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Abstract

Background: IL-17 is the defining cytokine of the Th17, Tc17, and cd T cell populations that plays a critical role in mediating
inflammation and autoimmunity. Psoriasis vulgaris is an inflammatory skin disease mediated by Th1 and Th17 cytokines
with relevant contributions of IFN-c, TNF-a, and IL-17. Despite the pivotal role IL-17 plays in psoriasis, and in contrast to the
other key mediators involved in the psoriasis cytokine cascade that are capable of inducing broad effects on keratinocytes,
IL-17 was demonstrated to regulate the expression of a limited number of genes in monolayer keratinocytes cultured in
vitro.

Methodology/Principal Findings: Given the clinical efficacy of anti-IL-17 agents is associated with an impressive reduction
in a large set of inflammatory genes, we sought a full-thickness skin model that more closely resemble in vivo epidermal
architecture. Using a reconstructed human epidermis (RHE), IL-17 was able to upregulate 419 gene probes and
downregulate 216 gene probes. As possible explanation for the increased gene induction in the RHE model is that C/CAAT-
enhancer-binding proteins (C/EBP) -b, the transcription factor regulating IL-17-responsive genes, is expressed preferentially
in differentiated keratinocytes.

Conclusions/Significance: The genes identified in IL-17-treated RHE are likely relevant to the IL-17 effects in psoriasis, since
ixekizumab (anti-IL-17A agent) strongly suppressed the ‘‘RHE’’ genes in psoriasis patients treated in vivo with this IL-17
antagonist.
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Introduction

Psoriasis is a chronic inflammatory skin disorder characterized

by a dense dermal inflammatory infiltrate and altered keratinocyte

(KC) differentiation [1]. Leukocytes that infiltrate the dermis

produce many pro-inflammatory mediators that set up the cycle of

pathogenic inflammation. Interleukin (IL)-17 has emerged as one

of the most crucial players in the current model of psoriasis

pathogenesis. IL-17 was thought to be produced mainly by Th17

cells, a subset of CD4+ T helper cells that is distinct from the Th1

and Th2 lineages [2,3], but it is becoming increasingly appreciated

that it is also produced by CD8+ T cells (Tc1) and cd T cells [4,5],

and potentially by some non-T cells, including mast cells and

neutrophils [6]. IL-17 signaling activates the Nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-kB) pathway and the

C/CAAT-enhancer-binding proteins (C/EBP) family, particularly

C/EBPb and C/EBPd [7,8] to enhance expression of pro-

inflammatory cytokines and chemokines, intercellular adhesion

molecules, and anti-microbial peptides (AMPs) by numerous cell

types, including granulocytes, chondroblasts, fibroblasts, and

epithelial cells (keratinocytes, endothelial cells, and mucosal

epithelial cells) [9–16].

A crucial role of IL23/Th17 axis in the pathogenesis of psoriasis

was proposed based on several recent studies: (i) dermal IL-17-

producing CD4+ T cell and cd T cell infiltrate as well as (ii) IL-17-

producing CD8+ T cells within psoriatic epidermis; (iii) high

expression levels of IL-23, IL-17, and IL-22 in psoriatic lesional

skin; (iv) high serum levels of IL-22 and IL-17 that correlated with

disease severity score [4,5,17–21]. Moreover, some of the Th17

pathway-related genes, IL-23A subunit, IL-23R, IL23B subunit,

have been identified as psoriasis susceptibility genes [22–24].

Responses to tumor necrosis factor (TNF)a-blocking therapy and

narrow-band ultraviolet B light therapy are correlated with

the suppression of Th17 pathway [20,25–27]. More recently,
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therapeutic approaches suppressing the IL-23/Th17 axis have

proved highly effective in the treatment of psoriasis [28–33].

Keratinocytes are the key-responding cells to the psoriatic pro-

inflammatory and pro-proliferative microenvironment since they

bear receptors for key inflammatory cytokines, including IL-17

[12,34,35]. Surprisingly, although anti-IL-17 therapies showed

astonishing clinical efficacy in improving psoriasis, in vitro studies

of cultured monolayer keratinocytes identified a restricted number

of genes induced by IL-17 [10,12]. This discrepancy between the

biological effects of neutralizing IL-17 and the IL-17–induced gene

expression is even more pronounced considering other key-

cytokines, such as TNFa and interferon (IFN)-c, are capable of

broadly regulating genomic expression in keratinocytes (502 and

3549 gene transcripts induced by TNFa and IFN-c, respectively)

[12]. Hence, in order to investigate this discrepancy further, we

analyzed expression of C/EBPb, a downstream signaling molecule

of IL-17, and found that it localizes to the uppermost layers of the

human epidermis in non-lesional and lesional psoriatic skin,

indicating that perhaps only mature keratinocytes fully respond to

IL-17 stimulation. We, therefore, sought to create in vitro

conditions that could more closely mimic the in vivo epidermal

architecture. Using Reconstructed Human Epidermis (RHE), a

3D epidermal skin model composed of a keratinocyte multi-layer

supported by connective tissue, we evaluated the genomic response

to IL-17.

Our results suggest IL-17 acts as a regulator of inflammatory

gene expression preferentially in differentiated keratinocytes and

induced genes include many psoriasis-related transcripts.

