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1 Introduction

The negative results of the searches for new physics at the LHC have cast some doubts on

the existence of low-energy supersymmetry (SUSY) and, more generally, on the validity

of the naturalness principle for the Fermi scale. However, supersymmetry finds other

justifications beyond naturalness: as a dark matter (DM) candidate, as an element for gauge

coupling unification, as an ingredient for stabilizing the potential from unwanted vacua at

large Higgs field value, or as an ingredient of superstring theory. This has motivated

renewed interest in “unnatural” setups, in which supersymmetry does not fully cure the

Higgs naturalness problem. In this context, the Higgs mass measurement [1–3] has become

a crucial (and sometimes the only) link between theory and experiment. This motivates

our detailed study of the Higgs mass prediction in theories with unnatural supersymmetry.

In particular, we will consider:

• Quasi-natural SUSY, in which supersymmetric particles are heavier than the weak

scale, but not too far from it (say in the 1−30 TeV range);

• High-Scale SUSY, in which all supersymmetric particles have masses around a

common scale m̃, unrelated to the weak scale;
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• Split SUSY, in which only the scalar supersymmetric particles have masses of the

order of m̃, while gauginos and higgsinos are lighter, possibly with masses near the

weak scale;

• Mini-split with anomaly mediation, in which gauginos get mass from anomaly

mediation at one loop and scalars from tree-level interactions.

Accurate codes have been developed to compute the SUSY prediction for the Higgs mass in

the natural scenario where m̃ ≈ MZ . When considering the unnatural scenario m̃� MZ ,

such codes often become redundant and inaccurate: redundant because one can ignore

effects suppressed by powers of MZ/m̃; inaccurate because one needs to resum large loga-

rithms of the ratio m̃/MZ . The computation needs to be reorganized: the heavy particles

are integrated out at the scale m̃, where they only induce threshold corrections (free of

large logarithms) to the SUSY predictions for the couplings of the effective theory valid

below m̃; suitable renormalization-group equations (RGEs) are used to evolve the couplings

between the matching scale m̃ and the weak scale, where the running couplings are related

to physical observables (i.e., the Higgs-boson mass, as well as the masses of fermions and

of gauge bosons) via Standard Model (SM) calculations such as the one in ref. [4].

In this work we improve on the calculation of the threshold corrections at the scale m̃

by providing complete one-loop expressions for all the couplings relevant to the Higgs-mass

calculation, as well as the dominant two-loop SUSY-QCD corrections to the quartic Higgs

coupling λ.

Furthermore, we revisit the tuning condition in the case of Split SUSY, and we explore

mini-split models with anomaly mediation, studying new possibilities for the LSP, which

open new options for the DM candidate.

2 Threshold corrections from heavy superparticles

In this section we summarize the matching conditions for the couplings of the effective la-

grangian in scenarios where some (if not all) of the supersymmetric particles are integrated

out at the scale m̃. We work under the “unnatural” assumption m̃� MZ , which induces

significant simplifications with respect to the general expressions that hold in the natural

scenario where m̃ ≈MZ . We complete and correct the results already presented in [5, 6].

2.1 Lagrangian and tree-level matching

We consider scenarios in which all of the sfermions, as well as a heavy Higgs doublet A,

are integrated out at the scale m̃. The surviving (and SM-like) Higgs doublet H is a

combination of the two doublets Hu and Hd of the underlying supersymmetric theory:(
H

A

)
=

(
cosβ sinβ

− sinβ cosβ

)(
−εH∗d
Hu

)
, (2.1)

where ε is the antisymmetric tensor with ε12 = 1. The mass parameter m2
A for the heavy

doublet is of the order of m̃2, whereas the mass parameter m2
H for the light doublet is
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negative and of the order of the weak scale. The potential for the doublet H below the

scale m̃ is given by the Standard Model expression

V (H) =
λ

2

(
H†H − v2

)2
, (2.2)

where v ≈ 174 GeV. The tree-level mass of the physical Higgs scalar h is M2
h = 2λv2.

The tree-level matching with the full supersymmetric theory at the scale m̃ determines the

boundary condition for the quartic coupling

λ(m̃) =
1

4

[
g2

2(m̃) +
3

5
g2

1(m̃)

]
cos2 2β , (2.3)

where g1 and g2 are the weak gauge coupling constants, assuming the SU(5) normalization

for the hypercharge. Furthermore, the tree-level matching condition for the top Yukawa

coupling is gt(m̃) = yt(m̃) sinβ, where yt denotes the coupling of the MSSM while gt
denotes the coupling of the low-energy effective theory.

We give expressions that can also be applied to the Split-SUSY scenario, where the

fermionic superparticles are assumed to be lighter than the scalars. In such a case the effec-

tive lagrangian below the scale m̃ includes mass terms for the gauginos and the higgsinos,

as well as Higgs-higgsino-gaugino Yukawa interactions:

L split ⊃ −M3

2
g̃Ag̃A − M2

2
W̃ aW̃ a − M1

2
B̃B̃ − µ H̃T

u εH̃d +

−H
†
√

2

(
g̃2uσ

aW̃ a + g̃1uB̃
)
H̃u −

HT ε√
2

(
−g̃2dσ

aW̃ a + g̃1dB̃
)
H̃d + h.c., (2.4)

where gauginos and higgsinos are two-component spinors and σa are the Pauli matrices.

We consider for simplicity the case of real gaugino and higgsino mass parameters. The

tree-level matching conditions for the Split-SUSY couplings at the scale m̃ are:

g̃2u(m̃) = g2(m̃) sinβ , g̃1u(m̃) =
√

3/5 g1(m̃) sinβ ,

g̃2d(m̃) = g2(m̃) cosβ , g̃1d(m̃) =
√

3/5 g1(m̃) cosβ . (2.5)

Our results for the one-loop matching conditions should be used as follows:

• In the High-Scale SUSY scenario, the MSSM is directly matched onto the SM at

the scale m̃, such that the couplings g̃1d, g̃1u, g̃2d, g̃2u and λ appearing in all one-

loop threshold corrections can be replaced by their tree-level values of eq. (2.5) and

eq. (2.3).

• In the Split-SUSY scenario, two different matchings must be applied:

SM in MS

g1,2,3, gt, λ
←→ Split-SUSY in MS

g1,2,3, gt, λ, g̃1d, g̃1u, g̃2d, g̃2u

m̃←→ MSSM in DR

g1,2,3, yt

The intermediate theory contains higgsinos and gauginos. Thereby, their contribu-

tions must be removed from the matching conditions at m̃, and included at the lower

energy scale at which Split SUSY is matched onto the SM.

– 3 –
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2.2 One-loop matching

To extend our analysis of heavy-SUSY scenarios beyond the leading order, we need to

include in the matching conditions for the couplings the threshold corrections arising when

the heavy particles are integrated out of the effective low-energy lagrangian. A one-loop

computation of the matching conditions also requires that we specify a renormalization

scheme for the parameters entering the tree-level part, and include appropriate counterterm

contributions in the one-loop part.

In the full supersymmetric theory above the matching scale m̃, eqs. (2.3) and (2.5) are

valid beyond tree level only if the parameters are renormalized in a SUSY-preserving scheme

such as DR. However, to allow for the direct implementation of existing SM results in our

calculations, we express all the couplings of the low-energy lagrangian, including the weak

gauge couplings entering the right-hand side of eqs. (2.3) and (2.5), as running parameters

renormalized in the MS scheme. Since this scheme breaks supersymmetry, the conditions

relating the gaugino and four-scalar couplings to the gauge couplings are not preserved

beyond tree level even in the full supersymmetric theory [7]. In the MS scheme the one-loop

matching conditions of the gaugino and Higgs-quartic couplings must therefore be modified

as described in [5]. In addition, we choose to express the right-hand-side of eqs. (2.3)

and (2.5) in terms of the weak gauge couplings of the low-energy theory, as opposed to the

couplings of the full supersymmetric theory. This induces additional one-loop shifts in the

matching conditions in case the heavy-particle masses are not all equal to m̃.

Renormalization of tanβ. The renormalization of the angle β entering eqs. (2.3)

and (2.5) requires a special discussion. In contrast to what happens in the MSSM, in

the scenarios considered here it is not useful to relate β to the vacuum expectation values

of the Higgs doublets Hu and Hd. Instead, β should be interpreted just as a fine-tuned mix-

ing angle that rotates the two original doublets into a light doublet H and a massive doublet

A. In a generic system of two scalars that mix with each other, the divergent part of the

counterterm for the mixing angle θ is fixed by the requirement that it cancel the divergence

of the antisymmetric part of the wave-function renormalization (WFR) matrix [8, 9]

δθ div =
1

2

Πdiv
12 (m2

1) + Πdiv
12 (m2

2)

m2
1 −m2

2

, (2.6)

where Πdiv
12 (p2) denotes the divergent part of the self-energy that mixes the two mass eigen-

states characterized by mass eigenvalues m2
1,2 . The finite part of the counterterm defines

the renormalization scheme for the mixing angle, and different choices have been discussed

in the literature. For example, in refs. [8, 9] the finite part of the counterterm has the

same form as the divergent part in eq. (2.6), while in ref. [10] the external momentum

in the finite part of Π12(p2) is set to the special value (m2
1 + m2

2)/2. In both cases, the

renormalized mixing angle θ is scale-independent.

In our calculation we define the divergent part of the counterterm δβ according to

eq. (2.6), but we choose instead to define the finite part in such a way that it removes

entirely the contributions of the off-diagonal WFR of the Higgs doublets from the matching
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conditions for the effective couplings:

δβ fin =
Πfin
HA(m2

H)

m2
H −m2

A

. (2.7)

Loosely speaking, this defines the renormalized β as the angle that diagonalizes the radia-

tively corrected Higgs mass matrix at an external momentum p2 set equal to the light-Higgs

mass parameter m2
H (in fact, the latter can be considered zero in comparison to m2

A).

The definition in eq. (2.7) has the advantage of simplifying the threshold corrections to

the matching conditions, but it leads to a scale-dependent mixing angle, which at one loop

is subject to the same RGE as the usual parameter β of the MSSM. However, it must be

recalled that the angle β is not a parameter of the low-energy lagrangian, and it enters only

the matching conditions for the couplings at the scale m̃. Therefore, different choices of

renormalization scheme can be simply compensated for by a shift in the (arbitrary) input

value of β.

Threshold corrections to the quartic Higgs coupling. In the High-Scale SUSY

setup where we integrate out all SUSY particles at the scale m̃, the loop-corrected boundary

condition for the Higgs quartic coupling takes the form

λ(m̃) =
1

4

[
g2

2(m̃) +
3

5
g2

1(m̃)

]
cos2 2β + ∆λ1`, reg + ∆λ1`, φ + ∆λ1`, χ1

+ ∆λ1`, χ2
+ ∆λ2` ,

(2.8)

where we denote by gi the MS-renormalized gauge couplings of the effective theory valid

below the scale m̃, and ∆λ1`, reg accounts for the conversion from the DR to the MS scheme,

which modifies the tree-level relation of eq. (2.3) even in the supersymmetric limit:

(4π)2 ∆λ1`, reg = − 9

100
g4

1 −
3

10
g2

1g
2
2 −

(
3

4
− cos2 2β

6

)
g4

2 . (2.9)

Concerning the other terms in eq. (2.8), ∆λ1`, φ is the one-loop threshold correction arising

when we integrate out the heavy scalars; ∆λ1`, χ1
and ∆λ1`, χ2

are corrections arising when

we integrate out the higgsinos and the electroweak (EW) gauginos; finally, ∆λ2` contains

the dominant two-loop correction from diagrams involving stop squarks, which will be

described in the next subsection.

