
J
H
E
P
0
2
(
2
0
1
5
)
1
3
7

Published for SISSA by Springer

Received: December 13, 2014

Accepted: February 2, 2015

Published: February 23, 2015

Softened gravity and the extension of the standard

model up to infinite energy

Gian F. Giudice,a Gino Isidori,b,c Alberto Salviod and Alessandro Strumiae,f

aCERN, Theory Division,

CH-1211 Geneva 23, Switzerland
bPhysik-Institut, Universität Zürich,
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1 Introduction

The naturalness problem of the Higgs mass is a central issue for the searches in the up-

coming high-energy run of the LHC and, more generally, for defining the future strategy

of particle physics. The conventional wisdom that new physics should intervene below the

TeV and soften the quantum corrections to the Higgs mass has been seriously challenged

by Run-1 LHC data. This has prompted a reconsideration of the standard approach and

the study of scenarios in which the issue of naturalness is addressed without new dynamics

at the weak scale affecting the quantum corrections to the Higgs mass.

A severe obstacle to this logical path is the expectation that several open questions

in high-energy physics (such as quantum gravity, gauge unification, inflation, neutrino

masses, baryogenesis, strong CP problem, etc.) require the existence of new heavy particles.

Such particles, if sufficiently coupled to the Higgs, introduce an unavoidable naturalness

problem. A radical (but admittedly questionable) approach is to ignore many of these high-

energy open questions or, at least, to believe that some of these questions can be resolved

by introducing only new particles that either have masses below the weak scale or are

sufficiently decoupled from the Higgs [1]. If this is the case, the SM, or a mild modification

of it, could be the final theory of particle physics [2–35]. However, even such a radical

approach cannot ignore one problem: gravity. The unknown dynamics of quantum gravity

at the Planck mass MPl is expected to introduce an unavoidable naturalness problem.

Our ignorance about quantum gravity leaves the door open to unexpected solutions.

After all, we do not know if the Newton constant GN simply describes a coupling constant

or signals the presence of new degrees of freedom with mass MPl. Moreover, gravity

becomes strong only at high energies and thus a UV softening of gravity could bypass the

naturalness problem. In particular, if the power-law running of the gravitational interaction

shuts off at a scale ΛG, the gravitational corrections to the Higgs mass would amount to

δM2
h ≈ `GNΛ4

G, where the coefficient ` includes couplings and loop factors. Since, in the

limit in which we turn off SM interactions, the Higgs field appears in the energy-momentum

tensor only with derivatives, minimally-coupled gravity respects a Higgs shift symmetry

and cannot generate through quantum corrections terms in the Higgs potential at any order

in perturbation theory. However, the shift symmetry is broken by SM interactions or by

a direct Higgs coupling with the scalar curvature, and we expect that corrections to M2
h

occur at least at two loops with ` ∼ (4π)−4. Gravity would not pose a naturalness problem

as long as δM2
h
<∼ M

2
h , which holds only if its conventional high-energy behaviour softens

before reaching the scale ΛG ∼ 4π(MhMPl)
1/2 ∼ 1011 GeV.

In conclusion, any candidate for a theory of gravity that respects Higgs naturalness

must satisfy the following properties: (i) premature UV softening of gravitational interac-

tions below ΛG; (ii) no heavy degrees of freedom with sizeable non-gravitational couplings

to SM particles. We will refer to theories of this kind as softened gravity.

We do not know of any realistic working examples of softened gravity, but maybe

such theories could be built out of some low-scale string theory [36] or fat-gravity [37]

models. An attempt to construct a theory of softened gravity was presented in [38]. The

modification of the high-energy gravitational behaviour required the presence of a spin-two
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ghost at the scale ΛG and thus the theory cannot be considered realistic. Nevertheless, this

attempt teaches a useful lesson: for gravity not to introduce a hierarchy problem, general

relativity must be modified at the scale ΛG, i.e. well below MPl.

Even without specifying the model of softened gravity or knowing if any such theory

exists, we can nonetheless reach a general conclusion about them. Since such theories must

soften the ordinary power-law energy increase starting from a scale smaller or equal to

ΛG, the gravitational interactions felt by SM particles remain weak at all energies, with

couplings at most ∼ ΛG/MPl ∼ 10−7. This means that, in the context of the hypothetical

theories with softened gravity, the SM sector (or any of its extensions) is not influenced by

the gravitational sector at any scale. Thus, it is sensible to investigate the behaviour of

the SM using the ordinary tools of Quantum Field Theory (QFT), even at energy scales

larger than MPl. This leads us to consider another important issue.

Once we accept that a theory of softened gravity exists, we must face another problem:

the scale invariance is broken at the quantum level. This breaking manifests itself in

the generation of dynamical scales, such as the confinement scale in asymptotically-free

gauge theories, dimensional transmutation, or Landau poles in non-asymptotically free

theories. In particular, in the SM the hypercharge gauge coupling g1 — and, consequently,

all other coupling constants — hit Landau poles. The appearance of Landau poles in

the Renormalisation-Group (RG) evolution corresponds to a loss of perturbative control.1

Thus, any interpretation of the dynamics lurking behind Landau poles lies completely

beyond the perturbative regime and different non-perturbative physical situations can occur

(see e.g. [40–44]). However, it is expected that a Landau pole signals the presence of new

dynamics and that the corresponding mass threshold reintroduces a Higgs naturalness

problem. In a Quantum Field Theory (QFT), the change in the short-distance behaviour

associated with the Landau pole is believed to affect the mass of scalars charged under the

corresponding interaction, whether new particles at that scale exist or not [46].

Landau poles of SM coupling constants are usually ignored, since they occur at energies

much larger than MPl. However, as explained above, in softened gravity the RG evolution

of SM couplings is unaffected by the gravitational sector at any energy scale. As a result,

the problem of Landau poles cannot be ignored and must find a solution within the sector

of the SM (or one of its extensions) at the weak scale. In softened gravity, the gravitational

sector cannot be of any help in preventing the appearance of SM Landau poles because of

its intrinsic weakness.

So we are led to the conclusion that a theory of softened gravity satisfying Higgs

naturalness must be made up of separate sectors, connected with each other only by very

feeble interactions. The first is the observable sector, which contains a weak-scale extension

of the SM, free from any Landau pole. Its only mass scale is of the order of the TeV. The

second is a gravitational sector, which must satisfy the property of softening gravitational

interactions at the scale ΛG or below. This sector could be weakly or strongly-coupled, but

1The exception found in [39], where the growth of the couplings leads to an interacting fixed point

rather than to a Landau pole, is perturbatively calculable because the model has a small one-loop beta

function. However this is not the case for hypercharge, which could reach an interacting fixed point only

at a non-perturbative value, thereby leading to the formation of condensates at an unnaturally large scale.
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its interactions with the observable sector must be suppressed by the gravitational coupling,

of size ΛG/MPl ∼ 10−7 or less. It has still to be proved that gravitational sectors with such

properties exist. Additional sectors containing new particles (such as the inflaton, the right-

handed neutrino or the axion) may exist, as long as the coupling constants c, describing

the interaction between the new heavy particles with mass M and the observable sector,

are sufficiently small. If we write the contribution to the Higgs mass from heavy particles

as δM2
h ≈ ` c2M2, where ` counts SM couplings and loop factors, the naturalness principle

(which states that δM2
h

<∼ M2
h) requires c <∼ 10−7(4π

√
`)−1(1010 GeV/M). We assume

that the couplings c are too small to affect in any significant way the RG evolution of the

coupling constants observable sector.

The goal of this paper is the construction of viable models for the observable sector.

This task, for the reasons explained above, is fairly independent of the details of the grav-

itational sector (and of other additional sectors), as long as the hypotheses of softened

gravity are satisfied. To achieve this goal, we study the conditions under which a general

4-dimensional QFT can hold up to infinite energy, with all dimensionless coupling con-

stants (gauge couplings g, Yukawa couplings y, and scalar quartic couplings λ) remaining

perturbative at any energy above a fixed scale µ0 and flowing to zero in the far UV. We

will refer to this situation as Total Asymptotic Freedom (TAF).

In the first part of this paper we derive the conditions for TAF, by studying the

Renormalisation Group Equations (RGE) that describe how a QFT behaves at largely

different energies µ. The issue had already been considered in the early Seventies [47–56],

but then abandoned because of the belief that the onset of quantum gravity makes any QFT

prediction above MPl completely irrelevant. We critically revisit the problem, highlighting

the importance, for the determination of the TAF conditions, of Yukawa couplings sitting

at special RG trajectories with isolated UV behaviour. The relevance of these solutions is

an aspect that has often been missed in the past.

In the second part of the paper we apply our results to phenomenologically relevant

theories. In particular, we address the question of constructing viable observable sectors for

theories with softened gravity. Such observable sectors must be extensions of the SM that

satisfy the TAF conditions, while restricting all new particles to live near the weak scale.

Since these models must be based on non-abelian gauge groups, they provide an immediate

explanation for the observed charge quantisation. Although we find examples of models

that satisfy our criteria, we view such examples only as proofs of existence that illustrate

how tough it is to build TAF theories at the weak scale. First of all, putting together

the constraints from asymptotically-free couplings and from realistic flavour structures

requires rather elaborate constructions with special choices of the field quantum numbers

and appropriate assumptions on alignment of different flavour-violating couplings. Second,

even in the most optimistic case, limits from precision and flavour-physics experiments

place new particles to be well above the TeV. Such particles give physical corrections to

the Higgs mass, dampening hopes for a fully natural theory.

One redeeming aspect of this unsatisfactory situation is that we have identified the most

important testable prediction of softened gravity. Since any scheme of softened gravity

requires the problem of SM Landau poles to be solved within the observable sector at
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the weak scale, the general prediction of such theories is that new particles must exist in

the TeV domain. The hypercharge Landau pole requires the enlargement of the SM gauge

group with new vector particles; realistic flavour structures require new fermionic particles;

the Higgs embedding in the extended gauge group and the need for a correct pattern of

gauge symmetry breaking require new scalar particles. The general prediction of softened

gravity is the existence of many new particles around the weak scale.

This result is in open conflict with the claim, sometimes made in the literature, that

the pure SM can be made natural without adding new particles at the weak scale. It also

provides a way to distinguish these theories from solutions with an anthropic explanation

of naturalness. Extra scalar particles at the weak scale, beyond a single Higgs boson,

find no anthropic justification. The observation of “odd and unexpected” particles at

the weak scale, seemingly unrelated to dynamical explanations of naturalness, but with

the appropriate quantum numbers to satisfy the TAF conditions, are indicators for non-

anthropic and non-dynamical solutions of naturalness, belonging to the class of theories

with softened gravity. We have reached the surprising conclusion that, in spite of its

vagueness, softened gravity is experimentally testable. Although it is not guaranteed that

the new particles predicted by softened gravity must be within the reach of the LHC

(especially because of the stringent limits from flavour physics), a possible future hadron

collider in the 100-TeV range can certain say the last word on the viability of modifications

of gravity safe from the Higgs naturalness problem.

The paper is organised as follows. In section 2 we solve analytically the RGE in

simple cases and derive the conditions for TAF. We also discuss how the exact solutions are

related to the asymptotic behaviour valid for ultra-high energy. Building from these simple

cases, in section 3 we develop a general formalism to study the high-energy asymptotic

behaviour of coupling constants and determine the conditions for a theory to be TAF. In

section 4 we consider, as a working example, the SM and find that it can satisfy TAF

only under unphysical conditions. Motivated by naturalness, in section 5 we consider TAF

extensions of the SM at the weak scale, discuss their general features, and study some of

their phenomenological constraints. In section 6 we explore weak-scale TAF models based

on the gauge group SU(2)L⊗ SU(2)R⊗ SU(4)PS, finding a proof of existence, and models

based on SU(3)L ⊗ SU(3)R ⊗ SU(3)c. Finally, we present our conclusions in section 7.

2 Conditions for TAF: simple cases

The RGE structure is such that generally, in the perturbative regime, no coupling can

flow toward non-zero UV fixed points. A possible exception, which we ignore, occurs when

the one-loop β-function is accidentally small and the interplay between one- and two-loop

contributions can generate a non-trivial structure.2 Since the only UV fixed points relevant

for our considerations correspond to vanishing couplings, we are justified to truncate the

RGE at the one-loop order.

In this section we consider simple cases where full explicit solutions to the one-loop

RGE can be obtained. We define t = ln(µ2/µ2
0)/(4π)2, so that t = 0 corresponds to the

2This case was recently investigated in ref. [45].
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IR scale µ0 (which could be the weak scale or some higher reference scale) and t ≈ 0.5

corresponds to the running from the weak to the Planck scale. Here we are interested in

the behaviour for t→∞.

2.1 One gauge coupling

The one-loop RGE for gauge couplings is

d

dt
g2 = −bg4 , (2.1)

where b is the β-function coefficient. The solution of eq. (2.1) is

1

g2
=

1

g2
0

+ bt, (2.2)

where g0 is the gauge coupling at the IR scale µ0 (t = 0). For b < 0, we encounter a

Landau pole at t∗ = −1/(g2
0b). For b > 0, the gauge theory is asymptotically free and the

asymptotic solution is

g2 =
1

bt
for t→∞ . (2.3)

Thus the TAF condition is3

b > 0 (TAF condition for the gauge coupling). (2.4)

TAF constrains the matter content of the theory and, in particular, excludes any Abelian

gauge groups. So the SM does not satisfy TAF, because of hypercharge.

2.2 One Yukawa coupling

Next we consider Yukawa couplings, focusing on the case of a single (asymptotically free)

gauge coupling g and a single Yukawa y. The RGE for y is

d

dt
y2 = y2(fyy

2 − fgg2) , (2.5)

where fy and fg are non-negative constants in any QFT. It is convenient to express eq. (2.5)

in terms of new variables

Y ≡ g2

y2
, x ≡ ln

g2
0

g2
, (2.6)

such that
dY

dx
= A(Y −B) (2.7)

where

A ≡ fg
b
− 1 , B ≡ fy

fg − b
. (2.8)

3Theories where b = 0 can have a different asymptotic solution for gauge couplings, g2 ∝ 1/
√
t, depending

on the sign of the two-loop RGE coefficient for g. However such solution cannot be extended to systems

with Yukawa and quartic couplings, where non-vanishing RGE arise at one loop.
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A and B have always the same sign: positive if fg > b and negative otherwise. The solution

to eq. (2.7) is

Y = (Y0 −B)

(
g2

0

g2

)A
+B , (2.9)

where Y0 = g2
0/y

2
0 and y0 is the Yukawa coupling at the IR scale µ0 (t = 0). Equation (2.9)

can be written more explicitly as

y−2 =

[
y−2

0 −
fy

(fg − b)g2
0

](
g2

0

g2

) fg
b

+
fy

(fg − b)g2
. (2.10)

Landau poles in the Yukawa coupling exist if the equation Y (t) = 0 admits solutions

for some positive values of t. From eq. (2.9), we see that there are Landau poles when

A ≤ 0 or when A > 0 and B > Y0. Therefore, in the case of the Yukawa coupling, the

conditions for TAF are A > 0 and B ≤ Y0, which can be written explicitly as

fg > b and
y2

0

g2
0

≤ fg − b
fy

(TAF conditions for the Yukawa coupling). (2.11)

The one-loop coefficient fg is given by

fg =
3

2
(C2ψ1 + C2ψ2) (2.12)

where C2ψ1,2 are the quadratic Casimirs of the two fermions involved in the Yukawa cou-

pling. The Yukawa coupling is allowed by TAF provided that their C2 Casimirs are

large enough. A gauge-neutral fermion (‘right-handed neutrino’) has C2ψ1 = 0: it can

have Yukawa coupling compatibly with TAF provided that the other fermion has a large

enough C2ψ2 .

Since A > 0 for the TAF solution, the first term in eq. (2.9) dominates in the UV

(t→∞) over the constant term, as long as B 6= Y0. Then, the asymptotic behaviour is

y2 ∝
(

1

t

) fg
b

for t→∞ (2.13)

and, at large t, the Yukawa coupling becomes negligible with respect to the gauge coupling,

g2 ∝ 1/t. The exception (missed in [52]) is for B = Y0, when g and y scale in the same

way with t. We will refer to this case as fixed-flow,4 because couplings run, but their ratio

is RG invariant. At the fixed-flow, the Yukawa coupling is fixed at any energy in terms of

the gauge coupling

y2 =
fg − b
fy

g2 for any t . (2.14)

Equation (2.14) is an exact solution of the RGE, which corresponds to the Pendleton-

Ross point [57] in the IR. We will see later that the existence of a fixed-flow solution for

the Yukawa coupling is an important ingredient to satisfy the TAF requirement for scalar

quartic couplings.

4We thank M. Strassler for suggesting this name to us.
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Figure 1. Sample of the general behaviour of the RG running of the Yukawa coupling y (left, for

A = B = b = 1) and scalar quartic λ (right, for C = b = 1, D = 3/4, E = 1/16) varying the

initial conditions.

We illustrate the situation for A > 0 in figure 1, where we plot the running of y/g

(= 1/
√
Y ) for A = 1 and B = 1, while varying the initial condition of the coupling

constants. The fixed-flow in eq. (2.14) corresponds to the limiting case of a family of

solutions (Y0 ≤ B) that suffer from Landau poles; in the special case Y0 = B, the Landau

pole slides to t =∞ and the TAF condition is satisfied. The fixed-flow is an IR attractor.

For Y0 > B, the solutions have the asymptotic behaviour in eq. (2.13) and are attracted in

the UV to the point y/g = 0.

Asymptotic solutions. It is instructive to obtain the asymptotic behaviour of the so-

lutions of the RGE without using their complete analytic expression. This procedure is

redundant here, because we have solved exactly the RGE, but it will be useful later, when-

ever we are not able to solve analytically the full RGE. Making the ansatz Y = ctα for the

asymptotic behaviour of the Yukawa coupling, eq. (2.7) turns into an algebraic equation

c α

(
1 +

1

bg2
0t

)
= A(c−Bt−α) for t→∞ . (2.15)

Asymptotic solutions can exist only for α ≥ 0, and we find two possibilities. Either α = A,

which corresponds to eq. (2.13); or α = 0 and c = B, which corresponds to eq. (2.14).

Moreover, the nature of the fixed-flow can be understood by analysing solutions of the

form Y = B + ∆, which represent small deformations of the fixed-flow solution. From

eq. (2.7), we find that the perturbation ∆ satisfies

d

dx
|∆| = A|∆|. (2.16)
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For A > 0, the perturbation grows with t and thus the fixed-flow is repulsive in the UV.

So we can easily reproduce all the features of the asymptotic behaviour without solving

analytically the RGE.

2.3 One scalar quartic coupling

Next we turn to the scalar quartic coupling, considering the case of a single coupling of

each kind (g, y, λ), where g and y are asymptotically free. The relevant RGE is

d

dt
λ = λ(sλλ+ sλyy

2 − sλgg2)− syy4 + sgg
4 , (2.17)

where, for any QFT, all coefficients si are positive. We first solve eq. (2.17) in special cases.

One quartic, without Yukawa or gauge couplings. In this case, the solution to

eq. (2.17) is

λ−1 = λ−1
0 − sλt , (2.18)

where λ0 is the quartic coupling at the IR scale µ0 (t = 0). If λ0 > 0, a Landau pole is

reached at the scale t∗ = 1/(λ0sλ). If λ0 < 0, there are no Landau poles, but the coupling

λ is negative at all scales and the scalar potential is unstable. This means that other

interactions, beyond the scalar quartic, are needed to satisfy TAF. This agrees with the

well-known result [47–51] that no renormalisable field theory without non-abelian gauge

fields can be asymptotically free.

One quartic, with one gauge coupling and no Yukawas. It is convenient to express

the RGE eq. (2.17) in terms of new variables

Λ ≡ g2

λ
, x ≡ ln

g2
0

g2
, (2.19)

such that
dΛ

dx
= −C

[
(Λ−D)2 − E

]
(2.20)

where

C ≡ sg
b
, D ≡

sλg − b
2 sg

, E ≡
(sλg − b)2 − 4sλsg

4 s2
g

. (2.21)

Note that the definitions in eq. (2.21) imply C > 0 and D2 > E. Thereby, the two special

solutions where Λ is RG invariant, Λ(x) = Λ± = D ±
√
E are both positive if D > 0,

and both negative otherwise. Since the right-hand side of eq. (2.20) depends only on the

variable Λ, we can easily integrate the RGE.

For E < 0, the solution is

Λ =
Λ0

√
−E + [D(Λ0 −D) + E] tan(C

√
−Ex)√

−E + (Λ0 −D) tan(C
√
−Ex)

for E < 0 . (2.22)

As the equation Λ(x) = 0 admits solutions for positive x, the coupling λ hits Landau poles.
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For E > 0, the solution is

Λ =
(D +

√
E)(Λ0 −D +

√
E)
(
g2
0
g2

)2C
√
E
− (D −

√
E)(Λ0 −D −

√
E)

(Λ0 −D +
√
E)
(
g2
0
g2

)2C
√
E
− (Λ0 −D −

√
E)

for E > 0 .