Results

Increased expression of the IL-17-specific transcription
factor, C/EBPb, by terminally differentiated keratinocytes

Normal human keratinocytes were found to constitutively bear

the IL-17 receptor (IL-17R) and they are able to produce several

IL-17-induced inflammatory and immune-related mediators

implicated in psoriasis pathogenesis (e.g. IL-8, CCL20,

S100A12, CXCL1, and CXCL2).

Unlike the constitutively expressed IL-17R, C/EBPb, a critical

transcriptional factor in the IL-17 signaling cascade, was detected

only within more mature keratinocytes localized to the upper

spinous-granular layers of the epidermis (Figure 1). C/EBPb
staining showed a nuclear pattern that was slightly detectable in

the uppermost layers of the epidermis in normal skin, while it was

very evident in the epidermis of non-lesional and lesional psoriatic

skin. In addition to C/EBPb, IL-17-regulated proteins, such as

human b-defensin 2 (HBD2) and lipocalin 2 (LCN2), also localized

to the outermost spinous-granular layers (Figure 1). Immunoflu-

orescence staining further illustrated the co-localization of

C/EBPb and HBD2 in psoriatic skin (Figure S1).

In order to verify whether this staining pattern was specific for

C/EBPb, we examined the expression patterns of additional

epidermal transcriptional factors: RFX5, which is not usually

overexpressed in lesional psoriatic skin, and STAT (Signal

Transducers and Activators of Transcription) 21, a crucial

mediator of IFN-c signaling that has also been implicated in

psoriasis pathogenesis. In contrast to the localization C/EBPb to

the spinous-granular layers of the epidermis, RFX5 was only

localized to the basal layer of the epidermis (Figure S2). On the

other hand, STAT1 was expressed by all viable keratinocytes as

shown by pan-epidermal staining (Figure S2). These distinct

staining patterns suggest that transcription factors may be

activated in different types of KCs (e.g. basal KCs versus granular

KCs).

As further confirmation of increased expression of C/EBPb in

differentiated keratinocytes, we accessed data from a new study

that measured mRNAs in human dermis, basal epidermis, and

suprabasal epidermis after laser-capture microdissection [36]

C/EBPb mRNA was increased about 4–fold in suprabasal

epidermis compared to the basal layer (Figure S3).

Furthermore, attempting to fully differentiate monolayer in vitro

normal human epidermal keratinocytes (NHEKs) using different

calcium concentrations, we obtained a significantly higher

C/EBPb expression in high-calcium-treated NHEKs compared

to low-calcium condition. Together with C/EBPb, we tested the

expression of some keratinocyte-terminal differentiation genes

such as involucrin (IVL), transglutaminase-1 (TGM1), and

filaggrin-2 (FLG2). Keratinocytes differentiated after culturing in

high Ca++ plus 2% fetal bovine serum (FBS) medium, showed

enhanced expression of C/EBPb (p = 0.03) as well as high

expression of FLG2, TGM1, and IVL mRNAs (p,0.002 for all)

(Figure S4).

IL-17 induces a large number of genes in RHE
The fact that C/EBPb and some IL-17-regulated proteins are

expressed mainly by terminally differentiated KCs may explain

why IL-17 induces such a limited number of genes in primary KCs

cultured in vitro, as these KCs maintain a more undifferentiated,

basal phenotype.

Therefore, in order to fully characterize the genes induced by

IL-17 in KCs, we used a Reconstructed Human Epidermis (RHE)

model, a full thickness epidermal skin structure, consisting of

normal human-derived epidermal KCs organized into basal,

spinous, granular, and cornified layers, analogously to those found

in vivo. This epidermal structure is supported by connective tissue

including fibroblasts. RHE was incubated with IL-17 (200 ng

mL21), IL-22 (200 ng mL21), or IFN-c (20 ng mL21) for

48 hours and the cytokine-induced gene expression levels were

measured with AffymetrixU133A Plus 2.0 arrays. In order to align

the gene array analysis with the previously published data [12], we

compared gene expression levels in IL-17-treated RHE versus

untreated RHE using the selection criteria of fold change (FCH)

.1.5 and false discovery rate (FDR),0.1 that were used for the

monolayer KC gene expression analysis [12]. In contrast to

monolayer KCs [12] in which IL-17 altered the expression of only

65 probe-sets (60 unique differentially expressed gene, DEGs,

using ENTREZ identifiers), in RHE, IL-17 induced the expression

of many more genes (641 probe-sets, representing 490 DEGs)

(Table S1), of which 425 probe-sets (322 DEGs) resulted

upregulated and 216 probe-sets (168 DEGs) downregulated

(Figure 2).