Neglecting all Yukawa couplings except the top coupling gt, the one-loop scalar con-

tribution to the threshold correction to λ(m̃) is1

(4π)2 ∆λ1`, φ = 3g2
t

[
g2
t +

1

2

(
g2

2 −
g2

1

5

)
cos 2β

]
ln
m2
Q3

m̃2
+ 3g2

t

[
g2
t +

2

5
g2

1 cos 2β

]
ln
m2
U3

m̃2

+
cos2 2β

300

3∑
i=1

[
3
(
g4

1 + 25g4
2

)
ln
m2
Qi

m̃2
+ 24g4

1 ln
m2
Ui

m̃2
+ 6g4

1 ln
m2
Di

m̃2

1As will be explained in section 2.3, consistency with our calculation of the dominant two-loop correction

∆λ2` requires that the terms of O(g4t ) in eq. (2.10) be expressed in terms of the MS-renormalized top Yukawa

coupling of the low-energy theory and of the DR-renormalized stop masses and mixing.
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+
(
9g4

1 + 25g4
2

)
ln
m2
Li

m̃2
+ 18g4

1 ln
m2
Ei

m̃2

]
+

1

4800

[
261g4

1 + 630g2
1g

2
2 + 1325g4

2 − 4 cos 4β
(
9g4

1 + 90g2
1g

2
2 + 175g4

2

)
− 9 cos 8β

(
3g2

1 + 5g2
2

)2 ]
ln
m2
A

m̃2
− 3

16

(
3

5
g2

1 + g2
2

)2

sin2 4β

+6g4
t X̃t

[
F̃1(xQU)−

X̃t

12
F̃2(xQU)

]
+

3

4
g2
t X̃t cos 2β

[
3

5
g2

1F̃3(xQU)+g2
2F̃4(xQU)

]
−1

4
g2
t X̃t cos2 2β

(
3

5
g2

1 + g2
2

)
F̃5 (xQU) . (2.10)

Here: mLi , mEi , mQi , mUi and mDi are the soft SUSY-breaking masses for the sfermions

of the i-th generation; X̃t ≡ X2
t /(mQ3mU3) , where Xt = At − µ cotβ and At is the soft

SUSY-breaking Higgs-stop coupling; xQU ≡ mQ3/mU3 ; the loop functions F̃i are defined

in appendix A, eq. (A.1a).

The first, second and third lines of eq. (2.10) contain threshold corrections arising

when the squarks and sleptons are integrated out of the theory (including the contribu-

tions due to the redefinition of the gauge couplings); the fourth and fifth lines contain

the corresponding contribution of the heavy Higgs doublet; the last two lines contain the

corrections controlled by X̃t .2

Finally, we give the one-loop higgsino-gaugino contributions to the matching condition

for λ(m̃). The first one, containing the proper threshold corrections to the quartic coupling,

was given in ref. [6] in terms of the effective couplings of Split SUSY:

(4π)2 ∆λ1`, χ1
=

1

2
β̃λ ln

µ2

m̃2
+

[
− 7

12
f1(r1)

(
g̃4

1d + g̃4
1u

)
− 9

4
f2(r2)

(
g̃4

2d + g̃4
2u

)
−3

2
f3(r1)g̃2

1dg̃
2
1u −

7

2
f4(r2)g̃2

2dg̃
2
2u −

8

3
f5(r1, r2)g̃1dg̃1ug̃2dg̃2u

−7

6
f6(r1, r2)

(
g̃2

1dg̃
2
2d + g̃2

1ug̃
2
2u

)
− 1

6
f7(r1, r2)

(
g̃2

1dg̃
2
2u + g̃2

1ug̃
2
2d

)
−4

3
f8(r1, r2) (g̃1dg̃2u + g̃1ug̃2d) (g̃1dg̃2d + g̃1ug̃2u)

+
2

3
f (r1) g̃1dg̃1u

[
λ− 2

(
g̃2

1d + g̃2
1u

)]
+ 2f (r2) g̃2dg̃2u

[
λ− 2

(
g̃2

2d + g̃2
2u

)]
+

1

3
g (r1)λ

(
g̃2

1d + g̃2
1u

)
+ g (r2) λ

(
g̃2

2d + g̃2
2u

) ]
, (2.11)

2Note that the result in eq. (2.10) corrects both eq. (2.6) of ref. [5] and eq. (7) of ref. [6]. In the former,

a common mass MS was assumed for all of the heavy scalars, therefore most of the terms appearing in our

eq. (2.10) vanish. However, a factor −cos 2β was omitted in the contribution proportional to h2
t (g2 + g′ 2),

and the non-vanishing terms in the fifth and in the last lines of our eq. (2.10) were missed. Concerning

eq. (7) of ref. [6], the heavy-Higgs contribution — see the fourth and fifth lines of our eq. (2.10) — was

incorrect, and the term in the last line, arising from the diagonal WFR of the external legs, was missed.

Further discrepancies between our eq. (2.10) and eq. (7) of ref. [6] are due to the fact that the latter was

computed under the assumption that the tree-level part of the matching condition is expressed in terms of

the MS-renormalized gauge couplings of the MSSM, as opposed to those of the low-energy effective theory.
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where ri ≡Mi/µ, and

β̃λ = 2λ
(
g̃2

1d + g̃2
1u + 3g̃2

2d + 3g̃2
2u

)
− g̃4

1d − g̃4
1u − 5g̃4

2d − 5g̃4
2u

−4g̃1dg̃1ug̃2dg̃2u − 2
(
g̃2

1d + g̃2
2u

) (
g̃2

1u + g̃2
2d

)
(2.12)

is the Split-SUSY contribution to the one-loop beta function of λ. The functions fi, f and g

are defined in appendix A, eq. (A.3a). In the case of High-Scale SUSY, the quartic coupling

λ and the effective higgs-higgsino-gaugino couplings entering eq. (2.11) must be expressed

in terms of the gauge couplings and of the angle β by means of eqs. (2.3) and (2.5).

The second higgsino-gaugino contribution to λ(m̃),

(4π)2 ∆λ1`, χ2
= − 1

6
cos2 2β

[
2 g4

2 ln
M2

2

m̃2
+

(
9

25
g4

1 + g4
2

)
ln
µ2

m̃2

]
, (2.13)

arises from the fact that in High-Scale SUSY the tree-level part of the matching condition

for λ in eq. (2.8) is expressed in terms of the gauge couplings of the SM.3

In the Split-SUSY setup, the higgsino-gaugino contributions are removed from the

matching condition for λ(m̃), eq. (2.8), and the tree-level part of the matching condition is

expressed in terms of the gauge couplings of Split SUSY. However, ∆λ1`, χ1
reappears as a

threshold correction at the lower scale msplit where the Split-SUSY lagrangian is matched

to the SM lagrangian:

λSM(msplit) = λsplit(msplit) + ∆λ1`, χ1
. (2.14)

We remark that this procedure neglects effects suppressed by inverse powers of the

superparticle masses, and is therefore accurate only if there is some hierarchy between the

masses of higgsinos and gauginos and the weak scale. Full one-loop results for the chargino-

neutralino contributions to the Higgs mass in Split SUSY were provided in refs. [5, 11].

We also recall that, in Split SUSY, the soft SUSY-breaking parameter At is suppressed

by the same symmetry that keeps µ and the gaugino masses smaller than the scalar masses.

Therefore, the terms proportional to X̃t in the last two lines of eq. (2.10) become negligible.

Threshold corrections to the Split-SUSY couplings. In the Split-SUSY scenario

one also needs to generalize the tree-level expressions of eq. (2.5) for the Higgs-higgsino-

gaugino couplings at the scale m̃ adding the one-loop threshold corrections. We find:

g̃2u

g2 sinβ
= 1 +

1

(4π)2

{
− g2

2

(
2

3
+

11

16
cos2 β

)
+

3g2
1

80
(−2 + 7 cos2 β) +

9 g2
t

4 sin2 β

+
20g2

2 + 3(−9g2
1 + 35g2

2) cos2 β

120
ln
m2
A

m̃2
+
g2

2

6

3∑
i=1

ln
m2
Li

m̃2

+
g2

2

2

3∑
i=1

ln
m2
Qi

m̃2
− 3

4

g2
t

sin2 β

[
3 ln

m2
Q3

m̃2
− ln

m2
U3

m̃2

]}
, (2.15)

3This contribution is not included in eq. (7) of ref. [6], due to the different definition adopted in that

paper for the gauge couplings entering the tree-level matching condition for λ.
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g̃2d

g2 cosβ
= 1 +

1

(4π)2

{
− g2

2

(
2

3
+

11

16
sin2 β

)
+

3g2
1

80
(−2 + 7 sin2 β) +

g2
2

2

3∑
i=1

ln
m2
Qi

m̃2

+
20g2

2 + 3(−9g2
1 + 35g2

2) sin2 β

120
ln
m2
A

m̃2
+
g2

2

6

3∑
i=1

ln
m2
Li

m̃2

}
, (2.16)

g̃1u√
3/5 g1 sinβ

= 1 +
1

(4π)2

{
3g2

2

16
(−2 + 7 cos2 β) +

3g2
1

80
(−44 + 7 cos2 β) +

9 g2
t

4 sin2 β

+
4g2

1 − 9(g2
1 + 5g2

2) cos2 β

40
ln
m2
A

m̃2
+
g2

1

10

3∑
i=1

[
ln
m2
Li

m̃2
+ 2 ln

m2
Ei

m̃2

]

+
g2

1

30

3∑
i=1

[
ln
m2
Qi

m̃2
+ 8 ln

m2
Ui

m̃2
+ 2 ln

m2
Di

m̃2

]

+
g2
t

4 sin2 β

(
7 ln

m2
Q3

m̃2
− 13 ln

m2
U3

m̃2

)}
, (2.17)

g̃1d√
3/5 g1 cosβ

= 1 +
1

(4π)2

{
3g2

2

16
(−2 + 7 sin2 β) +

3g2
1

80
(−44 + 7 sin2 β)

+
4g2

1 − 9(g2
1 + 5g2

2) sin2 β

40
ln
m2
A

m̃2
+
g2

1

10

3∑
i=1

[
ln
m2
Li

m̃2
+ 2 ln

m2
Ei

m̃2

]

+
g2

1

30

3∑
i=1

[
ln
m2
Qi

m̃2
+ 8 ln

m2
Ui

m̃2
+ 2 ln

m2
Di

m̃2

]}
. (2.18)

In the equations above we assume that the tree-level part of the matching conditions

is expressed in terms of the MS-renormalized couplings of Split SUSY, and that the angle

β is renormalized according to the prescription in eq. (2.7). Note that the non-logarithmic

terms proportional to g2
t in eqs. (2.15) and (2.17) and those proportional to g2

1 and g2
2 in

eqs. (2.17) and (2.18) differ from the corresponding terms in eq. (11) of ref. [6], which was

based on the results of ref. [12]. The discrepancies can be traced back to the fact that the

renormalization of the angle β was neglected in ref. [12], and to a mistake in eqs. (B.1) and

(B.3) of that paper.

Threshold corrections to the gauge couplings. Finally, we report the one-loop

matching conditions between the MS-renormalized gauge and Yukawa couplings of the

effective theory valid below the SUSY scale, g1,2,3 and gt, and the corresponding DR-

renormalized couplings of the MSSM, which we denote by ĝ1,2,3 and ŷt = ĝt/ sinβ.4 Such

corrections are not needed for studying the Higgs mass prediction, but they are needed for

studying issues that involve the running couplings at large energy — for example gauge

coupling unification or the evolution of the soft parameters above the matching scale m̃.