(2.23)

In this case, Landau poles (solutions of Λ = 0) are found for D < −
√
E or D > Λ0 +

√
E.

Thus, the TAF requirement of having no Landau poles at any t is E ≥ 0 and
√
E ≤ D ≤

Λ0 +
√
E (recall that |D| >

√
E) or, more explicitly,

sλg − b ≥ 2
√
sλsg and

λ0

g2
0

≤
(sλg − b) +

√
(sλg − b)2 − 4sλsg

2sλ

(TAF conditions for the scalar quartic coupling). (2.24)

The solution in eq. (2.23) does not cross λ = 0, whenever the TAF conditions in

eq. (2.24) are satisfied. Therefore, there are no problems with potential stability at any t.

The asymptotic behaviour of eq. (2.23) is Λ = D+
√
E, which can be written explicitly as

λ =
sλg − b−

√
(sλg − b)2 − 4sλsg

2sλb t
for t→∞ . (2.25)

The asymptotic solution becomes an exact solution in the case Λ0 = D +
√
E. In this

case we find a fixed-flow such that the ratio λ/g2 is RG invariant. This corresponds to

the condition
λ

g2
=
sλg − b−

√
(sλg − b)2 − 4sλsg

2sλ
for any t . (2.26)

As we approach D = −
√
E or Λ0 = D −

√
E, the Landau pole slides to t → ∞. The

case D = −
√
E is not interesting because it corresponds to sλ = 0, which is never verified

in a QFT. Especially interesting is the case D = Λ0 +
√
E, in which the exact solution does

not have the asymptotic behaviour of eq. (2.25). This case gives another kind of fixed-flow

of the ratio λ/g2, given by

λ

g2
=
sλg − b+

√
(sλg − b)2 − 4sλsg

2sλ
for any t . (2.27)

Note that, unlike the case of the Yukawa coupling, the quartic has only a single possible

asymptotically-free behaviour, given by λ ∝ 1/t.

To visualise the situation for E > 0, we show in figure 1b the ratio λ/g2, obtained from

eq. (2.23), as a function of the RG parameter t for different initial conditions Λ0 (with the

choice C = b = 1, D = 3/4, E = 1/16, such that Λ− = 1 and Λ+ = 2). The two fixed-flow

solutions correspond to the two horizontal lines. The lower one, which is given by eq. (2.26),

tracks the asymptotic behaviour of the other TAF solutions and therefore is a UV attractor.

The upper one, given by eq. (2.27), corresponds to the separating case between a family of

solutions (with Λ0 > D−
√
E) that blow up at finite t and a family of asymptotically-free

solutions (with Λ0 < D −
√
E). In the separating case (with Λ0 = D −

√
E), there is
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no Landau pole and the TAF condition can be satisfied. Therefore, the upper horizontal

line, given by eq. (2.27), is an isolated solution that cannot be continuously deformed in

the asymptotic UV region without violating the TAF conditions. It corresponds to an

IR attractor.

Can the condition eq. (2.24) for TAF be satisfied, in absence of Yukawa couplings?

Let us consider a generic scalar ϕ in an irreducible representation R with dimension dR
and real dimension dRR (dRR = dR for a real representation and dRR = 2dR for a complex

representation) with generators T a under a generic simple group G. We define the usual

quadratic Casimirs as (T aT a)ij = CRδij and Tr(T aT b) = δabTR, related by dRCR = dATR,

where A is the adjoint representation. The RGE coefficient sλg is given by sλg = 6CR.

To compute the other RGE coefficients, we suppose that the group theory allows only one

quartic, given by the square of the quadratic, V = 1
8λ(
∑
ϕ2
i )

2, where ϕi are the canonically

normalised dRR real components of ϕ. Then the other coefficients are

sλ = 4 +
dRR

2
, sg =

3CR [2CR(2dA + dRR)− dACA]

dA(2 + dRR)
. (2.28)

The TAF condition in eq. (2.24) explicitly becomes(
CR −

b

6

)2

>
CR
6dA

8 + dRR
2 + dRR

[2CR(dRR + 2dA)− 6dACA] . (2.29)

In the most favourable case where the gauge β-function coefficient b is small and can be

neglected, the TAF condition simplifies to

CA
CR

>
36

8 + dRR
+ 2

dRR
dA
− 2. (2.30)

Such condition favours representations smaller than the adjoint and large gauge groups.

For G = SU(n) one has CA = n, dA = n2 − 1 and, for its fundamental n, TR = 1/2 and

dR = dRR/2 = n such that CR = (n2 − 1)/2n. For G = SO(n) one has CA = (n − 2)/2,

dA = n(n − 1)/2 and, for its fundamental n, TR = 1/2 and dR = dRR = n such that

CR = (n− 1)/4. Therefore, in both cases the TAF condition is satisfied for n larger than

a critical value that depends on b.

The TAF condition for scalar quartics is more easily satisfied in presence of Yukawa

couplings, as we now discuss.

One quartic, with one gauge and one Yukawa coupling. In terms of the variables

introduced previously, eq. (2.17) for g, y 6= 0 becomes

d

dx
Λ = −1

b

[(
sg −

sy
Y 2

)
Λ2 −

(
sλg − b−

sλy
Y

)
Λ + sλ

]
. (2.31)

Let us first consider the case in which the Yukawa is not on its fixed-flow. Although we

cannot analytically integrate eq. (2.31), we can consider asymptotic solutions for t → ∞.

In this regime, y is negligible with respect to g and therefore the asymptotic solutions to

eq. (2.31) are Λ = Λ±, i.e. the same as in the case without Yukawa, given by eqs. (2.26)
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and (2.27). The important difference is that, in this case, these solutions hold only in the

t→∞ asymptotic region. The nature of these two asymptotic behaviours can be studied

by making small deformations, taking Λ = Λ± + ∆±. From eq. (2.31) we find that the

perturbation ∆± satisfies

d

dx
|∆±| = ±

√
(sλg − b)2 − 4sλsg

b
|∆±| . (2.32)

Thus, |∆−| decreases at large t, while |∆+| increases. This shows that Λ− is UV attractive

and Λ+ is UV repulsive. Also, Λ+ defines the divider between solutions with Landau poles

and asymptotically-free solutions. The divider is an isolated solution that behaves as Λ+

for t → ∞. All other TAF solutions converge to Λ− in the UV. These results are in

agreement with what found in the previous section. In particular, the TAF conditions are

still given by eq. (2.24).

Next, let us consider the case in which the Yukawa coupling is on its fixed-flow, given by

eq. (2.14). Then eq. (2.31) becomes formally identical to eq. (2.20), after the replacement

sg → sg −
(fg − b)2

f2
y

sy , sλg → sλg −
(fg − b)
fy

sλy . (2.33)

Thus, the solutions to eq. (2.31) are analogous to those discussed in the previous section,

once we replace the parameters C, D, E defined in eq. (2.21) with

Ĉ ≡ 1

b

[
sg −

(fg − b)2

f2
y

sy

]
, D̂ ≡ 1

2bĈ

[
sλg −

(fg − b)
fy

sλy − b
]
, Ê ≡ D̂2 − sλ

bĈ
. (2.34)

The important difference is that, unlike the case without Yukawa coupling, the parameter

Ĉ can be either positive or negative. This gives rise to two classes of asymptotically-free

solutions for the scalar quartic coupling.

The first class of solutions occurs for Ĉ > 0 (which implies D̂2 > Ê). The conditions

for the absence of Landau poles are

Ĉ > 0, Ê > 0 and
λ0

g2
0

≤
(
D̂ −

√
Ê
)−1

(TAF conditions for the scalar

quartic coupling with Yukawa

on fixed-flow).

(2.35)

The exact solutions are given by eq. (2.23) (with the replacement C,D,E → Ĉ, D̂, Ê).

From these solutions, we observe that the coupling λ never crosses zero, so there is no

instability issue. The asymptotic behaviour of these solutions for t→∞ is Λ = D̂ +
√
Ê.

In practical applications, the contribution from the Yukawa coupling on its fixed-flow can

be very useful, because it is easier to satisfy the TAF conditions in eq. (2.35), rather than

those in eq. (2.24).

The second class of solutions occurs for Ĉ < 0 (which implies D̂2 < Ê). The conditions

for the absence of Landau poles are

Ĉ < 0 and
λ0

g2
0

≤
(
D̂ +

√
Ê
)−1 (TAF conditions for the scalar quartic

coupling with Yukawa on fixed-flow).
(2.36)
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The exact solutions are given again by eq. (2.23) (with the replacement C,D,E → Ĉ, D̂, Ê).

In this case, if the coupling λ starts positive in the IR, it will cross zero, becoming negative

at high energy and raising a problem with the stability of the potential. The asymptotic

behaviour of the solutions for t→∞ is Λ = D̂ −
√
Ê.

2.4 Multiple gauge couplings

The generalisation to semi-simple groups is trivial, since in the one-loop approximation

each gauge coupling evolves independently

d

dt
g2
i = −big4

i . (2.37)

Here the index i scans over the couplings of the different simple gauge group factors. The

full solutions are g2
i = g2

0i/(1+g2
0ibit) = 1/bi(t− ti), where ti = −1/big

2
0i are the low-energy

scales where the gauge coupling gi becomes non-perturbative. The asymptotic behaviour is

g2
i '

1

bit
for t→∞ . (2.38)

The TAF conditions are

bi > 0 (TAF conditions for multiple gauge couplings). (2.39)

One Yukawa, with multiple gauge couplings. We consider the case of a single

Yukawa coupling with a semi-simple gauge group. Equation (2.5) becomes

d

dt
y2 = y2

(
fyy

2 −
∑
i

fgigi
2

)
, (2.40)

where fy and fgi are non-negative constants in any QFT. The general solution of eq. (2.40),

analogous to eq. (2.10), is

y−2 =
(
y−2

0 − fy I
)∏

i

(
g2
i0

g2
i

) fgi
bi

, (2.41)

where

I(t) ≡
∫ t

0
dt′

∏
i

(
g2
i0

g2
i

)− fgi
bi

. (2.42)

When
∑

i fgi/bi ≤ 1, eq. (2.41) always encounters a Landau pole. For
∑

i fgi/bi > 1, we

can define I∞ ≡ limt→∞ I(t) and expand I in the asymptotic region as

I(t) = I∞ +

∏
i(g

2
i0bi)

− fgi
bi

1−
∑

i
fgi
bi

t
1−

∑
i

fgi
bi for t→∞ . (2.43)

Then, the conditions for TAF, which generalise eq. (2.11), are∑
i

fgi
bi

> 1 and y2
0 ≤

1

fyI∞
(TAF condition for the Yukawa, with multiple gi).

(2.44)
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Whenever the second condition in eq. (2.44) is satisfied as a strict inequality, the asymptotic

behaviour is

y2 =
t
−

∑
i

fgi
bi

(y−2
0 − fy I∞)

∏
i(g

2
i0bi)

fgi
bi

for t→∞ , (2.45)

and the Yukawa coupling decreases faster than the gauge couplings at large t. However,

when y−2
0 = fyI∞, the ratio between the Yukawa coupling and any gauge coupling gj is

constant in the asymptotic region,

y2

g2
j

=
bj
fy

[(∑
i

fgi
bi

)
− 1

]
for t→∞ . (2.46)

Unlike the case of a single gauge coupling, in which the ratio y2/g2 was RG invariant

on the fixed-flow, eq. (2.46) is valid only in the asymptotic regime. It corresponds to an

isolated RGE solution, which behaves as an attractor in the IR and is characterised by the

low-energy value y2
0 = 1/fyI∞.

One quartic, with one Yukawa and multiple gauge couplings. In this case the

RGE for the scalar quartic coupling λ is

d

dt
λ = λ

(
sλλ+ sλyy

2 −
∑
i

sλgig
2
i

)
− syy4 +

∑
ij

sgijg
2
i g

2
j , (2.47)

where sλ, sλy, sλgi, sy and sgij are non-negative constants.

Although we do not solve exactly eq. (2.47), we can easily obtain the asymptotic

behaviour for t → ∞. When the Yukawa coupling does not satisfy the special initial

condition y2
0 = 1/fyI∞, it can be neglected with respect to the gauge couplings in the

deep UV. Then, the two possible asymptotic behaviours for the scalar quartic are

g2
k

λ
= Dk ±

√
Ek for t→∞ , (2.48)

Ck ≡ bk
∑
i,j

sgij
bibj

, Dk ≡
1

2Ck

(∑
i

sλgi
bi
− 1

)
, Ek ≡ D2

k −
sλ
bkCk

. (2.49)

The parameters Ck, Dk, Ek are the generalisation to multiple-gauge couplings of the pa-

rameters C,D,E previously defined in eq. (2.21). Indeed, the discussion of the solutions is

completely analogous to the case of a single gauge coupling, once we translate the param-

eters C,D,E into Ck, Dk, Ek. In particular Ek > 0 is a necessary condition for TAF.

When the Yukawa coupling satisfies y2
0 = 1/fyI∞, it has the same asymptotic behaviour

as the gauge couplings in the UV. In this case, the asymptotic solutions for the scalar
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quartic are

g2
k

λ
= D̂k ±

√
Êk for t→∞ , (2.50)

Ĉk ≡ bk

[∑
i,j

sgij
bibj
−

(∑
i

fgi
bi
− 1

)2
sy
f2
y

]
,

D̂k ≡
1

2Ĉk

[∑
i

sλgi
bi
−

(∑
i

fgi
bi
− 1

)
sλy
fy
− 1

]
, Êk ≡ D̂2

k −
sλ

bkĈk
. (2.51)

Again, the discussion of the solutions is analogous to the case of a single gauge coupling,

with the translation of the parameters Ĉ, D̂, Ê defined in eq. (2.34) into the multiple-gauge

parameters Ĉk, D̂k, Êk.

2.5 Supersymmetric case

In the context of a generic QFT, having the Yukawa coupling sitting exactly on the fixed-

flow solution of the kind of eq. (2.14), with the isolated asymptotic behaviour y2 ∝ 1/t, may

seem a very special situation corresponding to an extreme fine-tuning of the initial condition

for the y/g ratio. It is interesting to remark that, in the context of supersymmetric theories,

such a special situation could be dictated by symmetry properties. The Yukawa coupling

yg of the fermion-sfermion-gaugino interaction automatically satisfies the condition to sit

on the fixed-flow. This is because supersymmetry ensures that yg is proportional to the

gauge coupling g at all scales. On the contrary, as seen in section 2.4, when the Yukawa

coupling of a generic QFT is on its fixed-flow, the proportionality between y and g holds

only in the asymptotic region t → ∞, while a more complicated behaviour appears at

finite energy.

The other interesting aspect about supersymmetry is that scalar quartic couplings

are induced by D-terms and therefore are proportional to g2. Gauge asymptotic freedom

automatically ensures that such quartic couplings are free from Landau poles and satisfy

the TAF conditions. Nevertheless, low-energy supersymmetry does not offer much practical

advantage in the construction of TAF extensions of the SM. The reason is that, in low-

energy supersymmetry, both U(1)Y and SU(2)L are non-asymptotically free and a TAF

extension requires rather big gauge groups at the weak scale.

3 Conditions for TAF: general case

In section 2 we analysed the RGE in some simple cases, finding analytic solutions. However,

as soon as we increase the number of couplings, the problem of solving exactly the RGE

quickly becomes analytically cumbersome and intractable. Armed with the experience

acquired from the simple cases, we can now present a systematic procedure to identify all

TAF conditions in a generic QFT with multiple couplings. In this section we will illustrate

this method.

We consider a generic QFT with multiple gauge couplings gi, Yukawa couplings ya
and scalar quartic couplings λm. Our starting point is to define new rescaled couplings
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xI = {g̃i, ỹa, λ̃m} by factoring out the leading asymptotic behaviour 1/t:

g2
i (t) =

g̃2
i (t)

t
, y2

a(t) =
ỹ2
a(t)

t
, λm(t) =

λ̃m(t)

t
, (3.1)

where t = ln(µ2/µ2
0)/(4π)2. The one-loop RGE for the couplings xI are

dg̃i
d ln t

=
g̃i
2

+ βgi(g̃),
dỹa
d ln t

=
ỹa
2

+ βya(g̃, ỹ),
dλ̃m
d ln t

= λ̃m + βλm(g̃, ỹ, λ̃) . (3.2)

The right-hand sides of the RGE in eq. (3.2) do not depend explicitly on t, but only through

the functional dependence of the couplings xI . This is true in the one-loop approximation,

because βgi is cubic in g; βya is cubic in g and y; βλm is quadratic in g2, y2, λ. As discussed

at the beginning of section 2, the one-loop approximation is adequate for our purposes.

Thus, the RGE in eq. (3.2) take the form of a vector flow in the space of the rescaled

x couplings,
dxI
d ln t

= VI(x) , xI = {g̃i, ỹa, λ̃m}. (3.3)

The next step of the procedure is to identify the possible asymptotic behaviours by

solving the system of algebraic equations

VI(x∞) = 0 ⇒


g̃i∞ = −2βgi(g̃∞)

ỹa∞ = −2βya(g̃∞, ỹ∞)

λ̃m∞ = −βλm(g̃∞, ỹ∞, λ̃∞)

. (3.4)

The constants x∞ = {g̃i∞, ỹa∞, λ̃m∞} are fixed points of the RG flow for the rescaled cou-

plings x. We will call them fixed-flows, extending the terminology introduced in section 2,

since they describe special RG trajectories in which individual couplings run, but their ra-

tio is fixed. The constants x∞ correspond to RG solutions for the running couplings with

infinite boundary conditions at the IR scale t = 0. These solutions are especially useful

to track the asymptotic behaviour of the RG running at t → ∞. When one of the x∞
constants vanishes, it can either mean that the corresponding running coupling vanishes (if

the fixed-flow is UV-repulsive) or that there are running coupling solutions with subleading

asymptotic behaviour t−α with α > 1 (if the fixed-flow is UV-attractive).

The main qualitative characterisation of each fixed-flow is its UV-attractive or repulsive

behaviour. The nature of each fixed-flow can be understood by linearising eq. (3.3) in the

neighbourhood of x = x∞, where the vector flow is approximated by

VI(x) '
∑
J

MIJ(xJ − xJ∞), where MIJ =
∂VI
∂xJ

∣∣∣∣
x=x∞

(3.5)

is a numerical matrix. The RGE for the small deformation around the fixed-flow solution,

∆I ≡ xI − xI∞, is
d∆I

d ln t
=
∑
J

MIJ∆J . (3.6)
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From eq. (3.6) we obtain the following result on the nature of the solutions. A fixed-flow

x∞ is fully UV-attractive (IR-repulsive) if all the eigenvalues of the matrix M(x∞) are

negative, and is fully UV-repulsive (IR-attractive) if all eigenvalues are positive.

A UV-repulsive fixed-flow corresponds to an isolated asymptotic behaviour: a small

deviation from the fixed-flow will bring the solution further away as we move towards

the UV, and therefore will lead to a different asymptotic behaviour. This means that

the request of sitting on a UV-repulsive fixed-flow implies a precise determination of one

combination of couplings in the IR.

In general, some of the eigenvalues of the matrix M(x∞) are positive, and others are

negative. The number of positive eigenvalues is the number of combinations of couplings

that are univocally predicted by demanding that the theory can reach infinite energy at that

fixed-flow. The number of negative eigenvalues is the residual number of free parameters.5

The matrix M(x∞) has constant entries that depend only on x∞ and is given by

M(x∞) =


δij(

1
2 −

3
2big̃

2
i ) 0 0

∂βya (x)
∂g̃j

δab
2 +

∂βya (x)
∂ỹb

0

∂βλm (x)
∂g̃j

∂βλm (x)
∂ỹb

δmn +
∂βλm (x)

∂λ̃n


x=x∞

, (3.7)

where bi are the gauge β-function coefficients. The matrix is block triangular. This means

that the nature of the gauge fixed-flows are not influenced by Yukawa and quartic couplings,

and the nature of the Yukawa fixed-flows are not influenced by quartic couplings. This

follows from the consideration that the eigenvalues of any triangular matrix are equal to

its diagonal elements (as can be easily proved by induction). The special structure of the

matrix M(x∞) suggests that we can proceed in steps, solving in succession the cases of

gauge, Yukawa, and scalar quartic couplings. In each case, we first solve the system of

equations (3.4), VI(x∞) = 0, to determine the fixed-flows and then, for each solution, we

compute the eigenvalues of the matrix M(x∞) in eq. (3.7) to determine their UV-attractive

or repulsive nature.