To demonstrate that the IL-17 response in RHE did not merely

represent the sum of the genes induced by IL-17 in fibroblasts and

KCs, the RHE gene set was compared to gene sets obtained from

in vitro cultured KCs or fibroblasts treated with IL-17. Differential

expression induced by IL-17 in KCs or fibroblasts was compared

to the respective untreated conditions. A subset of transcripts (323

probe-sets) was only detected in RHE with U133A plus 2.0 arrays,

as these probe-sets were not present on the U133A 2.0 arrays,

which were used for treated fibroblasts and KCs (Figure 2, semi-

circle). Even when the analysis was restrictedly performed with

U133A 2.0 arrays, the number of upregulated RHE gene

transcripts (227 probe-sets) resulted about 3-fold and 4-fold higher

than the number of upregulated gene detected in fibroblasts and

KCs, respectively. There was very little overlap in the IL-17-

regulated genes between the three conditions (9 DEGs were

detected in both RHE and fibroblasts and 18 DEGs in both KCs

and RHE). While there were some KC or fibroblast-specific genes,

IL-17 Response in Differentiated Keratinocytes
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a large number of genes were uniquely expressed in RHE (Figure 2

and Table S1).

IL-17 induces the expression of C/EBPb and many
inflammatory genes in RHE

We also verified the expression of C/EBPb in RHE model,

eventually reflecting the in vivo condition. In the IL-17-treated

RHE compared with untreated RHE, we detected an upregula-

tion of C/EBPb gene transcripts by polymerase chain reaction

(PCR), and also, protein expression of C/EBPb within the

granular layer cells by immunohistochemistry (Figure S5). The

expression of C/EBPb induced by IL-17 in RHE correlates with

the upregulation of Th17 pathway genes, such as IL23A, STAT3,

and DEFB4 (Table 1 and Table S1). IL-17 also induced a number

of anti-microbial peptides, including S100A12, S100A7A, SER-

PINB4, SERBINB3, which are highly expressed in psoriasis

(Table 1) [37], as has been described previously [12]. Some other

characteristic IL-17-regulated genes, such as IL8, IL6, CCL20,

CXCL2, CXCL3, CXCL5, and LCN2 were up-regulated to a

lesser extent (1.3–2.3 fold induction), but these elevations did not

pass significance thresholds (Table S1). Interestingly, IL-1 family

members, IL1A, IL1B, IL1F8, and IL1F9 were significantly

activated by IL-17 in this model (Table 1). Signaling through these

cytokines activates NF-kB, which may synergize with IL-17-

induced C/EBPs to enhance transcription of many IL-17-

regulated genes, further amplifying the inflammatory loops in

psoriasis. In addition, there was up-regulation of cytokines, which

limit NF-kB activation, such as IL1F5 and IL11, suggesting that

IL-17 may also induce control mechanisms to prevent excessive

inflammation [38,39].

Figure 1. IL-17-regulated C/EBPb, human b-defensin 2, and lipocalin are expressed by terminally differentiated keratinocytes.
Immunohistochemistry for C/EBPb (top), human b-defensin 2 (HBD2, middle), and lipocalin (LCN-2, bottom) in normal, non-lesional or lesional
psoriatic skin showing predominant expression in the spinous-granular layer of the epidermis.
doi:10.1371/journal.pone.0090284.g001
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IL-17 modulates keratinocyte mitogens and cell-cycle
genes

Intriguingly, we observed an induction of cytokines that induce

epidermal hyperplasia, including IL19 and heparin-binding EGF-

like growth factor (HBEGF). Thus, IL-17 might indirectly

stimulate KC proliferation and epidermal hyperplasia via para-

crine cytokine secretion. There was also over-expression of cell

cycle-related genes, such as cyclin E1 (CCNE1), cell division cycle

associated 5 (CDCA5), and cell division cycle 25 homolog A

(CDC25A). IL-17 likely stimulates epidermal keratinocyte differ-

entiation, modulating the expression of KC differentiation genes

including transglutaminase (TGM)-1, TGM3, small proline-rich

protein 2C and 4 (SPRR2C, SPRR4), kallikrein-related peptidase

6, 10, and 13 (KLK6, KLK10, KLK13), and cornifelin (CNFN).

Furthermore, IL-17 also modulates the expression of genes,

including sphingomyelin phosphodiesterase 1, acid lysosomal

(SMPD1) and serine palmitoyltransferase, long chain base subunit

2(SPTLC2), which are related to lamellar bodies and epidermal

lipid barrier formation (Table 2).

RHE showed a specific genomic response to IL-17
stimulation

To verify whether the RHE genomic response to IL-17

stimulation was specific to IL-17, we stimulated RHE with IFN-

c or IL-22, cytokines thought to be involved in the psoriasis

inflammatory cascade. The IL-22 response in KCs or RHE was

minimal with only 35 probe-sets induced in RHE and 23 in KCs

(data not shown). The response to IFN-c was strong, with

upregulation of 294 transcripts (Figure S6). As illustrated in Figure

S6A, there was minimal overlap in the genes induced by IL-17 or

IFN-c. Furthermore, scatter plots comparing the genes induced in

RHE versus in vitro cultured KCs showed that IL-17 induced a

large number of genes only in RHE, while on the contrary, IFN-c,

induced a larger number of genes in monolayer KCs compared to

RHE (Figure S6B), consistent with the constitutive expression of

STAT1 by all KCs at all stages of differentiation (Figure S2).