In the High-Scale SUSY scenario, where gauginos and higgsinos are integrated out

at the scale m̃ together with the heavy scalars, the threshold corrections to the gauge

4We can neglect the bottom Yukawa coupling because the observed value of the Higgs mass suggests a

small tanβ if the SUSY scale is large, so that ŷb = ĝb/ cosβ cannot be enhanced by a large tanβ.
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couplings are well known:

ĝ1(m̃) = g1(m̃) +
3

5

g3
1

16π2

[
−1

3
ln
µ2

m̃2
− 1

12
ln
m2
A

m̃2
− 1

12

3∑
i=1

(
ln
m2
Li

m̃2
+ 2 ln

m2
Ei

m̃2

)

− 1

36

3∑
i=1

(
ln
m2
Qi

m̃2
+ 8 ln

m2
Ui

m̃2
+ 2 ln

m2
Di

m̃2

)]
, (2.19)

ĝ2(m̃) = g2(m̃) +
g3

2

16π2

[
1

3
− 2

3
ln
M2

2

m̃2
− 1

3
ln
µ2

m̃2
− 1

12
ln
m2
A

m̃2

− 1

12

3∑
i=1

(
3 ln

m2
Qi

m̃2
+ ln

m2
Li

m̃2

)]
, (2.20)

ĝ3(m̃) = g3(m̃)+
g3

3

16π2

[
1

2
−ln

M2
3

m̃2
− 1

12

3∑
i=1

(
2 ln

m2
Qi

m̃2
+ln

m2
Ui

m̃2
+ln

m2
Di

m̃2

)]
. (2.21)

The non-logarithmic terms in eqs. (2.20) and (2.21) account for the MS – DR conversion of

g2 and g3.

In the Split-SUSY scenario the logarithmic terms involving the higgsino and gaugino

masses µ, M2 and M3 must be removed from eqs. (2.19)–(2.21), and they reappear at the

Split-SUSY scale as threshold corrections between the gauge couplings of Split SUSY and

the corresponding couplings of the SM (both defined in the MS scheme).

Threshold corrections to the top Yukawa coupling. The one-loop relation between

the DR-renormalized top Yukawa coupling of the MSSM and the MS-renormalized coupling

of the effective theory valid below m̃ involves a contribution arising from the MS – DR

conversion, one arising from corrections involving the heavy scalars, and one arising from

corrections involving only higgsinos and gauginos:

ŷt(m̃) =
gt(m̃)

sinβ

(
1 + ∆greg

t + ∆gφt + ∆gχt

)
, (2.22)

where the angle β entering the tree-level part of the relation is renormalized according to

the prescription in eq. (2.7). We find:

(4π)2 ∆greg
t =

g2
1

120
+

3 g2
2

8
− 4 g2

3

3
, (2.23)

(4π)2 ∆gφt = − 4

3
g2

3

[
ln
M2

3

m̃2
+ F̃6

(
mQ3

M3

)
+ F̃6

(
mU3

M3

)
− Xt

M3
F̃9

(
mQ3

M3
,
mU3

M3

)]
− g2

2

[
3

8
ln
M2

2

m̃2
− 3

2
ln
µ2

m̃2
+

3

4
F̃6

(
mQ3

M2

)
− 3

4
F̃8

(
mQ3

µ
,
M2

µ

)
− 3

4

M2

µ
cotβ F̃9

(
mQ3

µ
,
M2

µ

)]
−3

5
g2

1

[
17

72
ln
M2

1

m̃2
− 1

2
ln
µ2

m̃2
+

1

36
F̃6

(
mQ3

M1

)
+

4

9
F̃6

(
mU3

M1

)
+

1

12
F̃8

(
mQ3

µ
,
M1

µ

)
− 1

3
F̃8

(
mU3

µ
,
M1

µ

)
− Xt

9M1
F̃9

(
mQ3

M1
,
mU3

M1

)
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+
M1 cotβ

12µ
F̃9

(
mQ3

µ
,
M1

µ

)
− M1 cotβ

3µ
F̃9

(
mU3

µ
,
M1

µ

)]
−g2

t

[
3

4 sin2 β
ln
µ2

m̃2
+

3

8
cot2 β

(
2 ln

m2
A

m̃2
− 1

)
− X̃t

4
F̃5

(
mQ3

mU3

)
+

1

sin2 β
F̃6

(
mQ3

µ

)
+

1

2 sin2 β
F̃6

(
mU3

µ

)]
, (2.24)

(4π)2 ∆gχt = −1

6
g̃1u g̃1d f

(
M1

µ

)
− 1

12

(
g̃2

1u + g̃2
1d

) [
g

(
M1

µ

)
+ 3 ln

µ2

m̃2

]
−1

2
g̃2u g̃2d f

(
M2

µ

)
− 1

4

(
g̃2

2u + g̃2
2d

) [
g

(
M2

µ

)
+ 3 ln

µ2

m̃2

]
, (2.25)

where all loop functions are defined in appendix A, eqs. (A.1a)–(A.3a).

Once again, in High-Scale SUSY the Higgs-higgsino-gaugino couplings entering

eq. (2.25) must be expressed in terms of the gauge couplings and of β by means of eq. (2.5).

In Split SUSY, on the other hand, the term ∆gχt must be removed from the boundary con-

dition at the scale m̃, but it enters the relation between the top Yukawa coupling of Split

SUSY and the corresponding coupling of the SM at the intermediate matching scale:5

gSM
t (msplit) = gsplit

t (msplit) (1−∆gχt ) . (2.26)

2.3 Two-loop SUSY-QCD correction to the quartic Higgs coupling

To further improve the accuracy of our prediction for the Higgs mass, we compute the

O(g2
3 g

4
t ) two-loop contribution to the matching condition for the quartic coupling of the

light Higgs. Since there are no WFR contributions to the matching condition at this

order in the couplings, the calculation can be performed entirely in the effective-potential

approach, exploiting the techniques employed in refs. [13, 14] for the calculation of the

Higgs masses in the MSSM and in the NMSSM.

The O(g2
3 g

4
t ) threshold correction to the light-Higgs quartic coupling λ at the matching

scale m̃ can be expressed as

∆λ2` =
1

2

∂4∆V 2`, t̃

∂2H†∂2H

∣∣∣∣∣
H=0

+ ∆λ2`, shift , (2.27)

where ∆V 2`, t̃ denotes the contribution to the MSSM scalar potential from two-loop dia-

grams involving the strong gauge interactions of the stop squarks,

∆V 2`, t̃=
g2

3

64π4

{
2m2

t̃1
I(m2

t̃1
,m2

t̃1
, 0) + 2L(m2

t̃1
,M2

3 ,m
2
t )− 4mtM3 s2θ I(m2

t̃1
,M2

3 ,m
2
t )

+

(
1−

s2
2θ

2

)
J(m2

t̃1
,m2

t̃1
)+

s2
2θ

2
J(m2

t̃1
,m2

t̃2
)+
[
mt̃1
↔mt̃2

, s2θ→!− s2θ

]}
, (2.28)

while ∆λ2`, shift contains additional two-loop contributions that will be described below.

The loop integrals I(x, y, z), L(x, y, z) and J(x, y) in eq. (2.28) are defined, e.g., in appendix

5Our ∆gχt corresponds to the δ̃t given in eq. (24) of ref. [6].

– 10 –



J
H
E
P
0
9
(
2
0
1
4
)
0
9
2

D of ref. [14], M3 stands for the gluino mass, mt̃1
and mt̃2

are the two stop-mass eigenstates,

and s2θ ≡ sin 2θt̃, where θt̃ denotes the stop mixing angle. The latter is related to the other

parameters by

sin 2θt̃ =
2mt (At − µ cotβ)

m2
t̃1
−m2

t̃2

. (2.29)

Since we consider scenarios in which electroweak symmetry breaking (EWSB) occurs

only along the direction of the light Higgs doublet H, the calculation of two-loop corrections

to its couplings in the effective-potential approach is considerably simplified with respect

to the MSSM and NMSSM cases. We can express mt̃1
, mt̃2

and s2θ as functions of a

field-dependent top mass mt = ĝt |H|, where ĝt = ŷt sinβ, and re-write eq. (2.27) as

∆λ2` =
ĝ4
t

2

(
2D2 + 4m2

t D3 +m4
t D4

)
∆V 2`, t̃

∣∣∣∣
mt→0

+ ∆λ2`, shift , (2.30)

where we define the operators

Di ≡
(

d

dm2
t

)i
. (2.31)

We then exploit the following relations for the derivatives of the field-dependent parameters:

dm2
t̃1,2

dm2
t

= 1± s2θ

2mt
(At − µ cotβ) ,

ds2θ

dm2
t

=
s2θ

2m2
t

(1− s2
2θ) . (2.32)

In order to obtain the limit mt → 0 in eq. (2.30) — of course, after taking derivatives

with respect to m2
t — we use eq. (2.29) to make the dependence of s2θ on mt explicit, we

expand the function Φ(m2
t̃i
,M2

3 ,m
2
t ) entering the loop integrals (see appendix D of ref. [14])

in powers of m2
t , and finally we identify mt̃1

and mt̃2
with the soft SUSY-breaking stop

masses mQ3 and mU3 . It turns out that the combination of derivatives of ∆V 2`, t̃ in the

right-hand side of eq. (2.30) contains terms proportional to ln(m2
t /m̃

2), which diverge for

mt → 0. However, we must take into account that above the matching scale m̃ the one-loop

contribution to λ from the box diagram with a top quark,

δλg
4
t , t = − 3 ĝ4

t

16π2

(
2 ln

m2
t

m̃2
+ 3

)
, (2.33)

is expressed in terms of the top Yukawa coupling of the MSSM, ĝt, whereas below m̃ the

same contribution is expressed in terms of the corresponding coupling of the low-energy

theory, gt. Being present both above and below the matching scale, δλg
4
t , t does not affect

the one-loop threshold correction to λ. However, to compute the matching condition at the

two-loop level we must re-express the MSSM coupling entering δλg
4
t , t above m̃ (including

the coupling implicit in m2
t ) according to ĝt → gt (1 + ∆g

φ, g2s
t ) , where ∆g

φ, g2s
t denotes the

terms proportional to g2
s in eq. (2.24). This induces a two-loop contribution to ∆λ2` which

cancels out the terms proportional to ln(m2
t /m̃

2) in the derivatives of the effective potential.

In addition, we re-express the MSSM coupling entering the terms proportional to ĝ4
t in the

one-loop stop contribution to λ, see eq. (2.10), according to ĝt → gt (1+∆g
φ, g2s
t +∆g

ren, g2s
t ) .

The correction ∆g
ren, g2s
t denotes the term proportional to g2

s in eq. (2.23), and accounts
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for the fact that we renormalize the couplings of the low-energy theory in the MS scheme,

while the effective-potential calculation of the two-loop contributions to λ was performed

in the DR scheme. The combined effect of these shifts is the term denoted as ∆λ2`, shift in

eqs. (2.27) and (2.30). Note that the DR – MS redefinition of the Yukawa coupling in the

one-loop top contribution δλg
4
t , t has the same effect above and below the matching scale,

therefore it does not contribute to ∆λ2`, shift.

It is interesting to remark that the two-loop contributions arising from the operators D3

and D4 in eq. (2.30) cancel out completely against the shift induced when the corresponding

contributions in the one-loop part — in practice, the non-logarithmic term in δλg
4
t , t, see

eq. (2.33) — are expressed in terms of the top Yukawa coupling of the low-energy theory.

