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1 Introduction

The measurements of the Higgs-boson and top-quark masses imply the surprising fact that,

in the context of the Standard Model (SM) with no additional physics, our universe lies at

the edge between stability and instability of the electroweak vacuum [1–3] (see [4–13] for

earlier analyses). For the present best fit values of the SM parameters, the Higgs potential

develops an instability well below the Planck scale, but the proximity to the stability

region insures that the electroweak vacuum lifetime can be exceedingly longer than the age

of the universe.
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This intriguing result offers a testing ground for phenomena occurring in the early uni-

verse. Indeed, the presence of a minimum of the SM potential deeper than the electroweak

vacuum raises many cosmological issues: how did the Higgs field end up today in the

false vacuum? Why didn’t the primordial dynamics destabilise the Higgs field? How did

patches of the universe with large Higgs values evolve in time without swallowing all space?

Addressing these questions leads to interesting constraints on early-time phenomena and

inflationary dynamics. These constraints are the subject of this paper. Several aspects

about electroweak-vacuum decay from thermal or inflationary Higgs fluctuations have al-

ready been studied in the literature [14–24], but here we give a comprehensive description

of the phenomenon and reach new conclusions.

The effects of the thermal bath during the radiation-dominated phase of the universe

are twofold. On one side, thermal fluctuations can trigger nucleation of bubbles that probe

Higgs-field values beyond the instability barrier. On the other side, thermal corrections to

the Higgs potential tend to stabilise low field values, creating an effective barrier. For the

observed values of the SM parameters, the latter effect is dominant and thermal corrections

do not destabilise the electroweak vacuum, even when the reheating temperature is close

to the Planck scale [14].

More subtle is the issue of the Higgs-field fluctuations generated during inflation. In

the case in which the Higgs has no direct coupling to the inflaton and is minimally coupled

to gravity (and hence is effectively massless during inflation), the field develops fluctuations

with amplitude proportional to H, the Hubble rate during inflation. These fluctuations

pose a threat to vacuum stability. For values of H smaller than the height of the potential

barrier, the Higgs field can tunnel into anti-de Sitter (AdS), according to the Coleman-de

Luccia bubble nucleation process [25]. When H becomes comparable to the barrier height,

the transition is well described by the Hawking-Moss instanton [26], which corresponds

to a thermal overcoming of the barrier due to the effective Gibbons-Hawking temperature

T = H/2π [27] associated with the causal horizon of de Sitter (dS) space. However, a

more convenient way to compute the evolution of the Higgs fluctuations during inflation

is through a stochastic approach based on a Fokker-Planck equation that describes the

probability to find the Higgs field at a given value h and time t [28–31]. This approach

was followed in [14, 23, 24] to derive the probability distribution of Higgs patches in the

universe. In this paper, we describe the long-wavelength modes of the Higgs field using a

Langevin equation sourced by a Gaussian random noise that mimics quantum fluctuations

during inflation. This method has the advantage of bypassing the problem of choosing

boundary conditions and it is shown to agree with the results from the Fokker-Planck

approach with appropriate boundary conditions.

Quantifying the probability for the existence of a patch of the Higgs field in the SM

vacuum sufficiently large to encompass our observable universe is a subtle issue, which

requires an understanding of how AdS bubbles (with large Higgs-field configurations) evolve

in a dS background, during inflation, and in a Minkowski background, after inflation. As

correctly pointed out in [23, 24], patches in which the Higgs probes field values beyond the

barrier do not necessarily end up in the AdS vacuum, as long as their evolution is driven by

the stochastic quantum term. Only when classical evolution takes over, the field falls into
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its deep minimum. In [23, 24] it was assumed that these AdS patches rapidly evolve into

relic defects that are not necessarily dangerous, hence arguing that large Higgs fluctuations

do not pose a cosmological threat. In our analysis, we reach opposite conclusions.

The evolution of AdS bubbles in an inflationary dS background depends on their size,

internal energy, surface tension, and initial wall velocity. Depending on the characteristics

of the bubbles, we find a variety of possible evolutions. Bubbles shrink, if they start

with small radius and low velocity; expand but remain hidden inside the Schwarzschild

horizon, if the gravitational self-energy of their surface overwhelms the difference between

the vacuum energy in the exterior and interior; and expand at the expense of exterior space,

otherwise. The seemingly paradoxical situation of an expanding bubble of crunching AdS

space is resolved by understanding the difference in space-time coordinates on the two

sides of the wall. While an observer inside the bubbles will experience space contracting

because of the negative cosmological constant, an external observer will see the surface

of large bubbles expand. Although we expect that the process of inflation with large H

will generate a distribution of AdS expanding bubbles, we conclude that such bubbles will

never take over all dS space. The inflationary space expansion always beats the causal

expansion of bubbles, efficiently diluting them.

At this stage, it may seem that the remnant AdS bubbles can be compatible with

the presently observed universe. The problem starts when we consider post-inflationary

evolution of the AdS patches in a flat background. The bubble wall keeps on expanding

at the speed of light and an AdS patch eventually engulfs all space. This means that a

necessary requirement for our present universe to exist is that the probability to find an

expanding AdS bubble in our past light-cone must be negligible. Unfortunately, we cannot

make firm statements about the formation of expanding AdS Higgs bubbles during inflation

because the answer depends on energy considerations based on the Higgs potential in the

Planckian region. However, our study suggests that it would be very difficult to imagine a

situation in which all large-field Higgs patches shrink and none expands. Therefore, barring

the presence of AdS Higgs bubbles in our past light-cone is a well-justified requirement for

a viable cosmology. This line of reasoning leads to an interesting bound on H, the Hubble

constant during inflation, which we compute not only in the case of a minimally-coupled

Higgs, but also in the presence of a gravitational interaction between the Higgs bilinear

and the scalar curvature.

Having established the dangers of patches in which the Higgs field falls into the trans-

Planckian region, we consider the fate of patches in which, at the end of inflation, the Higgs

field has fluctuated beyond the potential barrier, but has not yet experienced the classical

evolution that wants to drive it towards very large values. The eventual fate of such bubbles

is determined by the subsequent thermal evolution of the universe. Thermal effects can

rescue such patches of the universe by effectively pushing the potential barrier to larger field

values, allowing the Higgs field to relax into its SM vacuum. We study this phenomenon

during the preheating and reheating stages of the universe, when the energy stored in

the inflaton oscillating around its minimum is released into thermal energy carried by SM

particles. In this way we can express the constraint on H as a function of the reheating

temperature after inflation.