As confirmation of the specific RHE response to cytokine

stimulation, we performed Reverse transcriptase-PCR (RT-PCR)

(Figure S6C) testing some genes including IL23A, S100A7A, IL19,

and IL1F8, which appeared to be upregulated by IL-17 in RHE,

as listed in Table S1. We also correlated RHE gene expression

induced by IL-17, IL-22, or IFN-c with various gene sets using

gene set enrichment analysis (GSEA) (Figure 3A). The phenotype

induced by IL-17 on RHE (as defined by the FCH between IL17

treated vs. control), was strongly enriched of genes in the psoriasis

transcriptomes, and, to a lesser strength, with additive and

synergistic TNF-a/IL-17 KC genes. RHE profile response to

IL-22 or IFN-c showed lower normalized enrichment scores

(NESs), compared to IL-17 stimulation.

In order to determine if this IL-17 response is a reasonable

model for the in vivo role of IL-17 in psoriasis, we compared the

transcriptome of RHE treated with IL-17 to a previously published

MAD-3 psoriasis transcriptome [40]. As shown in Figure 3B, half

of the genes induced by IL-17 in RHE are also included in the

psoriasis transcriptome, indicating that the response of RHE to IL-

17 may reflect gene activation common in psoriasis lesion.

We next examined to what extent IL-17 blockade suppressed

the genes highly induced by IL-17 in RHE. We hypothesized that

if the genes regulated by IL-17 in the RHE model are relevant to

psoriasis, then there should be a corresponding reduction in the

same genes after therapeutic blockade of IL-17. Therefore, we

compared the transcriptome of IL-17-treated RHE with the

transcriptome of lesional skin two weeks after treatment with

ixekizumab, an anti-IL-17 antibody [29] (Figure 3B). We have

previously defined a ‘‘residual disease genomic profile,’’ which

included the genes that do not improve by at least 75% compared

to NL levels by the end of successful treatment [40]. In the recent

Figure 2. IL-17 induces a large number of genes in RHE. Venn diagram illustrates the number of up-regulated (red) and down-regulated
(green) probe-sets with the number of unique DEGs in parentheses of IL-17-treated keratinocytes, fibroblasts or RHE compared to the respective
untreated conditions. U133A 2.0 arrays were used for KC and fibroblasts, while U133A Plus 2.0 arrays were used for RHE (FCH .1.5 and FDR,0.1 were
used for all arrays). The additional semi-circle of RHE genes represents the probe-sets (DEGs) that were not present in the U133A 2.0 arrays.
doi:10.1371/journal.pone.0090284.g002
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ixekizumab study, 72.5% of the 95 genes in the IL-17 treated

RHE model that were also part of the MAD-3 psoriasis

transcriptome improved by over 75% at two weeks post-treatment

compared with 68% of all psoriasis genes (Figure 3C) [41]. For

comparison, only 31% of either the RHE genes or the psoriasis

genes had recovered with etanercept at the same time point. There

was a 3.45 FCH (1,79 log2) average expression of these RHE

genes towards recovery with ixekizumab at two weeks, compared

with 1.62 FCH (0.70 log2) for etanercept and no change

(1.01 FCH, 0.01 log2) with placebo (Figure 3D). Overall, these

results suggest that IL-17-induced genes in the RHE model

coincide with genes that are suppressed in vivo by blocking IL-17

signaling with a neutralizing antibody to IL-17A.

Discussion

Previous experiments have shown a limited number of genes

induced by IL-17 in KCs despite ubiquitous epidermal expression

of the IL-17 receptor [10,12,42]. In this study, we found that the

distinct expression pattern of C/EBPb, a crucial IL-17-related

transcriptional factor, in the upper spinous-granular layers

composed of more differentiated keratinocytes, may explain why

undifferentiated, monolayer KCs respond less to IL-17 stimula-

tion. Thus, in order to more fully investigate the genomic effects of

IL-17 on KCs, we used a full-thickness skin model that more

closely mimicked epidermal architecture and KC differentiation

process. Using RHE, we identified a much larger number of genes

induced by IL-17.

IL-17 elicits its pro-inflammatory effects in RHE, stimulating

the expression of several genes including IL23A, IL1b, and IL36B

(IL1F8) that have been implicated in psoriasis pathogenesis and

found to be over-expressed in psoriatic lesional skin. The

production of inflammatory cytokines by epidermal KCs likely

perpetuates and sustains skin inflammation driven by T cells,

especially given the essential roles of IL-23 and IL-1b in

stimulating IL-17 production. Moreover, as key-regulator of

innate immunity, IL-17 was shown to modulate antimicrobial

peptides (AMPs) such as S100A7A, DEFB4, RNASE7, and

Serpins A1, B3, and B4. Johnston et al. [43], demonstrated that

IL-1F8 significantly induced several AMPs in an RHE model,

including LCN2, defensins, HBD-2 and HBD-3, CAMP, elafin,

serpinB1, and IL-8, and thus, the IL-1F8 expression induced by

IL-17 stimulation may lead to a feed-forward loop amplifying

AMP expression, which represents a distinct feature of lesional

psoriatic skin.

Many abnormalities in keratinocyte differentiation are highly

evident in psoriasis, including the expansion of the spinous-

granular layer of the epidermis and alterations in terminal

differentiation of KCs leading to a defective epidermal barrier

with increased transepidermal water loss. Expression of the IL-17-

specific transcription factor, C/EBPb, in the spinous-granular

layer may implicate IL-17 in these processes. Along these lines,

Rizzo et al. [44], showed that IL-17A, like IL-22, was a

downstream mediator of the changes induced by IL-23 injection

in murine skin, and that both of these Th17 cytokines are

necessary to produce IL-23–mediated psoriasis-like skin pathology.

