
Towards an SDN Network Control Application for
Differentiated Traffic Routing

Davide Adami∗, Gianni Antichi†,
Rosario G. Garroppo‡, Stefano Giordano‡, Andrew W. Moore†

∗CNIT Research Unit, Pisa
†Computer Lab, University of Cambridge

‡Department of Information Engineering, University of Pisa

Abstract—In the last years, Software Defined Networking has
emerged as a promising paradigm to foster network innovation
and address the issues coming from the ossification of the TCP/IP
architecture. The clean separation between control and data
plane, the definition of northbound and southbound interfaces
are key features of the Software Defined Networking paradigm.
Moreover, a centralised control plane allows network operators
to deploy advanced control and management strategies. Effective
traffic engineering and resources management policies allow to
achieve a better utilisation of network resources and improve end-
to-end service performance. This paper deals with the architec-
tural design and experimental validation of a control application
that enables differentiated routing for traffic flows belonging
to different service classes. The new control application makes
routing decisions leveraging on OpenFlow network statistics,
i.e., taking advantage of real-time network status information.
Moreover, a Deep Packet Inspection module has been developed
and integrated in the control application to detect VoIP traffic
with SIP signalling, enforcing this way policies for a differentiated
treatment of VoIP traffic. Finally, a functional validation is
performed in emulated environment.

Index Terms—SDN, VoIP, Differentiated Routing, QoS, SIP

I. INTRODUCTION

Building, running and maintaining enterprise networks is
getting more complicated and difficult. Part of the prob-
lem is the proliferation of real-time applications (i.e., voice,
video, gaming) which demand more and more bandwidth
and low-latency connections. Nowadays, there are two main
approaches used to enable such applications in enterprise
networks: resource over-provisioning or implementation of
resource management schemes. While the former oversizes
the network enough to meet the expected peak demand with
a substantial margin of safety, the latter tries to manage the
available bandwidth through traffic management and classifica-
tion techniques. The problems related to these two approaches
are, respectively, the waste of resources and the high complex-
ity/costs that derive from the use of high–speed and reliable
middle-boxes. In this scenario, Software Defined Networking
(SDN) with OpenFlow (OF) represents a third approach:
it provides both framework and tools to enable symbiotic
linkage between network paths and user applications. SDN
is an emerging network architecture where network control
is decoupled from data plane and is directly programmable.
Northbound and southbound interfaces are defined between
controller/applications and controller/network devices. OF [1]

is the standard communication protocol that allows the con-
troller to access the forwarding plane of a network device.
Such a migration of control, formerly tightly bound in individ-
ual network devices, into accessible computing devices is not
novel: separating inter-domain routing from individual routers
using logically centralised control system was proposed by
Caesar et al. [2] to make routers more manageable and flexible.
In addition, SDN enables the underlying infrastructure to be
abstracted for applications and network services, which can
treat the network as a logical or virtual entity. Following this
new shiny paradigm, the network service provider can better
recognise the best path in the physical network infrastructure
for a real-time application and provide therefore Quality of
Service (QoS). The aim of this work is to take advantage of
the SDN paradigm to enforce differentiated routing depending
on QoS requirements. The proposed SDN control application
includes a Deep Packet Inspection (DPI) module able to detect
Session Initiation Protocol (SIP) signalling messages. The SIP
messages parser implemented in the DPI module allows to
know the parameters of the VoIP traffic flows (i.e., source and
destination IP address pairs, and source and destination RTP
port pairs) during the setup phase of the call. Such information
make it possible to recognise and manage the VoiP traffic
flows directly on the data plane, and to apply a differentiated
routing strategy with respect to the common best-effort traffic.
It is worth noting that the DPI manages only SIP signalling
messages, to reduce the scalability problems that can appear
when DPI is applied to all traffic. The solution is then validated
through an extensive functional tests campaign. The paper
presents the related work in section II, while the background
on SIP protocol is summarised in section III. Section IV
describes the developed architecture, while section V presents
experimental results. Section VI concludes the paper.