– 3 –
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Finally, in a more speculative vein, we explore the consequences of a conjecture put

forward in the context of quantum theories of gravity. It has been argued that no for-

mulation of quantum mechanics in dS spaces can be consistent. On the other hand, we

observe today a positive cosmological constant. The resolution of this conflict between a

conceptual obstruction and an empirical fact can be found by assuming that the asymptotic

state of our universe is not dS. In other words, we are only living in a transitory situation

and today’s dS space will soon terminate. Of course, there are many ways in which the

universe could escape the allegedly dreadful dS condition, but it is tempting to speculate

that the instability of the electroweak vacuum is the emergency exit chosen by nature. If

we take this hypothesis seriously, we obtain a rather precise prediction for a combination of

the Higgs and top masses in the SM, in good agreement with experimental measurements.

The predicted strip in parameter space can be narrowed further by the hypothesis that

the universe must have been sufficiently hot in the past (for instance, for allowing some

high-temperature mechanism of baryogenesis).

The paper is organised as follows. In section 2 we address the preliminary technical

issue of the gauge dependence of the effective potential. The generation and evolution of

Higgs fluctuations during inflation is studied in section 3, while the subsequent evolution

after inflation is the subject of section 4. Our speculations on the quantum-gravity pre-

diction of the Higgs mass are discussed in section 5, and our results are summarised in

section 6. The details of the general-relativity calculation of the evolution of AdS bubbles

in dS or Minkowski backgrounds are contained in the appendix.

2 Gauge dependence of the SM effective potential

The critical Higgs mass below which the SM Higgs potential becomes unstable is gauge-

independent; however the instability scale of the SM potential, e.g. hmax, defined as the

Higgs field value at which Veff(h) is maximal, is gauge-dependent (as recently emphasised

in [32–34]). Therefore, one has to be cautious in extracting from the potential a physically

meaningful scale associated to the instability.

There is a number of ways in which one can try to identify scales that track the potential

instability and are gauge-invariant because expressed in terms of extrema.1 However, our

cosmological computations will employ the full SM effective potential also away from its

extrema, so we are confronted with the issue of the gauge-dependence of the effective

potential shape, an old topic much debated in the literature.2 In dealing with this issue

1For example, this could be done through the scale of a higher-dimensional operator hn (with n > 4)

that, added to the SM, cures its instability.
2We summarise some of the main approaches here. Nielsen [35] proved that the gauge dependence of

the effective potential can be reabsorbed by a re-definition of the fields. Tye [36] found that the effective

potential and the effective kinetic terms are separately gauge-invariant if the perturbative expansion is

performed by decomposing the Higgs doublet into the physical Higgs field h and the 3 angular coordinates

π, such that the Goldstone fields π are massless at any value of h, not only at the extrema of the potential.

The results then agree with the unitary gauge. Buchmuller et al. [37] computed the effective potential in

terms of the gauge-invariant combination Φ†HΦH claiming a gauge-invariant effective potential; again this

selects the radial mode of the Higgs doublet such that Goldstone are always massless. Schwartz et al. [33, 34]
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we follow a pragmatic approach. First, we insist on calculating physical quantities, that

can be proven to be gauge independent. Second, we make sure that the approximations we

use in those calculations are consistent, in the sense that any residual gauge dependence is

smaller than the precision of our approximations.

The gauge-independence of our results is ultimately based on the Nielsen identity that

describes how the effective action depends on the gauge-fixing parameters and how to

extract out of it gauge independent quantities. Let us briefly discuss how this works.

The fact that the Higgs effective potential V (h) depends on the gauge parameters

(generically denoted as ξ) follows from the fact that the effective action Seff itself is a

gauge-dependent object. In spite of this, as is well known, both the potential and the

effective action are extremely useful and physical quantities extracted from them (like

particle masses, S-matrix elements, the vacuum energy density, tunnelling rates in the case

of metastable vacua, etc.) turn out to be gauge-independent, as they should.

2.1 Gauge (in)dependence of the effective action

The Nielsen identities [38–41] tell us that the gauge dependence of the effective action can

be compensated by a local field redefinition. In other words, different gauges describe the

same physics in terms of different coordinates in field space (leading to different potentials

but also to different kinetic terms). Particularising to cases with Higgs background only,

one has

ξ
∂Seff

∂ξ
= −

∫
d4x K[h(x)]

δSeff

δh(x)
, (2.1)

where K[h(x)] is a functional of h that can be found in [38–41].

One immediate consequence of the Nielsen identity is that the action evaluated on

a solution of the equation of motion for h, δSeff/δh = 0, is gauge-independent. We also

see that the gauge-independence of the extremal values of the effective potential follows

directly by applying the previous general fact to constant field configurations.

Writing the effective action in a derivative expansion

Seff [h] =

∫
d4x

[
−V (h) +

1

2
Z(h)(∂µh)2 +O(∂4)

]
, (2.2)

we can find a series of Nielsen identities for the coefficients of this expansion [42, 43] by

expanding in the same way K[h] and δSeff/δh in (2.1), as

K[h] = C(h) +D(h)(∂µh)2 − ∂µ[D̃(h)∂µh] +O(∂4) , (2.3)

δSeff

δh
= − V ′ + 1

2
Z ′(∂µh)2 − ∂µ[Z(h)∂µh] +O(∂4) , (2.4)

where primes denote h-derivatives. The higher-order derivative terms are expected to be

suppressed by an energy scale, which can be as low as the value of the Higgs field, and by

a one-loop factor, which is the same for any order in derivatives. Therefore, our derivative

argue that finding a gauge-invariant definition of the effective potential is a misguided enterprise and that

the contribution of Goldstone bosons should be neglected (at leading order) in a consistent perturbative

expansion around the field value at which λ = 0.

– 5 –
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expansion is valid only when the gradient of the Higgs field is smaller than the homogeneous

value of the field under consideration.

At the lowest order in the derivative expansion, we find the expression for the gauge-

dependence of the effective potential

ξ
∂V

∂ξ
+ C(h)V ′ = 0 , (2.5)

which, as anticipated, ensures the gauge-independence of the values of the potential at its

extremal points. This Nielsen identity also tells us that the explicit ξ-dependence of the

potential can be compensated by an implicit ξ-dependence of the field as:

ξ
dh

dξ
= C(h) , (2.6)

so that dV/dξ = 0. At order O(∂2) we get

ξ
∂Z

∂ξ
= −CZ ′ − 2ZC ′ + 2DV ′ + 2D̃V ′′ , (2.7)

where we suppressed the h dependence of all functions.

