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Abstract— A new frontier of non-destructive measurement exploitation is explored in this paper as concerns the food traceability and control arena. Presented is a method for non-destructive automated peach tree rootstock classification by means of high spectral resolution spectroscopy and multivariate signal processing. Many studies have shown that rootstock has significant impact on quality and maturity of peach fruits. Rootstock knowledge not only enables fruit traceability but also helps selecting the best storage condition and marketing channel. A novel automated method is presented to classify peach fruits with respect to their rootstock based on multivariate signal processing of fruit skin reflectance spectra, which are highly affected by physical and biochemical phenomena associated with fruit quality and maturity. Experimental results exploiting measurements of fruit skin reflectance spectra acquired in the visible and near infrared ranges with a high-resolution spectrometer show that automated rootstock classification by spectroscopic measurements and signal processing techniques is feasible and effective and has great potential in horticultural engineering.
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INTRODUCTION
M
OST commercial fruit trees are composed of a scion cultivar grafted onto a rootstock, i.e. a root system of a related (but genetically different) species that has specific desirable properties such as increased resistance to disease or soil problems [1, 2]. For a same scion genotype, fruit properties are affected also by rootstock [1, 2]. Many studies have shown the considerable effects of rootstock on fruit phytochemical and nutraceutical compounds as well as on quality and maturity parameters (e.g. sugar content, flesh firmness) and, thus, shelf-life [1, 2]. In fact, rootstock impact on fruit properties is strictly related to rootstock interaction with water and nutrients in the soil and to the amount of photoassimilates sent to the fruits [2].
Rootstock impact on maturity and quality of fruits has revealed to play an important role, suggesting its commercial use in the warehouse or in the packing facility to pre-sort fruits toward different storage conditions and distribution channels [3]. Furthermore, knowledge of the rootstock originating a given batch of fruits enables fruit traceability by fruit origin authentication and supplier verification, which is one of the most important food safety priorities [4-7]. However, rootstock information is very seldom available and often just a small fraction of fruits comes with such information. Goal of this paper is to present a novel automated rootstock classification method that relies upon the availability of spectral reflectance measurements of fruit skin. To the best of our knowledge, no other attempt exists in the literature to classify fruits with respect to their rootstock based on non-destructive measurements of fruit properties. Our method is founded on the many research studies showing that physical and biochemical phenomena determining fruit quality and maturity manifest themselves throughout the reflectance spectra of fruit skin acquired with remote/proximal sensors, e.g. high-resolution spectrometers [5] [8, 9]. Because different rootstocks have diverse impacts on quality and maturity of fruits, in principle they can be discriminated by suitable processing of the fruit spectra. The proposed method makes use of a non-parametric multivariate classifier, never employed in this context, that estimates fruit reflectance distribution for each rootstock in a data-driven fashion. Experimental results featuring reflectance measurements of peach fruits originating from four different rootstocks provide proof-of-concept of the effectiveness of the proposed methodology for computer-assisted automated rootstock classification.
Peach Tree Rootstock Classification Method
Rootstock classification is approached by means of multiple hypotheses testing [10]:
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where  denotes that the generic  test reflectance spectrum  belongs to the -th roostock class , and  is the number of rootstock classes. The Maximum a posteriori probability (MAP) [10] criterion is adopted to enforce the decision rule:

	
	( 2 )