II. RELATED WORK

To the best of our knowledge a limited amount of ef-
fort has been done till now to enable QoS in OF-enabled
networks. Egilmez et al. [3] propose a novel OF controller
for multimedia delivery with end-to-end QoS support. The
idea is to group incoming traffic as data and multimedia
flows, where the multimedia flows are dynamically placed
on QoS guaranteed routes and the data flows remain on
their traditional shortest-path. Unfortunately they differentiated

data flows from multimedia flows using static fields of the
packet (i.e., TOS, source IP, port numbers). They do not
try to recognise if a new flow is a real multimedia flow
or not. Wallner et al. [4] propose another approach to QoS
using Floodlight controller. Although they clearly show how
to guarantee QoS using the DSCP IP field, it is not clear
how to recognise an actual multimedia stream. Jeong et al.
[5] propose a QoS-aware network operating system (QNOX),
providing QoS-aware virtual network embedding, end-to-end
network QoS assessment, and collaborations among control
elements in other domain network. The authors try to find the
best path according to some user-defined constraints such as
packet-loss, end-to-end delay, etc. Finally, Ishimori et al. [6]
propose a framework to enhance QoS management procedures
in OF networks. Unfortunately such an idea would require an
OF switch able to handle the new proposed primitives, while
our solution is compatible with the existing ones.

III. THE SIP PROTOCOL

SIP is an application level protocol that allows to establish,
modify and tear down multimedia sessions (e.g., voice calls
or video conferencing). The SIP protocol uses URI (Uniform
Resource Identifier) schemes to identify users, both location-
based services and SIP servers to locate users, enabling
this way personal mobility. The protocol is based on the
request/response paradigm and is text-based.

To set up a session, the INVITE message is sent by the
User Agent Client (UAC) towards the SIP server, which
is responsible to locate the next SIP server to forward the
message or the User Agent Server (UAS) used by the receiver.
When the INVITE message arrives to the UAS, if the receiver
accepts to participate in the session, it sends a response
message (usually 200 OK) towards the SIP server, which will
forward it towards the UAC through one or more intermediate
SIP servers.

Both the INVITE and the 200 OK messages contain in their
”body” field information on the media and related parame-
ters (i.e., media type, codec, codec configuration parameters,
transport protocol used for the media, etc.). The format used
to communicate the media parameters is defined in the set of
rules for describing multimedia sessions, known as Session
description Protocol (SDP, [7]). The SDP allows to describe a
series of basic features for the proper exchange of information
during a session, such as:

• the IP address of the host that will receive the traffic of
a particular media involved in the session;

• the transport protocol (TCP or UDP) and its port number;
• the announced media type (video, audio, etc.), the type

of encoding used for the media (e.g., H.261 or MPEG
for video, G.729 or G.711 for audio) and configuration
parameters (e.g., the sample period for the audio, the ac-
tivation or not of the Voice Activity Detection algorithms,
etc.)

SDP can also carry information as the name and purpose
of the session, the temporal characteristics of the session,

the starting and closure time, or the transmission capacity
required.

SDP description consists of a series of text lines each one
with a structure type = value. In particular, type is always
specified by a single character, conversely value is a string
with a format that depends on the type. The example shown
in figure 1 describes a session where the host generating the
INVITE message communicates that it wants to receive the
media at the IP address 10.0.0.3 (the c type), and it is able
to receive audio on the port 3000 with the RTP protocol and
with encoding 0 and 81 (the m type). This example shows that
the media session can be easily identified analysing the SDP
information carried out by the SIP messages, the IP destination
address, transport protocol and destination port of the traffic
flow associated to one direction.

INVITE sip:homer@psrt.it SIP/2.0
Via: SIP/2.0/UDP 10.0.0.3:5060;
From: Bart Simpson <sip:bart@psrt.it>;tag=125831
To: <sip:homer@psrt.it>
Contact: <sip:bart@10.0.0.3:5060>
Call-ID: 4F33BACA-52EE@10.0.0.3
CSeq: 51702 INVITE
Max-Forwards: 70
Content-Type: application/sdp
Content-Length: 301

v: 0
o: bart 1679674672 1679674672 IN IP4 10.0.0.3
s: SIP Call
c: IN IP4 10.0.0.3
t: 0 0
m: audio 3000 RTP/AVP 0 8

H
ea

de
r

B
od

y

Fig. 1. An example of INVITE message.

IV. CONTROLLER ARCHITECTURE

This section describes the architecture of the proposed
control application (see figure 2), which has been developed
leveraging on POX, a platform for the rapid development
and prototyping of network control software using Python.
The modules communicate through a publish/subscribe event
manager system that comes from the core of the POX [8]
controller. Further details on the modules are provided in the
following.