It is useful to consider the order in weak gauge couplings (denoted generically by g in

this paragraph) of the different functions that appear in the previous identities [42]. As we

will be interested in the potential region where the Higgs quartic coupling gets negative,

eventually inducing a new minimum radiatively, we will use the counting λ ∼ g4. The

function C(h) starts at one loop and is O(g2). The Nielsen identity (2.5) then implies

that the ξ dependence of V starts at O(g6). On the other hand, the Nielsen identity (2.7)

implies that the ξ dependence of Z starts at O(g2), with the terms involving D and D̃

being of higher order in g. As we will see in the next subsection, it will be sufficient for our

purposes to deal with the dominant ξ dependence of the potential so that we will neglect

the effect of the subleading D and D̃ terms in what follows, as in [42].

Let us next consider the ξ-dependence of the equation of motion for h which we write

using

EoM[h] ≡
√
Z∂2h+

1

2
√
Z
Z ′(∂µh)2 +

1√
Z
V ′ , (2.8)

and its solutions h̄(x), which satisfy EoM[h̄] = 0. It is straightforward to show that

ξ
d

dξ
EoM[h]

∣∣∣∣
h=h̄

= 0 , (2.9)

up to O(∂4) corrections, provided we use ξdh̄/dξ = C. In principle, one can continue the

check of the gauge invariance of the equations of motion iteratively up to infinite order in

the number of derivatives.3 This means that, if some h̄ξ(x) solves the equation of motion

for some choice of ξ and we shift ξ → ξ + dξ, the shifted solution is h̄ξ(x) + dh̄ξ(x) with

dh̄ξ(x) = C(h̄ξ)dξ/ξ. In other words, the field rescaling that can balance the effect of

3Using the previous identities one can also check, to all orders, the ξ-independence of the scalar physical

mass M2
h ≡ V ′′/Z|min, evaluated at the minimum of the potential, as indicated.

– 6 –
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changing ξ in the effective potential is the same field rescaling that applies to the solutions

of the equation of motion for different ξ.

The same rescaling works for the Fokker-Planck and Langevin equations that we will

use later on to describe the Higgs fluctuations during inflation. These equations take the

form, Langevin[hL] = 0 and FokkerPlanck[P (h, t)] = 0, with

Langevin[h] ≡
√
Z
dh

dt
+

1

3H
√
Z
V ′ − η , (2.10)

and

FokkerPlanck[P (h, t)] ≡ 1√
Z

∂

∂h

{
1√
Z

[
∂

∂h

(
H3

8π2

P√
Z

)
+

1

3H

PV ′√
Z

]}
− 1√

Z

∂P

∂t
.

(2.11)

Here P (h, t) dh is the probability for finding the Higgs field in the infinitesimal interval

between h and h+ dh at time t during inflation. The fact that P is a probability density

explains why P enters in eq. (2.11) through the ratio P/
√
Z.

Using these expressions and the ξ-dependence of V (h), Z(h), and h as described in

eqs. (2.5)–(2.7), we get

d

dξ
Langevin[h]

∣∣∣∣
h=hL

= 0 ,
d

dξ
FokkerPlanck[P (h, t)]

∣∣∣∣
P=P̄

= 0 , (2.12)

(where hL and P̄ are solutions of the Langevin and Fokker-Planck equations, respectively)

up to corrections that can be shown to be subleading.4,5 This shows once again that if we

have a solution of the Langevin equation for a given value of ξ, we automatically obtain

a solution for ξ + dξ by the shift h(ξ) + C(h(ξ))dξ/ξ. For the Fokker-Planck equation, a

solution for general Z is formally related to a solution for Z = 1 again by a field rescaling,

with P (h, t)/
√
Z(h) = Pc(hc(h)), where the relation between h and the canonical field hc

follows from dhc/dh =
√
Z(h). As a result, the integrated probability is independent of

the field rescaling:∫ hc,f

hc,i

Pc(hc)dhc =

∫ hf

hi

Pc(hc(h))
√
Z(h)dh =

∫ hf

hi

P (h)dh . (2.13)

4Here we are explicitly using the derivative expansion previously introduced to derive the gauge transfor-

mation properties of V, Z and h. Indeed, the Langevin and Fokker-Planck formalism represent a truncation

of the theory at the lowest order in derivatives, where the approximation is justified by the smallness of the

gradient of the field with respect to the Hubble parameter. In the rest of the paper, we will be using these

equations to describe evolutions of the Higgs field for values of the Hubble parameters even quite larger than

the Higgs vev itself. For this reason, we cannot naively apply the zeroth order truncation in derivatives of

the effective action, because, as we discussed, the derivative expansion is suppressed only by the Higgs vev.

However, since the higher derivative corrections are suppressed by at least a one-loop factor and are not

log-enhanced (at one-loop), a consistent truncation is to use the Langevin and Fokker-Planck equations as

derived from an effective action where the only corrections that are included are the non-derivative, leading

log-enhanced, ones. This will be how we will use the Langevin and Fokker-Planck equations in the rest of

the paper.
5Note also that, concerning the dependence on the renormalisation scale µ, one can show the µ-

independence of M2
h , EoM[h], Langevin[h] and FokkerPlanck[P (h, t)] just making use of dV/dµ = 0,

dh/d log µ = γh, d(∂V/∂h)/d log µ = −γ(∂V/∂h), dZ/d log µ = −2γZ, etc.

– 7 –
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This implies that the probability of finding the field beyond hmax after a given number of e-

folds is a gauge invariant quantity: although the value of hmax depends on ξ, the ξ-change of

the ratio P (h, t)/
√
Z(h) corresponds to the same field-rescaling h(ξ)→ h(ξ)+C(h(ξ))dξ/ξ

and leaves the integrated probabilities unchanged.

To sum up, the key idea is that a change in a given gauge parameter ξ is equivalent to a

redefinition of the Higgs field, which should leave physics invariant. The effective potential,

the equations of motion for the Higgs field and the Fokker-Planck and Langevin equations

enjoy a sort of “covariance” under changes of the gauge parameters. The equations are

changed in such a way that the change induced in their solutions is just a common field

redefinition dictated by the Nielsen identity.