Consequently, the final result for ∆λ2` originates only from the operator D2, and is therefore

proportional to the stop contribution to the O(g2
3 g

2
t m

2
t ) correction to the light-Higgs mass

in the MSSM. This “decoupling” property of the two-loop SUSY contribution to the light-

Higgs quartic coupling was also noted, in a slightly different context, in ref. [15].

In the Split-SUSY case, we can take the limit of vanishing gluino mass in the two-loop

correction to the Higgs quartic coupling. We obtain6

∆λ2` = − g
2
3 g

4
t

32π4

{
3 + 4 lnxQU + 8 ln2 xQU + 6 ln2

m2
Q3

m̃2
− 4 (1 + 3 lnxQU) ln

m2
Q3

m̃2

+ X̃t

[
12xQU lnxQU
x2
QU − 1

(
2 ln

m2
Q3

m̃2
− 1

)
−

16xQU (x2
QU − 2) ln2 xQU

(x2
QU − 1)2

]

+ X̃2
t

[
6x2

QU (5 + x2
QU) lnxQU

(x2
QU − 1)3

+
4x2

QU (x4
QU − 4x2

QU − 5) ln2 xQU

(x2
QU − 1)4

−
10x2

QU

(x2
QU−1)2

+
12x2

QU

(x2
QU−1)2

(
1−

x2
QU+1

x2
QU−1

lnxQU

)
ln
m2
Q3

m̃2

]}
, (2.34)

which for equal stop masses mQ3 = mU3 = m̃ reduces to

∆λ2` = − g2
3 g

4
t

32π4

[
3− 2 X̃t +

X̃2
t

6

]
. (2.35)

In the case of High-Scale SUSY, on the other hand, we cannot consider the gluino mass

much smaller than the stop masses. The formula for ∆λ2`,HSS with full dependence on M3,

mQ3 and mU3 is lengthy and not particularly illuminating, but in the limit M3 = mQ3 =

mU3 = m̃ it simplifies to

∆λ2`,HSS =
g2

3 g
4
t

96π4

[
−12

Xt

m̃
− 6

X2
t

m̃2
+ 14

X3
t

m̃3
+

1

2

X4
t

m̃4
− X5

t

m̃5

]
, (2.36)

It is easy to check that, consistently with the “decoupling” behavior discussed above, the

O(g2
3 g

4
t ) threshold correction to the light-Higgs quartic coupling in eq. (2.36) could be

recovered directly from the known results for the O(g2
3 g

2
t m

2
t ) correction to the light-Higgs

6We henceforth drop the distinction between ĝt and gt in ∆λ2`, because it amounts to a higher-order

effect.
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mass. In particular, it is sufficient to subtract the top-quark contribution given, e.g., in

eq. (20) of ref. [16] from the full MSSM correction given, e.g., in eq. (21) of ref. [17] (in the

latter it is also necessary to transform the DR top mass of the MSSM, denoted by mt, into

the MS top mass of the SM, denoted by mt).

3 The Higgs mass and supersymmetry

3.1 Quasi-natural SUSY

In “quasi-natural” supersymmetry all superparticles have masses m̃ in the range between

a few to tens of TeV. A combination of SUSY-breaking parameters must be fine-tuned at

1 part in (m̃/MZ)2 in order to achieve the correct Z-boson mass. In such scenarios, a

fixed-order calculation of the MSSM prediction for the Higgs mass is no longer accurate,

because corrections enhanced by ln(m̃/MZ) must be resummed. This can be done with

the strategy of ref. [6], including now higher-order corrections:

1. We assume that physics at the weak scale is described by the SM, and extract from

data the MS-renormalized parameters with two-loop precision in all couplings, adopt-

ing the results of [4].7

2. We evolve the SM parameters from the weak scale up to the SUSY scale m̃ using the

known RGEs of the SM at three loops.

3. At m̃ we equate the quartic Higgs coupling λ with its supersymmetric prediction,

as computed in section 2 including all superparticle thresholds at one loop, and the

QCD superparticle thresholds at two loops.

Depending on the specific analysis being performed, the third step either determines

one of the SUSY parameters (e.g., tanβ) at the scale m̃ or determines the physical Higgs

mass corresponding to a given set of SUSY parameters (in this case, the input Higgs mass

in the first step is varied until the value of λ(m̃) obtained by RG evolution matches the

SUSY prediction).

In figure 1 we consider a simplified scenario with tanβ = 20 and a degenerate super-

particle spectrum (i.e., all SUSY mass parameters, including mA and µ, equal to a common

mass m̃), and show the Higgs mass as a function of m̃. For a given value of m̃, we vary the

stop mixing parameter Xt = At − µ cotβ to obtain the minimal (red lines) and maximal

(blue lines) values of the Higgs mass. The former are obtained in the vicinity of Xt = 0,

and the latter in the vicinity of Xt =
√

6 m̃, i.e., the value that maximizes the dominant

O(g4
t ) threshold correction to λ(m̃) in eq. (2.10). In both the minimal- and maximal-mixing

cases, the solid line includes the effect of the two-loop SUSY-QCD corrections to λ(m̃) de-

scribed in section 2.3, while the dashed line does not include it. The bands around the solid

lines represent the parametric uncertainty of the prediction for the Higgs mass, obtained

by varying the pole top mass and the strong gauge coupling within their 1σ experimental

7Three-loop QCD corrections to gt and to λ are also partially available and confirm the estimated

higher-order uncertainties.
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Figure 1. The Higgs mass as a function of the SUSY scale, with a degenerate spectrum of

superparticles and tanβ = 20. We vary the stop mixing parameter Xt in such a way as to obtain

minimal Mh (red lines) and maximal Mh (blue lines). The solid (dashed) lines include (neglect)

the effect of the two-loop SUSY-QCD corrections to λ. The solid and dashed red lines overlap. The

red and blue bands around the solid lines indicate the uncertainty associated to the measurement

of the SM input parameters. The green band indicates the measured Higgs mass.

uncertainty, Mt = 173.34 ± 0.76 GeV [18] and α3(MZ) = 0.1184 ± 0.0007 [19]. The green

horizontal band indicates the measured value for the Higgs mass, M exp
h = 125.15±0.25 GeV,

obtained from a naive average of the ATLAS and CMS results [1–3].

The figure suggests that, for moderately large tanβ and degenerate SUSY masses, a

value of m̃ around 2 TeV is needed to predict a Higgs mass compatible with the experimental

result, as long as the Higgs-stop coupling Xt is adjusted to maximize the correction. In

the case of vanishing Xt, on the other hand, SUSY masses greater than 10 TeV are needed.

In both cases, a wider range of values of m̃ becomes acceptable when the experimental

uncertainty of Mt and α3 is taken into account. Lowering tanβ would reduce the tree-level

part of the boundary condition for λ, requiring even larger SUSY masses.

The comparison between the solid and dashed blue lines in figure 1 shows that, for large

Xt, the two-loopO(g2
3 g

4
t ) corrections to λ(m̃) can increase the Higgs mass by up to 1 GeV at

low m̃, but their effect is reduced as m̃ gets larger (indeed, both gt and g3 decrease at higher

scales). On the other hand, eq. (2.36) shows that those corrections vanish for Xt = 0 and

degenerate SUSY masses. Consequently, the solid and dashed red lines overlap in the figure.

Comparison with other recent computations. It is useful to compare our results for

the Higgs mass with those in two recent papers [20, 21] where the importance of resumming
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the large logarithms in heavy-SUSY scenarios was emphasized.8 The renormalization-group

(RG) calculation in ref. [20] is conceptually similar to ours, although the SM relation be-

tween the running quartic coupling and the pole Higgs mass in step 1 is computed only at

one loop, and two-loop terms of O(g6
t ), which we neglect, are included in the SUSY correc-

tion to λ(m̃) in step 3. Ref. [21], on the other hand, combines the “diagrammatic” calcula-

tion of the MSSM Higgs masses implemented in the code FeynHiggs [23] — which includes

full one-loop [24] plus dominant two-loop [13, 25–30] corrections — with a resummation of

the leading and next-to-leading logarithmic terms controlled exclusively by gt and g3.

We again focus on a simplified scenario with heavy and degenerate SUSY masses, m̃ =

10 TeV, and take Xt = 0 and tanβ = 20. Fixing the SM input parameters to their central

values, we find Mh = 123.6 GeV, which should be compared to the value Mh = 123.2 GeV

in the upper-left plot of figure 1 in ref. [20], and to the value Mh = 126.5 GeV obtained with

the version of FeynHiggs described in ref. [21].9 While the agreement between our result

and the one of ref. [20] appears satisfactory in view of the small differences between the

two RG calculations, the ∼3 GeV discrepancy with the “hybrid” (i.e., diagrammatic+RG)

calculation of ref. [21] deserves further discussion.

A decade ago, the theoretical uncertainty of partial two-loop calculations of the MSSM

Higgs mass such as the one implemented in FeynHiggs was indeed estimated to be of the

order of 3 GeV [32, 33]. However, that estimate was developed for fixed-order calculations

in what were then considered natural regions of the MSSM parameter space, and it does

not necessarily apply to RG calculations in heavy-SUSY scenarios. A realistic assessment

of the theoretical uncertainty of our Higgs-mass calculation should take into account three

sources of uncertainty: the first are missing higher-order terms in the SM computations

of steps 1 and 2, which were estimated in ref. [4] to induce an uncertainty of ±0.2 GeV in

the Higgs mass. The second are missing higher-order corrections in the SUSY thresholds

of step 3: by varying the matching scale by a factor of 2 around m̃, we estimate that

these missing corrections induce an uncertainty of ±0.5 GeV in the Higgs mass. Indeed,

we would not expect their effect to be much larger than the one of the known two-loop

O(g2
3 g

4
t ) corrections, which, even for large stop mixing, shift the Higgs mass by at most

0.4 GeV in the scenario with SUSY masses all equal to m̃ = 10 TeV. Finally, a third source

of uncertainty are effects suppressed by powers of v2/m̃2 and by a loop factor, which arise

because in steps 1 and 2 we employ the SM as an effective theory, thus neglecting heavy-

superparticle effects in the determination of the running couplings, and because in step 3

we neglect the effects of EWSB when matching the MSSM couplings onto the SM ones.

Of course, the relevance of O(v2/m̃2) effects decreases for increasing superparticle masses:

we estimate that for m̃ = 10 TeV the uncertainty in the Higgs mass induced by those

effects is already negligible. Putting all together, the theoretical uncertainty of our result

for the Higgs mass in the point with m̃ = 10 TeV, Xt = 0 and tanβ = 20 should not be

8An earlier study of heavy-SUSY scenarios, ref. [22], neglected the resummation of large logarithms,

thus overestimating the Higgs mass by more than 10 GeV for stop masses around 10 TeV.
9To perform the comparison, we converted the DR input parameters m̃ and Xt to the “on-shell” scheme

adopted by FeynHiggs, using results from ref. [31]. However, in this point the effect of the conversion on

the Higgs mass amounts only to a few hundred MeV.
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larger than ±1 GeV, which makes it incompatible with the corresponding result of ref. [21].

The observed 3-GeV discrepancy might be explained by the fact that the resummation

procedure in ref. [21] covers only a subset of the leading and next-to-leading ln(m̃/Mt)

effects, thus the calculation of the Higgs mass is still affected by residual large logarithms

(e.g., those controlled by the electroweak gauge couplings).

Of course, the impact of the second and third sources of uncertainty discussed above

depends strongly on the considered point in the MSSM parameter space. Higher-order

effects in the threshold corrections at the matching scale might become more relevant for

non-degenerate SUSY masses or for lower m̃ (where the couplings gt and g3 are larger).