A. Topology Discovery module

The openflow.discovery provided within the Betta
branch of the POX repository and host_tracker are the
main components needed to keep updated information about
hosts, switches and links in the network. The first one is
the key element to perform the network discovery. It is in
charge of sending Link Layer Discovery Protocol (LLDP)
[9] packets to all the connected switches through packet out
messages. These messages instruct the switches to send LLDP
packets out to all of their ports. Once a switch receives the

1the association between these numbers and the codecs can be found in
http://www.iana.org/assignments/rtp-parameters

Fig. 2. The Architecture of the Developed Control Application.

packet out message, it sends the LLDP packets out over all
its ports to other connected devices. If the neighbor device is
an OF switch, it will perform a flow lookup. Since the switch
does not have a flow entry for this LLDP message, it will
send this packet to the controller via a packet in message.
When the controller receives the packet in, it analyzes the
packet and creates a connection in its discovery table for the
two switches. All the remaining switches in the network will
similarly send a packet in to the controller, which creates a
complete network topology. LLDP messages are periodically
exchanged and events are raised at the controller when links
go up/down or new links are added/removed. Information on
switches and links are maintained in the Network database.
The host tracker keeps track of the hosts in the network
(i.e., where they are and how they are configured - at least
their MAC/IP addresses). When a change occurs, the com-
ponent raises a specific event. In short, host tracker works
by examining packet in messages, and learning MAC and IP
addresses. The controller periodically ARP-ping hosts to see
if they are still alive. The data collected are stored in a soft-
state manner inside the Hosts database, containing one-to-one
mappings between each host (textiti.e., IP and MAC addresses)
and the switch is connected to (textiti.e., datapath ID and
port number). The Topology database is obtained joining the
Network database with the Hosts database.

B. Traffic Statistics Handler module

The Traffic Statistics Handler (TSH) module
gathers ports and flows counters (statistics) from each OF
switch. This information is stored in the Traffic Statistics
Database. In particular, TSH periodically sends to each switch
an OF message asking for Received Bytes (Rx) and Transmit-
ted Bytes (Tx) counters at each port and keeps track of the
time when responses are received. We indicate with T1 and
T2 the time two consecutive responses are received and with

LTL the Link Traffic Load in bps for each switch interface.
TSH estimates the input and output LTL as follows:

LTLIN =
(Rx(T2)−Rx(T1)) ∗ 8

T2 − T1
(1)

LTLOUT =
(Tx(T2)− Tx(T1)) ∗ 8

T2 − T1
(2)

where LTLIN and LTLOUT are computed with the counters
from one of the two interfaces connected to the same link,
chosen randomly. This allows to reduce the amount of traffic
related to the collection of network statistics, since only the
traffic statistics acquired on one of the two link end-points
are necessary. Basically, the TSH module allows to associate
different costs to each link direction, thus enabling asymmetric
routing. However, to avoid unstable behaviours due to sudden
spikes of traffic, the LTL is filtered by means of a first-order
low-pass filter. The output of the filter, denoted as Smoothed
LTL (SLTL), is used by the Routing Engine (RE) module
to establish the costs of the links. The configuration parameters
of the TSH module (e.g., the requests time period and the filter
coefficients) should be chosen by the network administrator
taking into account traffic dynamics and expected network
responsiveness. The analysis of the control application with
different configuration parameters is out of the scope of this
paper for the sake of brevity.

C. Routing Engine module

The Routing Engine (RE) module receives information
about the topology from TD, and SLTL values for each link
direction from TSH. If no SLTL information is received, RE
calculates the shortest path tree from each source node to
all possible destinations applying the Dijkstra algorithm to a
graph with default costs assigned to the edges representing
the network links. On the other hand, if SLTL information is
provided, RE builds two graphs: the first one for the privileged
traffic class (e.g., VoIP traffic) and the other one for all the
remaining traffic (e.g., best effort traffic). These graphs differ
for the costs assigned to the network links, which depend
on both the traffic class (i.e., VoIP, best effort) and the link
utilisation (LU), calculated as the ratio between the SLTL and
the link capacity. Table I reports the cost values we use in
Section V for VoIP and best effort traffic. In the case of VoIP
traffic, the cost associated to each link increases proportionally
with the link utilisation. On the other hand, in the case of best
effort traffic, a high cost value is assigned to link with low link
utilisation and such a cost decreases when the link utilisation
increases. If the link utilisation is higher than a given threshold
(i.e., we set it to 85%), a high link cost is associated for both
types of traffic to avoid congestion. Once the weighted directed
graphs (one for each traffic class) are calculated, the Dijkstra
algorithm is run in order to find the shortest paths for each
origin-destination nodes pair.