2.2 Effective potential including only log-enhanced corrections

For the previous appealing properties to hold, the interplay between the effective potential

and the kinetic term in the effective action is crucial. For the SM case at very large field

values we write

Leff = Z(h, ξ)
(∂µh)2

2
− λeff(h, ξ)

h4

4
+ · · · (2.14)

where the ellipsis denotes higher derivative terms and both Z(h, ξ) and λeff(h, ξ) include

radiative corrections and depend on ξ. As usual, it proves convenient to use a canoni-

cally normalised Higgs field hcan(h, ξ) as dhcan/dh = Z1/2 and to re-express the effective

Lagrangian in terms of hcan, obtaining

Leff =
(∂µhcan)2

2
− λcan(hcan, ξ)

h4
can

4
+ · · · (2.15)

In terms of the canonical field all the equations become simpler as we do not have

to drag the Z factor around. An additional bonus is that the residual ξ dependence in

our approximations will be significantly reduced. Let us see how this works examining the

gauge dependence of the effective potential. The coloured dashed curves in figure 1 show

λeff(h, ξ), which tracks the large field behaviour of the SM effective potential, as computed

at next-to-leading order (NLO) accuracy in the Fermi ξ gauges [32]6 further improved by

performing a resummation of IR-divergent Goldstone loops [44, 45].7 We take into account

the running of ξ1 and ξ2 (gauge-fixing parameters for hypercharge and SU(2)L), assuming

a common value ξ renormalised at Mt. We confirm that λeff(h, ξ) significantly depends on

the gauge-parameter ξ. The black curves in figure 1 show λcan(hcan, ξ), again computed at

NLO in Fermi ξ gauges: we see that the dependence on ξ almost completely disappeared

— all black curves almost merged into a single curve.

One can explain analytically why the gauge dependence approximately cancels out by

looking at the dominant corrections enhanced by large logarithms, which are resumed by

solving the RG equations and setting the RG scale µ̄ around the field value of interest:

λeff(h, ξ) ≈ e4Γ(µ̄≈h,ξ)λ(µ̄ ≈ h), Zeff(h, ξ) ≈ e2Γ(µ̄≈h,ξ) , (2.16)

6At this level of approximation the potential has a residual dependence on the RG scale µ̄ comparable

to the gauge dependence. We here adopted the choice µ̄ = heΓ that minimises the error.
7Around the minimum of the potential, this resummation becomes equivalent to the expansion of [33, 34],

which makes the truncation of the potential compatible with the Nielsen identity.
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Figure 1. The dashed curves show the effective quartic coupling (left) and effective SM potential

(right) computed at next-to-leading order in a generic Fermi ξ-gauge. The thick red dashed curve

corresponds to the Landau gauge, ξ = 0. The right handed panel shows that the height of the

potential barrier is only approximately gauge-independent (a measure of the residual gauge depen-

dence). The black continuous curves show the same potential expressed in terms of the canonical

field hcan: the gauge dependence in the potential gets compensated by the gauge-dependence of the

kinetic term, such that the continuous curves nearly overlap.

where Γ =
∫ µ̄
Mt
γ d ln µ̄, γ is the gauge-dependent anomalous dimension of the Higgs field,

and λ(µ̄) =
∫ µ̄
Mt
βλ d ln µ̄ is the running quartic coupling, where βλ is gauge-independent.

In this leading-order (LO) approximation one has

hcan ≈ heΓ(µ̄≈h), λcan(hcan) ≈ λ(µ̄ ≈ h) , (2.17)

which is gauge-independent because the RGE for λ and all other couplings of the theory

are gauge-independent. The order-of-magnitude gauge dependence of hmax found in [32]

disappears because it is almost entirely due to the RG factor Γ.

Such LO cancellation has been noticed before, see e.g. [46, 47]. Note however that the

field redefinition dictated by the Nielsen identity we discussed earlier and the field redef-

inition required to make the field canonical are the same only at LO. Moreover, the field

redefinition from the Nielsen identity becomes considerably more complicated at NLO [35].

Its use to define a “gauge-independent” potential is in fact equivalent to choosing a par-

ticular gauge and therefore does not solve the problem of how to extract gauge-invariant

quantities out of the effective action. For this reason we refrain from attempting to use it

as a way of defining a gauge-invariant potential and simply use the canonical field as a way

of reducing the residual gauge dependence of our results.

The previous discussion has been carried out in Fermi gauge at NLO to help us clarify

the issues related to gauge invariance. Having understood them, we can now use the

state-of-the-art computation of the effective potential in the Landau gauge (ξ = 0) with

NNLO accuracy (2 loop finite corrections and 3 loop RGE corrections) [1–3] combined

with the use of a field redefinition to make the field canonical (taking into account the

effect of potentially large logarithms in Z). Using that canonically normalised Higgs field

h, in the region around the top of the barrier, the SM Higgs potential can be analytically

– 9 –
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approximated as

Veff(h) ≈ −b ln

(
h2

h2
max

√
e

)
h4

4
, (2.18)

where hmax is the field value at which Veff(h) takes its maximal gauge-invariant value

Veff(hmax) = bh4
max/8. Using the value b ≈ 0.16/(4π)2 for the β function of λ around hmax,

we find hmax = 5 × 1010 GeV for the present best-fit values of Mt, Mh and α3. Although

this value of hmax is computed in Landau gauge and it would be slightly different in other

gauges, the reader should keep in mind that the results we present in the following sections

are gauge-invariant even if for convenience we express them in terms of hmax.8

3 Higgs fluctuations during inflation

The instability of the Higgs potential leads to an interesting dynamics during inflation.

We focus on the relevant radial mode h =
√

2|ΦH |2 of the Higgs doublet. If the Hubble

constant H is large enough, h fluctuates beyond the potential barrier. If the true vacuum is

deep enough, inflation stops in the regions where the Higgs falls, while inflation continues

in the (possibly rare) regions where accidentally h < hmax. In this section we compute the

probability of the possible outcomes at the end of inflation, while in the next section we

will discuss what happens after inflation.