3.1 Gauge couplings

For each gauge coupling, we find at most two fixed-flows that solve eq. (3.4):

for bi > 0 g̃2
i∞ =

{
1/bi UV-attractive

0 UV-repulsive
(3.8)

for bi < 0 g̃2
i∞ = 0 UV-repulsive (3.9)

The solution with g̃i∞ 6= 0, being UV-attractive, does not imply any prediction for the value

of the gauge coupling in the IR, and exists only when the gauge group is asymptotically free,

bi > 0. If this is not the case, a vanishing gauge coupling is the only way to achieve TAF.

5Zero eigenvalues are also possible, and correspond to accidental global flavour symmetries of the theory

(an example is discussed in section 5). Imaginary eigenvalues are absent in all the examples that we

computed, which means that the asymptotic RGE flow never performs cycles around a fixed point.
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The solution g̃i∞ = 0 is always present and, being UV-repulsive, implies an IR prediction,

which is gi0 = 0. Of course, these results are trivial and agree with what can be easily

derived from the explicit solutions of eq. (2.37).

3.2 Yukawa couplings

Next, let us consider the Yukawa couplings ya, whose one-loop RGE are

d

dt
ya = βya(g, y) =

1

2

(
fyabcd yb yc yd − f

g
ia g

2
i ya

)
, (3.10)

where fy and fg are numerical coefficients. In the general case, eq. (3.10) cannot be

analytically solved and our method becomes essential to analyse the problem. For the

Yukawa couplings eq. (3.4), which determines the fixed-flows, becomes

ỹa∞ = −2βya(b−1/2, ỹ∞) = −fyabcd ỹb∞ ỹc∞ ỹd∞ +
fgia
bi
ỹa∞ . (3.11)

For illustration, we can solve eq. (3.11) in the case of a single Yukawa and gauge

coupling:

for fg > b ỹ2
∞ =

{
(fg − b)/(bfy) UV-repulsive

0 UV-attractive
(3.12)

for fg < b ỹ2
∞ = 0 UV-repulsive . (3.13)

Comparing eq. (3.12) with eq. (3.8) for fg > b > 0, we see that the nature of the non-

vanishing (ỹ∞ 6= 0) and vanishing (ỹ∞ = 0) fixed-flows of the Yukawa coupling is reversed

with respect to the case of the gauge coupling. So, in the neighbourhood of ỹ∞ = 0, we

expect a family of solutions with an asymptotic behaviour subleading with respect to 1/t.

On the other hand, the non-vanishing fixed-flow corresponds to an isolated asymptotic

behaviour y2 = ỹ2
∞/t and leads to a prediction for a combination of couplings in the IR.

As derived in section 2, the IR prediction is y2
0/g

2
0 = (fg − b)/fy in the case of a single

gauge coupling and y−2
0 = fyI∞ in the case of multiple couplings, where I∞ is defined after

eq. (2.42).

Going back to the general case, the task is to find the set of real solutions of the system

of cubic equations (3.11). The problem is often simplified by the following observation: βya
vanishes for ya = 0 whenever the Lagrangian acquires a chiral symmetry in the limit

ya = 0. In such a case, one of the fixed-flows is simply ỹa∞ = 0 (and is UV-attractive

for
∑

i f
g
ia/bi > 1, as can be seen by computing the matrix M). The other fixed-flow is

found by solving a linear equation in ỹ2
a∞ and choosing the positive value of the Yukawa

coupling. If a chiral symmetry holds for each one of the Ny Yukawa couplings, the full cubic

system is reduced to a linear system that admits up to 2Ny solutions. This simplification

holds in various theories of interest, when the number Ny of Yukawa couplings is less

than the number of fermionic fields (with associated chiral symmetries). In theories with

multiple generations one has a continuum of solutions, trivially obtained by acting on one

representative solution with the flavour symmetry of the theory.
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3.3 Scalar quartic couplings

The one-loop RGE for the scalar quartic couplings λm is

d

dt
λm = βλm(g, y, λ) = sλmnpλnλp + λm

(
sλymabyayb − s

λg
mig

2
i

)
− symabcdyaybycyd + sgmijg

2
i g

2
j .

(3.14)

The fixed-flows are obtained by solving eq. (3.4),

λ̃m∞ = −βλm(b−1/2, ỹ∞, λ̃∞) , (3.15)

where ỹ∞ are the solutions of eq. (3.11).

For illustration, we can solve eq. (3.15) in the case of a single quartic, Yukawa, and

gauge couplings. We find that the fixed-flows are

λ̃∞ = λ̃± ≡
sλg − b− sλybỹ2

∞ ±
√

(sλg − b− sλybỹ2
∞)2 − 4sλ(sg − syb2ỹ4

∞)

2sλb
, (3.16)

where the two possible values of ỹ∞ are given in eq. (3.12). The solutions λ̃± exist only

under the condition that the term inside the square root in eq. (3.16) is not negative.

Inspection of the matrix M(x∞) in eq. (3.7) shows that λ̃+ is UV-repulsive, while λ̃−
is UV-attractive. Since both fixed-flows are non-vanishing, they correspond to running

couplings with the same asymptotic behaviour λ ∼ 1/t. The request of sitting exactly on

the UV-repulsive fixed-flow λ̃+ implies an IR prediction, which is λ0/g
2
0 = bλ̃+ in one-loop

approximation. These conclusions are in agreement with the full analytic study of the RGE

presented in section 2.3.

In general, eq. (3.15) is a system of quadratic equations in λ̃m∞, for any given ỹa∞ and

g̃i∞. The TAF conditions are obtained by requiring that at least one such system admits

a solution where all coefficients λ̃m∞ are real. Usually λ̃m∞ = 0 is not a solution, because

of the additive renormalisation of quartic couplings due to gauge and Yukawa couplings.

In some models, a quartic coupling can break an accidental global symmetry: only in such

a case λ̃m∞ = 0 is a solution, providing an easy way to find the other solution.

3.4 Basins of attraction

The study of the fixed-flows determines the asymptotic behaviour of the RG trajectories and

the necessary conditions on the field content of the theory to satisfy TAF. The next step of

our procedure consists in determining the initial conditions of the coupling constants in the

IR that insure that all couplings flow towards a vanishing fixed-point in the far UV, without

being attracted towards a Landau pole at finite t. This is done by studying the basins of

attraction of the fixed-flows in the space of the rescaled couplings xI = {g̃i, ỹa, λ̃m}, defined

as the parameter range covered by stream lines that flow into such point. Every positive

eigenvalue of M implies a reduced dimensionality of such parameter space, and thereby

one prediction for a combination of couplings.

As an example, we show in figure 2 at page 24 the flow VI(x) and the fixed points

x = x∞ for the SM with vanishing hypercharge gauge coupling, a case which will be
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discussed in detail in section 4. The basin of attraction of the fully UV-attractive fixed-

flow (in blue) is the shaded (two-dimensional) region. The basins of attraction of the mixed

IR/UV fixed-flows (in magenta) are the magenta curves: one parameter is predicted and

the region is one-dimensional. The basin of the fully UV-repulsive fixed-flow (in red) is the

point itself: two couplings are predicted and the region is zero-dimensional.

The RG flow of the scalar quartic couplings can cross the boundary that separates

a stable from an unstable potential. When a UV-repulsive fixed-flow corresponds to a

stable potential and a UV-attractive fixed-flow corresponds to an unstable potential, the

low-energy vacuum is meta-stable. An example of such a situation is shown in figure 2b,

in which there is a single quartic λ, and the stability condition is λ > 0. In the opposite

situation (which is possible with multiple quartics) a stable potential can become unstable

at low energy, signalling that the phenomenon of spontaneous symmetry breaking is taking

place, according to the Coleman-Weinberg mechanism [58].

3.5 Mass parameters

So far we have focused our discussion on the RG running of dimensionless parameters,

i.e. the coupling constants of the theory. Mass parameters (scalar and fermion masses

and cubic scalar couplings) become dynamically irrelevant at very high energy and so are

not crucial for our considerations. Nevertheless, for completeness, we discuss now their

RG evolution.

Let us first consider the simplest case of a theory with a single mass parameter m for

a scalar field. The one-loop RGE can be easily solved

dm2

dt
= γ m2, ⇒ m2(t) = m2(t0) exp

∫ t

t0

γ(t) dt. (3.17)

Here γ is the anomalous dimension which, in the case of the SM Higgs, is given by

γ = 3y2
t + 6λ− 9

4

(
g2

2 +
g2

1

5

)
. (3.18)

In a TAF theory, the leading asymptotic behaviour is γ(t) = γ̃/t, where γ̃ is a constant

given by the fixed-flows of the coupling constants (for instance, as discussed in section 4,

in the TAF version of the SM with g1 = 0, we find γ̃ ≈ −0.75). Therefore, the asymptotic

RG behaviour of m2 is

m2(t) = m2(t0)× (t/t0)γ̃ . (3.19)

For negative γ̃, the mass parameter m2 flows to zero in the UV. For positive γ̃, there is an

infinite multiplicative renormalisation as t→∞ (although m2(t) remains always negligible

with respect to the renormalisation scale µ2 in the UV).

In ref. [46], it is claimed that this infinite renormalisation introduces a hierarchy

problem, even for asymptotically-free theories. We disagree with this conclusion. In an

asymptotically-free theory with a single scalar mass, there are no physical mass scales

larger than m. Therefore, no hierarchies can arise and the theory is natural.

The issue of naturalness comes up in theories with multiple mass scales. Let us consider

a TAF model with two very different scalar mass parametersm2
1 andm2

2. The RG trajectory
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of the smallest of the two masses will start in the IR with a logarithmic running, until it

meets the second mass scale, where it receives a threshold correction proportional to the

large mass. At that scale, the RG trajectory has a sudden jump, and then follows a

logarithmic running proportional to the heavy mass. This special RG trajectory is very

sensitive to initial conditions and a large separation between m2
1 and m2

2 requires a careful

tuning of parameters. The instability of the RG trajectory for very different m2
1 and m2

2

is a reincarnation of the naturalness problem. On the other hand, the RG trajectory in

eq. (3.19) does not exhibit any special sensitivity on initial conditions, confirming our

conclusion that there is no naturalness problem in a theory with a single mass scale.

It is interesting to consider the RG flow towards the UV of the TAF theory with two

mass scales. Given the RG evolution of the mass parameters dm2
i /dt = γijm

2
j , the ratio

r = m2
1/m

2
2 obeys the equation

dr

dt
= γ12 + (γ11 − γ22)r − γ21r

2 . (3.20)

In the asymptotic region, we can write γij(t) = γ̃ij/t with constant γ̃ij determined by the

fixed-flows of the coupling constants. In the special case γ12 = γ21 = 0, the two scalar par-

ticles belong to two different sectors with no common interactions and r = r0 (t/t0)γ̃11−γ̃22 .

Each mass parameter evolves independently and, for t → ∞, r flows to zero (when

γ̃22 > γ̃11) or to infinity (when γ̃11 > γ̃22).

On the other hand, when there are common interactions between the two scalars

(γ12, γ21 6= 0), the ratio r can have a more complicated evolution and, in particular, cross

r = 0 or 1/r = 0 at finite t, leading to a dynamical generation of spontaneous symmetry

breaking. When γ12 and γ21 are positive (which is always true for scalars with mutual

quartic and trilinear interactions, but does not hold when there are other sources in the

RGE from large masses of vector-like fermions), the asymptotic solution of eq. (3.20) is6

r(t) =
r+(r0 − r−)(t/t0)∆ − r−(r0 − r+)

(r0 − r−)(t/t0)∆ − (r0 − r+)
, (3.21)

where

r± ≡
γ̃11 − γ̃22 ±∆

2γ̃21
, ∆ ≡

√
(γ̃11 − γ̃22)2 + 4γ̃12γ̃21 . (3.22)

A special behaviour of eq. (3.21) is the UV-isolated constant solution r(t) = r−, which

acts as an IR-attractor. More generally, solutions are attracted in the UV towards the

point r(t) = r+. In any case, for t → ∞, the ratio r is always finite and thus all masses

become typically comparable, despite experiencing a common overall infinite rescaling.

Mass hierarchies do not arise dynamically in this context.

As an additional remark, note the behaviour of eq. (3.21). For r0 > 0, the ratio r is

always non-vanishing, finite, and positive at all scales: there is no dynamical mechanism

of spontaneous symmetry breaking. For r− < r0 < 0 (recall that r− is always negative

6Note that eq. (3.20) is formally identical to the RGE for the ratio between gauge and quartic couplings,

see eq. (2.20). An important difference is that, while eq. (2.20) is valid only for perturbative values of the

coupling constants, eq. (3.20) is valid for any value of r.
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and r+ positive), the solution crosses r = 0, where m2
1 changes sign, and asymptotically

flows towards r+. For r0 < r−, the solution crosses 1/r = 0, where m2
2 changes sign, before

flowing to r+.

Let us consider now the separate running of the mass parameters m2
1,2 according to

their RG evolution dm2
i /dt = γijm

2
j . In the asymptotic region where γij(t) = γ̃ij/t holds,

we can express the low-energy value of m2
1 as

m2
1(t0) =

m2
1(t)

a+(t/t0)c+ + a−(t/t0)c−
+

b
[
(t/t0)∆ − 1

]
a+ + a−(t/t0)∆

m2
2(t0) (3.23)

a± ≡
1

2
± γ̃11 − γ̃22

2∆
, b ≡ γ̃12

∆
, c± ≡

γ̃11 + γ̃22 ±∆

2
, (3.24)

where c± are the two eigenvalues of the matrix γ̃ and ∆ = c+ − c− is given in eq. (3.22).

The first term in the right-hand side of eq. (3.23) represents the boundary condition

for m2
1 in the far UV, once we take the limit t → ∞. The interesting term is the second

one, which measures how m2
2(t0) affects m2

1(t0) at the quantum level. In the case of a finite

logarithmic running from the scale µ to some cut-off scale Λ, expanding eq. (3.23) we find

δm2
1(µ) ≈ m2

2(µ)
γ̃12

(4π)2
ln

Λ2

µ2
. (3.25)

This corresponds to the familiar result that the hierarchy between two scalar masses m2
1 �

m2
2 is destabilised by a one-loop correction δm2

1 proportional to m2
2 and to a logarithm,

which becomes large whenever the theory can be extrapolated up to scales Λ2 � m2
2. For

instance, this is the source of the naturalness problem in supersymmetry, where the stop

mass feeds into the Higgs mass at one-loop with a logarithm of the ratio between the weak

and the GUT scale.

Naively, one could expect that, since in a TAF theory we effectively take Λ→∞, the

coefficient measuring the contribution of m2
2 to δm2

1 must blow up to infinity, leading to a

situation in which mass hierarchies are completely out of control. Equation (3.23) shows

that this is not the case. As we send t → ∞, the coefficient in front of m2
2(t0) (which

measures δm2
1/m

2
2 at t0) remains finite, no matter what the sign of ∆ is. Moreover, note

that this coefficient is given by a ratio between b and a±: it is of order unity and it is

no longer suppressed by the loop factor (4π)2, independently of the size of the coupling

constants. The quantum correction δm2
1 is parametrically equal to m2

2, with no coupling

constant or loop suppression, no matter how small is the coupling involved.

In conclusion, we have found that the infinite renormalisation of the mass parameters

always leads to a finite result for the coefficient measuring how one scalar mass feeds into

a smaller scalar mass. The infinite resummation eliminates the loop factor, insuring that

all scalar masses at low energy be equal, within factors of order one. This has important

consequences for the implementation of the naturalness criterion: in a TAF theory without

special protection mechanisms (such as dynamical generation of masses at low scale [2–35]),

any significant separation between mass scales entails a naturalness problem.
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4 Asymptotic behaviour of the Standard Model

As an illustrative example, we apply the method described in section 3 to the Standard

Model, ignoring gravity. The coupling constants are the gauge couplings g1, g2, g3, the

Yukawa couplings yt, yb, yτ , yν (for simplicity we set to zero the Yukawa couplings of the

first two generations), and the Higgs quartic coupling λ. Since we want to use the SM to

elucidate our method, we will follow the analysis of section 3 step by step.

The approximation of ignoring interactions from the gravitational sector, or any other

super-weak interactions from additional sectors, is justified by the assumptions of softened

gravity. The feebleness of these interactions makes sure that they will never be able to

cure the Landau poles of SM couplings. Of course, gravitational or super-weak interactions

could affect the RG trajectories of SM couplings in the far UV, where the SM couplings

asymptotically vanish, but cannot turn a non-TAF into a TAF theory. So our results,

which ignore the effect of possible super-weak interactions, can be conservatively viewed

as describing only necessary conditions for TAF.

4.1 SM gauge couplings

As is well known, the one-loop RGE for the SM gauge couplings are

dg2
1

dt
=

41

10
g4

1,
dg2

2

dt
= −19

6
g4

2,
dg2

3

dt
= −7g4

3. (4.1)

According to eqs. (3.8)–(3.9), we have 4 possible fixed-flows

g̃2
1∞ g̃2

2∞ g̃2
3∞ M -eigenvalues

Solution 1 0 6/19 1/7 +−−
Solution 2 0 6/19 0 +−+

Solution 3 0 0 1/7 ++−
Solution 4 0 0 0 +++

(4.2)

The last column in eq. (4.2) shows the signs of the respective eigenvalues of the ma-

trix M(x∞) defined in eq. (3.7). We recall that a negative eigenvalue corresponds to a

UV-attractor (IR-repulsor), while a positive eigenvalue corresponds to a UV-repulsor (IR-

attractor) and thus to an IR prediction.

Of course hypercharge is not asymptotically free, so all solutions are unphysical, since

they require g1 = 0. Still, it is interesting to pursue the study of the SM because it presents

a non-trivial structure of possible Landau poles for the Yukawas and the Higgs quartic,

providing a good illustration of our method, and also because g1 ≈ 0 might be viewed

as a rough approximation for the SM at low energy or for extensions of the SM where

hypercharge is embedded in a non-abelian gauge group.

We proceed by focusing on the phenomenologically most relevant case of the fixed-flow

corresponding to solution 1 in in eq. (4.2), with g̃1∞ = 0, which is IR-attractive (UV-

repulsive) giving one IR prediction, and g̃1∞, g̃2∞ 6= 0, which are UV-attractive giving no

extra predictions.
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Figure 2. RG flows for the SM with g1 = 0 in the plane of rescaled couplings ỹ2 = ty2 and

λ̃ = tλ. The dots are the fixed-flows of the rescaled couplings, with fully IR-attractive fixed points

coloured red (2 combinations of couplings predicted), fully UV-attractors in blue, and hybrid in

magenta (1 combination of couplings predicted). In the left plot we consider the top and bottom

Yukawa couplings, setting to zero all other Yukawas. The basin of attraction of the UV fixed-flow

is the shaded region; the basins of the hybrid fixed points are the magenta curves. In the right plot

we consider the top Yukawa coupling and the Higgs quartic. No fully UV-attractive fixed-flow is

present. The basic of attraction of the hybrid fixed-flow is the magenta curve.

4.2 SM Yukawa couplings

The one-loop RGE for the Yukawa couplings of the top quark (yt), the bottom (yb), the tau

lepton (yτ ) and, if an interaction with a right-handed neutrino is present, of the neutrino

(yν) are

dy2
t

dt
= y2

t

(
−17

20
g2

1 −
9

4
g2

2 − 8g2
3 +

9

2
y2
t +

3

2
y2
b + y2

τ + y2
ν

)
, (4.3)

dy2
b

dt
= y2

b

(
−1

4
g2

1 −
9

4
g2

2 − 8g2
3 +

3

2
y2
t +

9

2
y2
b + y2

τ + y2
ν

)
, (4.4)

dy2
τ

dt
= y2

τ

(
−9

4
g2

1 −
9

4
g2

2 + 3y2
t + 3y2

b +
5

2
y2
τ −

1

2
y2
ν

)
, (4.5)

dy2
ν

dt
= y2

ν

(
− 9

20
g2

1 −
9

4
g2

2 + 3y2
t + 3y2

b −
1

2
y2
τ +

5

2
y2
ν

)
. (4.6)

For our choice of g̃∞, the system of equations that determines the Yukawa fixed-flows, given

by eq. (3.11), has 4 possible solutions

ỹ2
t∞ ỹ2

b∞ ỹ2
τ∞ ỹ2

ν∞ M -eigenvalues

Solution 1 227/1197 0 0 0 +−++

Solution 2 0 227/1197 0 0 −+++

Solution 3 227/1596 227/1596 0 0 ++++

Solution 4 0 0 0 0 −−++

(4.7)
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The four fixed-flows and the flow restricted to the (ỹt, ỹb) plane are plotted in figure 2a,

where solutions 1 and 2 are plotted in magenta, point 3 (fully IR-attractive) in red, point

4 (UV-attractive) in blue. Solution 3 makes four predictions in the IR: yt(Mt) = yb(Mt) =

0.879, yτ (Mt) = yν(Mt) = 0. This corresponds to the pole masses Mt = Mb ≈ 163 GeV

and Mτ = Mν = 0. Solution 2 makes three predictions in the IR, giving Mb ' 186 GeV

and Mτ = Mν = 0. Neither case gives a reasonable result for the bottom-quark mass.