TABLE I
INTERFACE UTILISATION, TRAFFIC CLASSES AND LINK METRICS

Utilization VoIP Best Effort
< 30% 10 80
< 60% 50 30
< 85% 80 10
> 85% 150 150

D. Deep Packet Inspection module

The Deep Packet Inspection (DPI) module is re-
sponsible for traffic classification and therefore for the as-
signment of each traffic flow to a pre-defined class. In this
section we will focus on the architectural principles behind
the design of the DPI module developed in our prototype
for the detection of VoIP and best effort traffic. We point out
that the aforementioned principles can be also applied to other
kinds of traffic, just changing the DPI policy. According to the
standard, when an OF-enabled switch receives a frame that
matches no entry in its flow table, it sends to the controller
only 128 bytes of the original frame, thus allowing the analysis
of the fields in the packet header up to the transport layer. We
point out that the controller must receive all the signalling
messages exchanged by the proxy servers (i.e., INVITE, 200
OK) in order to have a real-time understanding of the calls
status. When the controller receives the frame, the DPI engine
checks if the packet contains a SIP message. In our prototype,
we considered the case where VoIP sessions are set-up through
the exchange of SIP signalling messages carried out within
UDP packets with destination port 5060, and content-Type
field set to application/sdp. Other specific detection
rules should be developed to account for VoIP sessions using
as control plane SIP over TCP or SIPS, but are out of the scope
of this work. It is relevant to observe that the SIP detection
strategy is important to reduce the scalability problems that can
appear when DPI is applied to all traffic. Indeed, the detection
permits to apply the parser rules only to the SIP messages.
If an INVITE message is detected, the module analyses the
SDP information in the body of the message. At the end of
this procedure, the module knows the media channels of the
VoIP session (i.e., the source and destination IP addresses, and
source and destination UDP ports of the RTP traffic flow) in
one direction. The information on the RTP traffic flow in the
opposite direction is acquired intercepting the SIP message
response. For each new SIP session, the DPI gives to the RE
the parameters of the RTP channels. Then, using the graph
associated to VoIP traffic, the RE calculates the routes for the
new RTP traffic flows and transfers the obtained forwarding
rules to the OF Rules Handler. Such a module is in charge of
setting up the right rules directly to the OF-enabled switches.
The chosen approach permits the controller to intercept the
BYE message, used to tear down the SIP session, and as
a consequence to remove the forwarding rules installed for
the associated RTP traffic flows. If the controller receives a
non-SIP message, the RE calculates the shortest path and the

corresponding forwarding rules using the graph associated to
best effort traffic, and transfers the rules to the OF Rules
Handler.

V. EXPERIMENTAL VALIDATION

This section evaluates the effectiveness of our control appli-
cation that enables the enforcement of differentiated routing
policies. More specifically, the new SDN controller is imple-
mented in the Mininet emulation environment [10] and the
tests aim to analyse the behaviour of the control application
in a typical enterprise network scenario where best effort
and VoIP traffic flows are generated. We remark that the test
campaign is focused on demostrating the correct operation of
the proposed application. Performances can be highly variable
depending on the adopted SDN policy (i.e., re-active vs pro-
active) and the type of traffic (i.e., percentage of VoIP traffic).

Fig. 3. The network scenario.

The emulated network (see Figure 3) consists of 8 Hosts
(e.g., Mininet Virtual Machines) and 7 OF-enabled switches
(e.g., Mininet Open vSwitches). Each link of the network is as-
sumed to have a bandwidth of 1 Mbps. To evaluate the ability
of our SDN controller to make routing decisions according
to link load conditions and traffic classes, we activate and
deactivate VoIP sessions and best effort (BE) traffic flows.
Figure 4 shows the traffic measured at the output interfaces of
the switch S7. Three BE traffic flows start at different times
and last for the whole duration of the experiment. Each flow
is characterised by a specific source-destination nodes pair
in order to easily highlight the traffic data associated to the
flow during the test. Furthermore, each BE flow generates
a different traffic load. On the contrary, only one source-
destination nodes pair injects VoIP traffic in the network, but
during the experiment three different VoIP sessions are set-up
and torn down. The traffic associated to the VoIP sessions has
been set to 100 Kbps. During the set up phase of the VoIP
sessions, the controller calculates the shortest path for the VoIP
traffic taking into account the metrics associated to the links
for such traffic class. Then, the forwarding rules are set in the
switches for data traffic.

