]

T

T

T

T

= -

= -

= -

= -

x

x

x

x

 

The accuracy of the simulations results were then evaluated by computing the norm of the difference between

( )tr  of the VC and HCW with respect to ( )
LERM

tr  

 

 ( ) || ( ) ( ) ||, ,
i LERM

t t t i VC HCWe = - =r r  (31) 

 
where ( )tr  is the distance between the two deputies during each game.  The four deputies trajectories XY 

projections are shown in Fig. 5. 
 

 
Figure 5. Linear Cooperative sequential Games Trajectories (e = 0.1) 

 
For comparison (note the scale differences) the same simulations using LERM are shown in Fig. 6.  The same figure 
presents the cumulative errors  in meters during the 3-game sequence.  The VC approach yields better performance, 
since the HCW uses nominal circular orbits. 
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Figure 6. Linear Sequential Games using LERM 

VI. Conclusion 
A nonzero-sum differential game structure was applied to cooperative maneuvers for two active spacecraft 

during rendezvous.  A comparison between a cooperative Pareto game and noncooperative Nash solution was 
carried out.  Using a two- player LQ differential game approach, nonlinear control laws were developed using a 
state-dependent coefficient parametrization of the game dynamics and the SDRE method.  The cooperative and 
noncooperative control laws have shown to yield similar performance, in terms of control effort and final distance 
between the deputies.  The disadvantage of the noncooperative game control law is a higher computational time, and 
numerical convergence due to the solution of coupled Riccati equations.  The cooperative game controller was also 
tested for relative motion synchronization among many deputies using a suboptimal sequential game approach.  A 
comparison among the trajectories obtained by using the HCW, VC and LERM equations, indicated the feasibility 
of the approach, and the better performance of a virtual chief model, especially if we consider non circular orbits. 
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