Solution 4 corresponds to vanishing ỹ∞ for all Yukawa couplings. However, there is

an important difference between quark and lepton Yukawa couplings. Since ỹτ,ν∞ = 0 are

UV-repulsive, Landau poles can be avoided only if the lepton Yukawa couplings are exactly

zero in the IR. On the other hand, since ỹt,b∞ = 0 are UV-attractive, the quark Yukawa

couplings satisfy TAF for a range of IR boundary conditions. Indeed, near the fixed-flow

of solution 4 and for small Yukawas, eqs. (4.3)–(4.4) become

dy2
t,b

dt
' −c

y2
t,b

t
, c =

493

266
. (4.8)

The solutions are y2
t,b ∝ t−c, which in the asymptotic region t→∞ become negligible with

respect to g2
2,3 ∼ 1/t, since c > 1. Although solution 4 seems phenomenologically plausible

as far as Yukawas are concerned, it is not compatible with TAF for the Higgs quartic, as we

will show in the next section. For this reason, in the following we will focus on solution 1.

Solution 1 gives three predictions: zero τ and neutrino masses, and top mass at its IR

fixed-flow. The bottom Yukawa is near a UV-attractive fixed-flow, hence the bottom-quark

mass is not determined. This can be seen explicitly by writing eq. (4.4) near the fixed-flow

of solution 1, for small yb,τ,ν � 1

dy2
b

dt
' −c

y2
b

t
, c =

626

399
. (4.9)

The solution, y2
b ∝ t−c goes to zero faster than the gauge couplings for t→∞, since c > 1.

4.3 SM Higgs quartic coupling

The one-loop RGE for the Higgs quartic coupling that parameterises the potential λ|H|4 is

dλ

dt
= 12λ2 + λ

(
6y2
t + 6y2

b + 2y2
τ + 2y2

ν −
9

2
g2

2 −
9

10
g2

1

)
−3y4

t − 3y4
b − y4

τ − y4
ν +

9

16
g4

2 +
27

400
g4

1 +
9

40
g2

2g
2
1. (4.10)

The fixed-flows are obtained by solving eq. (3.15). As anticipated, we find no solutions

for λ̃∞ when all Yukawa couplings are on their vanishing fixed-flow ỹ = 0, i.e. solution 4

in eq. (4.7). On the other hand, we find two solutions for λ̃∞ in each of the other three

cases, i.e. solutions 1–3 in eq. (4.7). This is an example of how Yukawa couplings sitting on

some non-vanishing fixed-flow can save the running of a scalar quartic coupling, otherwise

doomed to suffer from Landau poles, and produce asymptotically-free solutions. Among

the three possible cases, we concentrate on solution 1 in eq. (4.7) for the Yukawas, which
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is the most propitious from a phenomenological point of view. Then, eq. (3.15) admits the

following two solutions for λ̃∞:

λ̃∞ M -eigenvalue potential

Solution 1
−143 +

√
119402

4788
≈ +0.0423 + stable

Solution 2
−143−

√
119402

4788
≈ −0.1020 − unstable

(4.11)

figure 2b shows the RG flow in the plane λ̃–ỹt. We find three possible behaviours. (i) A

generic point in the plane flows towards a Landau pole of either λ or yt. (ii) If we select

ỹt = ỹt∞, then λ̃ flows towards the UV-attractive fixed-flow, where λ is negative, making

the EW vacuum potentially unstable. In this case, one parameter is predicted in the IR

(the top-quark mass) and the dimensionality of the basin of attraction is reduced by one.

(iii) The solution sits on the IR-attractor, for which the basin of attraction is reduced by

two and both the top-quark and the Higgs masses are predicted. The prediction of the

IR-attractive solution 1 in eq. (4.11) corresponds to λ(Mt) = 0.217, i.e. to a pole Higgs

mass Mh = 163 GeV.

The negative value of λ at the UV-attractive solution 2 in eq. (4.11) means that the EW

vacuum is unstable. However, this situation is not necessarily ruled out if the tunnelling

rate is slower than the age of the universe. Considering a field direction along which the

quantum-corrected potential is V ≈ 1
4λ(µ ≈ h)h4, the EW vacuum is sufficiently long-lived

provided that λ does not become too much negative at large energy. The Fubini bounce

solution to the classical field equation, h(r) =
√
−2/λ × 2R/(r2 + R2), has tree-level

action S = 8π2/3|λ| where R is a free parameter [59–62]. Thereby, imposing a negligible

probability for the vacuum to have decayed during its past history

e−S � (RH0)4 , (4.12)

where H0 is the present Hubble constant, we obtain

λ

(
µ ∼ 1

R

)
>

2π2

3 lnH0R

t→∞' − 1

12t
. (4.13)

The fixed-flow in solution 2 of eq. (4.11) corresponds to an asymptotic behaviour λ ≈
−1/(9.8 t), which slightly violates the metastability constraint in eq. (4.13).

In conclusion, TAF imposes strong constraints on the Higgs quartic coupling: either

Mh = 163 GeV, or Mh < 163 GeV and the lifetime of the EW vacuum is shorter than the

age of the universe. Neither possibility is realistic.

4.4 RG flow of the SM couplings

For physical values of its coupling constants, the SM is not an asymptotically free theory.

We have found that the closest approximation to physical reality for the SM to be a TAF
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Figure 3. RG running towards infinite energy (note the double-log scale for the MS renormalisation

scale µ̄) in the SM for the measured values of Mh,Mb,Mτ , g2, g3 and for the values of g1 and Mt

needed to achieve TAF: g1 = 0 and Mt = 185.6 GeV.

theory is that its coupling constants lie in the basin of attraction of the following fixed-flow

g̃2
1∞ g̃2

2∞ g̃2
3∞ ỹ2

t∞ ỹ2
b∞ ỹ2

τ∞ ỹ2
ν∞ λ̃∞

0 6
19

1
7

227
1197 0 0 0 −143+

√
119402

4788

+ − − + − + + +

(4.14)

The matrix M(x∞) has 5 positive eigenvalues; hence, within the 8-dimensional space of

couplings x = {g̃1,2,3, ỹt,b,τ,ν , λ̃}, the basin of attraction of the fixed-flow in eq. (4.14) has

dimensionality equal to 8− 5 = 3. As a result, TAF makes the following 5 predictions on

physical parameters. The hypercharge gauge coupling must be zero; the tau lepton and

neutrino must be massless; the top quark mass must be Mt = 186 GeV, which is 7% higher

than the observed value; the Higgs mass must be Mh = 163 GeV, which is 30% higher than

the observed value (or Mh < 163 GeV, but the EW vacuum is unstable). None of these

predictions is correct, but they are not bad approximations of reality. It is conceivable

that these wrong predictions can be cured in extensions of the SM where hypercharge is

embedded in a non-abelian group and where we expect corrections at least of order g2
1/g

2
2.

In figure 3 we show the RG flow of the SM coupling constants, taking g1 and yt at

their fixed-flows, while all other parameters are equal to their physical values in the IR.

The figure is obtained by solving the SM RGE in the 3-loop approximation. For the

physical value of the τ mass, we observe that yτ starts small in the IR, but becomes the

largest coupling at 10105
GeV, where soon reaches a Landau pole. For the physical value of

the Higgs mass, the coupling λ becomes negative at an intermediate scale, before flowing

to zero in the deep UV, barring the effect of the Landau pole in the τ Yukawa. The

coupling λ can be asymptotically free and always positive only for the special IR condition
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Mh = 163 GeV (with Mt = 186 GeV). This condition on Mh and Mt corresponds to the

Pendleton-Ross point [57] or to the tip of the SM phase diagram (shown in [63, 64]),

although the numerical values of Mh and Mt quoted here are somehow different, since in

our calculation we set g1 = 0.

5 TAF extensions of the SM

5.1 Grand unification

We start our exploration of extensions of the SM by constructing asymptotically-free ver-

sions of grand-unified theories (GUT). These examples bear no relevance on the issue of

naturalness in theories with softened gravity because they introduce in the observable sector

a mass scale MGUT much larger the weak scale, which feeds unnaturally large corrections

to the Higgs mass δM2
h ∼ g2

GUTM
2
GUT/(4π)2. Nevertheless, we find the study instructive

for its own sake and we present it here.

The simplest GUT is based on the gauge group SU(5), with 3 generations of chiral

fermions in the 5̄ ⊕ 10 representation of SU(5), and scalars H and Σ in the 5 ⊕ 24 repre-

sentation. This theory does not satisfy the TAF requirements. However, independently of

TAF considerations, the theory cannot be considered realistic, since it gives some wrong

predictions for quark and lepton masses.

We then consider an extension of the minimal SU(5) setup that simultaneously satisfies

the conditions of TAF and of an acceptable fermion mass spectrum. We add 3 generations

of vector-like fermions ψ5, ψ5̄ and ψ24 in the 5⊕ 5̄⊕ 24 representation of SU(5) with mass

terms M5ψ5ψ5̄ +M24ψ
2
24/2. The Yukawa couplings, written for simplicity only for the third

generation, are

LY = −yt
8

10 10 H + (yb5̄ + y′b ψ5̄) 10 H∗ + (yν 5̄ + y′ν ψ5̄)ψ24H

+y′′ν ψ5ψ24H
∗ + (ym 5̄ + y′m ψ5̄)Σψ5 + yλ Tr(Σψ2

24) . (5.1)

The coupling yt gives the top-quark Yukawa and yb gives the bottom-quark and τ -lepton

Yukawas. The coupling ym induces an SU(5)-breaking mixing between 5̄ and ψ5̄, which

modifies the phenomenologically wrong equality between down-quark and the charged-

lepton Yukawa couplings predicted by minimal SU(5). The split multiplets contribute to

threshold corrections to the SU(5) prediction for gauge coupling unification, which could

make the result compatible with low-energy measurements. The coupling yν generates a

neutrino Yukawa, in which the right-handed neutrino is identified as the SM singlet in ψ24.

The simpler alternative of generating the neutrino Yukawa coupling with a right-handed

neutrino as a singlet of SU(5) does not satisfy the TAF condition of eq. (2.11), unless the

β-function of g5 is reduced by adding extra matter. A two-generation SU(5) TAF model

that ignores this issue was presented in [53–55].

The most general quartic potential is

V4 = λH |H|4 + λΣ Tr(Σ4) + λ′Σ Tr(Σ2)2 + λHΣH
†Σ2H + λ′HΣ|H|2 Tr(Σ2). (5.2)
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The purely quartic potential, restricted to Σ, is positive definite when7

λ′Σ > − 7

30
λΣ for λΣ > 0 and λ′Σ > −13

20
λΣ for λΣ < 0 . (5.3)

The violation of the first condition leads to the symmetry breaking pattern SU(5)→ GSM à

la Coleman-Weinberg; the violation of the second condition leads to SU(5)→ SU(4)⊗U(1).

The β-function coefficient for the unified gauge coupling is b5 = 4/3. For the Yukawa

couplings, we find various fixed-flow solutions and the phenomenologically most interesting

case is

g̃2
5∞ ỹ2

t∞ ỹ2
b∞ ỹ′2b∞ ỹ2

ν∞ ỹ′2ν∞ ỹ′′2ν∞ ỹ2
m∞ ỹ′2m∞ ỹ2

λ∞

Fixed-flow 3/4 38/15 0 0 0 0 0 49/16 0 0

M -Eigenvalues − + − − − − − + 0 −

(5.4)

The lower row in eq. (5.4) shows the signs of the eigenvalues of the M matrix: only two

combinations of Yukawa couplings are predicted. The vanishing eigenvalue arises because

the couplings are accidentally invariant under global SU(2) rotations acting on (5̄, ψ5̄).

All other Yukawa couplings with ỹ2
∞ = 0 have negative eigenvalues and therefore their IR

values are non-vanishing, but cannot be predicted by the TAF requirement.

One predicted combination of Yukawa couplings involves the top coupling yt. Indeed

its RGE is

dy2
t

dt
= y2

t

(
− fgg2

5 + fyy
2
t − 2y2

b +
12

5
y2
ν

)
with fg =

108

5
, fy = 6. (5.5)

Thereby, for yb, yν � yt one has the prediction y2
t /g

2
5 ' (fg − b5)/fy. However, there is no

unique way of relating this prediction to the physical value of the top mass, because other

Yukawa couplings can affect the IR value of yt.

The solution for the Yukawa couplings in eq. (5.4) allows for 4 fixed-flows for

the quartics

λ̃H∞ λ̃Σ∞ λ̃′Σ′∞ λ̃HΣ∞ λ̃′HΣ∞ M -Eigenvalues Potential

Solution 1 −1.16 −0.326 0.185 0.610 −0.003 −−−−− unstable

Solution 2 −1.15 −0.422 0.541 0.725 0.116 −−−−+ unstable

Solution 3 0.831 −0.315 0.215 0.989 −0.562 −−−+ + unstable

Solution 4 0.821 −0.334 0.500 1.617 −0.597 −−+ + + stable

(5.6)

The potential is stable only in the case of solution 4, for which three combinations of quartic

couplings are predicted in the IR by demanding that TAF is achieved.

In conclusion, it is not difficult to construct realistic TAF GUT models. The TAF

conditions significantly constrain the field content of the theory, although any phenomeno-

logical prediction of low-energy parameters is highly model-dependent.

7We used the identity 7/30 ≤ Tr(Σ4)/Tr2(Σ2) ≤ 13/20. The stability conditions for the full potential

V4 are much more complicated [65–67].
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5.2 TAF extensions of the SM at the weak scale

As discussed in section 4, the SM does not satisfy TAF. For theories with softened gravity

to respect naturalness, the SM must be modified at the weak scale and made compatible

with TAF. So we address now the question of how to construct such modifications. The

first problem is that hypercharge is not asymptotically free. This implies that, in any

TAF extension of the SM, one must embed hypercharge in a non-abelian gauge group.

Such extensions have the additional advantage of explaining the observed quantisation of

electric charge.

The hypercharges Y of SM fermions satisfy the relation Y = T3R+(B−L)/2, where T3R

is the third component of the right-handed isospin SU(2)R. Thus, the most straightforward

possibility is to promote T3R to the full non-abelian SU(2)R gauge group, with SM field

assignment as in table 2. Similarly, U(1)B−L is not asymptotically free, so one needs to

embed it into a non-abelian group. Given the known values of the B − L charges, we find

only two possibilities that do not lead to proton decay:

• Merging B − L with SU(3)c into the Pati-Salam SU(4)PS, such that the full gauge

group is

G224 = SU(2)L ⊗ SU(2)R ⊗ SU(4)PS. (5.7)

B − L arises as the diagonal diag(1, 1, 1,−3)/
√

24 generator of SU(4)PS.

• Merging B − L with SU(2)L ⊗ SU(2)R into SU(3)L ⊗ SU(3)R, such that the full

gauge group is

G333 = SU(3)L ⊗ SU(3)R ⊗ SU(3)c. (5.8)

B − L arises as the combination of the diagonal diag(1, 1,−2)/
√

12 generators of

SU(3)L and of SU(3)R.

Before presenting specific models, in the rest of this section we assess some generic common

features. First, we discuss in section 5.3 the flavour-violations coming from the two-Higgs

doublet structure implied by the left-right symmetry. Then, in section 5.4 we study the

phenomenological constraints on the existence of the charged and neutral gauge bosons of

SU(2)R.

5.3 New heavy Higgs and flavour processes

Both options we are considering for embedding the SM into a non-abelian group (Pati-

Salam and trinification) include SU(2)R, and thus the SM Higgs doublet must be extended

at least into the structure

φ =

(
H0
U H+

D

H−U H0
D

)
=
(
HU HD

)
, (5.9)

which transforms as (2L, 2̄R) under SU(2)L × SU(2)R. The field φ contains two Higgs

doublets, transforming under the SM SU(2)L × U(1)Y as HU ∼ (2,−1/2) and HD ∼
(2, 1/2). The two-Higgs structure is often troublesome because it generates scalar-mediated
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flavour-changing neutral-current (FCNC) interactions. We show here how the problem can

be avoided with an appropriate flavour structure of quark Yukawa couplings.

Denoting as qL = (uL, dL) and qR = (uR, dR) the SM quarks which transform as

(2L, 1R) and (1L, 2R), the SU(2)L × SU(2)R invariant quark-Yukawa interactions are

−L q
Y = q̄L (Y φ+ Ycφ

c) qR + h.c. = q̄L (Y HU + YcH
c
D)uR + q̄L (Y HD − YcHc

U ) dR + h.c.

(5.10)

where

φc ≡ εTφ∗ε =

(
H0∗
D −H+

U

−H−D H0∗
U

)
=
(
Hc
D −Hc

U

)
, (5.11)

and Hc
U,D = εH∗U,D, ε = iσ2, and Y and Yc are two different Yukawa matrices in flavour

space. It is convenient to rewrite the two doublets HU and HD in terms of a SM-like

doublet h and of a heavy doublet H, defined such that 〈H〉 = (0, 0) and 〈h〉 = (0, v) with

v = (v2
d + v2

u)1/2:(
h

H

)
=

(
cosβ sinβ

− sinβ cosβ

)(
HD

−Hc
U

)
, sinβ =

vu
v
, cosβ =

vd
v
. (5.12)

Defining the SM Yukawa couplings YD and YU as(
YD
YU

)
=

(
cosβ sinβ

sinβ cosβ

)(
Y

Yc

)
, (5.13)

the Lagrangian in eq. (5.10) becomes

−L q
Y = q̄LYDdR h+ q̄L

(
YU

cos 2β
− tan 2β YD

)
dRH

+q̄LYUuR h
c + q̄L

(
YD

cos 2β
− tan 2β YU

)
uRH

c . (5.14)

We see that down-type H-mediated FCNCs are controlled by the off-diagonal entries of

YU , in the basis where YD is diagonal, and viceversa. In the SU(2)L × SU(2)R invariant

basis where YD is diagonal we can write

Y d−base
U = V †λuVR , Y d−base

D = λd , (5.15)

where λu,d are diagonal matrices of the quark masses, V is the usual CKM matrix, and VR
is a new unitary matrix which controls all new flavour violations.

The effects of VR are best understood by considering the accidental global flavour

symmetry of the model: U(3)L × U(3)R explicitly broken by YU and YD which both

transform as (3, 3̄). From the SM point of view, such flavour structure is equivalent to

U(3)qL × U(3)uR × U(3)dR , with three independent spurions: YU ∼ (3, 3̄, 1) and YD ∼
(3, 1, 3̄), as in Minimal Flavour Violation (MFV) [68], plus VR ∼ (1, 3, 3̄) [69].
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In the quark mass eigenbasis, the interactions of the neutral Higgs h0 and H0, derived

from eq. (5.14) are

−L q
Y = d̄LλddR h

0 + d̄L

(
V †λuVR
cos 2β

− tan 2β λd

)
dRH

0

+ūLλuuR h
0∗ + ūL

(
V λdV

†
R

cos 2β
− tan 2β λu

)
uRH

0∗ . (5.16)

Again, we observe that the flavour violations mediated at tree level by the neutral scalar

H0 are proportional to λu in the down sector and to λd in the up sector, and are expressed

in terms of the CKM matrix V and the new rotation matrix VR.

Right-handed flavour mixing can be naturally small. On general grounds, VR can

be parameterised as follows

VR = PuṼRP
†
d , Pq = diag(eφ

q
1 , eφ

q
2 , eφ

q
3) , (5.17)

where ṼR is a CKM-like matrix, with 3 rotational angles and one phase, and Pu and Pd
are diagonal phase matrices. One overall phase in Pu,d is unphysical, while, in general, the

other 5 are physical.8

Assuming a simple and natural form of Yukawa couplings — quasi-diagonal Yukawa

matrices with small or negligible off-diagonal entries and no relations between them — the

presence of left-handed CKM mixing implies a minimal amount of right-handed mixing

given by 
|(VR)us| ≈ |Vus|md/ms ≈ 10−2,

|(VR)cb| ≈ |Vcb|ms/mb ≈ 10−3,

|(VR)ub| ≈ |Vub|md/mb ≈ 10−5.

(5.18)

Furthermore, this small amount of right-handed mixing is radiatively stable and is gen-

erated by RG corrections (more generally ṼR ≈ permutation matrix is radiatively stable

too). This can be seen by observing that ṼR = 1l implies [Y †UYU , Y
†
DYD] = 0. As a result,

entires proportional to Y †UYU and Y †DYD in the RG evolution of both Y †UYU and Y †DYD
do not generate off-diagonal entries, if starting from an initial condition with ṼR = 1l.

Off-diagonal terms in the right-handed sector are generated only from the contribution of

mixed terms, Y †DYU and Y †UYD, in the RG evolution of Y †UYU and Y †DYD. The latter give

rises to small deviations from ṼR = 1l, again suppressed by both off-diagonal CKM entires

and small quark mass ratios: |(ṼR)i>j | <∼ (mj/mi)|Vij |. A similar argument holds for the

CP-violating phases.

