Abstract

The Hilbert function, its generating function and the Hilbert polynomial of a graded ring $\mathbb{K}\left[x_{1}\right.$ have been extensively studied since the famous paper of Hilbert: Ueber die Theorie der algebraischen Formen ([Hilbert, 1890]). In particular the coefficients and the degree of the Hilbert polynomial play an important role in Algebraic Geometry.
If the ring graduation is non-standard, then its Hilbert function is not definitely equal to a polynomial but to a quasi-polynomial.
It turns out that a Hilbert quasi-polynomial P of degree n splits into a polynomial S of degree n and a lower degree quasi-polynomial T. We have completely determined the degree of T and the first few coefficients of P. Moreover, the quasi-polynomial T has a periodic structure that we have described. We have also developed a software to compute effectively the Hilbert quasi-polynomial for any ring $\mathbb{K}\left[x_{1}, \ldots, x_{k}\right] / I$.
Keywords: Non-standard graduations, Hilbert function, Hilbert quasi-polynomial.

Introduction

From now on, \mathbb{K} will be a field and $R:=\mathbb{K}\left[x_{1}\right.$, a polynomial ring over \mathbb{K} graded by a weight vector $W:=\left[d_{1}, \ldots, d_{k}\right] \in \mathbb{N}_{+}^{k}$, that is
$\operatorname{deg}\left(x_{1}^{\alpha_{1}} \cdots x_{k}^{\alpha_{k}}\right):=d_{1} \alpha_{1}+\cdots+d_{k} \alpha_{k}$ and the component of R of degree n is given by $R_{n}:=\{f \in R \mid \operatorname{deg}(m)=n \forall m \in \operatorname{Supp}(f)\} \quad \forall n \in \mathbb{N}$ If $W=[1, \ldots, 1]$ the graduation is called standard. Let $I \subset R$ be a homogeneous ideal. The Hilbert function $H_{R / I}^{W}: \mathbb{N} \rightarrow \mathbb{N}$ of R / I is defined by

$$
H_{R / I}^{W}(n):=\operatorname{dim}_{\mathbb{K}}\left((R / I)_{n}\right)
$$

and the Poincaré series of R / I is given by

$$
H P_{R / I}^{W}(t):=\sum_{n \in \mathbb{N}} H_{R / I}^{W}(n) t^{n} \in \mathbb{N} \llbracket t \rrbracket
$$

Let σ be a term-order. Thanks to Macaulay's lemma which asserts that $H_{R / I}(n)=H_{R / L T_{\sigma}(I)}(n) \forall n \in \mathbb{N}$, we can restrict to consider only monomial ideals.
Theorem 1 (Hilbert-Serre) Let R be graded by $W=\left[d_{1}, \ldots, d_{k}\right] \in N_{+}^{k}$ and $I \subset R$ a homogeneous ideal. Then $H P_{R / I}(t)$ is a rational function, that is

$$
H P_{R / I}(t)=\frac{h(t)}{\prod_{i=1}^{k}\left(1-t^{d_{i}}\right)} \in \mathbb{Z} \llbracket t \rrbracket
$$

Definition 2 Let R be a polynomial standard graded ring and I a homogeneous ideal of R. Then there exists a polynomial $P_{R / I}(x) \in \mathbb{Q}[x]$ such that

$$
H_{R / I}(n)=P_{R / I}(n) \forall n \gg 0
$$

This polynomial is called Hilbert polynomial of R / I.

Hilbert Quasi-Polynomials

From now on, $(R / I, W)$ stands for the polynomia ring R / I, where I is a homogeneous ideal of R and R is graded by $W:=\left[d_{1}, \ldots, d_{k}\right] \in \mathbb{N}^{k}$. Let $d:=\operatorname{lcm}\left(d_{1}, \ldots, d_{k}\right)$

Proposition 3 There exists an unique set of d poly nomials $P_{R / I}^{W}:=\left\{P_{0}, \ldots, P_{d-1}\right\}$ such that

$$
H_{R / I}^{W}(n)=P_{i}(n) \quad \forall i \equiv n \quad \bmod d
$$

$P_{R / I}^{W}$ is called the Hilbert quasi-polynomial associated to ($R / /, W$) whose elements are the P_{i} 's.
Proposition 4 All the elements P_{i} of $P_{R / I}^{W}$ are rational polynomials and

- If $I=(0) \Rightarrow \operatorname{deg}\left(P_{i}\right)=k-1$
- If $I \neq(0) \Rightarrow \operatorname{deg}\left(P_{i}\right) \leq k-2$