Indeed, the blockade of IL-17 or IL-22 in this model inhibits

epidermal hyperplasia, indicating that either IL-17 or IL-22 can

increase keratinocyte proliferation. Accordingly, in RHE, IL-17

induced IL19, a pro-proliferative cytokine belonging to IL-10

family, that is overexpressed in lesional psoriatic skin and has been

implicated in epidermal hyperplasia [45]. Moreover, IL-17

induced several genes involved in terminal differentiation,

including S100 proteins, S100A12 and S100A7A, and transglu-

taminases, TGM1 and TGM3, suggesting a role for IL-17 in this

process. Additionally, the up-regulation of cell cycle-related genes

such as CCNE1, CDCA5, and CDCA25A, suggests a direct

contribution of IL-17 to epidermal KC proliferation. Therefore,

the results of the current study suggest that IL-17 may have a

much broader role than previously thought in stimulating the

epidermal changes seen in psoriasis.

We defined the in vivo correlations of the novel gene set induced

by IL-17 in RHE by analyzing the results of a recent clinical trial

in psoriasis patients with a potent IL-17A antagonist, ixekizumab.

IL-17 blockade is highly effective in reversing psoriasis, impres-

sively resolving clinical, histological, and genomic facets of the

disease [29]. Our results suggest that the genes regulated by IL-17

in RHE are likely relevant to the effects of IL-17 in psoriasis, since

ixekizumab strongly suppressed these ‘‘RHE’’ genes in psoriasis

patients treated in vivo with this IL-17 antagonist.

Psoriasis is thought to develop and be maintained as a result of

cooperative efforts of several T cell cytokines in addition to IL-17,

namely IFN-c and IL-22, which augments cellular recruitment

through chemokine induction and stimulates epidermal hyperpla-

sia, respectively. However, the complete reversal of the psoriasis

phenotype by ixekizumab and other IL-17 antagonists [29],

suggests that this model may need to be revised to account for the

centrality of IL-17 in driving the inflammatory circuits in psoriasis.

While epidermal acanthosis is not highly evident in histological

Table 1. Selected immune-related genes expressed in IL-17-
treated RHE.

Symbol Description FCH1 FDR2

DEFB4A defensin, beta 4A 24.37 0.005

IL1F9 interleukin 1 family, member 9 16.37 0.001

IL19 interleukin 19 12.82 0.007

S100A7A s100 calcium binding protein A7A 12.70 0.011

IL23A interleukin 23, alpha subunit, p19 11.53 0.001

SERPINB4 serpin peptidase inhibitor, clade B, member 4 7.03 0

TGFA transforming growth factor, alpha 5.04 0.035

S100A12 s100 calcium binding protein A12 4.85 0.013

IL1F8 interleukin 1 family, member 8 (eta) 4.34 0.086

C/EBPA CCAAT/enhancer binding protein (C/EBP), alpha 4.28 0.006

IL1B interleukin 1, beta 3.94 0.013

IL1B interleukin 1, beta 3.89 0.038

RNASE7 ribonuclease, RNase A family, 7 3.48 0.005

IL11 interleukin 11 3.42 0.045

RNASE7 ribonuclease, RNase A family, 7 3.23 0.013

SERPINA1 serpin peptidase inhibitor, clade A, member 1 3.08 0.058

SERPINA1 serpin peptidase inhibitor, clade A, member 1 2.88 0.089

TGFA transforming growth factor, alpha 3.08 0.046

IL1A interleukin 1, alpha 2.85 0.038

IL1F5 interleukin 1 family, member 5 (delta) 2.68 0.01

MAP3K9 mitogen-activated protein kinase kinasekinase 9 2.58 0.044

RNASE7 ribonuclease, RNase A family, 7 2.30 0.031

STAT3 signal transducer and activator of transcription 3 2.18 0.021

MAP2K3 mitogen-activated protein kinase kinase 3 1.97 0.03

SERPINB3 serpin peptidase inhibitor, clade B, member 3 1.88 0.01

1FCH, fold change;
2FDR, false discovery rate.
doi:10.1371/journal.pone.0090284.t001
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sections of IL-17 treated RHE, many cyclins associated with

increased cell proliferation are elevated in IL-17 treated cultures

and growth factors associated with keratinocyte proliferation, e.g.

IL-19, TGFa, HBEGF, are increased. Thus, IL-17 might

contribute to epidermal hyperplasia in vivo through indirect

effects on keratinocytes. In addition, leukocytes that are recruited

by cytokines induced in keratinocytes by IL-17 could also be

important in producing epidermal hyperplasia in vivo, either

through elaborated interleukins or by migration through the

epithelium [38,43,45–47]. Furthermore, the induction of genes

such as CCL20 (a chemoattractant for CCR6-bearing cells, such

as Th17 cells), IL1b, and IL23 (both involved in the Th17

differentiation process) suggests that IL-17 may create feed-

forward loops that perpetuate Th17-polarized inflammatory

processes. Along these lines, the induction of anti-microbial

peptides may also sustain inflammation as IL-17-induced cathe-

licidin (LL-37) has been shown to complex with nucleic acids to

activate DC stimulation of broader and more non-specific T cell

activation [48,49]. Overall, these data strongly implicate IL-17 as

a central player in the pathogenic mechanism underlying the

pathogenesis of psoriasis. Additionally, this study provides insight

into the IL-17-induced expression of inflammatory genes belong-

ing to damage-associated molecular pattern molecules (DAMP) or

inflammasome that could be potentially identified as novel

therapeutic targets. Indeed, the blockade of these IL-17-down-

stream genes may represent a further step in the therapeutic

strategy to be more selective in inhibiting the inflammatory

cascade.