Flavour bounds on heavy Higgs bosons. In order to evaluate the strength of FCNCs,

we assume that ṼR is about equal to the identity matrix,

ṼR =

 1 s12 s13e
−iφ

−s12 1 s23

−s13e
iφ −s23 1

 + O(sijskl) . (5.19)

8These phases could be moved into the eigenvalues of λu,d. However, to avoid confusion, we work in the

usual basis where such eigenvalues are real and positive and leave explicitly the phases in Pu,d.
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system effective operator bound from ∆Mmeson

B0
d–B̄0

d (b̄LdR)(b̄RdL) |3.6× 10−8 + s13| < 1.7× 10−4 (MH/3 TeV)2

B0
s–B̄0

s (b̄LsR)(b̄RsL) |1.5× 10−4 − s23| < 1.0× 10−3 (MH/3 TeV)2

K0–K̄0 (s̄LdR)(s̄RdL) |6.2× 10−4 − s12 + 11 s13| < 1.0× 10−2 (MH/3 TeV)2

D0–D̄0 (c̄LuR)(c̄RuL) |1.1× 10−2 − s12 − 2.0 s13| < 9.5 (MH/3 TeV)2

Table 1. Constraints on right-handed mixing angles (s12, s13, s23) as functions of the heavy Higgs

mass (MH) from ∆F = 2 processes, assuming tanβ � 1. For generic values of tanβ, the constraints

are obtained with the replacement MH →MH | cos 2β|.

In analogy with the CKM matrix, and motivated by the need to satisfy the strong con-

straints on FCNC (see below), we assume |s13| < |s23| < |s12| � 1.

Integrating out the heavy Higgs H0 (assuming a negligible h–H mixing), the interac-

tions in eq. (5.16) give the following ∆F = 2 dimension-six effective operators

L∆F=2 =
X

(d)
ij

M2
H

(d̄iLd
j
R)(d̄iRd

j
L), X

(d)
ij =

1

cos2 2β

(∑
k

λukV
∗
kiVRkj

)(∑
`

λu`V`jV
∗
R`i

)
,

(5.20)

L∆F=2 =
X

(u)
ij

M2
H

(ūiLu
j
R)(ūiRu

j
L), X

(u)
ij =

1

cos2 2β

(∑
k

λdkVikV
∗
Rjk

)(∑
`

λd`V
∗
j`VRi`

)
.

(5.21)

The tanβ dependence gives an enhancement of the coefficients X(u,d) for tanβ ≈ 1, but

rapidly saturates for large values of tanβ. We will focus on the most conservative case

tanβ � 1, but our results can be simply scaled by replacing MH with MH | cos 2β|.
We first consider the bounds from the meson-antimeson mass differences, which depend

only on the absolute value of the X(u,d) coefficients. The results are summarised in table 1.9

The entries in the table can be read in a twofold manner. On the one hand, we can derive

absolute lower bounds on MH in the limit sij → 0 (VR → 1l). In such a limit, the X(u,d)

coefficients are necessarily suppressed by at least one light Yukawa eigenvalue. As a result

of the smallness of the Yukawa couplings of light quarks, the resulting constraints are

not very stringent. The tightest bound is the one following from ∆MK , which implies

MH > 0.75 TeV.

On the other hand, comparing the numerical values (independent of sij) with the terms

linear in sij in the bounds of table 1, we deduce the size of the right-handed mixing angles

for which the bound on MH becomes more stringent with respect to the one derived in the

VR = 1l limit. In the kaon system this happens for |s12| >∼ 10−3, while in the Bd system the

right-handed mixing gives the leading effect already for |s13| >∼ 10−7.

For right-handed mixing angles equal to the corresponding left-handed CKM mixings

— |s12| = |Vus|, |s23| = |Vcb|, and |s13| = |Vub| — we find comparable and quite strin-

9We use the updated list of bounds on the coefficients of ∆F = 2 operators from [70].
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Figure 4. 95% CL bounds on the Z ′ mass from electroweak precision tests (EWPT, blue curve) and

from LHC-Run1 data (ATLAS, black curve) in extensions of the SM where U(1)B−L ⊗ SU(2)R →
U(1)Y . The red dashed vertical arrows indicate the predictions for gB−L coming from the non-

abelian Pati-Salam and trinification models.

gent bounds on MH from ∆MK (MH > 14 TeV), ∆MBs (MH > 19 TeV), and ∆MBd

(MH > 14 TeV).

However, as previously discussed, small values of the right-handed mixing angles are

almost radiatively stable, and for the smallest natural mixing angles of VR estimated in

eq. (5.18) the bound becomes

MH >∼ 3 TeV. (5.22)

Considering now the CP-violating effects, if the |sij | are close to the values that satu-

rate the ∆M bounds, the flavour-dependent phases in Pu,d and the phase φ in (5.19) are

significantly constrained. These additional constraints are not particularly tight in the Bd,s
systems, where the bounds on CP-conserving and CP-violating ∆F = 2 amplitudes are

comparable in size, but are quite relevant in the kaon system. The experimental constraint

on εK implies |φq1,2| < 4 × 10−3, if |s12| is close to saturate the ∆MK bound (barring

cancellations among different contributions).

We finally mention that constraints from ∆F = 1 processes of the type qi → qj`
+`−

or qi → qjγ are not very stringent: in the first case (qi → qj`
+`−) the corresponding scalar

operators are suppressed by light lepton masses, while in the second case (qi → qjγ) the

transition is generated only beyond the tree level.

5.4 New heavy SU(2)R vectors

In both SU(2)L⊗ SU(2)R⊗ SU(4)PS (Pati-Salam) and SU(3)L⊗ SU(3)R⊗ SU(3)c (trinifi-

cation) the electroweak gauge group comes from SU(2)L⊗ SU(2)R⊗ U(1)B−L, with gauge

couplings gL, gR and gB−L, respectively. The SM electroweak gauge couplings are denotes

as g2 = gL and gY =
√

3/5 g1. Both models predicts extra heavy W±R and Z ′ vectors. In

both non-abelian models, hypercharge is obtained as a combination of the B−L and of the

T3R vectors, and the hypercharge gauge coupling is reproduced as 1/g2
Y = 1/g2

R+1/4g2
B−L,
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i.e.

gY = 2gB−L cos θB−L = gR sin θB−L (5.23)

Each model implies a specific value of its gauge couplings and in particular of gB−L:

gB−L =

√
3

8
g3, gR =

gY√
1− 2g2

Y /3g
2
3

≈ 1.03 gY (Pati-Salam) (5.24)

and

gB−L =
gY g2√
g2
Y + g2

2

, gR =
2gY g2√
3g2

2 − g2
Y

≈ 1.22 gY (Trinification). (5.25)

Bounds on heavy Z′ vectors. The angle tan θB−L = 2gB−L/gR describes the mixing

between the B − L and T3R vectors, in analogy to the weak mixing angle. The heavy Z ′

couples to SM fermions as

gY [(B − L)− 2 cos2 θB−LY ]

2 sin θB−L cos θB−L
. (5.26)

LHC experiments directly searched for Z ′ vectors as di-lepton and di-jet resonances [71–74].

ATLAS reported the experimental bounds in terms of the relevant category of ‘minimal’

Z ′ vectors, which are combination of B − L and Y [75, 76], such that we can extract

from data the 95% C.L. bounds: MZ′ > 3.2 TeV for the Pati-Salam Z ′ (g̃Y ≈ −0.124 and

g̃B−L ≈ 0.99 in the notations of [75, 76]) and MZ′ > 2.6 TeV for trinification (g̃Y ≈ −0.33

and g̃B−L ≈ 0.51).

Furthermore, Z ′ vectors are significantly constrained from precision electroweak data.

Using the results of [77, 78], we performed a global fit of precision data finding the bound on

the Z ′ mass as function of gB−L plotted in figure 4. The figure also shows the special values

of gB−L predicted by the two non-abelian models. The 95% C.L. bound is MZ′ >∼ 4 TeV in

Pati-Salam models and MZ′ >∼ 1.8 TeV in trinification models.

Bounds on heavy WR vectors. The interactions of the W±R bosons are described by

LWR
=
gR√

2

[
(VR)ij ū

i
Rγµd

j
R + ν̄iRγµ`

i
R

]
Wµ
R + h.c. (5.27)

where VR is the unitary matrix introduced in section 5.3.

LHC experiments searched for heavy W±R gauge bosons. For the predicted values of

gR, see eqs. (5.24) and (5.25), CMS data [79] imply the bound10

MWR
>∼ 2.2 TeV. (5.28)

Furthermore, we can identify two sets of indirect bounds on MWR
: those from tree-

level charged-current interactions, and those from one-loop FCNC processes. The latter

are largely dominant if VR has a generic flavour structure, but evaporate when VR is

10A 3σ excess is present in the electron channel at the value of the mass corresponding to the bound.
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Fields spin U(1)B−L SU(2)L SU(2)R SU(3)c

(νL, eL) 1/2 −1 2̄ 1 1

(νR, eR) 1/2 +1 1 2 1

(uL, dL) 1/2 +1
3 2̄ 1 3

(uR, dR) 1/2 −1
3 1 2 3̄

φ 0 0 2 2̄ 1

Table 2. Field content of extensions of the SM where U(1)Y is embedded in SU(2)R ×U(1)B−L.

sufficiently close to a permutation matrix. If we assume that VR is such that the bounds in

table 1 are satisfied for MH ≤ 3 TeV, then the FCNC bounds on MWR
are automatically

satisfied for MWR
>∼ 300 GeV. This happens because WR-mediated FCNCs appear only at

the one-loop level, and therefore the induced operators have an effective suppression scale

Meff ∼ 4π ×MWR
.

More specifically, integrating outWR at tree level leads to the following charged-current

effective Lagrangian,

L CC
eff =

g2
R

2M2
WR

[(ν̄RγµµR)(ēRγ
µνR) + (VR)ud(ūRγµdR)(ēRγ

µνR) + · · · ] + h.c. (5.29)

where we wrote explicitly the two most dangerous operators. The first term affects the

determination of GF from µ decays, while the second operator affects nuclear β decays and

LHC physics (see [80]). The right-handed nature of these effective operators implies that

they do not interfere with the left-handed SM contributions. As a result, the correction to

both G
(µ)
F and nuclear β decays is suppressed by 1/M4

WR
,

G
(µ)
F → G

(µ)
F

[
1 +

g4
RM

4
W

g4
LM

4
WR

]1/2

≈ G(µ)
F

[
1 + 1.9× 10−6

(
1 TeV

MWR

)4
]
, (5.30)

and does not leads to stringent bounds on MWR
. Moreover, if (VR)ud = 1 the correction

is almost universal in G
(µ)
F and nuclear β decays, thereby not affecting the most stringent

low-energy test of charged-current weak interactions, namely the comparison between these

two effective couplings.

6 Towards a realistic weak-scale TAF theory

In this section we will attempt to construct realistic models of a TAF theory at the weak

scale, based on Pati-Salam or trinification gauge groups. We describe all fermions as 2-

component Weyl spinors and we use a short-hand notation in which the left-handed quark

is denoted by qL and the conjugate right-handed quark by qR (with the symbol c omitted).

Moreover, for future convenience, we use a non-conventional assignment in which left-

handed quarks transforms as anti-doublets of SU(2)L. A summary of the quantum number

assignments of SM particles is given in table 2.
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Fields spin generations SU(2)L SU(2)R SU(4)PS

sk
el

et
on

m
o
d

el ψL =

(
νL eL
uL dL

)
1/2 3 2̄ 1 4

ψR =

(
νR uR

eR dR

)
1/2 3 1 2 4̄

φR 0 1 1 2 4̄

φ =

(
H0
U H+

D

H−U H0
D

)
0 1 2 2̄ 1

ex
tr

a
fi

el
d

s ψ 1/2 Nψ ≤ 3 2 2̄ 1

QL 1/2 2 1 1 10

QR 1/2 2 1 1 10

Σ 0 1 1 1 15

Table 3. Field content of the skeleton Pati-Salam model (upper box) and the extra fields needed

for a possible realistic TAF model (lower box).

6.1 Pati-Salam SU(2)L⊗SU(2)R⊗SU(4)PS

Skeleton model. The fermion and scalar field content of a ‘skeleton’ Pati-Salam model,

summarised in the upper box of table 3, is described by

• The SM fermions are contained in the Weyl fermions ψL ⊕ ψR.

• The scalar φR, in the same representation as ψR, can get a vev vR in its canonically-

normalised Re ν̃R component (we denote the entries as φR as those of ψR, adding

a tilde symbol, like in supersymmetric models) breaking G224 → GSM. Then, the

scalars ẽR, Im ν̃R and ũR are respectively eaten by the vectors W±Rµ, Z ′µ and by the

6 leptoquarks W ′µ (coming from SU(4)PS/SU(3)c), which acquire mass

M2
WR

=
g2
R

2
v2
R, M2

Z′ =
2g2
R + 3g2

4

4
v2
R, M2

W ′ =
g2

4

2
v2
R. (6.1)

• The SM Higgs is contained in the scalar φ, in the (2L, 2̄R) representation, which is

real given that 2L and 2̄R are pseudo-real, with φc ≡ εTφ∗ε also transforming as

(2L, 2̄R). One could impose the reality condition φ = ±φc, and the representation φ

would contain only one Higgs doublet with a single Higgs mass term. However, the

left-right symmetry would constrain the Yukawa interactions to give identical masses

for up and down quarks. It is phenomenologically more interesting to treat φ as a

complex scalar field φ, containing two Higgs doublets. In this case, there are two

Higgs mass terms,
m2

1
2 Tr(φ†φ) + Re

m2
2

4 Tr(φ†φc) with mass eigenvalues m2
1 ±m2

2.

– 37 –



J
H
E
P
0
2
(
2
0
1
5
)
1
3
7

After symmetry breaking, the Pati-Salam gauge couplings gL, gR, g4 are related to the

SM gauge couplings g3, g2, and gY =
√

3/5 g1 by

gL = g2, gR =
gY√

1− 2g2
Y /3g

2
3

, g4 = g3. (6.2)

The Yukawa couplings of the Pati-Salam skeleton model are

−LY = Y ψRψLφ+ Yc ψRψLφ
c + h.c. (6.3)

As discussed in section 5.3 the two-Higgs structure allows for independent structures of the

up-quark and down-quark Yukawa matrices YU and YD. However, in view of quark-lepton

unification, the skeleton model predicts YE = YD, as in SU(5), and YN = YU , as in SO(10),

where YN is the Yukawa matrix of neutrinos.

Minimal extensions. There are at least two ways of avoiding the wrong quark-lepton

mass predictions with the addition of new fields.

• Foot [81] proposed adding the vector-like fermions ψ (in the same representation as

the scalar φ, see table 3, containing a SM lepton doublet and an anti-lepton doublet)

and the scalar φL (in the same representation as the fermion ψL). In this way the

Yukawa interactions are extended to

−LY = Y ψRψLφ+ Yc ψRψLφ
c + YN ψLψφR + YL ψψRφL + h.c. (6.4)

The third term provides a mass term YN 〈φR〉 pairing the lepton doublet in ψL with the

anti-lepton doublet in ψ, while the lepton doublet in ψ remains massless before EW

breaking. In this way, the SM quark doublet is embedded in ψL, while the SM lepton

doublet is embedded in ψ, and lepton-quark unification is evaded in the left-handed

sector. This breaking of lepton-quark unification also relaxes the bounds (discussed

in section 6.2) on the vector leptoquark mass MW ′ , which can safely be about a few

TeV [81]. After EW breaking, the SM leptons acquire a mass YL〈φL〉 through the

last term of the Yukawa interactions in eq. (6.4). Note that this mechanism requires

the absence of a mass term ψψ, which is allowed by the gauge symmetry.

• Volkas [82] proposed adding the fermions QL ⊕ QR in the 10 ⊕ 10 of SU(4)PS (see

table 3). These fields contain a vector-like copy of a right-handed lepton eR, of a

right-handed quark dR, and of an exotic quark in a colour sextuplet. The Yukawa

couplings and fermion mass terms are11

Y ψLψRφ+ Yc ψLψRφ
c + YQ ψRQLφR +MQLQR + h.c. (6.5)

The mass term YQ〈φR〉 induces a mass mixing between light and heavy states in the

eR and dR sectors, which differ by a group-theoretical factor
√

2. As a consequence,

the unwanted relation YD = YE is avoided. Even with a single QL ⊕ QR pair, the

quark and charged-lepton masses can be made to agree with data. Similarly, by

adding a fermion singlet [82], one can avoid the unwanted prediction in the neutrino

sector, YN = YU .

11Volkas presented a slightly different model with a real φ.
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In both versions of the Pati-Salam model, gauge and Yukawa interactions are in-

variant under an accidental U(1)B′ global symmetry, defined by the following charge

assignments: B′(ψL) = B′(φL) = 1, B′(ψR) = B′(φR) = −1, B′(ψ) = B′(φ) = 0,

B′(QL) = −B′(QR) = 2. The vevs of φR and φL break spontaneously both SU(4)PS

and U(1)B′ , leaving unbroken a new U(1) global symmetry given by (3/4)[B′ + (B − L)]

which, for SM particles, corresponds to baryon number. This symmetry protects pro-

ton stability, and prevents the appearance of a massless state related to the spontaneous

breaking of U(1)B′ .

We analysed the two minimal realistic Pati-Salam models finding that, while the gauge

couplings and the Yukawa couplings have appropriate TAF solutions, this is never the case

for the quartic couplings in the scalar potential. Indeed the most general quartic scalar

potential is

V (φ, φR) = VφR + Vφ + VφφR (6.6)

or, adding the scalar φL proposed by Foot:

V (φ, φR, φL) = VφR + VφL + Vφ + VφφL + VφφR + VφLφR + V B
φLφR

(6.7)

which contains 18 real couplings and 6 complex couplings. The various potential terms and

the corresponding quartic couplings are defined in eq. (A.14). The RGE for the quartics

form a large system, listed in appendix A.12 We do not find any TAF solution unless the

β-function coefficient of g4 is artificially reduced down to unacceptably small values.

6.2 A TAF Pati-Salam model

By considering non-minimal Pati-Salam models we found TAF models with 3 generations,

which seems to be the maximum allowed in the present context.13 Table 3 describes the

matter content of the model, which employs

- the matter content of the skeleton Pati-Salam model (upper box),

- Nψ ≤ 3 generations of the ψ fermions proposed by Foot [81],

- NQ = 2 generations of the QL ⊕QR fermion proposed by Volkas [82],

- a scalar Σ in the adjoint of SU(4)PS.

12It is interesting to observe that in this model where the scalar φL is present, the coupling λB in V BφLφR
is the only coupling that violates baryon number. Therefore, it is only multiplicatively renormalised and

its β-function must be proportional to the coupling itself (dλB/d lnµ ∝ λB , as shown in appendix A). We

found that the TAF conditions generally imply that λB must vanish, either asymptotically or identically,

depending on the TAF solutions for the other couplings entering the β-function of λB . Similarly, TAF often

requires that CP-violating quartics must vanish.
13A Pati-Salam TAF model with 2 generations was build by Kalashnikov in 1977 [56]. However, the model

is incompatible with flavour data and cannot be extended to 3 generations because gauge couplings would

no longer be asymptotically free. We confirm most of his results, although the author of [56] missed the

existence of the quartics in our eq. (A.21), which could have changed the result. Its inclusion modifies the

TAF conditions, and the model admits TAF solutions, including one with asymptotically positive potential.
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Upper bounds Nψ ≤ 3 and NQ ≤ 2 arise from the request that gauge couplings are

asymptotically free:

bL = 3− 2

3
Nψ, bR =

7

3
− 2

3
Nψ, b4 =

29

3
− 4NQ. (6.8)

The extra fields allow for a realistic fermion spectrum as described in section 6.1 and, at

the same time, modify the RG running of the scalar quartics in such a way that TAF

solutions are found for NQ = 2.

The most general Yukawa interactions are14

−LY = Y φψLψR + Ycφ
cψLψR + YN ψLψφR + YQ ψRQLφR + YΣQLQRΣ + h.c. (6.9)

The Yukawa coupling YQ gives mass to QL,R, once Σ acquires a vev. The most general

scalar potential is

V (φ, φR,Σ) = VφR + Vφ + VφφR + VΣ + VφΣ + VφRΣ (6.10)

where the various terms are defined in eq. (A.14). The RGE are listed in appendix A.