In the absence of a large Higgs mass term, the evolution of the long wavelength modes

of the h field is controlled by the Langevin equation [48]

dh

dt
+

1

3H

dV (h)

dh
= η(t), (3.1)

where η is a Gaussian random noise with

〈η(t)η(t′)〉 =
H3

4π2
δ(t− t′). (3.2)

It is important to realise that eq. (3.1) is valid only if the positive effective mass squared

V ′′(h) of the Higgs field is light enough compared to H2. Only under these circumstances

the long wavelength super-Hubble fluctuations of the Higgs field are generated. On the

contrary, if V ′′(h) > 9H2/4, the resulting power spectrum of Higgs fluctuations is both

suppressed by exp(−2V ′′(h)/H2) and by the fact that the spectrum is strongly tilted on

the blue side [49–51].9

3.1 Higgs fluctuations during inflation for ξH = 0

It is convenient to rewrite eq. (3.1) replacing time t with the number of e-folds N = Ht,

and to normalise the Higgs field and its potential in units of the Higgs value h = hmax at

8Alternatively, we could choose other scales associated (more indirectly) to the instability which are

explicitly gauge invariant. One could be the renormalisation scale µ0 at which the quartic Higgs coupling λ

crosses zero; another choice is the scale µX at which the one-loop radiatively corrected Goldstone mass is zero

(as used in [33, 34]). For the same central values above we get µ0 = 1×1010 GeV and µX = 4.5×1010 GeV.
9Indeed, the solution of the Klein-Gordon equation for a spin 0 particle with mass m in de Sitter goes

like exp(−πµ/2)(−τ)3/2Hiµ(−kτ), where µ =
√
m2/H2 − 9/4 and τ is the conformal time.

– 10 –
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Figure 2. Random distribution of the Higgs field h̄ = h/hmax after N = 60 e-folds of inflation

with Hubble constant equal to the Higgs instability scale, H = hmax. The blue dashed curve is

the V = 0 Gaussian approximation of eq. (3.8). The red curve is the SM Higgs potential V̄ (h̄), in

arbitrary units.

which V (hmax) = Vmax is maximal,

h =
h

hmax
and V (h̄) ≡ V

h4
max

≈ −b ln

(
h̄2

√
e

)
h̄4

4
. (3.3)

After these redefinitions, the Langevin equation in eq. (3.1) becomes

dh

dN
+
h2

max

3H2

dV (h)

dh
= η(N) (3.4)

where the noise η(N) obeys

〈η(N)η(N ′)〉 =

(
H

2πhmax

)2

δ(N −N ′). (3.5)

One can now numerically generate random realisations of the Higgs evolution in N , in

steps of dN , as

h̄(N + dN) = h̄(N)− h2
max

3H2
V̄ ′(h̄) dN + r (3.6)

where r are random numbers extracted from a Gaussian distribution with zero mean and

standard deviation σ = H
√
dN/(2πhmax).

Indeed, for h� σ, the same result is reproduced by the analytic solution to the Fokker-

Planck equation for the probability P (h,N) of finding the Higgs field at the value h after

N e-folds of inflation,
∂P

∂N
=

∂2

∂h2

(
H2

8π2
P

)
+

∂

∂h

(
V ′

3H2
P

)
, (3.7)

taking V = 0 and boundary conditions at h = ±∞.
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Figure 3. Minimal probability that, after N = 60 e-folds of inflation, the Higgs fluctuated above the

SM potential barrier (orange curve), or fall down to the true minimum (red curve). The continuous

curves are the numerical results; the dashed curves are the analytical approximations presented in

the text.

Figure 2 shows the resulting probability density of the value of h after N = 60 e-

foldings, starting from h̄ = 0 at the beginning of inflation. The result, a quasi-Gaussian

distribution, has a simple interpretation. Given that the quartic Higgs coupling vanishes

around the instability scale, for a large range of Higgs values around the instability scale

the classical evolution (sourced by the gradient of the potential) is negligible with respect to

the quantum evolution (sourced by the random noise η). As a consequence, even assuming

that the Higgs starts from h = 0, the field h acquires a Gaussian distribution with zero

mean and variance that grows with N :

P (h,N) =
1√

2π〈h2〉
exp

(
− h2

2〈h2〉

)
,

√
〈h2〉 =

H

2π

√
N. (3.8)

The distribution shown in figure 2 maintains its quasi-Gaussian shape also for values of

the Higgs field well above hmax. Therefore, during inflation, the Higgs field can fluctuate

above the barrier without being sucked into the negative-energy (AdS) true vacuum. The

only regions where the Higgs falls into the true minimum are those where h fluctuates to

field values so large that the potential slope can no longer be neglected.

Regions that fluctuate above the potential barrier. The minimal probability that

the Higgs ends up beyond the top of its potential barrier after N e-folds is

p(|h| > hmax) ≈ 1− erf

(√
2πhmax√
NH

)
. (3.9)

This probability, obtained by integrating the Gaussian distribution for |h| > hmax, is

minimal because it corresponds to the initial condition h = 0. Shifting the peak of the

distribution to a non-vanishing value of h will only increase p(|h| > hmax). The solid orange

curve in figure 3 shows our numerical result for this probability as a function of the Hubble

constant during inflation, in units of the Higgs instability scale H/hmax. The dashed orange
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curve corresponds to the analytic expression in eq. (3.9), which is evidently an excellent

approximation.

No constraints arise if, after inflation, the regions with |h| > hmax fall back to the SM

minimum, pushed by thermal effects (see section 4). If instead, after inflation, the regions

with |h| > hmax fall down into the true AdS minimum, then their probability should be

smaller than e−3N , so that it is unlikely to find the Higgs away from its EW vacuum in

any of the ∼ e3N causally independent regions that are formed during inflation and that

constitute the observable universe today. Using 1 − erf(x) ' e−x
2
/
√
πx for large x, this

condition implies

H

hmax
<

√
2

3

π

N
≈ 0.04. (3.10)

Regions that fall to the true minimum during inflation. The approximation of

neglecting the scalar potential V , which led to the quasi-Gaussian distribution of the Higgs

field values, breaks down at large h. There, the gradient of the potential dominates over

quantum fluctuations, and h falls down to its true minimum already during inflation. The

solid red curve in figure 3 shows our numerical result for such probability.

We can analytically estimate the probability for h to fall into its true vacuum after N

e-folds of inflation. We first consider a potential V = λh4/4 with constant λ and assume

that the bulk of the Higgs field probability distribution is still given by the Gaussian in

eq. (3.8), cut at large field values. The location of the cut is estimated by demanding that

the classical evolution becomes more important than the quantum fluctuations [23, 24].