IL-17 is most closely associated with the pathogenesis of

psoriasis, but it could also contribute to other inflammatory skin

disease, e.g., atopic dermatitis (AD). Significant IL-17 expression is

seen in skin lesions of intrinsic AD (low IgE sub-type) and

increased expression of several S100A genes (S100A7, S100A8,

S100A9, S100A12), that are synergistically regulated by IL-17 and

IL-22 is also detected [50].

Additionally, relative to normal skin, AD lesions have increased

expression of AMPs (LCN, b-defensins, etc.) that are IL-17-

regulated, although the measured levels are much lower than seen

in psoriasis. Since the range of products regulated by IL-17 in AD

are largely overexpressed in the upper spinous and granular layers

of AD epidermis, the selective expression of C/EBPb in more

differentiated KCs is also likely to be relevant to AD pathogenesis.

Materials and Methods

Skin samples
Skin punch biopsies (6 mm diameter) were obtained from

normal volunteers and patients with moderate-to-severe chronic

plaque psoriasis under a Rockefeller University Institutional

Review Board-approved protocol. Written, informed consent

was obtained from all subjects, and adhered to the Declaration

of Helsinki Principles.

The biopsy specimens were frozen in OTC (Sakura, Torrance,

CA, U.S.A.) and stored at 280uC for immunohistochemistry and

immunofluorescence.

Immunohistochemistry and Immunofluorescence
Frozen tissue sections of psoriatic lesional, non-lesional, and

normal skin were stained using standard procedures for both IHC

and IF as previously described [51].
Immunohistochemistry. Staining was performed with an-

tibody targeting C/EBPb, LCN2, HBD2, STAT1, RFX5 (Table

S2). According to the primary antibody species, either biotin-

labeled horse anti-mouse antibodies (Vector Laboratories, Burlin-

game, CA, U.S.A.) or biotin-labeled rabbit anti-goat antibodies

(Vector Laboratories, Burlingame, CA, U.S.A.) were amplified

with avidin-biotin complex (Vector Laboratories) and developed

Table 2. Selected genes involved in keratinocyte proliferation and differentiation.

Symbol Description FCH1 FDR2 Biological Function

IL19 interleukin 19 12.82 0.01 Epidermal hyperplasia
inducers

HBEGF herparin-binding EGF-like growth factor 3.29 0.03

SPRR2C smallproline-rich protein 2C (pseudogene) 27.07 0.00

TGM3 transglutaminase 3 7.15 0.01

SPRR4 smallproline-rich protein 4 5.21 0.01

KLK13 kallikrein-related peptidase 13 4.75 0.10

KLK13 kallikrein-related peptidase 13 4.57 0.08 KC differentiation-related
genes

TGM1 transglutaminase 1 3.01 0.02

KLK6 kallikrein-related peptidase 6 2.89 0.04

CNFN cornifelin 2.80 0.05

KLK10 kallikrein-related peptidase 10 2.13 0.01

SMPD1 sphingomyelinphosphodiesterase 1, acid lysosomal 2.61 0.01 Laminar bodies/extra-
cellular lipids formation

SPTLC2 serinepalmitoyltransferease, long chain base subunit 2 2.54 0.08

CCNE1 cyclin E1 2.50 0.02

CDCA5 cell division cycle associated 5 1.88 0.04 Cell cycle-related genes

CDC25A cell division cycle 25 homolog A (S. pombe) 1.68 0.01

1FCH, fold change;
2FDR, false discovery rate.
doi:10.1371/journal.pone.0090284.t002
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using chromogen 3-amino-9-ethylcarbazole (Sigma Aldrich, St

Louis, MO, U.S.A.). For the staining in the RHE, a black line

denotes the dermoepidermal junction. Appropriate negative

controls were used.

Immunofluorescence. Frozen skin sections from non-le-

sional and lesional psoriasis patients were fixed with acetone and

blocked in 10% normal chicken serum (Vector Laboratories) for

30 minutes. Primary antibodies for C/EBPb and HBD2 (Table

S2) were incubated overnight at 4uC and amplified with the

appropriate secondary antibody goat anti-mouse IgG1 conjugated

to Alexa Fluor 488 and chicken anti-goat Alexa Flour 594

(Invitrogen, Eugene, OR) respectively, for 30 minutes.