Also, the effects suppressed by the superparticle masses become obviously larger for lower

m̃. In particular, for SUSY mass parameters all equal to m̃ = 1 TeV we can expect the

RG resummation to play a lesser role in the accuracy of the Higgs-mass calculation,

while the corrections that we neglect become more relevant. Taking again tanβ = 20

and varying Xt, we find a maximal Higgs mass Mmax
h ≈ 123 GeV in this scenario

(see the “maximal mixing” line on the left edge of figure 1). In contrast, FeynHiggs

predicts Mmax
h ≈ 129 − 131 GeV (depending on the code’s settings), while codes such as

SoftSusy [34, 35], SuSpect [36] and SPheno [37, 38], which compute the mass spectrum

of the MSSM including the full one-loop and dominant two-loop corrections to the Higgs

masses in the DR scheme,10 predict Mmax
h ≈ 124.5 − 126.5 GeV. Such a spread in the

Higgs-mass predictions — in a scenario where there is no obvious argument to favor one

calculational approach over the others — points to a large theoretical uncertainty, and to

the need of improving the calculation with the inclusion of higher-order effects.

3.2 High-Scale SUSY

In High-Scale SUSY, all supersymmetric masses lie around the same scale m̃, which can

be much larger than the weak scale. The measured Higgs mass M exp
h = 125.15± 0.25 GeV

is reproduced in a band of the (m̃, tanβ) plane, as discussed in ref. [6] (see also refs. [16,

20, 39–44]). Here we update the analysis of ref. [6], including our improved calculation of

the supersymmetric threshold corrections discussed in section 2.

The left plot in figure 2 shows our updated result. We assume a degenerate spectrum

with all superparticle masses set equal to m̃, and plot our prediction for the Higgs mass

Mh as function of m̃ for tanβ = {1, 2, 4, 50}, varying the soft SUSY-breaking Higgs-stop

coupling At in order to minimize or maximize Mh. We also plot the uncertainty on the

prediction for Mh induced by the experimental uncertainty on the SM input parameters

Mt and α3(MZ). The plot shows that, even allowing for a 1σ reduction in the pole top

mass, the measured value of the Higgs mass cannot be reproduced in this simplified

scenario if the common SUSY scale m̃ is larger than roughly 3× 1011 GeV. However, this

upper bound on m̃ is very sensitive to the top mass and completely evaporates if Mt is

reduced within its 3σ range.

Next, we consider non-degenerate superparticle spectra. Given that superparticle

masses are unknown, we randomly scan over them, varying independently the mass

10While these three codes implement the same corrections to the Higgs masses, they differ in the deter-

mination of the running couplings.
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Figure 2. Left: the Higgs mass as a function of the SUSY scale m̃, with a degenerate spectrum of

superparticles. We vary the Higgs-stop coupling At in such a way as to obtain minimal Mh (lower

lines) and maximal Mh (upper lines) at fixed tanβ = {1, 2, 4, 50}. The bands around the extremal

solid lines are obtained from 1σ variations of α3(MZ) (thinner band in gray) and Mt (larger band

in color). The green horizontal band indicates the measured Higgs mass. Right: same as in the left

plot, for a split spectrum with gaugino and higgsino masses set to 1 TeV and with At = 0.

Figure 3. Variation in the prediction for Mh in High-Scale SUSY from random scanning each

superparticle mass parameter M1,M2,M3, mQi
,mUi

,mDi
,mEi

,mLi
and µ up to a factor 3 above

or below the scale m̃, and the Higgs-stop coupling At within the range allowed by vacuum stability.

The darker (red) band shows the variation due only to At.
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Figure 4. Left: regions in the (m̃, tanβ) plane that reproduce the observed Higgs mass for High-

Scale SUSY. The black solid line gives the prediction for Xt = 0, mass-degenerate superparticles,

and central values for the SM parameters. The light-blue band shows the effect of superparticle

thresholds by varying the supersymmetric parameters M1,M2,M3, mQi
,mUi

,mDi
,mEi

, mLi
and

µ randomly by up to a factor 3 above or below the scale m̃, and At within the range allowed by

vacuum stability. The dark-blue band corresponds to mass-degenerate superparticles, but includes

a 1σ variation in Mt. Right: same as the left plot for the case of Split SUSY. The gaugino and

higgsino masses are all set to 1 TeV, and At = 0. The dot-dashed curve corresponds to the EW

tuning condition in the case of universal scalar masses at the GUT scale.

parameters M1, M2, M3, mQi ,mUi ,mDi ,mEi ,mLi (distinguishing the third generation

from the other two) and µ between m̃/3 and 3 m̃, and the Higgs-stop coupling At within

the range allowed by vacuum stability (see next subsection). Figure 3 shows the induced

variation in Mh with respect to the prediction obtained with degenerate superparticles at a

given mass m̃, and with tanβ and At adjusted so that Xt = 0 and Mh = 125.15 GeV (this

restricts our scan to the range 104 GeV . m̃ . 1010 GeV, where the measured value of

the Higgs mass can be reproduced with central values of the SM input parameters). The

darker (red) region in figure 3 denotes the effect of varying only At. The variation in Mh is

maximal (≈ 10 GeV) in the case of quasi-natural SUSY, m̃ ≈ 104 GeV, where gt and g3 are

large and induce sizable threshold corrections. The variation in Mh rapidly decreases with

increasing m̃, going down to about 2–3 GeV at the scale m̃ ≈ 1010 GeV. This shows that

the prediction of Mh becomes more robust against unknown supersymmetric threshold

corrections as one considers larger values of m̃.

Finally, the left plot in figure 4 shows the region in the (m̃, tanβ) plane where the mea-

sured Higgs mass is reproduced in High-Scale SUSY. The solid black curve is the prediction

obtained with Xt = 0 and exact mass degeneracy at the scale m̃ of all supersymmetric par-

ticles, assuming central values of the SM input parameters Mh,Mt and α3(MZ). The effect

of a 1σ variation of the top pole mass is illustrated by the dark blue band. At low tanβ,

corresponding to large m̃, the variation of Mt strongly affects m̃. This is mainly because,
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as shown in figure 2, the dependence of Mh on m̃ becomes rather flat in High-Scale SUSY

when m̃ & 109 GeV. Therefore, a small change in Mh implies a large change in m̃. The

light blue band shows the effect of varying independently all the supersymmetric mass pa-

rameters between m̃/3 and 3 m̃, and At within the range allowed by vacuum stability, as in

figure 3. Unlike the case of Mt, the impact of supersymmetric thresholds in the extraction

of m̃ does not show a strong dependence on m̃ itself. This is due an approximate cancella-

tion between two opposing effects: on one hand, as mentioned above, at large m̃ any change

in the prediction of Mh (whether from Mt or from supersymmetric thresholds) has an am-

plified impact on the determination of m̃. On the other hand, supersymmetric thresholds

are smaller at large m̃ (see figure 3). The two effects nearly compensate each other, and the

impact of supersymmetric thresholds on the light-blue band in figure 4 is fairly uniform.

The left plot in figure 4 shows again how the Higgs mass measurement implies an upper

bound on m̃ of about 2 × 1010 GeV in High-Scale SUSY with degenerate supersymmetric

masses and central values of the SM parameters. This bound can be raised to about

1011 GeV if the supersymmetric square masses differ by about one order of magnitude. So

it is difficult for supersymmetric thresholds to raise the bound up to the Planck (or GUT)

scale, unless, as previously noticed, Mt is 3σ below its central value.

As a side remark we note that, in the region of interest, the MSSM top Yukawa coupling

yt always remains perturbative. The condition that there are no Landau poles below the

Planck scale implies m̃ & 107 GeV for tanβ = 1. This constraint is easily satisfied by the

band in the left plot of figure 4.

Vacuum stability in High-Scale SUSY. Our scans of the SUSY parameter space are

restricted to spectra that satisfy the vacuum stability condition. This is an important issue,

because this condition eliminates spurious corrections that could reduce the Higgs mass

when the parameter X̃t = (At−µ cotβ)2/mQ3mU3 is larger than about 12. The well-known

bounds valid in the case of natural SUSY (see, e.g., ref. [45]) need to be adapted to the

case of High-Scale SUSY, where the mass term for a combination of the two MSSM Higgs

doublets almost vanishes because of the electroweak fine-tuning. In order to determine the

upper bound on X̃t, let us consider the scalar potential for the stop-Higgs system

V = m2
Q3
|Q̃3|2 +m2

U3
|Ũ3|2 +

gt
sinβ

(
AtHuQ̃3Ũ3 + µH∗dQ̃3Ũ3 + h.c.

)
+

g2
t

sin2 β

(
|HuQ̃3|2 + |HuŨ3|2 + |Q̃3Ũ3|2

)
+ Higgs-mass terms +D-terms , (3.1)

where the appropriate SU(2)L contractions are implicit and where gt is the top Yukawa

coupling of the SM. Let us consider the potential along the direction of the approximately-

massless Higgs field H (with Hu = H sinβ, Hd = εH∗ cosβ) and along a squark direction

such that the D-terms vanish. We parameterize this D-flat direction with a real field φ,

defined by

H i
u =

φ sinβ√
2

δi2, H i
d =

φ cosβ√
2

δi1, Q̃iα3 = φ

√
| cos 2β|

2
δi1δ

α
1 , Ũα3 = φ

√
| cos 2β|

2
δα1 ,

(3.2)
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Figure 5. The minimum amount (in percent) by which the unification relation ĝ1,2,3(MG) =

ĝGUT is missed in High-Scale SUSY. The gray band is obtained by scanning supersymmetric mass

parameters by up to a factor 3 above or below the scale m̃, under the condition of reproducing the

observed Higgs mass.

where i and α are weak SU(2)L and color SU(3)c indices, respectively. The potential for φ

becomes

V = | cos 2β|
[(
m2
Q3

+m2
U3

) φ2

2
− gt√

2

(
At −

µ

tanβ

)
φ3 + g2

t

(
1− 1

4 sin2 β

)
φ4

]
. (3.3)

The requirement that the color-breaking minimum 〈φ〉 6= 0 is not deeper than the elec-

troweak minimum finally implies

X̃t =
(At − µ cotβ)2

mQ3mU3

<

(
4− 1

sin2 β

)(
mQ3

mU3

+
mU3

mQ3

)
. (3.4)

This constraint has been used to derive the bands in figure 3 and in the left plot of figure 4.

Gauge-coupling unification. Next, we investigate how supersymmetric threshold cor-

rections affect the GUT condition of gauge-coupling unification in High-Scale SUSY. We

employ our full one-loop threshold corrections to the MSSM couplings ĝ1, ĝ2, ĝ3 and ŷt in

order to compute the values of these couplings at the matching scale m̃. The couplings are

then evolved to high energy using the two-loop RGE of the MSSM. In figure 5 we show the

minimum amount (in percent) by which one coupling ĝi(MG) should be changed in order to

achieve an exact crossing ĝ1(MG) = ĝ2(MG) = ĝ3(MG) at some MG, neglecting GUT-scale

thresholds. The gray band is obtained by scanning the SUSY mass parameters by up to a

factor 3 above or below the scale m̃, and At within the range allowed by vacuum stability,

with tanβ adjusted so as to reproduce the measured value of the Higgs mass. For com-

parison, in the SM g2(MG) is larger than the value corresponding to perfect unification by

approximately 3.5%. The figure shows that in High-Scale SUSY perfect gauge-coupling uni-

fication can still be achieved as long as the SUSY scale m̃ is lower than a few times 106 GeV.
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Figure 6. Left: prediction of the SUSY-breaking scale m̃ and the value of tanβ from the EW

tuning condition and the Higgs mass, in High-Scale SUSY with universal gaugino mass m1/2 and

scalar mass m0 at the GUT scale (with A0 = 0). The prediction is plotted as a function of the

ratios m2
1/2/µ

2 and m2
0/µ

2 evaluated at the GUT scale. The lines are truncated when the vacuum-

stability condition is violated. Right: same as in the left plot, in Split SUSY with SU(5) relations

for the scalar masses. The prediction is plotted as a function of the ratios m2
Q/m

2
Hu

and m2
Hd
/m2

Hu

evaluated at the GUT scale. In the shaded region, the EW vacuum is unstable.