This can be quantified by requiring that the second term in the right-hand side of eq. (3.7)

dominates over the first one,∣∣∣∣ ∂∂h
(
V ′

3H2
P

)∣∣∣∣ > k

∣∣∣∣ ∂2

∂h2

(
H2

8π2
P

)∣∣∣∣ , (3.11)

where k is a fudge factor and P is given in eq. (3.8). Equation (3.11) implies that the

Gaussian distribution must be cut for h2 > 3kH2/(2|λ|N), and values of h that satisfy this

inequality are sucked into the true minimum.

Therefore, the probability of falling to infinity is exponentially suppressed for small |λ|:

p(|h| → ∞) ≈ 1− erf

(
π
√

3k

N
√
|λ|

)
. (3.12)

Such probability satisfies p(|h| → ∞) < e−3N for |λ| < kπ2/N3.

Considering now the more realistic case of the SM potential with a running coupling

λ(h) = −b ln(h2/h2
max

√
e), we find

p(|h| → ∞) ≈ 1− erf

(
π
√

3k

N
√
bB

)
, where B = PL

(
3kH2

2bNh2
max

)
(3.13)

where PL is the ProductLog function. This analytic approximation of p(|h| → ∞) is shown

in figure 3 as the dashed red line and agrees well with the numerical computation, once we fit

the fudge factor to be k = 2.6. Next, we need to extrapolate the analytic approximation to
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Figure 4. Running of the Higgs coupling to gravity ξH as a function of the renormalisation scale in

the SM, for different initial conditions at the Planck scale. The dashed horizontal lines correspond

to the special values ξH = −1/6 and ξH = 0.

Figure 5. Random distribution of the Higgs field h̄ = h/hmax after N = 60 e-folds of inflation

with Hubble constant equal to the Higgs instability scale, H = hmax, and for ξH = −0.01. The

blue dashed line is the Gaussian approximation of eq. (3.19). The red curve is the Higgs potential

VSM(h)− 12ξHH
2h2/2, in arbitrary units.

probabilities much smaller than those that can be computed numerically. The probability

p(|h| → ∞) is smaller than e−3N for

H

hmax
<

π

N

√
2

3
eπ

2k/2bN3 ≈ 0.045. (3.14)

3.2 Higgs fluctuations during inflation for ξH 6= 0

Higgs fluctuations during inflation can get damped if the Higgs doublet ΦH during inflation

acquires an effective mass m. Various effects can contribute to such mass:

– 14 –
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Figure 6. As a function of ξH and the Hubble constant in units of the instability scale hmax (and

for N = 60 e-folds of inflation), we show the three regions where: the probability for the Higgs

field to end up in the negative-energy true minimum is larger than e−3N (red); the probability for

the Higgs field to fluctuate beyond the potential barrier is larger than e−3N (orange); the latter

probability is smaller than e−3N (green). Higgs fluctuations are damped for ξH < −3/16. The

uncertainty on the orange/red boundary corresponds to a fudge factor 1/3 < k < 3.

1. a quartic term λhφ|ΦH |2φ2 in the potential, which describes a coupling between the

Higgs ΦH and the inflaton φ, generates during inflation an extra contribution m2 =

λhφφ
2 to the Higgs mass;

2. a decay of the inflaton into SM particles can generate a non-vanishing temperature

during inflation. Such decay are kinematically blocked when SM particles acquire

a thermal mass larger than the inflaton mass, of order H. Thereby the Higgs can

acquire a mass m2 ≈ H2;

3. a non-minimal Higgs coupling to gravity, −ξH |ΦH |2R contributes as m2 = ξHR =

−12ξHH
2.

These contributions to m2 would have qualitatively similar effects. In our quantitative

analysis we focus on the latter effect because the presence of the ξH term is unavoidable:

even if ξH = 0 at some energy scale, SM quantum corrections generate a non-vanishing

value of ξH at any other energy scale. Indeed, ignoring gravity, the one-loop running of ξH
is given by

dξH
d ln µ̄

=
ξH + 1/6

m2

dm2

d ln µ̄
=
ξH + 1/6

(4π)2

(
6y2
t −

9

2
g2

2 −
9

10
g2

1 + 12λH

)
+ · · · (3.15)

where µ̄ is the renormalisation scale. The RGE for the Higgs mass parameter m2 is known

up to 3 loops in the MS scheme (as summarised in [1–3]), and we have shown here only

the leading term. The SM couplings are such that d ln |m2|/d ln µ̄ is positive (negative)

at energy roughy below (above) 1010 GeV. The evolution of ξH for different boundary

conditions at MPl is shown in figure 4; it has a fixed point at the conformal value ξH = −1/6.

Notice that this value is not special for our analysis because it does not recover conformal

invariance, which is broken at the level of the SM Higgs effective potential.
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We consider the following action

S =

∫
d4x
√
g

[
−
M̄2

Pl

2
R− ξH |ΦH |2R+ |DµΦH |2 − V + · · ·

]
(3.16)

where V ' V (φ) + λ|ΦH |4 is the scalar potential of the Higgs and of the inflation φ and

M̄Pl is the reduced Planck mass. We use the approximation that, during inflation, the

inflaton potential is constant V (φ) ' VI .10

The ξH coupling of the Higgs to gravity affects the scalar potential during inflation by

inducing an effective Higgs mass term m2 = ξHR = −12ξHH
2 ' −4ξHVI/M̄

2
Pl which can

stabilise the Higgs potential and suppress Higgs fluctuations. As explained after eq. (3.1),

Higgs fluctuations are damped if ξH < −3/16. For −3/16 < ξH < 0, Higgs fluctuations

are still present, but become less dangerous than in the case of vanishing ξH .

Neglecting the small Higgs quartic coupling, adding the effective Higgs mass term

m2 = −12ξHH
2, and assuming the ansatz of a Gaussian distribution with variance 〈h2〉,

P (h,N) =
1√

2π〈h2〉
exp

(
− h2

2〈h2〉

)
, (3.17)

the evolution of 〈h2〉 is obtained from the Fokker-Planck equation (3.7) and becomes, at

h2 � 〈h2〉,

∂〈h2〉
∂N

= −2m2

3H2
〈h2〉+

H2

4π2
⇒

√
〈h2〉 =

√
3

2

H2

2πm

√
1− exp

(
−2m2N

3H2

)
. (3.18)

If m2 < 0, the variance grows exponentially with N . If m2 > 0, the Higgs probability

distribution approaches, after a few e-folds, the limiting distribution given by11

√
〈h2〉 =

H

4π
√
−2ξH

. (3.19)

This is to be compared with eq. (3.8), which holds for ξH = 0. Figure 5 shows a numerical

example: already for ξH = −0.01 the variance is significantly reduced.