The simplest TAF model corresponds to Nψ = 0 (no ψ field and so YN is absent). TAF

solutions for the quartics are found only if the gauge and Yukawa couplings are on the

following fixed-flow

g̃2
L∞ g̃2

R∞ g̃2
4∞ Ỹ 2

∞ Ỹ 2
c∞ Ỹ 2

Q∞ Ỹ 2
Σ∞

Fixed-flow 3/5 1/3 3/7 0.432 0 0.909 3.454

M -Eigenvalues − − − + + + +

(6.11)

There are 4 positive eigenvalues of the M matrix, hence 4 Yukawa couplings are univocally

predicted at low energy. The IR prediction Yc = 0 is incompatible with a realistic quark-

mass spectrum, but can be evaded in the more complicated TAF model with Nψ > 0 and

extra Yukawa couplings described in appendix A.

The 19 quartics admit 25 different TAF solutions. If we set to zero the 4 CP-violating

couplings, we find 15 TAF solutions for the 15 CP-conserving quartics, given by

N+ λΣφR1 λΣφ1 λ ΣφR2 λΣφ2 λR1 λR2 λΣ1 λΣ2 λ1 λ2 λ3 λ4 λ φRφ1 λφRφ2 λφ Rφ3

10 −0.023 −0.127 −1.067 0 −0.017 0.082 0.374 −1.031 0 −0.015 −0.037 −0.057 0.172 0 −0.322

8 0.210 0 −1.174 −0.024 0.036 0.042 0.661 −1.621 −0.033 0.018 −0.034 −0.013 0.210 0 −0.344

10 −0.040 −0.018 −1.021 0 0 0.056 0.313 −0.973 −0.028 −0.031 0 −0.095 0.195 0 −0.381

8 −0.036 −0.053 −1.036 0 0 0.068 0.341 −1.009 −0.051 0.019 −0.031 0 0.197 0 −0.357

6 0 −0.184 −1.110 0 −0.028 0.095 0.404 −1.033 0.022 −0.022 0 −0.101 0.152 0 −0.277

8 0.212 −0.129 −1.197 0 0.033 0.047 0.660 −1.585 0 0.027 0 0 0.192 0 −0.327

7 0.206 −0.181 −1.233 0.036 0.021 0.059 0.656 −1.513 0 0 −0.024 −0.054 0.194 0 −0.286

9 0.215 −0.077 −1.179 0 0.038 0.040 0.662 −1.616 0 −0.029 0 −0.106 0.197 0 −0.347

8 −0.027 −0.095 −1.059 0 −0.021 0.083 0.374 −1.045 −0.085 0 0 −0.032 0.211 0 −0.324

9 0.185 0.054 −1.165 −0.089 0.037 0.039 0.621 −1.516 −0.052 0.013 −0.017 −0.023 0.219 0 −0.354

9 0.139 0.164 −1.151 0 0.016 0.062 0.599 −1.475 0.024 0 0 0 0.218 0 −0.312

10 0.185 0.054 −1.165 0.089 0.037 0.039 0.621 −1.516 −0.052 0.013 0.017 −0.023 0.219 0 −0.354

9 0.194 0.046 −1.174 0.030 0.029 0.051 0.653 −1.599 0.010 −0.016 0.037 −0.059 0.206 0 −0.326

9 0.167 0.149 −1.156 0.060 0.032 0.044 0.607 −1.488 −0.015 −0.019 0.026 −0.062 0.222 0 −0.348

9 0.167 0.149 −1.156 −0.060 0.032 0.044 0.607 −1.488 −0.015 −0.019 −0.026 −0.062 0.222 0 −0.348

14With the addition of three generations of massless fermion singlets ψ1 ∼ (1, 1, 1), the Yukawa couplings

y1 ψ1ψRφ
†
R satisfy the TAF condition and allow us to obtain realistic neutrino masses avoiding the YN = YU

relation. An extra ψΣ ∼ (1, 1, 15) could play a similar role or could be identified with the Dark Matter, if

its Yukawa couplings vanish.
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The first column shows the number of positive eigenvalues of the M matrix, i.e. the number

of quartics predicted at low energy. All these solutions give gauge, Yukawa, and quartic

couplings that can be extrapolated up to infinite energy without hitting any Landau pole.

However, all these solutions correspond to theories with metastable vacua, because the

scalar potential has always some negative directions in the asymptotic region of large fields.

Flavour bounds from vector leptoquarks. The experimental bounds on heavy Higgs

bosons and on WR and Z ′ gauge bosons have been discussed in sections 5.3 and 5.4. The

Pati-Salam gauge group also contains massive vector leptoquarks W ′µ, of charge ±2/3,

corresponding to the broken generators in SU(4)PS/ SU(3)c. The gauge bosons W ′µ are

coupled to a right-handed current involving dR and eR (since these two fields are unified

in ψR, see table 3), and to a left-handed current involving qL and `L doublets (only in

versions of the model in which qL and `L are unified in the field ψL).

When both left-handed and right-handed interactions are present, data on π → eν

give the strong constraint [83]

MW ′ > 250 TeV (Pati-Salam with qL-`L and dR-eR unification). (6.12)

This bound can be avoided in the models discussed in section 6.1 where the SM left-handed

leptons `L are contained in the field ψ, while the quark doublet qL is in ψL. In this case, the

gauge bosons W ′µ are coupled only to right-handed currents of SM fermions. As discussed

in appendix B, the bounds from right-handed interactions can be significantly relaxed with

an appropriate flavour structure and, under the most favourable assumptions, they give

MW ′ > 8.8 TeV (Pati-Salam with dR-eR unification). (6.13)

Taking into account the relation MWR
≈ gYMW ′/g3, the bound in eq. (6.13) implies

MWR
> 2.7 TeV, which is comparable to those from direct WR searches (see section 5.4).

However, the Pati-Salam TAF models that we discovered do not contain the scalar φL
and thus lead to qL-`L unification. This implies that these models suffer from the strong

bound of eq. (6.12) and, consequently, from an unnaturally high degree of fine-tuning. We

have not found Pati-Salam TAF models containing the scalar φL.

6.3 Trinification SU(3)L⊗SU(3)R⊗SU(3)c

Trinificaton is often considered as a unification model, after imposing a permutation sym-

metry among the three SU(3) factors that forces the gauge couplings gL, gR, gc to be equal.

While the permutation symmetry is respected by the SM fermions (see table 4), it requires

the addition of extra Higgs bosons with interactions that break baryon number. We do not

impose any permutation symmetry in order to insure that trinification interactions at the

weak scale conserve baryon number. The relation between the trinification gauge coupling

constants (gL, gR, gc) and those of the SM (g3, g2, gY =
√

3/5 g1) is

gL = g2, gR =
2g2gY√
3g2

2 − g2
Y

, gc = g3 . (6.14)
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Matter fields spin SU(3)L SU(3)R SU(3)c

QR =

u1
R u2

R u3
R

d1
R d2

R d3
R

d′1R d′2R d′3R

 1/2 1 3 3̄

QL =

u1
L d1

L d̄′1R
u2
L d2

L d̄′1R
u3
L d3

L d̄′3R

 1/2 3̄ 1 3

L =

ν̄′L e′L eL

ē′L ν′L νL

eR νR ν′

 1/2 3 3̄ 1

H1, H2 0 3 3̄ 1

Table 4. Field content of the minimal trinification model. Primed fermions correspond to new

states beyond the SM.

We consider the minimal model with the matter content summarised in table 4. Since

quarks are not unified with leptons, trinification is safer than Pati-Salam from the point of

view of flavour. Each generation of QR⊕QL⊕L contains 27 chiral fermions that decompose

under the SM gauge group as the usual 15 SM fermions, plus a vector-like lepton doublet,

a vector-like right-handed down quark, and two singlets (denoted as primed fermions in

table 4). These states correspond to the irreducible representation 27 of E(6).

A single Higgs H1 in the (3L, 3̄R) representation contains 3 Higgs doublets. The vev

〈H1〉33 = V1/
√

2 breaks SU(3)3 to SU(2)L⊗ SU(2)R⊗U(1)B−L⊗ SU(3)c. Two Higgs dou-

blets and one singlet are eaten by the 9 components of the vector bosons that acquire mass

M2
HL

=
g2
L

2
V 2

1 , M2
HR

=
g2
R

2
V 2

1 , M2
Z′ =

2

3
(g2
L + g2

R)V 2
1 . (6.15)

The massive Z ′ corresponds to the combination of gauge bosons gLA
8
Lµ − gRA8

Rµ. The

bound on its mass is in the range 2-6 TeV, depending on the Z ′ charge of the SM Higgs. The

gauge boson of B−L corresponds to gRA
8
Lµ+gLA

8
Rµ with gB−L = (

√
3/2)gRgL/

√
g2
R + g2

L.

A second scalar is needed to break the left-right symmetry. This is accomplished by

a Higgs H2 in the (3L, 3̄R) representation with vev 〈H2〉32 = V2/
√

2. The 12 components

of the massive vectors can be grouped into the complex doublet HL, which transforms as

(2L, 1/2Y )⊕ (2̄L,−1/2Y ) under the SM SU(2)L× U(1)Y , two electrically-charged and one

neutral complex gauge bosonsH±R , WR ∼ (1L, 1Y )⊕(1L,−1Y ) andH0
R ∼ (1L, 0Y )⊕(1L, 0Y ),

and two kinds of Z ′ gauge bosons. Their masses are given by

M2
HL

=
g2
L

2
(V 2

1 + V 2
2 ) M2

H±R
=
g2
R

2
(V 2

1 + V 2
2 ), M2

H0
R

=
g2
R

2
V 2

1 , M2
WR

=
g2
R

2
V 2

2 .

(6.16)

The two Z ′ have a mass matrix which, in the limit V2 � V1, leads to a heavier state with

mass as in eq. (6.15), and a lighter B − L gauge boson with mass

M2
B−L '

(g2
R − 2g2

L)2

6(g2
L + g2

R)
V 2

2 . (6.17)
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As shown in figure 4, the B − L gauge boson is subjected to the bound MB−L>∼ 2.6 TeV

from ATLAS. The bounds from flavour processes mediated by the new gauge bosons are

much milder than in the Pati-Salam models because no dangerous leptoquark interactions

are present.

The SM Yukawa couplings are obtained from the SU(3)3-invariant interactions

−LY =
2∑
i=1

(yQi QLQRHi +
yLi
2
LLH∗i ) + h.c. (6.18)

Similarly to the case discussed in section 5.3, bounds from flavour processes can be kept

under control because there are only two independent Yukawa matrices and therefore small

quark masses suppress the new flavour interactions. However, this raises the problem of

generating sufficiently large masses for the new fermions. The new (primed) fermions get

mass from eq. (6.18), once the vev V1 is generated, while mixing mass terms between

new fermions and SM quarks/leptons are induced by the smaller vev V2. Since all these

terms are proportional to SM Yukawa couplings, the new fermions turn out to be too light,

unless V1 is unnaturally large. Additional fields and interactions are needed to construct

realistic models.

Let us turn to the issue of the TAF properties of trinification models. We start by

considering the simple, albeit unrealistic, case of a Higgs sector made of a single H = H1

in the (3L, 3̄R) with the most general quartic potential

V = λaTr(H†H)2 + λbTr(H†HH†H). (6.19)

The one-loop RGE for gauge, Yukawa, and quartic couplings are given in eq. (C.5) and

admit two different TAF solutions:

g̃2
L∞ g̃2

R∞ g̃2
c∞ ỹ2

Q∞ ỹ2
L∞ λ̃a∞ λ̃b∞

Fixed-flow 2/9 2/9 1/5 0 23/54 0.1628 −0.1732

M -Eigenvalue − − − − + − +

Fixed-flow 2/9 2/9 1/5 0 23/54 −0.0026 −0.0087

M -Eigenvalue − − − − + − −

(6.20)

The potential V is definite positive for λa ≥ −λb (for λb < 0) and 3λa ≥ −λb (for λb > 0).

Both fixed-flows in eq. (6.20) violate the stability condition for the potential. The RGE

flow can produce spontaneous symmetry breaking at low energy à la Coleman-Weinberg

from a potential with no dimensional parameters.

Next, we consider the model with two Higgs multiplets H1 and H2 in the (3L, 3̄R).

The scalar quartic potential is given in eq. (C.7) and contains 14 real couplings and 6

phases. The relevant one-loop RGE are reported in appendix C. The gauge couplings and

the Yukawa admit TAF solutions, but we do not find a TAF solution for the quartics.15

15TAF solutions appear if the SU(3)c β function coefficient is reduced to b3 = 1/6. However it is

impossible to obtain such value by adding fermionic multiples.
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The next step is to complicate the Higgs sector, with the twofold aim of recovering

TAF and of generating sufficiently large masses for the new fermions. One possibility is

to consider one H and one ΣR, adjoint under SU(3)R. A vev in its 23 component breaks

SU(3)3 to the SM group. We also add one vector-like fermion Q′R ⊕ Q̄′R which, in the

model with a single H is needed to obtain different masses for top and bottom quarks

via right-handed quark mixing induced by Q
(′)
R Q̄

′
RΣ Yukawa couplings. A TAF solution

exists only for a single generation of Q′R⊕ Q̄′R, which is not sufficient to produce a realistic

fermionic mass spectrum. Once we add two or more generations of Q′R ⊕ Q̄′R, the gauge

group is no longer asymptotically free. In conclusion, we were not able to identify a TAF

trinification model with a realistic flavour structure.

7 Conclusions

The main point of this paper is to single out the implications of two severe difficulties of

theories trying to solve the Higgs naturalness problem by having the weak scale as the only

effective source of breaking of scale invariance at the classical level.

The first well-known problem is gravity. The hope that transplanckian dynamics can

miraculously cure the Higgs sensitivity to MPl seems to us unrealistic. In the absence of spe-

cial symmetries like supersymmetry, any short-distance modification of general relativity is

expected to affect the quantum corrections to the Higgs mass. Delaying such modifications

to energy scales as high as MPl makes the problem too acute to leave us with any reasonable

hope that new dynamics can rescue the situation: the problem must be tackled at energies

lower thanMPl. From this line of reasoning, we have derived our first conclusion: in the con-

text of theories with no dynamical protection of the Higgs mass, naturalness requires a pre-

mature modification of gravity, at scales no larger than ΛG ∼ 4π(MhMPl)
1/2 ∼ 1011 GeV.

In this paper we have called softened gravity a theory in which the communication between

gravity and the SM sector remains weak at any scale larger than ΛG.

The second problem, less explored in the literature, is that the quantum theory nec-

essarily breaks scale invariance. In the SM, the problem manifests itself in the form of

the Landau pole for the hypercharge gauge coupling. In softened versions of gravity, this

dynamically-generated scale brings back the naturalness problem. To cure this problem

one needs to extend the SM, below a few TeV, into a TAF theory. We have shown that the

construction of such extensions is possible, but only at a high price: many new particles

around the TeV scale are needed, as well as elaborate model-building to avoid phenomeno-

logical constraints, especially related to the flavour sector.

So our second (surprising) conclusion is that theories intended to deal with naturalness

without new dynamics in the TeV range actually need a large number of new particles

around the TeV scale. This reopens the usual can of worms with the phenomenological

difficulties in satisfying constraints from collider searches and flavour processes that plague

traditional approaches to naturalness, like supersymmetry or composite Higgs. Indeed,

we find that the degree of tuning in the models we constructed is typically worse than in

traditional approaches.

Our two conclusions are based on common intuition derived from effective field theory

and dimensional analysis. Only in special setups that defy such usual intuition, could our
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conclusions be proved wrong. The only example of such a setup we are aware of is the

use of anthropic arguments in the multiverse. We cannot exclude the existence of other

theoretical setups that evade our conclusions.

The positive side of our result is that the class of theories we have considered is not

at all elusive, but can be tested at high-energy colliders. While the next probe comes from

Run-2 LHC, the existing constraints on new-particle masses from rare processes suggest

that a 100-TeV future collider is better positioned to explore the full parameter space.

The other interesting aspect is that the experimental signals from softened-gravity models

are distinct from those coming from traditional schemes with dynamical explanations of

naturalness, but also differ from anthropic solutions, which are likely to have no light scalar

particles other than the Higgs.

In a more technical vein, another result of our paper is the development of a systematic

procedure to derive the asymptotic behaviour of coupling constants in a perturbative QFT.

The method is based on calculating the fixed-flows of the theory, which are special RG

trajectories where couplings flow to zero in the UV with the slowest possible rate allowed by

RG evolution. The fixed-flows are determined by solving an algebraic system of equations,

with no need to tackle the full differential equations describing the RG. This allows for a

simple implementation of the method, even in models with many coupling constants. The

second step of the procedure is the computation of the eigenvalues of the matrix M in

eq. (3.5), which determine whether the fixed-flow is UV attractive or repulsive.

UV-repulsive fixed-flows correspond to RG trajectories with isolated asymptotic be-

haviours, therefore singling out special values of some combination of coupling constants in

the IR. For this reason, one could regard the requirement of sitting on these special RG tra-

jectories either (pessimistically) as an extreme fine-tuning of parameters or (optimistically)

as a novel way of predicting physical quantities. Our point of view is that this requirement

provides a genuine prediction of the theory. The UV-repulsive fixed-flow is disconnected

from the other RG trajectories in the asymptotic region and any small deformation leads

to an ill-defined theory in the UV. As an analogy, take the case of a Yang-Mills theory.

One cannot regard the relation between the cubic and quartic gluon couplings as a fine

tuning, because such relation follows from a consistency condition of the theory in the UV.

The existence of UV-repulsive fixed-flows is essential for TAF. This is because, in

practice, TAF conditions for quartic couplings can often be satisfied only if some Yukawa

couplings lie on UV-repulsive fixed-flows. Moreover, stability of the scalar potential often

favours quartic couplings λ on UV-repulsive fixed-flows rather than on UV-attractive ones,

because λ is generally larger on the former than on the latter. As a result, requiring the

theory to be TAF usually leads to some precise predictions of certain coupling constants in

the IR. These predictions are robust against deformations in the UV, since they correspond

to IR-attractive solutions. In particular, gravitational or super-weak interactions could

modify the exact locations of the fixed-flows, but would not change the numerical values

of the IR predictions.

We exemplified our technique in the case of the SM, studying under which conditions

it satisfies TAF. We found that this happens for g1 = 0, Mt = 186 GeV, Mτ = 0, Mh =

163 GeV (or Mh < 163 GeV if unstable vacua are permitted). Since these conditions
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are unphysical (although not too far from reality), we searched for TAF extensions of

the SM at the weak scale. The simplest candidates are based on the Pati-Salam group

SU(2)L ⊗ SU(2)R ⊗ SU(4)PS, for which we found some explicit examples, and on the

trinification group SU(3)L⊗ SU(3)R⊗ SU(3)c, for which we have not found a fully realistic

model. Our technique has been proven useful to perform systematic searches for TAF

theories and determine their IR predictions.
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A RGE for Pati-Salam models

We give here the one-loop RGE for a wide class of Pati-Salam models containing the scalars

φL, φR, φ,Σ and the fermions ψ,ψL, ψR, ψ1, ψΣ, QL, QR defined in section 6.1. While this

model does not allow for TAF solutions, the RGE for Yukawa and quartic couplings of the

TAF models proposed in section 6.2 are found by dropping all interactions involving the

scalar φL. The RGE for the gauge couplings depend on the chosen field content, see e.g.

eq. (6.8).

The Yukawa couplings for one generation of fermions are

−LY = y ψRψLφ+ yc ψRψLφ
c + yN ψLψφR + yE ψψRφL + yRQ ψRQLφR + yψ ψ

2
ΣΣ

+yLQ ψLQRφL + yR ψΣψRφ
∗
R + yL ψΣψLφ

∗
L + yΣQLQRΣ + yν ψ1ψRφ

∗
R + h.c.