Figures 5 and 6 show the values of the cost observed
during the emulation for BE and VoIP traffic, respectively. The
figures highlight that our control application is able to update
links metrics according to the load conditions of the network.
Hence, the controller can establish the forwarding paths of new
flows taking into account the network status and the traffic
classes. Details on the paths selected by the controller, when
the new flows start, are reported in the following.

0 50 100 150 200 250
0

20

40

60

80

100

120

Switch S
7
, Port 1 (Towards Host H

5
)

Time (s)

B
a

n
d

w
id

th
 (

K
b

p
s

)

0 50 100 150 200 250
0

200

400

600

800

Switch S
7
, Port 2 (Towards Host H

6
)

Time (s)

B
a

n
d

w
id

th
 (

K
b

p
s

)

0 50 100 150 200 250
0

100

200

300

400

Switch S
7
, Port 3 (Towards Host H

7
)

Time (s)

B
a

n
d

w
id

th
 (

K
b

p
s

)

0 50 100 150 200 250
0

100

200

300

400

500

Switch S
7
, Port 4 (Towards Host H

8
)

Time (s)

B
a

n
d

w
id

th
 (

K
b

p
s

)

Fig. 4. Traffic load measured at the diverse outports of S7.

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

Best Effort Traffic

Time (s)

C
o

s
t

Links S
1
−S

2
, S

2
−S

5
, S

5
−S

7

Links S
1
−S

3
, S

3
−S

7

Links S
1
−S

4
, S

4
−S

6
, S

6
−S

7

Fig. 5. Observed BE cost values vs. time for each link.

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

VoIP Traffic

Time (s)

C
o

s
t

Links S
1
−S

2
, S

2
−S

5
, S

5
−S

7

Links S
1
−S

3
, S

3
−S

7

Links S
1
−S

4
, S

4
−S

6
, S

6
−S

7

Fig. 6. Observed VoIP cost values vs. time for each link.

At t = 30 s, a VoIP session starts between H1 and H5. S1

receives the SIP messages and forwards them to the controller.
Since the network is completely unloaded, all links have the
same cost, i.e., 80 for BE and 10 for VoIP, as highlighted in
Figures 5 and 6. In this case, the forwarding path for VoIP
traffic corresponds to the shortest path in terms of number
of hops from H1 to H5. The path is computed using the
Dijkstra algorithm with the network links costs shown in the
Figures 5 and 6 at t = 30 s. These values are obtained starting
from the link utilisation data collected by the OF-enabled
switches. Then, the controller installs the forwarding rules in
the switches along the path. To verify whether the forwarding
rules are correctly installed, Figure 7 reports the utilisation of
network links at t = 50 s. As expected, the utilisation of links
S1-S3 and S3-S7 is around 10%, whereas all other network
links are not utilised.

i=1, j=2 i=1, j=3 i=1, j=4 i=2, j=5 i=3, j=7 i=4, j=6 i=5, j=7 i=6, j=7
0

2

4

6

8

10

12

Time t
1
 = 50 seconds

Link (S
i
−S

j
)

U
ti

li
z
a
ti

o
n

 (
%

)

VoIP (H
1
−H

5
)

Best Effort (H
2
−H

6
)

Best Effort (H
3
−H

7
)

Best Effort (H
4
−H

8
)

Fig. 7. Links utilisation observed at t = 50 s.

At t = 60 s, the VoIP session between H1 and H5 is closed
and the generated VoIP traffic goes to zero.

Then, at t = 70 s, a best effort traffic flow (BE1) with
rate 600 Kbps starts between H2 and H6. Since the network
is completely unloaded, again the same cost for each traffic
class has been assigned to all links. Hence, also in this case, the
controller, using the Dijkstra algorithm, selects the minimum
hop count path (i.e., S1-S3, S3-S7), as the forwarding path to
set in the network switches for this flow.

At t = 90 s, another best effort traffic flow (BE2) at 300
Kbps is activated between H3 and H7. The controller selects
again the links S1-S3 and S3-S7 as forwarding path for BE2.