Using eq. (3.19), we obtain the following bounds on H from the request that the

probabilities of the Higgs fluctuating beyond the barrier (|h| > hmax) or falling into the

true minimum (|h| → ∞) are less than e−3N :

p(|h| > hmax) < e−3N ⇒ H

hmax
< 4π

√
−ξH
3N

, (3.20)

p(|h| → ∞) < e−3N ⇒ H

hmax
< 4π

√
−ξH
3N

e32π2ξ2
H/bN . (3.21)

10Of course, one could also envisage other operators coupling the Higgs field with gravity, e.g.

|ΦH |2R2/M2
Pl. However, in most models of inflation, the Hubble parameter squared decreases linearly

with the number of e-folds Ne till the end of inflation. Therefore, for ξH >∼ (H2
I /M

2
Pl)(Ne/NI), where

HI is the initial value of the Hubble rate when inflation starts and NI is the total number of e-folds, the

higher-order operator becomes negligible. This condition becomes easier and easier to satisfy as inflation

proceeds.
11This is larger than what is obtained by naively assuming a Hawking temperature T = H/2π.
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These bounds are the analogues of eqs. (3.10) and (3.14), which are valid for ξH = 0. An

order-one fudge factor k can be similarly introduced such that eq. (3.21) closely agrees with

the numerical result; however k depends on ξH and thereby differs from what we previously

discussed in the limit ξH = 0. Taking into account how ξH stabilises the potential results

in a more complicated, but numerically similar, analytic expression. Furthermore these

approximations needs to be extrapolated down to probabilities smaller than those that

can be compared to the numerical result. Conservatively estimating the uncertainty by

varying 1/3 < k < 3, in figure 6 we summarise the situation by showing the regions of ξH
and H/hmax where the bounds in eq.s (3.20) and (3.21) are satisfied for N = 60.

In the presence of a λhφ|ΦH |2φ2 potential coupling between the Higgs ΦH and the

inflaton φ, during inflation one has an extra contribution to the Higgs mass, m2 = λhφφ
2.

This term has a similar effect as the inflationary mass discussed above. The Higgs h has

no inflationary fluctuations as long as m > 3H/2. However, in general m2 changes during

inflation in a model-dependent way. Considering, for example, large-field inflation with

a quadratic potential, one has φ = 2M̄Pl

√
NI −N during inflation, where NI >∼ 60 is the

total number of e-folds. Inserting m2 = 4λhφM̄
2
Pl(NI − N) into eq. (3.18) one finds that

the maximal Higgs fluctuation is achieved at the end of inflation and is Planck suppressed:

〈h2〉 =

√
3

πλhφ

H3

16πM̄Pl
. (3.22)

3.3 Bubble evolution in de Sitter spacetime

After having computed the probability for inflationary fluctuations to form regions where

the Higgs field lies at its true minimum, the next question we have to address is how these

regions evolve. In the literature one finds conflicting statements about the evolution of AdS

regions in an inflationary background. One point of view, based on flat-space intuition, is

that AdS regions should expand because their interior has lower energy than the exterior.

A different point of view is that, since AdS space eventually contracts, regions in which the

Higgs lies at its true minimum will shrink, possibly leaving some almost point-like relics,

which are nevertheless efficiently diluted, and thus made harmless, by the inflationary

expansion of space. We will show that addressing the question about the fate of AdS regions

involves a number of non-trivial and counter-intuitive issues raised by general relativity.

First, gravitational energy contributes to the total energy budget. Second, an AdS

region might expand, while remaining hidden behind a black-hole horizon. Third, the

interior AdS space is dynamically unstable [25]: when described in cosmological FRW

coordinates it reaches a ‘big-crunch’ singularity in a finite amount of internal time of order

(GVin)−1/2, where −Vin < 0 is the internal cosmological constant. If space is empty, this

is just a coordinate singularity (AdS can be continued using better coordinates); if space

is filled by a background field (for example the Higgs field), its fluctuations grow until

the energy density becomes infinite and a physical singularity appears. Furthermore, the

AdS geometry has a timelike boundary, such that the evolution cannot be predicted after

the bubble wall reaches the boundary, unless additional boundary conditions are imposed

there (in other words, information must flow in from infinity). As a result, a Cauchy
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horizon appears in the interior of the bubble. It is expected that, within the full theory

beyond the thin-wall limit, a physical spacelike singularity must develop before the Cauchy

horizon [52]. This confirms the expectation that the AdS bubble is unstable.

In order to clarify all these issues we performed a careful (and somewhat lengthy)

general-relativistic computation, described in appendix A. Here we summarise the

main points.

In order to make the problem tractable analytically, we assume a spherical AdS region

(that we thereby call ‘bubble’), separated from the outside space by a thin wall with

constant surface tension σ. The matching of the external and internal geometries requires

the presence of such a wall with nonzero energy density. The fate of the AdS bubble is

then determined by computing the motion of the wall separating the AdS interior from the

external space (de Sitter during inflation and Minkowski after inflation). In the thin-wall

approximation, the motion of the wall is determined by junction conditions that relate the

extrinsic curvature on each of its sides [53]. The bubbles that we now compute are more

general than those that arise from vacuum decay with zero total energy, already studied

in [25]. The basic elements of our calculation are the following.

1. The space inside the bubble is assumed to be an empty spherical region of AdS space

with metric

ds2 = −fin(r) dη2 +
dr2

fin(r)
+ r2dΩ2

2, r < R, (3.23)

expressed in global coordinates. Here fin(r) = 1 + r2/`2in is the usual AdS solution,

with vacuum energy −Vin corresponding to the length scale 1/`2in = 8πGVin/3.

2. The space outside the bubble is described by the metric

ds2 = −fout(r) dt
2 +

dr2

fout(r)
+ r2dΩ2

2, r > R, (3.24)

where fout(r) = 1−r2/`2out−2GM/r describes a Schwarzschild-de Sitter (SdS) space-

time, with G = 1/(8πM̄2
Pl). Here M is the mass of the bubble as seen by an outside

observer, living in an asymptotically de Sitter space described by the length scale

1/`2out = 8πGVout/3 = H2. As discussed later, the metric in eq. (3.24) also de-

scribes the case of the asymptotically flat spacetime produced after inflation, which

is obtained in the limit Vout → 0, so that fout(r) = 1− 2GM/r.