Due to the following result, we can restrict our study to the simplest case $(R / I, W)$ where $I=(0)$ and W is such that $d=1$.
Proposition 5 Let $H P_{R / I}(t)=\frac{\sum_{j=0}^{r} a_{j} t^{j}}{\prod^{k}\left(1-t^{d_{i}}\right)}$ and let $W^{\prime}:=a \cdot W=\left[d_{1}^{\prime}, \ldots, d_{k}^{\prime}\right]$ for some $a \in \mathbb{N}_{+}$.
Then it holds:

- $P_{R / I}^{W}(n)=\sum_{j=0}^{r} a_{j} P_{R}^{W}(n-j) \forall n \gg 0$
- $P_{R}^{W W^{\prime}}=\left\{P_{0}^{\prime}, \ldots, P_{a d-1}^{\prime}\right\}$ is such that

$$
P_{i}^{\prime}(x)= \begin{cases}0 & \text { if } a \nmid i \\ P_{\frac{i}{a}}\left(\frac{x}{a}\right) & \text { if } a \mid i\end{cases}
$$

The structure of the Hilbert quasi-polynomials has a sort of regularity
Proposition 6 lt holds

$$
P_{R}^{W}(x)=S(x)+T(x)
$$

where $S(x) \in \mathbb{Q}[x]$ (the fixed part) has degree $k-1$, whereas $T(x)$ (the periodic part) is a rational quasi polynomial of degree $\delta-1$, where
$\delta:=\max \left\{|I| \mid \operatorname{gcd}\left(d_{i}\right)_{i \in I} \neq 1\right.$ and $\left.I \subseteq\{1, \ldots, k\}\right\}$

In addition, the $r^{\text {th }}$ coefficient of P_{R}^{W} has periodicity $\delta_{r}:=l c m\left(\operatorname{gcd}\left(d_{i}\right)_{i \in I}| | I \mid=r+1, I \subseteq\{1, \ldots, k\}\right)$ for $r=0, \ldots, k-1$. Formally, if we denote the $r^{\text {th }}$ coefficient of $P_{i}(x)$ by $c_{i r}$, therefore if $j=i+\delta_{r} \bmod d$ then $c_{j r}=c_{i r}$
The $r^{\text {th }}$ coefficients for $r=\delta, \ldots, k-1$ are hence the same for all P_{i}. We devise a strategy to find the formulas for these coefficients and we compute the first two of them after the leading coefficient.
Proposition 7 For each elements P_{i} of P_{R}^{W} it holds

$$
l c\left(P_{i}\right)=\frac{1}{(k-1)!\prod_{i=1}^{k} d_{i}}
$$

Let $\delta \leq r$ and let c_{r} be the $r^{\text {th }}$ coefficient of P_{R}^{W}. Then the following formulas hold

$$
c_{k-2}=\frac{\sum_{i=1}^{k} d_{i}}{2 \cdot(k-2)!\cdot \prod_{i=1}^{k} d_{i}}
$$

and

$$
c_{k-3}=\frac{3\left(\sum_{i=1}^{k} d_{i}\right)^{2}-\sum_{i=1}^{k} d_{i}^{2}}{24(k-3)!\prod_{i=1}^{k} d_{i}}
$$

Numerical Examples

Example 8. Let $R=\mathbb{Q}\left[x_{1}, \ldots, x_{5}\right]$ be graded by $W=[1,2,3,4,6]$. Then its Hilbert quasi-polynomial $P_{R}^{W}=\left\{P_{0}, \ldots, P_{11}\right\}$ is given by:
$P_{0}(x)=1 / 3456 x^{4}+1 / 108 x^{3}+5 / 48 x^{2}+1 / 2 x+1$
$P_{1}(x)=1 / 3456 x^{4}+1 / 108 x^{3}+19 / 192 x^{2}+43 / 108 x+1705 / 3456$ $P_{1}(x)=1 / 3456 x^{4}+1 / 108 x^{3}+19 / 192 x^{2}+43 / 108 x+1705 / 3456$
$P_{2}(x)=1 / 3456 x^{4}+1 / 108 x^{3}+5 / 48 x^{2}+25 / 54 x+125 / 216$ $P_{2}(x)=1 / 450 x^{4}+1 / 108 x^{3}+5 / 48 x^{2}+25 / 54 x+125 / 218$
$P_{3}(x)=1 / 3456 x^{4}+1 / 108 x^{3}+19 / 192 x^{2}+5 / 12 x+75 / 128$ $P_{4}(x)=1 / 3456 x^{4}+1 / 108 x^{3}+5 / 48 x^{2}+13 / 27 x+20 / 27$ $P_{5}(x)=1 / 3456 x^{4}+1 / 108 x^{3}+19 / 192 x^{2}+41 / 108 x+1001 / 3456$ $P_{6}(x)=1 / 3456 x^{4}+1 / 108 x^{3}+5 / 48 x^{2}+1 / 2 x+7 / 8$ $P_{7}(x)=1 / 3456 x^{4}+1 / 108 x^{3}+19 / 192 x^{2}+43 / 108 x+1705 / 3456$ $P_{8}(x)=1 / 3456 x^{4}+1 / 108 x^{3}+5 / 48 x^{2}+25 / 54 x+19 / 27$
$P_{s}(x)=1 / 3456 x^{4}+1 / 10 x^{3}+19 / 102 x^{2}+5 / 12 x+751128$ $P_{9}(x)=1 / 3456 x^{4}+1 / 108 x^{3}+19 / 192 x^{2}+5 / 12 x+75 / 128$ $P_{10}(x)=1 / 3456 x^{4}+1 / 108 x^{3}+5 / 48 x^{2}+13 / 27 x+133 / 216$