where  is the probability density function (PDF) of  conditioned to the rootstock class  and  is the a priori probability of . Both can be estimated from the training data, i.e. reflectance spectra of fruits known to originate from rootstock class . Whereas it is easy to asses , estimation of  is not trivial.
Here, we propose to adopt a multivariate Kernel Density Estimator (KDE):
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where  is the kernel function that is centered at each of the  training data , and  is the  bandwidth matrix of the kernel function widths. Studies from the literature suggest making  have the same structure of the training data covariance matrix  [11]. According to the Fixed KDE (FKDE),  is taken as , with  ruling the kernel widths and, thus, the amount of smoothing [11]. The more sophisticated Variable KDE (VKDE) adopts  as a function of  as , with  being the Euclidean distance of  to its -the nearest neighbor (kNN) in  [11]. This way, the kernel widths are made data-adaptive, thus tailoring the amount of smoothing to the local data density in  [11].
Experimental Results
Fruit Material and Measurement Set up
50 ‘Flavorcrest’ peach trees grafted on 4 different rootstocks (i.e., ‘Barrier 1’, ‘GF 677’, ‘Ishtara® Ferciana’, and ‘Mr.S. 2/5’) and grown within the orchard of the experimental farm of the University of Pisa (Department of Food, Agriculture and Environment) were employed in this study. Around the optimal harvest date, 630 fruits were harvested and non-destructive measurements of diffuse reflectance of fruit skin (see Fig. 1 (a)) were collected in the 500-900 nm range. A HR2000 fiber-optic spectrometer (Ocean Optics) was employed for non-destructive measurements. The experimental set up employed in this work is shown in Fig. 2. The spectrometer was equipped with a halogen lamp to be used as light source in the fiber-optic reflection probe. The reflection probe was employed to perform proximity-sensing reflectance measurements of peach fruit skin. The spectrometer was connected to a personal computer via an USB cable for spectra visualization, storage, and processing.
Experimental Design
The spectra were pre-processed for dimensionality reduction and 𝑑=30 components obtained with the singular value decomposition [12] were retained for classification. With a 100-repeated random subsampling validation, for each trial the spectra were randomly split in training and validation data sets and the KDE was applied by exploiting the training data to classify the validation data. Results were then averaged over the 100 trials. Both FKDE and VKDE approaches were applied. Wide ranges of  and  were tested, keeping in mind the values suggested from the literature, i.e.  and   [11]. Overall accuracy (OA), per-class producers’ (PA) and user’s (UA) accuracies were evaluated as performance measures over the validation data and then averaged over the 100 trials [13]. For a given rootstock class, PA is computed as the number of peach fruits of the validation set that have been correctly classified by the algorithm divided by the total number of peach fruits of the validation set actually belonging to the given class; UA is computed as the number of peach fruits of the validation set that have been correctly classified by the algorithm divided by the total number of peach fruits of the validation set assigned by the classifier to the given class [13]. OA is the average of the PAs across all classes [13].
Rootstock Classification Performance
Fig. 1 (b-d) shows graphical examples of method application. To enable graphical representation, graphs are displayed in a 2-dimensional subspace of .  were estimated with the KDE from the training data (Fig. 1 (b)). The functions  were built (Fig. 1 (c)), and the MAP decision rule resulted in decision regions (Fig. 1 (d)) for classification. Classification performance is reported in Fig. 3. Fig. 3 (a) plots the OA of both FKDE and VKDE with respect to  and , respectively. For the suggested  and  values, both classifiers provided the highest OA of nearly 80%. Whereas for FKDE a range of  values can be found where performance is similarly good, VKDE exhibits a very weak performance sensitivity with respect to , providing nearly the same good performance for the entire range of  tested. This follows from its data-adaptivity [11] and suggests that its use in this context may be more robust with respect to FKDE, though entailing a higher computational cost for kNNs evaluation. Fig. 3 (b) and Fig. 3 (c) plot per-class PA and UA, respectively, obtained with  and  values yielding the best OA. The rootstock classes that are best classified both from users’ and producers’ perspectives are ‘Mr.S. 2/5’ and then ‘Ishtara® Ferciana’, with both accuracies higher than or nearly reaching 80%. ‘Barrier 1’ and ‘GF 677’ classes exhibit slightly worse performance, with more unbalanced values across PA and UA.
Conclusions
Automated rootstock classification has been accomplished by exploiting spectroscopic measurements of peach fruit skin and a multivariate non-parametric classifier. Rootstock impact on fruit properties as well as manifestation of such properties throughout fruit skin reflectance spectra are the key factors enabling spectroscopy-based rootstock classification The multivariate non-parametric classifier allows such discriminative information to be robustly captured from the spectra themselves and exploited for classification. Results obtained from a peach fruit set originating from four rootstocks have shown that the proposed method is effective for rootstock classification and has great potential in horticultural engineering for the realization of low-cost automated instrumentation that should be easy-to-use by non-experts and minimize the operator intervention.
In the future, performance variability of the proposed approach with respect to the sample size will be investigated.
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Fig. 1 (a) Peach fruit spectra originating from the four rootstocks. (b-d) Graphical example of method application in a 2-D subspace of  for one random trial of the 100 trials. The graphs were obtained with FKDE applied with the h value suggested from the literature. (b) Scatterplot of peach fruit spectra, with marginal densities and contour lines of ; x and y denote the components spanning the considered 2-D subspace. (c) 2-D surface plots of  superimposed on a same graph. (d) 2-D MAP decision regions for classification.
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Fig. 2. Experimental set up for spectroscopic measurements on peach fruits (Courtesy of Ocean Optics).
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Fig. 3. Classification performance results: overall, producers’, and users’ accuracies averaged over the 100 trials. (a) Averaged overall accuracy plotted with respect to k (VKDE, bottom x-axis, in blue) and h (FKDE, top x-axis, in red), in Log-x scale. (b) Averaged producers’ accuracies reported for k (VKDE, in blue) and h (FKDE, in red) values yielding the best overall accuracies; standard deviations over the 100 trials are reported as errorbars. (c) Same as (b) for users’ accuracies.


image2.png
High-Resolution
Spectrometer

USB Cable

Laptop

Reflection Fiber-Optic
Probe
Halogen Source

Probe Holder

Tested Peach Fruit




image3.emf
Barrier1 GF677 Ishtara MrS2/5

0.6

0.8

1 Producers' Accuracy

 

 

VKDE FKDE

Barrier1 GF677 Ishtara MrS2/5

0.6

0.8

1

Users' Accuracy

 

 

VKDE FKDE

(b) (c)

(a)

2 4 10 25 50

0.2

0.4

0.6

0.8

k

OA

 

 

10

-1

10

0

10

1

h

VKDE

FKDE

݄

݇

݇

௦

݄

௦

Overall accuracy


image1.emf
500 600 700 800 900

0

0.1

0.2

0.3

0.4

0.5

0.6



 [nm]

Reflectance

Reflectance

ߣǡ ݊݉

x

y

 

 

x

y

 

 

x

y

 

 

y

x

x

y

x

y

y

x

(a) (b)

(c) (d)

6 7 8 9 10 11 12 13 14 15

0

5

10

15

20

25

30

35

 

 

Barrier1

GF677

Ishtara

MrS2/5

Barrier 1

GF 677

Ishtara

®

Ferciana

Mr.S. 2/5