IF images were acquired using the appropriate filters of a Zeiss

Axioplan 2 wide-field fluorescence microscope (Thornwood, NY)

with a Plan Neofluar 2060.7 numerical aperture lens and a

Hamamatsu Orca Er-cooled charge-coupled device camera

Figure 3. Improvement of psoriasis with IL-17 blockade is associated with reduced expression of IL-17-induced RHE genes. (A)
Correlation between various gene sets and RHE gene profile response to cytokine stimulation (IL-17, IFN-c, or IL-22) using GSEA. NES: normalized
enrichment score; FDR: false discovery rate. (B) Venn diagram summarizing the number of DEGs among those in the psoriasis transcriptome or IL-17-
treated RHE with improvement of at least 75% at two weeks post-ixekizumab. (C) Proportion of genes in IL-17-treated RHE that were differentially
regulated in psoriasis (blue shaded area of (A)) and on the U133A 2.0 arrays (n = 95 out of 147 total DEGs which included additional genes only seen
on the U133A Plus 2.0 arrays) that responded to treatment with IL-17 blockade (Ixekizumab, blue), TNF blockade (etanercept, red) or placebo (gray) at
2 weeks. Colored lines are changes in all MAD-3 psoriasis genes after both treatments. (D) The average change in expression (log2FCH) of RHE+IL-17
genes toward recovery with ixekizumab, etanercept, or placebo at 2 weeks.
doi:10.1371/journal.pone.0090284.g003
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(Bridgewater, NJ), controlled by the METAVUE software (MDS

Analytical Technologies, Downington, PA). Images in each figure

are presented both as single-color stains (green and red) located

above the merged image, so that localization of two markers on

similar or different cells can be appreciated. Cells that co-express

the two markers in a similar location are yellow in color. A white

line denotes the dermoepidermal junction. Dermal collagen fibers

gave green autofluorescence, and antibodies conjugated with a

fluorochrome often gave background epidermal fluorescence.

Cell cultures
We cultivated primary human skin fibroblast lines (HF40 and

HFF-1) (n = 2 each) that were obtained from the American Type

Culture Collection (ATCC, Manassas, VA) and cultivated in

Dulbecco’s minimum essential medium supplemented with 10%

fetal calf serum and, when confluent, medium was supplemented

with or without recombinant human (rh)-IL-17 (R&D System,

Minneapolis, MN) of 200 ng ml21 (same IL-17 source and

concentration used in prior experiments with human keratino-

cytes) [10,12]. After 24-hour incubation, fibroblasts were harvest-

ed for further analyses.

We also cultivated NHEKs obtained from PromoCell, in the

Keratinocyte Growth Medium 2 supplemented with 0.004 ml/ml

BPE, 0.125 ng/ml EGF, 5 ug/ml Insulin, 0.33 ug/ml Hydrocor-

tisone, 0.39 ug/ml Epinephrine, 10 ug/ml Transferrin, and

0.06 mM Ca++ (all items purchased from PromoCell GmbH,

Heidelberg, Germany). The experiment was performed in

triplicate.

Once 70–80% confluent, the medium was changed with full

media containing 0.06 mM Ca++, 1.2 mM Ca++, or 1.2 mM

Ca++ plus 2.0% FBS, for 24 and 48 hours before harvesting for

other analyses.

Human full-thickness skin model (RHE)
Full-thickness human skin models (MatTek Corp., Ashland,

MA, U.S.A.) (n = 4) were incubated in assay media (MatTek

Corp.) supplemented with or without rh-IL-17 (R&D Systems,

Minneapolis, MN, U.S.A.) 200 ng mL21, rh-IL-22 (Peprotech

Inc., Rocky Hill, NJ, U.S.A.) 200 ng mL21 200, or rh-IFN-c
(R&D Systems, Minneapolis, MN, U.S.A.) 20 ng mL21, for 2

days. On day 2, the skin models were harvested for microarray

analyses. The same concentrations used for treating in vitro

monolayer keratinocytes were applied for RHE, as they were

proved effective in gene modulation as previously described by our

group [12].

Gene array
RNA was extracted from RHE using the RNeasy Mini Kit

(Qiagen, Valencia, CA, U.S.A.) and on-column DNAse digestion

(RNAse-free DNAse Set, Qiagen), for either gene array or RT-

PCR procedures.

For each Affymetrix genechip, 4 mg total RNA was reverse

transcribed, amplified, and labeled as described previously using

BioArray High Yield RNA Transcription Labeling Kit (Enzo

Biochem Inc., Farmingdale, NY, U.S.A.) [52]. Fifteen micrograms

of the biotinylated cRNA were then hybridized to Affymetrix

Human Genome U133A Plus 2.0 Array (Affymetrix, Santa Clara,

CA, U.S.A.). The chips were washed, stained with streptavidin-

phycoerythin, and scanned with a Hewlett-Packard HP GeneAr-

ray Scanner (Hewlett-Packard, Palo Alto, CA, U.S.A.).

Reverse transcriptase–polymerase chain reaction
To perform RT-PCR, the RNA extracted from fibroblasts and

RHE model was processed using EZ PCR core reagents, primers,

and probes (Applied Biosystems, Foster City, CA) as previously

published [53], whilst total RNA was extracted from NHEKs

using RNeasy micro kit (QIAGEN Inc, Valencia, CA).