We observe that the leading coefficient and c_{3} are the same for all P_{i}, whereas c_{2} has periodicity $2, c_{1}$ has periodicity 6 and the constant term has periodicity 12 . In fact, we have

```
\(-\delta_{3}=\delta_{4}=1\)
\(-\delta_{2}=2\)\(\quad(\{2,4,6\})\)
\(\begin{array}{ll}\cdot \delta_{2}=2 \\ \text { - } \delta_{1}=6 \\ \cdot \delta_{0}=12\end{array} \quad(\{2,4,6\}),\{2,4\},\{2,6\},\{3,6\}\) and \(\left.\{4,6\}\right)\)
```

Let us consider R / I with $I=\left(x^{3}, y z\right)$, then the Hilbert quasi-polynomial $P_{R / I}^{W}$ is given by
$P_{0}(x)=1 / 16 x^{2}+1 / 2 x+1$
$P_{1}(x)=1 / 24 x^{2}+1 / 3 x+5 / 8$
$P_{2}(x)=1 / 16 x^{2}+1 / 2 x+3 / 4$
$P_{3}(x)=1 / 24 x^{2}+1 / 3 x+5 / 8$
$P_{4}(x)=1 / 16 x^{2}+1 / 2 x+1$
$P_{5}(x)=1 / 2 x^{2}+1 / 3 x+7 / 24$
$P_{6}(x)=1 / 16 x^{2}+1 / 2 x+3 / 4$
$P_{7}(x)=1 / 24 x^{2}+1 / 3 x+5 / 8$
$P_{8}(x)=1 / 16 x^{2}+1 / 2 x+1$
$P_{9}(x)=1 / 2 x^{2}+1 / 3 x+5 / 8$
$P_{10}(x)=1 / 16 x^{2}+1 / 2 x+3 / 4$
$P_{011}(x)=1 / 24 x^{2}+1 / 3 x+7 / 24$

It is easy to see that the coefficients of $P_{R / I}^{W}$ are somewhat periodic. The characterization of this periodicity is work on progress.
We have written Singular procedures to com pute the Hilbert quasi-polynomial for rings $\mathbb{K}\left[x_{1}, \ldots, x_{k}\right] / I$. These procedures can be downloaded from the website www dm. unipi it ~caboara/Research/HilbertOP

Conclusions and further work

We have produced a partial characterization of Hilbert quasi-polynomials for the \mathbb{N}^{k}-graded rings $\mathbb{K}\left[x_{1}, \ldots, x_{k}\right]$. We want to complete this characterization. Specifically, we want to find the closed formulas for as many as possible coefficients o the Hilbert quasi-polynomial, periodic part included Moreover we want to extend our work to \mathbb{N}^{k}-graded quotient rings $\mathbb{K}\left[x_{1}, \quad, x_{1}\right] / I$ This will allow us to quent of Hilbert quasi-polynomials.

References

[1] W. Bruns, B. Ichim, On the coefficients of Hilbert quasipolynomials, Proceedings of the AMS, Volume 135, Number 5, 1305-1308, 2007
[2] W. Vasconcelos, Computational Methods in Commutative Algebra and Algebraic Geometry, Springer, 1997
[3] L. Cirillo, Proprietà e calcolo dei polinomi di Hilbert in grad uazione non standard, Bachelor Thesis, 201