Tuning of the EW scale. The measurement of the Higgs mass has been a crucial

new element for all schemes of High-Scale SUSY because it provides direct information

(although blurred by the unknown parameter tanβ) on the SUSY-breaking scale m̃. More-

over, although such unnatural schemes do not provide any dynamical explanation for the

tuning of the EW scale, the very existence of the tuning condition

tan2 β =
m2
Hd

+ µ2

m2
Hu

+ µ2

∣∣∣∣∣
m̃

(3.5)

can teach us something about the pattern of SUSY breaking at energy scales much higher

than m̃.

Let us consider a simple pattern of SUSY breaking, in which the superparticle masses

at the GUT scale are described by a common gaugino mass m1/2, a common scalar mass

m0 and a higgsino mass µ (for simplicity we set the trilinear coupling A0 = 0). For

any given value of the ratios m1/2/µ and m0/µ, the measured value of the Higgs mass

and the EW tuning condition in eq. (3.5) determine both tanβ and the overall scale of

supersymmetry breaking, m̃. We show this prediction in the left plot of figure 6, taking

into account the constraint that the vacuum does not break color spontaneously. The fact

that solutions are found in most of the plane illustrates the effectiveness of radiative EWSB

in supersymmetry. We also note that the quasi-natural solution (m̃ = 103 GeV) with large

tanβ corresponds to a nearly vertical line. This is the well-known focus-point behavior,

characteristic of low-energy SUSY with universal boundary conditions. The novel result is
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that the model has a second focus point (in which the tuning condition is approximately

independent of m0) at m̃ = few× 108 GeV and low tanβ.

3.3 Split SUSY

Another interesting (albeit unnatural) pattern of SUSY breaking is given by Split

SUSY [46–48] (see also [49, 50]). The original idea employs two independent mass scales.

Scalar masses and Bµ (the mass mixing between the two scalar components of the Higgs

superfields) — which correspond to dimension-two, R-neutral operators induced by an ef-

fective D-term supersymmetry breaking — are characterized by the mass parameter m̃.

Gaugino/higgsino masses and trilinear couplings A — which correspond to dimension-

three, R-charged operators induced by an effective F -term supersymmetry breaking — are

assumed to be around the weak scale. This spectrum separation can be naturally justified

by the different operator dimensionality, by an approximate R-symmetry, or by the pat-

tern of supersymmetry breaking. On the other hand, the smallness of the Higgs vacuum

expectation value requires a fine-tuning of order v2/m̃2.

We update here the analysis of the Higgs mass in Split SUSY presented in ref. [6], by

including our improved calculation of the matching conditions at the scale m̃. The results

are shown in the plots on the right of figures 2 and 4, which are the Split-SUSY analogs of

the already-described High-Scale SUSY plots on the left of the same figures.

The right plot in figure 2 shows Mh as function of the common mass m̃ of a degenerate

scalar spectrum. We assume that gauginos and higgsinos are also degenerate with masses

M1 = M2 = M3 = µ = 1 TeV, and we show only lines corresponding to At = 0 (since in

Split SUSY At/m̃� 1).

The right plot in figure 4 shows the allowed region in the (m̃, tanβ) plane. The solid

black curve shows again the result in the mass-degenerate case described above. The light-

red band shows the broadening of the prediction as the scalar mass parameters are varied

between m̃/3 and 3 m̃. Finally, the dark-red band shows the broadening of the prediction

of Split SUSY (with universal scalar masses) as Mt is varied in its 1σ range.

The smallness of At and µ in Split SUSY implies that the stop threshold corrections to

the Higgs quartic coupling are smaller than in the case of High-Scale SUSY. For this reason,

in figure 4 the light-red band is narrower than the light-blue band, for any given tanβ. Note

also that in the case of Split SUSY the uncertainty in Mt affects the extraction of m̃ at low

tanβ less than in High-Scale SUSY (i.e., the dark-red band is narrower than the dark-blue

band near tanβ = 1). The reason is that the Higgs-mass prediction in Split SUSY (unlike

the case of High-Scale SUSY) rises markedly with m̃ in the region around Mh = 125 GeV.

The LHC data on the Higgs mass rule out the case of large m̃. In particular, m̃ is

below 100 TeV if tanβ > 4 and, for tanβ close to 1, it can only reach about 108 GeV (see

figure 4).11 The determination of m̃ can be translated into a prediction for the gluino

lifetime [52]

cτg̃ =

(
2 TeV

Mg̃

)5( m̃

107 GeV

)4

0.4 m. (3.6)

11See ref. [51] for a modified Split-SUSY scenario in which m̃ can be raised all the way up to the GUT scale.
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The Higgs-mass constraint still allows for a wide variety of gluino decay lengths at the LHC.

The mean gluino decay length can be larger than the size of the detectors (cτg̃ & 10 m) for

tanβ very close to 1, it is observable as a displaced vertex (cτg̃ & 50µm) for larger tanβ,

while for tanβ & 2 the gluino decays promptly.

It is particularly interesting to consider the implications of the EW tuning condition

in the case of Split SUSY [53, 54], because the theory at m̃ contains fewer parameters than

High-Scale SUSY. The EW tuning condition in eq. (3.5) now becomes

tan2 β =
m2
Hd

m2
Hu

∣∣∣∣∣
m̃

. (3.7)

In the simplified case in which the soft scalar masses satisfy SU(5) unification relations at

the GUT scale MG, eq. (3.7) can be expressed in terms of the two ratios of masses

rH =
m2
Hd

m2
Hu

∣∣∣∣∣
MG

, rQ =
m2
Q

m2
Hu

∣∣∣∣∣
MG

. (3.8)

Here mQ denotes the masses of the left and right stop states, which belong to the same

irreducible representation of SU(5) and thus are equal at the GUT scale. The EW tuning

condition can be expressed as [54]

tan2 β =
K̂ + ω + 2K̂rQ + (1− ω)rH

1− K̂ − ω − 2K̂rQ + ωrH
, (3.9)

where

K̂ =
sin2 β

2

[
1− g2

t (m̃)

g2
t (MG)

(
g2

3(m̃)

g2
3(MG)

)− 16
9
(
g2

2(m̃)

g2
2(MG)

)3(
g2

1(m̃)

g2
1(MG)

) 13
99

]
, (3.10)

ω =
1

22

[
1− g2

1(m̃)

g2
1(MG)

]
. (3.11)

Note that we have defined K̂ in such a way that it is independent of tanβ at the leading

order. For m̃ = MG we have K̂ = ω = 0, while for m̃ = 10 TeV we find K̂ = 0.28 and

ω = 0.024.

Furthermore, the conditions m2
Q,m

2
U > 0 (no color-breaking minima) and m2

Hu
+

m2
Hd

> 0 (stability of the EW vacuum) imply the restriction

− ω

1− ω
< rH <

(4− 9ω) tan4 β + (7− 4K̂ω − 9ω) tan2 β − 4K̂ω

3ω(1− 4K̂) tan4 β + [−3(1− ω) + K̂(1− 4ω)] tan2 β + 4(1− ω)K̂
.

(3.12)

Given the values of rH and rQ, the theory predicts both m̃ and tanβ from the Higgs

mass and the EWSB condition. Our results are shown in the right plot of figure 6. It is

remarkable that acceptable solutions are found in a region close to universality, where both

rH and rQ are of order one. A further restriction corresponds to the case rH = 1, in which

there is unification of the Higgs mass parameters, m2
Hd

= m2
Hu

, at the GUT scale. Such
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equality is not uncommon in models arising from compactified string theory [42]. Then,

the EW tuning conditions in eqs. (3.9) and (3.12) become

rQ =
(1− K̂) tan2 β − 1− K̂

2K̂(1 + tan2 β)
, tan2 β >

3− 4K̂(1 + tan−2 β)

3− 7K̂(1 + tan−2 β)
. (3.13)

The result can be read from the right plot in figure 6 along the horizontal line rH = 1.

The case of exact universality corresponds to the point with rH = rQ = 1. The EW tuning

condition now becomes

tan2 β =
1 + 3K̂

1− 3K̂
. (3.14)

The prediction for tanβ from EW tuning with universal scalars at the GUT scale in

eq. (3.14) is shown as a dot-dashed line in the right plot of figure 4. We find that exact

universality corresponds to m̃ ≈ 106 GeV and tanβ ≈ 2, for central values of the SM

parameters.

4 Mini-split with anomaly mediation

The particular range of values of m̃ determined by the Higgs-mass measurement have fueled

interest in a simple version of Split SUSY emerging from anomaly mediation [55, 56]. The

model was originally proposed in ref. [56] and its spectrum was reconsidered in refs. [46–50].

In ref. [57] it was recognized as the simplest model of Split SUSY and its connection with

dark matter was elucidated. Subsequent studies are contained in refs. [58–67].

The original motivation of mini-split with anomaly mediation is linked to the observa-

tion that gaugino masses require supersymmetry breaking through the R-charged F -term

of a chiral superfield S which must be a singlet under all gauge and global charges

Mi →
∫
d2θ

S

M∗
WiαW

α
i . (4.1)

Here Wiα (i = 1, 2, 3) is the gauge-strength chiral superfield, and M∗ is the mediation scale.

On the other hand, masses for the scalar components of chiral superfields Q are induced

by the F -term of any chiral superfield X, irrespectively of its global, gauge, or R charges,

m̃2
Q →

∫
d4θ

X†X

M2
∗

Q†Q . (4.2)

This difference becomes important especially in models with dynamical supersymmetry

breaking, where no singlets are present. In this case, while scalars acquire a tree-level mass

m̃ = FX/M∗ (where
√
FX is the scale of supersymmetry breaking, X = θ2FX), the leading

contribution to a gaugino mass Mi comes from one-loop anomaly mediation effects

Mi =
βi
gi
m3/2 , (4.3)

where gi is the corresponding gauge coupling, βi its beta function, and m3/2 is the gravitino

mass.
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The same reasoning leads us to conclude that also A-terms receive their main contri-

bution from anomaly mediation

Ay = −βy
y
m3/2 , (4.4)

where y is the corresponding Yukawa coupling and βy its beta function.

In order to complete the setup, we have to specify how µ and Bµ are generated. In

general, we expect tree-level contributions to Bµ of order m̃2 induced by∫
d4θ

X†X

M2
∗

HuHd , (4.5)

while µ is not generated at this level. The most interesting (and plausible) possibility is

that µ is generated by the same mechanism that gives mass to gauginos: gravity [68]. The

difference is that, while gaugino masses are generated at one loop, gravity induces the µ

term at tree level. This can be seen by writing the relevant supergravity terms involving

the Higgs superfields Ĥu,d (normalized such that they have zero canonical dimension) and

the conformal compensator Φ, with canonical dimension dΦ = 1,∫
d4θΦ†Φ

[
Ĥ†u,dĤu,d +

(
c ĤuĤd + h.c.

)]
. (4.6)

In terms of the canonical superfields Hu,d = ΦĤu,d, the lagrangian in eq. (4.6) becomes∫
d4θ

[
H†u,dHu,d +

(
c

Φ†

Φ
HuHd + h.c.