The following sequences of primers and probes were used in this

study: IL-19 (Hs00604655_m1), C/EBPb (Hs 00270923_s1),

S100A7A (Hs00752780_s1), IL-1F8 (Hs00758166_m1), IL-23A

(Hs00372324_m1). The data were analyzed by the Applied

Biosystems PRISM 7700 software (Sequence Detection Systems,

ver. 1.7) and normalized to human acidic ribosomal protein

(hARP) housekeeping gene (primer sequences Forward:

CGCTGCTGAACATGCTCAA, Reverse: TGTCGAACACCT-

GCTGGATG, Probe: 6-FAM-TCCCCCTTCTCCTTTGGGC-

TGG- TAMRA).

Statistical analysis
Preprocessing and statistical analysis was conducted in R

(http://www.rproject.org/).

Microarray GeneChip CEL data files were scanned for spatial

artifacts using Harshlight package (http://asterion.rockefeller.

edu/Harshlight/index2.html) [54]. Expression values were pre-

processed using GCRMA algorithm [55]. ArrayQualityControl

was used for standard QC.

Probes with at least one sample showing expression values

greater than 3 and SD .0.1 were selected for further analyses.

Significance of cytokine induction in RHE gene expression was

assessed by using a moderated paired t-test, comparing untreated

RHE with cytokine-treated RHE. Subsequently, p-values were

adjusted using Benjamini-Hochberg correction, which controls the

FDR.

Genes were considered DEGs if FDR.0.1 and FCH.1.5,

accordingly to the same cut-offs used for gene array data derived

from previous IL-17/keratinocyte experiments [12]. IL-17 effects

on gene expression was evaluated in RHE and compared with

keratinocyte [12] and fibroblast responses to IL-17 exposure.

These data are available in the Gene Expression Omnibus (GEO)

repository under accession No. GSE52361.

To assess the biological meaning of IL-17-induced RHE genes

in psoriasis, a comparison with the MAD-3 psoriasis transcriptome

(defined by a meta-analysis of 3 published transcriptomes) [40] was

performed. To evaluate the effect of antipsoriatic therapies on

RHE genes induced by IL-17, previously published genomic

responses to different therapeutic agents, namely ixekizumab [29]

and etanercept [27], were analyzed. Comparisons included only

IL17-induced RHE probe sets in hgu133a2 chips, since the gene

array data for both treatments were performed using the same

kind of chips. For those probes, whose expression differed after 2-

week treatment compared to baseline, the mean variation was

calculated. Similarly, the improvement at 2 weeks of treatment

under both treatments was summarized, meaning as improvement

the treatment effect divided by the level of disregulation at

baseline, which was measured as LS vs NL differences estimated

through the MAD-3 transcriptome.

Gene Set Enrichment Analysis (GSEA) was used to evaluate the

enrichment of various gene sets in the gene response profile of the

RHE treated with IL-17, IL-22, or IFN-c [56].

Supporting Information

Figure S1 Co-localization of C/EBPb and HBD2 in
psoriatic skin. Immunofluorescence staining for IL-17 tran-

scription factor, C/EBPb (green), and downstream target, human
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b-defensin 2 (HBD2, red), in non-lesional (left) or lesional (right)

psoriatic skin. Both proteins are localized to the spinous-granular

layer, which is especially evident in non-lesional skin.

(TIFF)

Figure S2 Distinct staining patterns of epidermal
transcription factors. Immunohistochemistry for transcription

factors, RFX-5 and STAT1, in normal, non-lesional, and lesional

psoriatic skin. RFX5 stains basal keratinocytes, while STAT1 has

pan-epidermal expression.

(TIFF)

Figure S3 C/EBPb gene expression in normal skin. C/

EBPb gene expression in reticular dermis, basal epidermis, and

suprabasal epidermis, obtained by laser capture microdissection of

normal human skin (Gulati et al., 2013).

(TIFF)

Figure S4 Expression levels of terminal differentiation
genes in monolayer in vitro NHEKs. Increased expression of

terminal differentiation genes was detected in high-calcium-treated

NHEKs: (A) C/EBPb, (B) FLG2, (C) TGM1, (D) IVL. Differences

with low-calcium condition were statistically significant. Gene

expression was normalized by hARP.

(TIFF)

Figure S5 C/EBPb expression in RHE model. Differential

C/EBPb expression in untreated RHE (A) versus IL-17-treated RHE

(B). Black line shapes the dermoepidermal junction, while arrows

mark the light staining displayed in differentiated keratinocytes

localized in the upper layers of the epidermis. (C) Detection of C/

EBPb gene expression in untreated and IL-17-treated-RHE by PCR.

(TIFF)

Figure S6 IL-17, IL-22, and IFN-c induce unique RHE
gene signatures. (A) Venn diagram illustrates the number of

probe-sets regulated in RHE by IL-17, IL-22, or IFN-c treatment.

(B) Scatter plots comparing the genes induced in RHE versus in

vitro cultured KCs showing that IL-17 induced a large number of

genes only in RHE, while IFN-c induced a larger number of genes

in monolayer KCs compared to RHE. (C) Gene expression levels

of some IL-17 signature genes detected by RT-PCR, confirmatory

of the gene array results.

(TIFF)

Table S1 Differentially expressed genes in IL-17-treat-
ed keratinocytes and/or RHE and/or fibroblasts.

(PDF)

Table S2 Antibodies used for immunohistochemistry
and immunofluorescence.

(DOCX)
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