At t = 100 s, a new VoIP session between H1 and H5 is
started. Since the path S1-S3-S7 is used by BE1 and BE2, the
controller executes the Dijkstra algorithm after the cost of each
link has been updated according to the values reported in Table
I and shown in the Figures 5 and 6 for t = 90 s. In this network
scenario, the selected forwarding path for the VoIP traffic is
S1-S2-S5-S7. Figure 8 reports the utilisation of network links
to show the correct installation of the calculated forwarding

paths In particular, we can observe that the utilisation of the
links belonging to the VoIP path is around 10%, whereas the
links associated to the BE traffic is around 90% (i.e., the sum
of BE1 and BE2).

i=1, j=2 i=1, j=3 i=1, j=4 i=2, j=5 i=3, j=7 i=4, j=6 i=5, j=7 i=6, j=7
0

10

20

30

40

50

60

70

Time t
2
 = 120 seconds

Link (S
i
−S

j
)

U
ti

li
z
a
ti

o
n

 (
%

)

VoIP (H
1
−H

5
)

Best Effort (H
2
−H

6
)

Best Effort (H
3
−H

7
)

Best Effort (H
4
−H

8
)

Fig. 8. Links utilisation observed at t = 120 s.

At t = 150 s, the VoIP session is torn down and a new
best effort traffic flow (BE3) at 400 Kbps is started between
H4 and H8. Since the utilisation of the links S1-S3 and S3-
S7 is more than 90%, the cost assigned to such links is 150.
In this scenario, the Dijkstra algorithm gives S1-S2-S5-S7 as
the forwarding path for BE3. Then, the controller correctly
installs the forwarding rules for this traffic flow in the switches
belonging to the calculated forwarding path.

s1−s2 s1−s3 s1−s4 s2−s5 s3−s7 s4−s6 s5−s7 s6−s7
0

10

20

30

40

50

60

70

Time t = 180 seconds

Link

U
ti

li
z
a
ti

o
n

 (
%

)

VoIP (h1−h5)

Best Effort (h2−h6)

Best Effort (h3−h7)

Best Effort (h4−h8)

Fig. 9. Links utilisation observed at t = 180 s.

At t = 160 s, a new VoIP session starts between H1 and
H5. Since the costs of the network links have been updated
according to the cost function for VoIP traffic, and taking into
account that there are three active best effort flows, the selected
forwarding path for VoIP traffic flow is S1-S4-S6-S7. Figure

9 shows the utilisation of network links at t = 180 to evaluate
if the forwarding rules are correctly installed by the controller.
As highlighted in the figure, the utilisation of links chosen for
the VoIP traffic is around 10%, whereas the utilisation of the
links S1-S2, S2-S5, and S5-S7 is around 40% due to BE3. The
utilisation of the links used by BE1 and BE2 remains around
90%.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the architectural design along
with the experimental validation of a control application that
enables differentiated routing for traffic flows belonging to
different service classes.

The application is built on top of POX and makes routing
decisions leveraging on real–time network statistics. A DPI
engine has been developed and integrated in the control frame-
work to classify the type of traffic, enforcing this way different
policies for differentiated traffic routing. This architecture has
been validated in an emulated environment (i.e., Mininet)
when both best-effort and privileged traffic are present. We
plan to add different classes of services (i.e., gold, silver,
bronze, best effort), each one associated to a different link
metric. This will also require an improvement of the DPI
engine.

Acknowledgements

This work was supported by the EPSRC INTERNET Project
EP/H040536/1.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., 2008.

[2] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. van der Merwe, “Design and implementation of a routing control
platform,” in Symposium on Networked Systems Design & Implementa-
tion (NSDI). USENIX Association, 2005.

[3] H. Egilmez, S. Dane, K. Bagci, and A. Tekalp, “Openqos: An openflow
controller design for multimedia delivery with end-to-end quality of
service over software-defined networks,” in Signal and Information
Processing Association Annual Summit and Conference (APSIPA ASC),
2012.

[4] R. Wallner and R. Cannistra, “An sdn approach: Quality of service using
big switchs floodlight open-source controller,” in Asia-Pacific Advanced
Network (APAN), 2013.

[5] K. Jeong, J. Kim, and Y.-T. Kim, “Qos-aware network operating system
for software defined networking with generalized openflows.” in Network
Operations and Management Symposium (NOMS). IEEE/IFIP, 2012.

[6] A. Ishimori, F. Faria, I. Carvalho, E. Cerqueira, and A. Abelem,
“Automatic qos management on openflow software-defined networks,”
2012.

[7] RFC 2327, available at http://www.ietf.org/rfc/rfc2327.txt.
[8] POX, available at http://www.noxrepo.org/pox/about-pox/.
[9] IEEE, “Station and media access control connectivity discovery,” IEEE

LAN/MAN Standards Committee, IEEE Std. 802.1ab, 2009.
[10] Mininet, available at http://mininet.org.