(A.1)

The RGE for the Yukawa couplings are

(4π)2 dy

d lnµ
= y

(
20y2

c + 2y2
E −

9g2
L

4
−

9g2
R

4
− 45g2

4

4
+

15y2
L

8

+
5y2
LQ

2
+ 2y2

N +
15y2

R

8
+

5y2
RQ

2
+ y2

ν

)
+ 12y3 (A.2)

(4π)2 dyc
d lnµ

= yc

(
2y2
E −

9g2
L

4
−

9g2
R

4
− 45g2

4

4
+

15y2
L

8
+

5y2
LQ

2
+ 2y2

N

+
15y2

R

8
+

5y2
RQ

2
+ 20y2 + y2

ν

)
+ 12y3

c (A.3)

(4π)2 dyR
d lnµ

= yR

(
2y2
c + 2y2

E −
9g2
R

4
− 141g2

4

8
+ y2

L + 4y2
N +

11y2
RQ

2
+ 2y2 + 3y2

ν +
3y2
ψ

8

)
+8yEyLyN +

53y3
R

8
(A.4)
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(4π)2 dyL
d lnµ

= yL

(
2y2
c + 4y2

E −
9g2
L

4
− 141g2

4

8
+

11y2
LQ

2
+ 2y2

N + y2
R + 2y2 +

3y2
ψ

8

)
+8yEyNyR +

53y3
L

8
(A.5)

(4π)2 dyRQ
d lnµ

= yRQ

(
2y2
c + 2y2

E −
9g2
R

4
− 153g2

4

8
+ 4y2

N

+
33y2

R

8
+ 2y2 − y2

ν +
9y2

Σ

16

)
+

19y3
RQ

2
(A.6)

(4π)2 dyLQ
d lnµ

= yLQ

(
2y2
c+ 4y2

E−
9g2
L

4
− 153g2

4

8
+

33y2
L

8
+ 2y2

N + 2y2 +
9y2

Σ

16

)
+

19y3
LQ

2
(A.7)

(4π)2 dyE
d lnµ

= yE

(
2y2
c −

9g2
L

4
−

9g2
R

2
− 45g2

4

8
+

15y2
L

4
+ 5y2

LQ + 4y2
N +

15y2
R

8

+
5y2
RQ

2
+ 2y2 + y2

ν

)
+ 10y3

E +
15

2
yLyNyR (A.8)

(4π)2 dyN
d lnµ

= yN

(
2y2
c + 4y2

E −
9g2
L

2
−

9g2
R

4
− 45g2

4

8
+

15y2
L

8
+

5y2
LQ

2

+
15y2

R

4
+ 5y2

RQ + 2y2 + 2y2
ν

)
+

15

2
yEyLyR + 10y3

N (A.9)

(4π)2 dyν
d lnµ

= yν

(
2y2
c + 2y2

E −
9g2
R

4
− 45g2

4

8
+ 4y2

N +
45y2

R

8
−

5y2
RQ

2
+ 2y2

)
+11y3

ν (A.10)

(4π)2 dyψ
d lnµ

= yψ

(
− 24g2

4 + 2y2
L + 2y2

R +
3y2

Σ

2

)
+

7y3
ψ

4
(A.11)

(4π)2 dyΣ

d lnµ
= yΣ

(
− 27g2

4 + 2y2
LQ + 2y2

RQ +
3y2
ψ

4

)
+

31y3
Σ

8
(A.12)

The most general quartic potential is

V (φ, φR, φL,Σ) = VφR + VφL + Vφ + VΣ + VφφL

+VφφR + VφLφR + V B
φLφR

+ VφΣ + VφRΣ + VφLΣ + VX (A.13)

where

VφR = λR1 Tr2(φRφ
†
R) + λR2 Tr(φRφ

†
RφRφ

†
R), (A.14)

VφL = λL1 Tr2(φ†LφL) + λL2 Tr(φ†LφLφ
†
LφL), (A.15)

Vφ = λ1 Tr2(φ†φ) + Reλ2 Tr2(φ†φc) +

+Reλ3 Tr(φ†φ) Tr(φ†φc) + (λ4 − 2Reλ2)|Tr(φ†φc)|2, (A.16)

VφφR = λRφ1 Tr(φRφ
†
R) Tr(φ†φ)+ReλRφ2 Tr(φRφ

†
R) Tr(φ†φc)

+λRφ3 Tr(φRφ
†
Rφ
†φ), (A.17)

VφφL = λLφ1 Tr(φ†LφL) Tr(φ†φ) + ReλLφ2 Tr(φ†LφL) Tr(φ†φc)

+λLφ3 Tr(φ†LφLφφ
†), (A.18)

VφLφR = λLR1 Tr(φ†LφL) Tr(φRφ
†
R) + λLR2 Tr(φLφ

†
Lφ
†
RφR)

+ReλLR3 Tr[(φRφL)(φRφL)c],
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V B
φLφR

= ReλBεIJKLεijεk`φLIiφLJjφ
∗
RKkφ

∗
RL`, (A.19)

VΣ = λΣ1 Tr2(Σ2) + λΣ2 Tr(Σ4), (A.20)

VφΣ = λΣφ1 Tr(Σ2) Tr(φ†φ) + ReλΣφ2 Tr(Σ2) Tr(φ†φc), (A.21)

VφRΣ = λΣφR1 Tr(Σ2) Tr(φ†RφR) + λΣφR2 Tr(φ†RφRΣ2), (A.22)

VφLΣ = λΣφL1 Tr(Σ2) Tr(φ†LφL) + λΣφL2 Tr(φLφ
†
LΣ2), (A.23)

VX = ReλX1 Tr(φLφLRφRΣ) + ReλX2 Tr(φLφ
c
LRφRΣ). (A.24)

The symbol Re (real part) precedes quartic interactions that can support complex couplings

λi. With an abuse of notation, in the RGE listed below we denote as λi the real part and

as θi the imaginary part of complex couplings λi. The RGE for the quartic couplings are

(4π)2dλΣφL1

d lnµ
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N +

15y2
R

4
+ 5y2

RQ + 4λΣφL1 + 7λΣφL2 + 4λΣφR1 + 7λΣφR2 + 8λφLφ1

+16λφLφ3 + 8λφRφ1 + 16λφRφ3 + 8y2 + 2y2
ν +

3y2
Σ

2
+

3y2
ψ

4

)
+ 16λLR3θX2

−16θLR3λX2 + 16λφLφ2θX2 − 16θφLφ2λX2 + 16λφRφ2θX2 − 16θφRφ2λX2

−8θΣφ2λX2 + 8λΣφ2θX2

(4π)2 dλX2

d lnµ
= λX2

(
8y2
c + 4y2

E −
9g2
L

2
−

9g2
R

2
− 93g2

4

4
+ 4λΣφ1 +

15y2
L

4
+ 5y2

LQ + 8λLR1
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+4y2
N +

15y2
R

4
+ 5y2

RQ + 4λΣφL1 + 7λΣφL2 + 4λΣφR1 + 7λΣφR2 + 8λφLφ1

−8λφLφ3 + 8λφRφ1 − 8λφRφ3 + 8y2 + 2y2
ν +

3y2
Σ

2
+

3y2
ψ

4

)
−3ycyLyRyψ − 6yyLQyRQyΣ − 16θLR3θX1 − 16λLR3λX1 − 16θφLφ2θX1

+16λφLφ2λX1 − 16θφRφ2θX1 + 16λφRφ2λX1 − 8θΣφ2θX1 + 8λΣφ2λX1

(4π)2 dθX2

d lnµ
= θX2

(
8y2
c + 4y2

E −
9g2
L

2
−

9g2
R

2
− 93g2

4

4
+ 4λΣφ1 +

15y2
L

4
+ 5y2

LQ + 8λLR1

+4y2
N +

15y2
R

4
+ 5y2

RQ + 4λΣφL1 + 7λΣφL2 + 4λΣφR1 + 7λΣφR2 + 8λφLφ1

−8λφLφ3 + 8λφRφ1 − 8λφRφ3 + 8y2 + 2y2
ν +

3y2
Σ

2
+

3y2
ψ

4

)
+16λLR3θX1 − 16θLR3λX1 + 16λφLφ2θX1 + 16θφLφ2λX1 + 16λφRφ2θX1

+16θφRφ2λX1 + 8θΣφ2λX1 + 8λΣφ2θX1

(4π)2 dλΣ1

d lnµ
= λΣ1

(
− 48g2

4 + 29λΣ2 + 6y2
Σ + 3y2

ψ

)
+ 9g4

4 + 64θ2
Σφ2 + 46λ2

Σ1 +
57λ2

Σ2

8

+16λ2
Σφ1 + 64λ2

Σφ2 + 32λ2
ΣφL1 + 16λΣφL1λΣφL2 + 32λ2

ΣφR1

+16λΣφR1λΣφR2 −
3y4

Σ

8
−
y4
ψ

2

(4π)2 dλΣ2

d lnµ
= λΣ2(−48g2

4 + 24λΣ1 + 6y2
Σ + 3y2

ψ) + 12g4
4 + 7λ2

Σ2 + 8λ2
ΣφL2

+8λ2
ΣφR2 −

3y4
Σ

2
+
y4
ψ

2

(4π)2 dλ1

d lnµ
= λ1(32y2

c − 9g2
L − 9g2

R − 128λ2 + 64λ4 + 32y2)− 8y4
c +

3

16
g2
Lg

2
R

+
9g4
L

32
+

9g4
R

32
+ 256θ2

2 + 192θ2
3 +

15λ2
Σφ1

2
+ 128λ2

1 + 512λ2
2 + 192λ2

3

+64λ2
4 − 256λ2λ4 + 32λ2

φLφ1 + 32λφLφ1λφLφ3 + 16λ2
φLφ3 + 32λ2

φRφ1

+32λφRφ1λφRφ3 + 16λ2
φRφ3 − 8y4

(4π)2 dλ2

d lnµ
= λ2(32y2

c − 9g2
L − 9g2

R + 96λ1 + 192λ4 + 32y2)− 4y2y2
c −

15θ2
Σφ2

2
− 48θ2

3

+
15λ2

Σφ2

2
− 384λ2

2 + 48λ2
3 − 32θ2

φLφ2 + 32λ2
φLφ2 − 32θ2

φRφ2 + 32λ2
φRφ2

(4π)2 dθ2

d lnµ
= θ2(32y2

c − 9g2
L − 9g2

R + 96λ1 − 384λ2 + 192λ4 + 32y2) + 15θΣφ2λΣφ2

+96θ3λ3 + 64θφLφ2λφLφ2 + 64θφRφ2λφRφ2
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(4π)2 dλ3

d lnµ
= λ3(32y2

c − 9g2
L − 9g2

R + 192λ1 + 192λ4 + 32y2)− 8y3yc − 8yy3
c

+384θ2θ3 + 15λΣφ1λΣφ2 + 64λφLφ1λφLφ2 + 32λφLφ2λφLφ3

+64λφRφ1λφRφ2 + 32λφRφ2λφRφ3

(4π)2 dθ3

d lnµ
= θ3(32y2

c − 9g2
L − 9g2

R + 192λ1 − 768λ2 + 192λ4 + 32y2) + 15θΣφ2λΣφ1

+384θ2λ3 + 64λφLφ1θφLφ2 + 32θφLφ2λφLφ3+ 64λφRφ1θφRφ2+ 32θφRφ2λφRφ3

(4π)2 dλ4

d lnµ
= λ4(32y2

c − 9g2
L − 9g2

R + 96λ1 + 128λ2 + 32y2)− 24y2y2
c + 4y4

c

+
3

8
g2
Lg

2
R + 512θ2

2 + 30λ2
Σφ2 + 192λ2

3 + 64λ2
4 + 128λ2

φLφ2

−8λ2
φLφ3 + 128λ2

φRφ2 − 8λ2
φRφ3 + 4y4

(4π)2dλφLφ1

d lnµ
= λφLφ1

(
16y2

c + 8y2
E − 9g2

L −
9g2
R

2
− 45g2

4

4
+ 80λ1 − 64λ2 + 32λ4 +

15y2
L

2

+144λL1 + 96λL2 + 10y2
LQ + 16y2

)
− 4y2

cy
2
E −

15

2
y2
cy

2
L − 4y2y2

E +
9g4
L

16

+64λL1λφLφ3 + 16λL2λφLφ3 − 10y2y2
LQ + 64λLR1λφRφ1 + 32λLR1λφRφ3

+16λLR2λφRφ1 + 8λLR2λφRφ3 + 15λΣφ1λΣφL1 +
15λΣφ1λΣφL2

4

+16λ2
φLφ1 + 64θ2

φLφ2 + 192θ3θφLφ2 + 64λ2
φLφ2 + 192λ3λφLφ2 + 8λ2

φLφ3

+32λ1λφLφ3 − 64λ2λφLφ3 + 32λ4λφLφ3 +
15θ2

X2

2
+

15λ2
X2

2

(4π)2dλφLφ2

d lnµ
= λφLφ2

(
16y2

c + 8y2
E − 9g2

L −
9g2
R

2
− 45g2

4

4
+ 16λ1 + 64λ2 + 64λ4 +

15y2
L

2

+144λL1 + 96λL2 + 10y2
LQ + 32λφLφ1 + 16λφLφ3 + 16y2

)
− 4yycy

2
E

−15

4
yycy

2
L − 5yycy

2
LQ + 64λLR1λφRφ2 + 16λLR2λφRφ2 + 15λΣφ2λΣφL1

+
15λΣφ2λΣφL2

4
+ 48λ3λφLφ1 + 192θ2θφLφ2 + 24λ3λφLφ3

+
15θX1θX2

4
+

15λX1λX2

4

(4π)2dθφLφ2

d lnµ
= θφLφ2

(
16y2

c + 8y2
E − 9g2

L −
9g2
R

2
− 45g2

4

4
+ 16λ1 − 320λ2 + 64λ4 +

15y2
L

2

+144λL1 + 96λL2 + 10y2
LQ + 32λφLφ1 + 16λφLφ3 + 16y2

)
+64λLR1θφRφ2 + 16λLR2θφRφ2 + 15θΣφ2λΣφL1 +

15θΣφ2λΣφL2

4

+48θ3λφLφ1 + 192θ2λφLφ2 + 24θ3λφLφ3 +
15λX1θX2

4
− 15θX1λX2

4
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(4π)2dλφLφ3

d lnµ
= λφLφ3

(
16y2

c + 8y2
E − 9g2

L −
9g2
R

2
− 45g2

4

4
+ 16λ1 + 64λ2 − 32λ4 +

15y2
L

2

+16λL1 + 64λL2 + 10y2
LQ + 32λφLφ1 + 16y2

)
+

15

2
y2
cy

2
L − 10y2

cy
2
LQ

−15

2
y2y2

L + 10y2y2
LQ + 16λ2

φLφ3 +
15θ2

X1

2
+

15λ2
X1

2
−

15θ2
X2

2
−

15λ2
X2

2

(4π)2dλLR1

d lnµ
= λLR1

(
8y2
E −

9g2
L

2
−

9g2
R

2
− 45g2

4

2
+

15y2
L

2
+ 144λL1 + 96λL2 + 10y2

LQ

+8y2
N +

15y2
R

2
+ 144λR1 + 96λR2 + 10y2

RQ + 4y2
ν

)
+ 256θ2

B + 256λ2
B

−4yEyLyNyR − 4y2
Ey

2
N − 2y2

Ey
2
R − 2y2

Ey
2
RQ +

27g4
4

64
− 2y2

Ly
2
N −

17

16
y2
Ly

2
R

+32λL1λLR2 + 16λL2λLR2 − 2y2
LQy

2
N + 16λ2

LR1 + 8λ2
LR2 + 32λLR2λR1

+16λLR2λR2 + 32θ2
LR3 + 32λ2

LR3 + 15λΣφL1λΣφR1 +
15λΣφL1λΣφR2

4

+
15λΣφL2λΣφR1

4
+

9λΣφL2λΣφR2

16
+ 32λφLφ1λφRφ1 + 16λφLφ1λφRφ3

+128θφLφ2θφRφ2 + 128λφLφ2λφRφ2 + 16λφLφ3λφRφ1 + 8λφLφ3λφRφ3

+2θ2
X1 + 2λ2

X1 + 2θ2
X2 + 2λ2

X2

(4π)2dλLR2

d lnµ
= λLR2

(
8y2
E −

9g2
L

2
−

9g2
R

2
− 45g2

4

2
+

15y2
L

2
+ 16λL1 + 32λL2 + 10y2

LQ

+32λLR1 + 8y2
N +

15y2
R

2
+ 16λR1 + 32λR2 + 10y2

RQ + 4y2
ν

)
− 256θ2

B

−256λ2
B + yEyLyNyR +

1

2
y2
Ey

2
R − 2y2

Ey
2
RQ − 4y2

Ey
2
ν +

9g4
4

8
+

1

2
y2
Ly

2
N

+
1

2
y2
Ly

2
R − 2y2

LQy
2
N + 32λ2

LR2 + 64θ2
LR3 + 64λ2

LR3 +
3λΣφL2λΣφR2

2

−
θ2
X1

2
−
λ2
X1

2
−
θ2
X2

2
−
λ2
X2

2

(4π)2dλLR3

d lnµ
= λLR3

(
8y2
E −

9g2
L

2
−

9g2
R

2
− 45g2

4

2
+

15y2
L

2
+ 16λL1 − 16λL2 + 10y2

LQ

+32λLR1 + 48λLR2 + 8y2
N +

15y2
R

2
+ 16λR1 − 16λR2 + 10y2

RQ + 4y2
ν

)
+

5θX1θX2

2
− 5λX1λX2

2

(4π)2dθLR3

d lnµ
= θLR3

(
8y2
E −

9g2
L

2
−

9g2
R

2
− 45g2

4

2
+

15y2
L

2
+ 16λL1 − 16λL2 + 10y2

LQ

+32λLR1 + +48λLR2 + 8y2
N +

15y2
R

2
+ 16λR1 − 16λR2 + 10y2

RQ + 4y2
ν

)
−5λX1θX2

2
− 5θX1λX2

2
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(4π)2dλφRφ1

d lnµ
= λφRφ1

(
16y2

c −
9g2
L

2
− 9g2

R −
45g2

4

4
+ 80λ1 − 64λ2 + 32λ4 + 8y2

N +
15y2

R

2

+144λR1 + 96λR2 + 10y2
RQ + 16y2 + 4y2

ν

)
− 4y2

cy
2
N −

15

2
y2
cy

2
R − 4y2

cy
2
ν

+
9g4
R

16
+ 64λLR1λφLφ1 + 32λLR1λφLφ3 + 16λLR2λφLφ1 + 8λLR2λφLφ3

−4y2y2
N + 64λR1λφRφ3 + 16λR2λφRφ3 − 10y2y2

RQ + 15λΣφ1λΣφR1

+
15λΣφ1λΣφR2

4
+ 16λ2

φRφ1 + 64θ2
φRφ2 + 192θ3θφRφ2 + 64λ2

φRφ2

+192λ3λφRφ2 + 8λ2
φRφ3 + 32λ1λφRφ3 − 64λ2λφRφ3 + 32λ4λφRφ3

+
15θ2

X2

2
+

15λ2
X2

2

(4π)2dλφRφ2

d lnµ
= λφRφ2

(
16y2

c −
9g2
L

2
− 9g2

R −
45g2

4

4
+ 16λ1 + 64λ2 + 64λ4 + 8y2

N +
15y2

R

2

+144λR1 + 96λR2 + 10y2
RQ + 32λφRφ1 + +16λφRφ3 + 16y2 + 4y2

ν

)
−4yycy

2
N −

15

4
yycy

2
R − 5yycy

2
RQ − 2yycy

2
ν + 64λLR1λφLφ2 + 16λLR2λφLφ2

+15λΣφ2λΣφR1 +
15λΣφ2λΣφR2

4
+ 48λ3λφRφ1 + 192θ2θφRφ2 + 24λ3λφRφ3

+
15θX1θX2

4
+

15λX1λX2

4

(4π)2dθφRφ2

d lnµ
= θφRφ2

(
16y2

c −
9g2
L

2
− 9g2

R −
45g2

4

4
+ 16λ1 − 320λ2 + 64λ4 + 8y2

N +
15y2

R

2

+144λR1 + 96λR2 + 10y2
RQ + 32λφRφ1 + 16λφRφ3 + 16y2 + 4y2

ν

)
+64λLR1θφLφ2+16λLR2θφLφ2+15θΣφ2λΣφR1 +

15θΣφ2λΣφR2

4
+ 48θ3λφRφ1

+192θ2λφRφ2 + 24θ3λφRφ3 +
15λX1θX2

4
− 15θX1λX2

4

(4π)2dλφRφ3

d lnµ
= λφRφ3

(
16y2

c −
9g2
L

2
− 9g2

R −
45g2

4

4
+ 16λ1 + 64λ2 − 32λ4 + 8y2

N +
15y2

R

2

+16λR1 + 64λR2 + 10y2
RQ + 32λφRφ1 + 16y2 + 4y2

ν

)
+

15

2
y2
cy

2
R − 10y2

cy
2
RQ

+4y2
cy

2
ν −

15

2
y2y2

R + 10y2y2
RQ + 16λ2

φRφ3 +
15θ2

X1

2
+

15λ2
X1

2

−
15θ2

X2

2
−

15λ2
X2

2
− 4y2y2

ν

B Flavour bounds on Pati-Salam vector leptoquarks

In this section we discuss the experimental bounds on the massive vector leptoquarks W ′µ,

of electric charge ±2/3, coming from SU(4)PS/ SU(3)c. These vector bosons are coupled
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to the left-handed current q̄Lγ
µ`L only in the Pati-Salam models of ref. [82] , where qL and

`L are unified in ψL [see eq. (6.5))], but not in the models of ref. [81] where qL is in ψL and

`L in ψ [see eq. (6.4)]. On the other hand, the right-handed current interaction is present

in both frameworks and is given by

LW ′ =
g3√

2
Wia d̄

i
Rγµe

a
R W ′µ + h.c. , (B.1)

using Dirac notation for the fermions. Here i and a are flavour indices and Wia is a new

unitary matrix that describes the right-handed misalignment between the effective down-

quark and charged-lepton Yukawa couplings. Integrating out the heavy W ′ fields leads to

the following effective interaction

L d`
eff = − g2

3

2m2
W ′

WiaW
†
bj (d̄iRγµe

a
R)(ēbRγµd

j
R) + h.c. (B.2)

The bounds on these effective operators (expressed as bounds on MW ′ always assuming the

maximal possible mixing WiaW
†
bj = 1) from various LFV and FCNC processes are reported

in table 5.16 In order to deduce from this table the lowest allowed value for MW ′ we need

to determine the structure of the right-handed quark-lepton mixing matrix Wia. To this

purpose, we distinguish two cases.