)]
. (4.7)

While usually, because of scale invariance, the dependence on Φ drops from the classical

lagrangian once the latter is expressed in terms of canonically-normalized fields and it

reappears only through the scale anomaly in the β-functions, here we have an explicit

dependence on Φ at tree level. After supersymmetry breaking (Φ ∝ 1−m3/2 θ
2), we find

µ = cm3/2, Bµ = cm2
3/2. (4.8)

If the coupling constant c is of order one, then the typical mass scale of both µ and Bµ
is the gravitino mass m3/2, which is parametrically equal to the scalar-mass scale m̃ when

the mediation scale M∗ is close to the Planck scale. However, c is the only PQ-breaking

parameter in the theory and it could be small for symmetry reasons. Thus, µ could take

any value between m3/2 and the weak scale. Irrespectively of the value of c, eq. (4.8) implies

Bµ = µm3/2 . (4.9)

This is an interesting relation because it allows us to link the value of µ directly to

tanβ. Indeed, after EW breaking, we have sin 2β = 2|Bµ|/m2
A, where mA is the Higgs

pseudoscalar mass, and thus

sin 2β =
2|µ|m3/2

m2
A

. (4.10)
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The expression of the pseudoscalar mass m2
A = m2

Hu
+ m2

Hd
+ 2µ2 can be simplified with

the help of the EW tuning condition eq. (3.5) and becomes

m2
A = (1 + tan−2 β)(m2

Hd
+ µ2) . (4.11)

Hence, eq. (4.10) can be rewritten as

tanβ =
m2
Hd

|µ| m3/2
+
|µ|
m3/2

. (4.12)

We can now summarize the features of the spectrum of mini-split with anomaly

mediation.

(i) Squarks and sleptons: supersymmetric scalars are characterized by the mass scale

m̃, although the details of the spectrum are not calculable. The typical size of scalar

mass is related to the gravitino mass by m̃ ≈ (MPl/M∗)m3/2, where M∗ is the

mediation scale. The requirement that M∗ is larger than the unification scale, in

order not to affect gauge coupling unification, implies 1 . m̃/m3/2 . 103. However,

the simplest possibility is that m̃/m3/2 is of order one and gravity is the only mediator

of supersymmetry breaking.

(ii) Gauginos: anomaly mediation gives precise predictions for the physical masses of

the gauginos, in terms of m3/2 [69, 70]. In our analysis we include the next-to-

leading-order corrections controlled by the strong and top-Yukawa couplings, as well

as two important effects controlled by the weak gauge couplings. Of the latter,

the first consists of logarithms of m̃/Mi, which take into account how the gaugino

masses deviate from the anomaly-mediation trajectory after squarks and sleptons are

integrated out. The second effect is relevant when µ is larger than the weak scale. In

this case, the Higgs superfields act as messengers of supersymmetry breaking and give

a one-loop contribution to the gaugino masses proportional to µ. Assuming common

mass terms for the squarks and for the sleptons, the physical gaugino masses are

MB̃ =M1(Q)

[
1 +

Cµ
11

+
g2

1

80π2

(
− 41

2
ln
Q2

M2
1

− 1

2
ln

µ2

M2
1

+ ln
m2
A

M2
1

+ 11 ln
m2
q̃

M2
1

+ 9 ln
m2

˜̀

M2
1

)
+

g2
3

6π2
− 13g2

t

264π2 sin2 β

]
, (4.13a)

MW̃ =M2(Q)

[
1 + Cµ +

g2
2

16π2

(
19

6
ln
Q2

M2
2

− 1

6
ln

µ2

M2
2

+
1

3
ln
m2
A

M2
2

+ 3 ln
m2
q̃

M2
2

+ ln
m2

˜̀

M2
2

)
+

3g2
3

2π2
− 3g2

t

8π2 sin2 β

]
, (4.13b)

Mg̃ =M3(Q)

[
1+

g2
3

16π2

(
7 ln

Q2

M2
3

+4 ln
m2
q̃

M2
3

+
25

3
−2F

(M2
3

m2
q̃

))
+

g2
t

12π2 sin2 β

]
, (4.13c)

where

M1(Q) =
33 g2

1(Q)

80π2
m3/2 , M2(Q) =

g2
2(Q)

16π2
m3/2 , M3(Q) = −3 g2

3(Q)

16π2
m3/2 ,

(4.14)
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gi(Q) are the gauge couplings of the SM renormalized in the MS scheme at a generic

scale Q, and

Cµ =
µ

m3/2

m2
A sin 2β

m2
A − µ2

ln
m2
A

µ2
, (4.15)

F (x) = 3

[
3

2
− 1

x
−
(

1

x
− 1

)2

ln |1− x|

]
= x+O(x2) . (4.16)

(iii) Higgsinos and tanβ: the higgsino mass µ is expected to be of order m3/2, if there

is no suppression related to PQ breaking. Otherwise, µ is a free parameter, which

could vary between m3/2 and the weak scale. In general, Bµ is of order m̃2 and tanβ

could take any value. However, when µ and Bµ are generated by the same operator

and eq. (4.9) holds, then tanβ is determined according to eq. (4.12).

Mini-split with anomaly mediation has several theoretical and phenomenological at-

tractive features. It retains the positive aspects of Split SUSY (gauge coupling unifica-

tion, dark matter candidates, easing of the flavor problem) without requiring the artificial

(although possible [46, 48, 71]) suppression of one-loop anomaly-mediated gravitational

contributions. It retains the positive aspects of anomaly mediation (elegance, predictiv-

ity, viability of dynamical supersymmetry breaking) without introducing the problem of

tachyonic sleptons [55]. Moreover, the most relevant point for our present analysis is that

mini-split with anomaly mediation gives a prediction for the Higgs mass in the right range,

as we will show in the next section. Of course the drawback is that the theory is not

technically natural.

4.1 Phenomenology of mini-split with anomaly mediation

The theory is essentially described in terms of 4 parameters: m̃, m3/2, µ and tanβ. One

of these parameters is fixed by the value of the Higgs mass, and two more parameters

can be fixed under certain assumptions. If gravity is the only mediator of supersymmetry

breaking, m̃ is roughly equal to m3/2. If we assume that the operator in eq. (4.5) is absent

and that both Bµ and µ originate from the operator in eq. (4.6), then the value of tanβ is

given by eq. (4.12) with m2
Hd

= m̃2.

The scale of supersymmetry breaking in mini-split with anomaly mediation is very

favorable for explaining the observed Higgs mass. As an example, figure 7 shows the

prediction of the Higgs mass as a function of the gluino mass Mg̃ (or, equivalently, of the

gravitino mass m3/2), in the special case in which all soft scalar masses are equal to m3/2.

A successful prediction is obtained for tanβ in the range between 2 and 3. We also show

the impact of varying µ between m3/2 and the gaugino mass scale: the change in the Higgs

mass is mild, in the range of 2–3 GeV.

In spite of having relatively few free parameters, the theory has a rich variety of

possibilities for the nature of the LSP and this has important implications for dark matter.

While most studies focused on the case in which µ is of the order of the gaugino masses,

new possibilities for DM appear when µ is allowed to vary (for some studies of the case

– 27 –



J
H
E
P
0
9
(
2
0
1
4
)
0
9
2

10 1003 30
122

124

126

128

130
100 1000300 3000

Gluino mass in TeV

H
ig
g
s
m
as
s
in

G
eV

m3�2 in TeV

exp

Μ
=
m 3�2

, ta
nΒ
=
2

Μ
=
10
-2 m 3�2

, ta
nΒ
=
2

Μ
=
m 3�

2
, t
an
Β
=
3

Μ
=
10
-
2 m 3�

2
, t
an
Β
=
3

Figure 7. Predicted Higgs mass in mini-split with anomaly mediation, in the case of soft scalar

masses equal to m3/2. The result is shown as a function of the gluino mass Mg̃ (or, equivalently,

the gravitino mass m3/2) for different values of tanβ and of µ.

µ = O(m3/2), see refs. [64, 72]). The important parameter that defines the nature of the

LSP is Cµ, which is defined in eq. (4.15) and describes the source of electroweak gaugino

masses coming from the breaking of supersymmetry in the Higgs-higgsino system. In

the ordinary case of anomaly mediation with µ at the weak scale, Cµ is O(α/4π), thus

its contribution to gaugino masses is parametrically equal to the one-loop corrections in

eqs. (4.13a) and (4.13b). However, when µ is of the same size as m3/2, the parameter Cµ is

of order unity and its contribution to gaugino masses is comparable to the leading effect in

anomaly mediation. In the special case in which both Bµ and µ are generated by eq. (4.6),

Cµ becomes a function of a single mass ratio,

|Cµ| =
2 ln(m2

A/µ
2)

m2
A/µ

2 − 1
. (4.17)

Depending on the value of Cµ, the gaugino mass spectrum and the nature of the

LSP change, as illustrated in figure 8, where the three gaugino masses (in units of m3/2)

are plotted as functions of Cµ. This change in the mass spectrum is important for two

reasons. First, different options for the LSP allow for a richer variety of DM candidates

with different perspectives for discovery in DM detection experiments. Second, a more

compressed gaugino spectrum increases the chances of discovery at the LHC, once the

overall mass scale is fixed by DM relic abundance arguments. The various alternatives for

the LSP are the following.

• Wino LSP: for |Cµ|<∼ 4, the LSP is the Wino. This case includes the usual mass

spectrum of Split SUSY with µ at the EW scale. If the Wino is a DM thermal relic,
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Figure 8. Physical gaugino masses in units of m3/2 in mini-split with anomaly mediation, as a

function of the parameter Cµ defined in eq. (4.15).

then MW̃ = 2.7 TeV. The model is outside the reach of the LHC, even in the most

favorable case in which Cµ is in its upper range, and Mg̃/MW̃ is as small as 1.2. Direct

detection of thermal Wino DM is difficult, but the prospects from indirect searches

are much more promising. Current bounds from gamma rays are already rather con-

straining [73, 74], although very dependent on the assumptions on the halo profiles.

• Higgsino LSP: for Cµ ≈ 0, the higgsino can be the LSP. Thermal relic DM is

obtained for a higgsino mass of 1.1 TeV. This implies the lower bound Mg̃ > 6.6 TeV.

Thus, the gluino is too heavy to be probed at the LHC, in the case of a thermal

relic pure higgsino.

• Bino LSP: for Cµ < −3.9 and 4.1 < Cµ < 7.8, the Bino is the LSP. Its thermal relic

abundance would overclose the universe, so Bino DM requires some source of late

entropy injection or low reheat temperature [75, 76]. In the window 4.1 < Cµ < 7.8,

the gaugino mass spectrum is fairly compressed, with the gluino mass larger than

the LSP mass by 20% or less.

• Gluino LSP: for Cµ > 7.8, the gluino is the LSP. This case is not acceptable for

DM, but it could be interesting for collider searches. The gluino could escape cosmo-

logical constraints with the help of small R-violating effective interactions that make

the LSP unstable. From the collider point of view, the gluino can behave as a stable,

unstable, or long-lived particle, depending on the strength of the effective R-violation.

• Bino-Wino LSP: for |Cµ| ≈ 4, the LSP can be a well-tempered Bino-Wino. For 10%

mass splittings, the mass of the LSP can be in the range of several hundred GeV [57].
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Figure 9. Left: Cµ as a function of the mass ratios µ/m3/2 and m̃/m3/2. Right: the value of tanβ

that reproduces the Higgs mass as a function of µ/m3/2 and of the physical gluino mass Mg̃ for

m̃ = m3/2. Along the dashed blue curve, the Wino thermal DM abundance reproduces the observed

DM density. Along the short-dashed black curve tanβ as predicted by eq. (4.12) reproduces the

observed Mh. In the blue region, the LSP is the Wino; in the gray region, the LSP is the Bino; in

the red region, the LSP can be either the gluino or the Bino, depending on the sign of µ; Higgsino

DM is obtained for |µ/m3/2|<∼ 0.003.

We find that Mg̃/MW̃ = 2.4 (for Cµ ≈ −4) and Mg̃/MW̃ = 1.2 (for Cµ ≈ 4). So these

cases are particularly favorable for the LHC: the DM particle can be light, the gluino

is not much heavier than the LSP, and their mass ratio is precisely determined.

• Higgsino-Wino LSP: for Cµ ≈ 0, the LSP can be a mixture of higgsino and

Wino. Not much is gained in terms of relic abundance, since both the higgsino and

the Wino have relatively large annihilation cross sections, but the detection rate in

direct DM experiments can be sizable due to Higgs-boson exchange.

• Gluino-Bino LSP: the value Cµ ≈ 7.8 allows for the unusual possibility of

coannihilation between gluino and Bino. This case was recently discussed in ref. [77].

For mass splittings in the 100–150 GeV range, the Bino can be a thermal relic DM

and the gluino be within reach of the LHC. However, the experimental search for

gluinos is made difficult by their soft decay products. At present, the LHC bound

on the gluino mass completely evaporates as soon as the LSP mass is larger than

500–600 GeV [78, 79].

It is useful to express Cµ in terms of the original parameters of the model. Using the

expression of the pseudoscalar mass in eq. (4.11), we can rewrite eq. (4.15) as

Cµ =
2µ tanβ

m3/2

m̃2 + µ2

(tan2 β + 1)m̃2 + µ2
ln

[
(1 + tan−2 β)

(
1 +

m̃2

µ2

)]
. (4.18)

– 30 –



J
H
E
P
0
9
(
2
0
1
4
)
0
9
2

In the left panel of figure 9 we plot Cµ as a function of the mass ratios µ/m3/2 and

m̃/m3/2, fixing tanβ with the requirement of a correct value for the Higgs mass. This

shows that values of |Cµ| in the range 1–10 can be easily obtained for natural choices of

the fundamental parameters. Finally, in the right panel of figure 9 we present the map

of the various LSP regions in a plane spanned by the physical gluino mass and µ/m3/2,

under the restrictive assumption of exact universality of scalar masses with m̃ = m3/2.

In this plane we show contours of tanβ, extracted from the Higgs mass measurement.

This figure illustrates once again the mild dependence on µ of the prediction for tanβ

(or, equivalently, for the Higgs mass), as µ is varied from m3/2 to the gaugino mass scale.

The assumption of eq. (4.12) (with m2
Hd

= m̃2 = m2
3/2) fixes one extra parameter and

constrains the theory to live along the black short-dashed line.

5 Conclusions

As collider and DM experiments keep on setting more stringent constraints on low-energy

SUSY, the interest is shifting towards models in which supersymmetry is broken at a scale

larger than the natural scale MZ . In this paper, we have performed a thorough analysis of

the Higgs mass in such “unnatural” models.

Our main new computational result is contained in section 2, where we give complete

expressions for the one-loop threshold corrections to the Higgs quartic coupling λ, the top

Yukawa coupling, gauge couplings, and gaugino couplings (for Split SUSY) evaluated at

the SM/MSSM, SM/Split-SUSY and Split-SUSY/MSSM matching scales. For the Higgs

quartic coupling λ, we include also two-loop QCD threshold corrections. Our results com-

plete and correct previous literature on the subject. Furthermore, we adopt the extraction

of SM parameters with NNLO precision, using the results of ref. [4].

In section 3, we applied our results to special realizations of supersymmetry broken

at scales larger than MZ . The first case refers to quasi-natural SUSY, in which supersym-

metric particle masses are in the multi-TeV range. Although the scale of supersymmetry

breaking m̃ is not far from the electroweak scale, a precise calculation of the Higgs mass

requires resummation of the logarithms of the ratio m̃/MZ . Our results are presented in

figure 1. We find that the Higgs mass measurement implies m̃>∼ 10 TeV (no stop mixing)

and m̃>∼ 2 TeV (maximal stop mixing), in the case of moderately large tanβ and degenerate

supersymmetric mass parameters at the scale m̃.

Next, we considered the case of High-Scale SUSY, in which we let m̃ vary arbitrarily.

Our predictions for the values of m̃ and tanβ determined by the Higgs mass are shown

in figures 2 and 4. We used our calculation of the supersymmetric threshold corrections

to show how non-degenerate spectra affect the Higgs mass determination. In particular,

we find that the Higgs mass measurement implies m̃<∼ 2 × 1010 GeV (for degenerate su-

persymmetric particles) and m̃<∼ 1011 GeV (for supersymmetric mass parameters larger or

smaller than m̃ by a factor of 3), and for the central value of the top mass Mt. If Mt

is 3σ lower than its central value, SUSY up to the Planck scale becomes allowed. Extra

Higgs interactions at large energies can change the picture. We have also explored the
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implications of the relation between m̃ and tanβ implied by the measured Higgs mass for

gauge-coupling unification and for the tuning required to generate the low scale of MZ .

We repeated the exercise for Split SUSY, in which scalar supersymmetric particles

have masses of order m̃, while fermionic supersymmetric particles lie around the weak

scale. Our results, shown in figure 4, indicate that the Higgs mass constrains the scale

of Split SUSY m̃<∼ 6 × 107 GeV (for degenerate scalar supersymmetric particles) and

m̃<∼ 108 GeV (for scalar mass parameters larger or smaller than m̃ by a factor of 3).

Decreasing the top mass by 1σ increases the maximal m̃ by a factor of 2. For universal

scalar mass parameters at the GUT scale, we find that the Higgs mass and the tuning

condition determine m̃ ≈ 106 GeV and tanβ ≈ 2. This prediction is relaxed as we allow for

non-universality of scalar masses at the GUT scale (see figure 6). However, the constraints

from EWSB and color conservation select a region of boundary conditions at the GUT

scale centered around complete universality.

Section 4 is devoted to the last scenario we considered: mini-split with anomaly media-

tion. In this case, scalar particles feel supersymmetry breaking at tree level, while gauginos

get mass only from one-loop anomaly mediation effects. We have discussed various possibil-

ities for the origin of the higgsino mass µ, which in principle could be anywhere between the

gravitino and gaugino masses. Changing µ in this range has a limited effect on the Higgs

mass (see figure 7), but a very important impact on the nature of the LSP. We have found

that mini-split with anomaly mediation, in spite of its few free parameters, can lead to a va-

riety of possibilities for the LSP and thus for the DM candidate, as summarized in figure 8.

Moreover, it is possible to obtain very compressed spectra for gaugino masses, in which the

gluino does not lie far beyond the DM particle, thus increasing the chance of LHC discovery.
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A Loop functions

The loop functions that describe the stop contribution to the Higgs quartic coupling are:

F̃1(x) =
x lnx2

x2 − 1
, (A.1a)

F̃2(x) =
6x2

[
2− 2x2 + (1 + x2) lnx2

]
(x2 − 1)3

, (A.1b)

F̃3(x) =
2x[5(1− x2) + (1 + 4x2) lnx2]

3(x2 − 1)2
, (A.1c)
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F̃4(x) =
2x(x2 − 1− lnx2)

(x2 − 1)2
, (A.1d)

F̃5(x) =
3x(1− x4 + 2x2 lnx2)

(1− x2)3
. (A.1e)

The extra loop functions that describe the stop contribution to the top Yukawa coupling

are:

F̃6(x) =
x2 − 3

4 (1− x2)
+
x2 (x2 − 2)

2 (1− x2)2
lnx2 , (A.2a)

F̃7(x) =
−3 (x4 − 6x2 + 1)

2 (x2 − 1)2
+

3x4 (x2 − 3)

(x2 − 1)3
lnx2 , (A.2b)

F̃8 (x1, x2) = −2 +
2

x2
1 − x2

2

(
x4

1

x2
1 − 1

lnx2
1 −

x4
2

x2
2 − 1

lnx2
2

)
, (A.2c)

F̃9 (x1, x2) =
2

x2
1 − x2

2

(
x2

1

x2
1 − 1

lnx2
1 −

x2
2

x2
2 − 1

lnx2
2

)
. (A.2d)

Finally, the loop functions for the gaugino-higgsino corrections to both λ and gt are [6]

f(r) = F̃5(r) , g(r) = F̃7(r) , (A.3a)

f1(r) =
6
(
r2 + 3

)
r2

7 (r2 − 1)2 +
6
(
r2 − 5

)
r4 ln r2

7 (r2 − 1)3 , (A.3b)

f2(r) =
2
(
r2 + 11

)
r2

9 (r2 − 1)2 +
2
(
5r2 − 17

)
r4 ln r2

9 (r2 − 1)3 , (A.3c)

f3(r) =
2
(
r4 + 9r2 + 2

)
3 (r2 − 1)2 +

2
(
r4 − 7r2 − 6

)
r2 ln r2

3 (r2 − 1)3 , (A.3d)

f4(r) =
2
(
5r4 + 25r2 + 6

)
7 (r2 − 1)2 +

2
(
r4 − 19r2 − 18

)
r2 ln r2

7 (r2 − 1)3 , (A.3e)

4

3
f5(r1, r2) =

1+(r1+r2)2−r2
1r

2
2(

r2
1 − 1

) (
r2

2 − 1
) +

r3
1

(
r2

1 + 1
)

ln r2
1(

r2
1−1

)
2 (r1−r2)

−
r3

2

(
r2

2 + 1
)

ln r2
2

(r1−r2)
(
r2

2−1
)

2
, (A.3f)

7

6
f6(r1, r2) =

r2
1 +r2

2 +r1r2−r2
1r

2
2(

r2
1 − 1

) (
r2

2 − 1
) +

r5
1 ln r2

1(
r2

1−1
)

2 (r1−r2)
− r5

2 ln r2
2

(r1−r2)
(
r2

2−1
)

2
, (A.3g)

1

6
f7(r1, r2) =

1 + r1r2(
r2

1 − 1
) (
r2

2 − 1
) +

r3
1 ln r2

1(
r2

1 − 1
)

2 (r1 − r2)
− r3

2 ln r2
2

(r1 − r2)
(
r2

2 − 1
)

2
, (A.3h)

2

3
f8(r1, r2) =

r1 + r2(
r2

1 − 1
) (
r2

2 − 1
) +

r4
1 ln r2

1(
r2

1 − 1
)

2 (r1 − r2)
− r4

2 ln r2
2

(r1 − r2)
(
r2

2 − 1
)

2
. (A.3i)

All functions in eqs. (A.1a)–(A.3a) are equal to 1 when they arguments approach unity,

with the exception of F̃6 which tends to 0.
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[42] L.E. Ibáñez and I. Valenzuela, The Higgs mass as a signature of heavy SUSY, JHEP 05

(2013) 064 [arXiv:1301.5167] [INSPIRE].

[43] A. Hebecker, A.K. Knochel and T. Weigand, The Higgs mass from a string-theoretic

perspective, Nucl. Phys. B 874 (2013) 1 [arXiv:1304.2767] [INSPIRE].

[44] A. Delgado, M. Garcia and M. Quirós, Electroweak and supersymmetry breaking from the

Higgs discovery, Phys. Rev. D 90 (2014) 015016 [arXiv:1312.3235] [INSPIRE].
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