The first case corresponds to the Yukawa interaction in eq. (6.4), where we have two

completely independent Yukawa couplings for down quarks and charged leptons. As a

result, Wia is arbitrary and we can tune it in order to minimize the bounds on MW ′ given

in table 5. The two most severe bounds (on the ddeµ and sdeµ flavour structures) force us

to consider a mixing matrix of the type

W =

 0 0 1

sse cse 0

−cse sse 0

 (B.3)

to forbid any d↔ e and d↔ µ mixing. All bounds from processes with flavour conservation

either in the quark (rows 1-4 in table 5) or in the lepton sector (rows 5-8 in table 5)

disappear if we assume that Wia is a permutation matrix. As a result, the constraint on

MW ′ is minimised for sse = 0 and it is set by BR(τ → K∗µ):

MW ′ > 8.8 TeV . (B.4)

The second case corresponds to the Yukawa interaction in eq. (6.5) with QL⊕QR pairs.

Now the structure of Wia is not arbitrary: the effective down-type and charged-lepton

Yukawa couplings are necessarily quasi aligned. The resulting Wia is close to a diagonal

matrix, with a mixing angle in the 1− 2 sector of the order of the Cabibbo angle. In this

case we cannot avoid the bound on MW ′ in the range of 100-200 TeV dictated by the ddeµ

and sdeµ entries in table 5. The situation is even worse due to the simultaneous presence

of both dR–eR–W ′ and uL–νL–W ′ interactions. The combination of left-handed and right-

handed currents leads to an effective interaction that breaks lepton chirality, without being

proportional to the corresponding lepton mass. This gives rise to an effective breaking of

lepton universality in Γ(π → eν)/Γ(π → µν) that implies MW ′ > 250 TeV [83].

16For a previous version of this table see [84].
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Flavour Experimental constraint Bound on MW ′ in TeV

dd eµ σ(µ Ti→ e Ti)/σ0(µ Ti) < 4.3× 10−12 120

ss eµ σ(µ Ti→ e Ti)/σ0(µ Ti) < 4.3× 10−12 12×
√
Pss̄/1%

dd eτ BR(τ → π0e) < 8.0× 10−8 3.8

dd µτ BR(τ → π0µ) < 1.1× 10−7 3.5

sd µµ BR(KL → µ̄µ)SD < 2.5× 10−9 50

sd ee BR(KL → ēe) = (9.0± 6.0)× 10−12 13.4

bd µµ BR(Bd → µ̄µ) = (3.6± 1.6)× 10−10 12.7

bs µµ BR(Bs → µ̄µ) = (2.9± 0.7)× 10−9 10.1

sd eµ BR(KL → ēµ) < 4.7× 10−12 200

sd eτ BR(τ → K∗e) < 3.2× 10−8 10.3

sd µτ BR(τ → K∗µ) < 5.9× 10−8 8.8

bs eµ BR(B+ → K+ēµ) < 9.1× 10−8 8.3

bd eµ BR(B+ → π+ēµ) < 1.7× 10−7 7.1

bd µτ BR(Bd → µ̄τ) < 2.2× 10−5 3.0

bd eτ BR(Bd → ēτ) < 2.8× 10−5 2.8

Table 5. Bounds on the vector leptoquark mass MW ′ assuming maximal mixing angles in each case

(WiaW
†
bj = 1) from lepton-flavour-violating and flavour-changing-neutral-current processes. Here

Pss̄ denotes the ratio of the strange-quark density in nuclei, normalised to that of down-type quarks

(Pss̄ = 〈N |s̄s|N〉/〈N |d̄d|N〉), for which we have assumed a reference value of 1% (see e.g. [85]).

C RGE for trinification models

We first list the one-loop RGE for the trinification models described in section 6.3. The

gauge β-function coefficients are bL = bR = 5− nH/2 and b3 = 5, where nH is the number

of Higgs multiplets. The RGE for the Yukawa couplings of eq. (6.18) are

(4π)2 dyQ1

d lnµ
= yQ1

(
−4g2

L − 4g2
R − 8g2

3 + 2y2
L1

+ 6y2
Q2

)
+ 2yL1yL2yQ2 + 6y3

Q1
(C.1)

(4π)2 dyQ2

d lnµ
= yQ2

(
−4g2

L − 4g2
R − 8g2

3 + 2y2
L2

+ 6y2
Q1

)
+ 2yL1yL2yQ1 + 6y3

Q2
(C.2)

(4π)2 dyL1

d lnµ
= yL1

(
−8g2

L − 8g2
R + 6y2

L2
+ 3y2

Q1

)
+ 6y3

L1
+ 3yL2yQ1yQ2 (C.3)

(4π)2 dyL2

d lnµ
= yL2

(
−8g2

L − 8g2
R + 6y2

L1
+ 3y2

Q2

)
+ 3yL1yQ1yQ2 + 6y3

L2
(C.4)

For the model with a single Higgs multiplet, nH = 1, one needs to set yQ1 = yQ, yL1 = yL
and yQ2 = yL2 = 0. The RGE for the two quartic couplings of the scalar potential in
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eq. (6.19) are

(4π)2 dλa
d lnµ

= λa
(
−16g2

L − 16g2
R + 48λb + 12y2

Q + 8y2
L

)
(C.5)

+
10

3
g2
Lg

2
R +

11g4
L

12
+

11g4
R

12
+ 52λ2

a + 12λ2
b − 2y4

L

(4π)2 dλb
d lnµ

= λb
(
−16g2

L − 16g2
R + 24λa + 12y2

Q + 8y2
L

)
(C.6)

−2g2
Lg

2
R +

5g4
L

4
+

5g4
R

4
+ 24λ2

b − 6y4
U − 2y4

L

For the model with two Higgs fields H1 and H2 (nH = 2), the most generic scalar potential

becomes

V = V1111 + V2222 + V1122 + V1222 + V1222 (C.7)

where

V1111 = λ1aTr(H†1H1)2 + λ1bTr(H†1H1H
†
1H1), (C.8)

V2222 = λ2aTr(H†2H2)2 + λ2bTr(H†2H2H
†
2H2), (C.9)

V1222 = Reλ3a Tr(H†1H2) Tr(H†2H2) + Reλ3b Tr(H†1H2H
†
2H2), (C.10)

V1112 = Reλ4a Tr(H†1H2) Tr(H†1H1) + Reλ4b Tr(H†1H1H
†
1H2), (C.11)

V1122 = λa Tr(H†1H1) Tr(H†2H2) + λb|Tr(H†1H2)|2 (C.12)

+λc Tr(H†1H1H
†
2H2) + λd Tr(H1H

†
1H2H

†
2)

+Reλe Tr(H†1H2)2 + Reλf Tr(H†1H2H
†
1H2) .

The RGE for the quartics, setting for simplicity to zero those that violate CP and/or

baryon number, are:

(4π)2 dλ1a

d lnµ
= λ1a

(
48λ1b − 16g2

L − 16g2
R + 8y2

L1
+ 12y2

Q1

)
+ 52λ2

1a + 12λ2
1b + 56λ2

4b

+2λaλb + 6λaλc + 6λaλd + 9λ2
a + λ2

b + 2λcλd + 4λ2
e + 4λ2

f

+
10

3
g2
Lg

2
R +

11g4
L

12
+

11g4
R

12
− 2y4

L1
(C.13)

(4π)2 dλ1b

d lnµ
= λ1b

(
24λ1a − 16g2

L − 16g2
R + 8y2

L1
+ 12y2

Q1

)
+ 24λ2

1b + 24λ2
4b + 2λbλc+2λbλd

+3λ2
c + 3λ2

d + 8λeλf − 2g2
Lg

2
R +

5g4
L

4
+

5g4
R

4
− 2y4

L1
− 6y4

Q1
(C.14)

(4π)2 dλ2a

d lnµ
= λ2a

(
48λ2b − 16g2

L − 16g2
R + 8y2

L2
+ 12y2

Q2

)
+ 52λ2

2a + 24λ2bλ3a + 18λ2
2b

+26λ2
3a + 2λaλb + 6λaλc + 6λaλd + 9λ2

a + λ2
b + 2λcλd + 4λ2

e + 4λ2
f

+
10

3
g2
Lg

2
R +

11g4
L

12
+

11g4
R

12
− 2y4

L2
(C.15)

(4π)2 dλ2b

d lnµ
= λ2b

(
24λ2a − 16g2

L − 16g2
R + 8y2

L2
+ 12y2

Q2

)
+ 12λ2bλ3a + 36λ2

2b + 2λbλc

+2λbλd + 3λ2
c + 3λ2

d + 8λeλf − 2g2
Lg

2
R +

5g4
L

4
+

5g4
R

4
−2y4

L2
−6y4

Q2
(C.16)
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(4π)2 dλ3a

d lnµ
= λ3a

(
52λ2a + 24λ2b + 6λa + 22λb + 6λc + 6λd + 48λe + 24λf − 16g2

L − 16g2
R

+2y2
L1

+ 6y2
L2

+ 3y2
Q1

+ 9y2
Q2

)
+ 24λ2aλ2b + 12λ2bλb + 4λ2bλc + 4λ2bλd

+24λ2bλe + 8λ2bλf + 12λ2
2b + 32λ4bλa + 4λ4bλb + 8λ4bλc + 8λ4bλd + 4λ4bλe

+4λ4bλf − 4yL1y
3
L2

(C.17)

(4π)2 dλ2b

d lnµ
= λ2b

(
12λ2a + 24λ2b + 6λa + 2λb + 6λc + 6λd + 8λe + 24λf − 16g2

L − 16g2
R

+2y2
L1

+ 6y2
L2

+ 3y2
Q1

+ 9y2
Q2

)
+ 12λ2bλ3a + 4λ3aλc + 4λ3aλd + 8λ3aλf

+4λ4bλb + 8λ4bλc + 8λ4bλd + 4λ4bλe + 4λ4bλf − 4yL1y
3
L2
− 12yQ1y

3
Q2

(C.18)

(4π)2 dλ4b

d lnµ
= λ4b

(
12λ1a + 24λ1b + 6λa + 2λb + 6λc + 6λd + 8λe + 24λf − 16g2

L − 16g2
R

+6y2
L1

+ 2y2
L2

+ 9y2
Q1

+ 3y2
Q2

)
+ 12λ1bλ4b + 4λ2bλb + 6λ2bλc + 6λ2bλd

+4λ2bλe + 2λ3aλc + 2λ3aλd + 4λ3aλf + 4λ4bλc + 4λ4bλd + 8λ4bλf

−4yL2y
3
L1
− 12y3

Q1
yQ2 (C.19)

(4π)2 dλ4b

d lnµ
= λ4b

(
52λ1a + 24λ1b + 6λa + 22λb + 6λc + 6λd + 48λe + 24λf − 16g2

L − 16g2
R

+6y2
L1

+ 2y2
L2

+ 9y2
Q1

+ 3y2
Q2

)
+ 24λ1aλ4b + 12λ1bλ4b + 12λ2bλa + 2λ2bλc

+2λ2bλd + 4λ2bλf + 20λ3aλa + 4λ3aλb + 6λ3aλc + 6λ3aλd + 4λ3aλe

+12λ4bλb + 4λ4bλc + 4λ4bλd + 24λ4bλe + 8λ4bλf − 4yL2y
3
L1

(C.20)

(4π)2 dλa
d lnµ

= λa
(
40λ1a + 24λ1b + 40λ2a + 24λ2b − 16g2

L − 16g2
R + 4y2

L1
+ 4y2

L2

+6y2
Q1

+ 6y2
Q2

)
+ 4λ1aλb + 12λ1aλc + 12λ1aλd + 4λ1bλc + 4λ1bλd + 4λ2aλb

+12λ2aλc + 12λ2aλd + 32λ2bλ4b + 4λ2bλc + 4λ2bλd + 2λ2
2b + 68λ3aλ4b

+4λ2
3a + 6λ2

4b + 4λ2
a + 2λ2

b + 2λ2
c + 2λ2

d + 8λ2
e +

2

3
g2
Lg

2
R +

11g4
L

6

+
11g4

R

6
− 4y2

L1
y2
L2

(C.21)

(4π)2 dλb
d lnµ

= 2
(
2λ1aλb + 2λ2aλb + 12λ2bλ3a + 3λ2

2b + 2λ3aλ4b + 12λ2
3a + 27λ2

4b + 4λaλb

+6λbλc + 6λbλd − 8λbg
2
L − 8λbg

2
R + 9λ2

b + 2λby
2
L1

+ 2λby
2
L2

+ 3λby
2
Q1

+3λby
2
Q2

+ 4λcλd + 48λeλf + 44λ2
e + 8λ2

f + 3g2
Lg

2
R − 2y2

L1
y2
L2

)
(C.22)

(4π)2 dλc
d lnµ

= λc
(
4λ1a + 12λ1b + 4λ2a + 12λ2b + 8λa − 16g2

L − 16g2
R + 4y2

L1
+ 4y2

L2
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+6y2
Q1

+ 6y2
Q2

)
+ 4λ1bλb + 8λ2bλ3a + 16λ2bλ4b + 4λ2bλb + 6λ2

2b

+4λ3aλ4b + 14λ2
4b + 4λbλd + 6λ2

c + 16λeλf + 24λ2
f − 2g2

Lg
2
R +

5g4
R

2

−4y2
L1
y2
L2
− 12y2

Q1
y2
Q2

(C.23)

(4π)2 dλd
d lnµ

= λd
(
4λ1a + 12λ1b + 4λ2a + 12λ2b + 8λa − 16g2

L − 16g2
R + 4y2

L1
+ 4y2

L2

+6y2
Q1

+ 6y2
Q2

)
+ 4λ1bλb + 8λ2bλ3a + 16λ2bλ4b + 4λ2bλb + 6λ2

2b + 4λ3aλ4b

+14λ2
4b + 4λbλc + 6λ2

d + 16λeλf + 24λ2
f − 2g2

Lg
2
R +

5g4
L

2

−4y2
L1
y2
L2
− 12y2

Q1
y2
Q2

(C.24)

(4π)2 dλe
d lnµ

= 4λ1aλe + 4λ1bλf + 4λ2aλe + 12λ2bλ3a + 2λ2bλ4b + 4λ2bλf + 2λ2
2b + 2λ3aλ4b

+12λ2
3a + 26λ2

4b + 8λaλe + 40λbλe + 24λbλf + 12λcλe + 4λcλf + 12λdλe

+4λdλf − 16λeg
2
L − 16λeg

2
R + 4λey

2
L1

+ 4λey
2
L2

+ 6λey
2
Q1

+6λey
2
Q2
− 2y2

L1
y2
L2

(C.25)

(4π)2 dλf
d lnµ

= λf
(
4λ1a+4λ2a+8λa + 12λc + 12λd − 16g2

L − 16g2
R + 4y2

L1
+ 4y2

L2

+6y2
Q1

+ 6y2
Q2

)
+ 4λ1bλe + 4λ2bλ3a + 2λ2bλ4b + 4λ2bλe + 6λ2

2b + 2λ3aλ4b

+10λ2
4b + 4λcλe + 4λdλe − 2y2

L1
y2
L2
− 6y2

Q1
y2
Q2

(C.26)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] M. Farina, D. Pappadopulo and A. Strumia, A modified naturalness principle and its

experimental tests, JHEP 08 (2013) 022 [arXiv:1303.7244] [INSPIRE].

[2] J.P. Fatelo, J.M. Gerard, T. Hambye and J. Weyers, Symmetry breaking induced by top loops,

Phys. Rev. Lett. 74 (1995) 492 [INSPIRE].

[3] T. Hambye, Symmetry breaking induced by top quark loops from a model without scalar mass,

Phys. Lett. B 371 (1996) 87 [hep-ph/9510266] [INSPIRE].

[4] R. Hempfling, The next-to-minimal Coleman-Weinberg model, Phys. Lett. B 379 (1996) 153

[hep-ph/9604278] [INSPIRE].

[5] F. Vissani, Do experiments suggest a hierarchy problem?, Phys. Rev. D 57 (1998) 7027

[hep-ph/9709409] [INSPIRE].

[6] P.H. Frampton and C. Vafa, Conformal approach to particle phenomenology,

hep-th/9903226 [INSPIRE].

– 59 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/JHEP08(2013)022
http://arxiv.org/abs/1303.7244
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.7244
http://dx.doi.org/10.1103/PhysRevLett.74.492
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,74,492
http://dx.doi.org/10.1016/0370-2693(95)01570-1
http://arxiv.org/abs/hep-ph/9510266
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9510266
http://dx.doi.org/10.1016/0370-2693(96)00446-7
http://arxiv.org/abs/hep-ph/9604278
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9604278
http://dx.doi.org/10.1103/PhysRevD.57.7027
http://arxiv.org/abs/hep-ph/9709409
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9709409
http://arxiv.org/abs/hep-th/9903226
http://inspirehep.net/search?p=find+EPRINT+hep-th/9903226


J
H
E
P
0
2
(
2
0
1
5
)
1
3
7

[7] K.A. Meissner and H. Nicolai, Conformal symmetry and the standard model, Phys. Lett. B

648 (2007) 312 [hep-th/0612165] [INSPIRE].

[8] W.-F. Chang, J.N. Ng and J.M.S. Wu, Shadow Higgs from a scale-invariant hidden U(1)(s)

model, Phys. Rev. D 75 (2007) 115016 [hep-ph/0701254] [INSPIRE].

[9] R. Foot, A. Kobakhidze and R.R. Volkas, Electroweak Higgs as a pseudo-Goldstone boson of

broken scale invariance, Phys. Lett. B 655 (2007) 156 [arXiv:0704.1165] [INSPIRE].

[10] R. Foot, A. Kobakhidze, K.L. McDonald and R.R. Volkas, A solution to the hierarchy

problem from an almost decoupled hidden sector within a classically scale invariant theory,

Phys. Rev. D 77 (2008) 035006 [arXiv:0709.2750] [INSPIRE].

[11] S. Iso, N. Okada and Y. Orikasa, The minimal B-L model naturally realized at TeV scale,

Phys. Rev. D 80 (2009) 115007 [arXiv:0909.0128] [INSPIRE].

[12] M. Shaposhnikov and C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass,

Phys. Lett. B 683 (2010) 196 [arXiv:0912.0208] [INSPIRE].

[13] S. Iso and Y. Orikasa, TeV scale B-L model with a flat Higgs potential at the Planck scale —

in view of the hierarchy problem , PTEP 2013 (2013) 023B08 [arXiv:1210.2848] [INSPIRE].

[14] T. Hur and P. Ko, Scale invariant extension of the standard model with strongly interacting

hidden sector, Phys. Rev. Lett. 106 (2011) 141802 [arXiv:1103.2571] [INSPIRE].

[15] M. Shaposhnikov, Asymptotic safety of gravity and the Higgs-boson mass, Theor. Math.

Phys. 170 (2012) 229 [Teor. Mat. Fiz. 170 (2012) 280] [INSPIRE].

[16] C. Englert, J. Jaeckel, V.V. Khoze and M. Spannowsky, Emergence of the electroweak scale

through the Higgs portal, JHEP 04 (2013) 060 [arXiv:1301.4224] [INSPIRE].

[17] E.J. Chun, S. Jung and H.M. Lee, Radiative generation of the Higgs potential, Phys. Lett. B

725 (2013) 158 [arXiv:1304.5815] [INSPIRE].

[18] M. Heikinheimo, A. Racioppi, M. Raidal, C. Spethmann and K. Tuominen, Physical

Naturalness and Dynamical Breaking of Classical Scale Invariance, Mod. Phys. Lett. A 29

(2014) 1450077 [arXiv:1304.7006] [INSPIRE].

[19] T. Hambye and A. Strumia, Dynamical generation of the weak and Dark Matter scale, Phys.

Rev. D 88 (2013) 055022 [arXiv:1306.2329] [INSPIRE].

[20] C.D. Carone and R. Ramos, Classical scale-invariance, the electroweak scale and vector dark

matter, Phys. Rev. D 88 (2013) 055020 [arXiv:1307.8428] [INSPIRE].

[21] A. Farzinnia, H.-J. He and J. Ren, Natural electroweak symmetry breaking from scale

invariant Higgs mechanism, Phys. Lett. B 727 (2013) 141 [arXiv:1308.0295] [INSPIRE].

[22] R. Foot, A. Kobakhidze, K.L. McDonald and R.R. Volkas, Poincaré protection for a natural
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