Note that, for `out � GM , the SdS spacetime contains two horizons, corresponding

to the zeros of fout(r): the inner (Schwarzschild) horizon at r ≈ 2GM and the outer

(de Sitter) horizon at r ≈ `out. The corresponding Penrose diagram is depicted in

the right panel of figure 7. It is a combination of the diagrams for the Schwarzschild

and de Sitter spacetimes [27]. Thick blue lines denote curvature singularities, the

dashed lines horizons and the dotted lines conformal infinities. The two thin vertical

lines at the ends of the diagram indicate that the pattern is repeated indefinitely on

either side.
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3. The two regions are separated by a domain wall with constant surface tension σ. The

metric on the domain wall can be written as

ds2 = −dτ2 +R2(τ)dΩ2
2, (3.25)

where R(τ) denotes the location of the wall in both coordinate systems (3.23)

and (3.24). The evolution is expressed in terms of the proper time τ on the wall. In

the full problem, σ is given by the kinetic and potential energy of the Higgs field, and

is different for each Higgs configuration. Within our approximation, all energy stored

in the Higgs potential goes into the motion of the wall, leaving the AdS interior empty.

The detailed calculation described in appendix A shows that the (naively positive) differ-

ence between the energy in the exterior (`−2
out) and the interior (−`−2

in ) of the bubble that

controls whether the bubble expands or contracts receives a gravitational correction −κ2,

so that the relevant parameter is the quantity:

∆ =
1

`2in
+

1

`2out

− κ2, κ ≡ 4πGσ. (3.26)

As discussed after eq. (A.11), the contribution ∼ κ2 can be interpreted, from a Newtonian

point of view, as the gravitational self-energy of the wall. The motion of the wall can be

described as the Newtonian motion of a point particle(
dR̃

dτ̃

)2

+ V (R̃) = E, (3.27)

in an effective ‘potential’ given by

V (R̃) = −

(
1 + εR̃3

R̃2

)2

− γ2

R̃
− δ2R̃2, (3.28)

where R̃ = ρR is a rescaled dimensionless coordinate that describes the position of the wall

as a function of a rescaled dimensionless proper time τ̃ = 2κτ/γ2. The various constants

are given by

δ2 =
4κ2

`2out∆
2
, ρ3 =

|∆|
2GM

, ε ≡ sign∆, γ =
2κ√
|∆|

, E = − κ2

G2M2ρ4
.

(3.29)

The possible types of bubble evolution are discussed in detail in appendix A. The

complete analysis is performed for an asymptotically flat exterior spacetime, for which there

are fewer cases. The evolution within an asymptotically dS spacetime does not display any

novel characteristics, and is discussed more briefly. The study of the ‘potential’ shows that

there are two cases in which bubbles do not expand: either they start small enough, or their

expansion is hidden behind a black-hole horizon (this possibility corresponds to ∆ < 0).

We will discuss in section 4.3 if any of these possibilities is realised in the simpler case of

Higgs bubbles in an external flat spacetime, after the end of inflation.
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Figure 7. Penrose diagram describing an AdS bubble that expands in a dS space. The black curve

denotes the thin wall separating the two phases; the true space is obtained by patching the region

in white in the left panel (AdS interior of the bubble) with the region in white in the right panel

(Schwarzschild-dS exterior of the bubble). The dashed lines denote the various horizons, while the

thick blue line in the left panel denotes the AdS singularity (‘crunch’).

The standard evolution of sufficiently large bubbles is characterised by expansion, with

their wall crossing the outer (dS) horizon. A typical example is presented in the Penrose

diagram of figure 7: the wall starts below the inner horizon and subsequently expands,

passing through both horizons and eventually reaching a speed close to that of light. The

bubble grows in size and takes over part of the dS spacetime. The crucial question is

whether the bubble can engulf the total exterior spacetime, thus ending inflation. It is

apparent from figure 7 that this does not happen. Asymptotically the AdS bubble replaces

only part of the spacelike surface r =∞, with the remaining dS space remaining unaffected.

In other words, expanding bubbles are inflated away. Inflation precisely has the purpose

of splitting the expanding universe into causally disjoint regions, and this limits the effect

of the bubble growth: bubbles expand, but the dS space between them also grows. In

the limit of infinite inflation, both the bubbles and the exterior de Sitter phase acquire

infinite extent.

We can estimate the asymptotic bubble size through the use of dS planar coordinates,

commonly employed in the study of inflation. The metric has the form

ds2 = −dt2p + e2Htp
(
dr2
p + r2

pdΩ2
2

)
. (3.30)

Assuming that the wall follows an almost null trajectory, we find that its location is given by

rp = rp0 +
1

H

(
1− e−Htp

)
. (3.31)

Bubbles are created within the causally connected region, which extends up to 1/H at

tp = 0. This means that its typical radius rp0 is of order 1/H. Its subsequent growth
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Figure 8. Left : an example of how the dynamical evolution during pre-heating can bring back

the Higgs field into the stable region before the instability takes over. The coloured lines show the

potential at successive intervals of time, and the black line shows the trajectory of the Higgs field.

Right : maximal value of the Higgs field at the end of inflation (hend) that is brought back by a

non-minimal gravitational coupling ξH into the stable region, h < hmax, shown as a function of the

Hubble constant during inflation and for different values of ξH .

extends this radius by 1/H.12 It is reasonable then to expect that during inflation a

typical bubble can be created with a certain probability within a causally connected region

and then will roughly follow the general expansion of this region outside the horizon. It

cannot, however, engulf the whole spacetime. The picture is completely different for an

asymptotically flat exterior. As we shall see in the next section, in that case an expanding

bubble can take over the whole spacetime.

Another important question concerns the consequences for an outside observer of the

AdS ‘crunch’ in the bubble interior. We discuss this issue in detail in appendix A.5. From

the point of view of an observer deep inside the bubble, the coordinates in which the bubble

appears as homogenous are those of an expanding and subsequently contracting open FRW

universe with constant negative energy density. The bubble wall can be roughly identified

with the t̂ = 0 surface in this slicing (see figure 19 in the appendix). After a finite (and

short) time t̂, of order the AdS radius, a singularity forms in the bubble interior. However,

this singularity never reaches the wall, as the latter expands with the speed of light. On

the other hand, from the point of view of an external observer the bubble just expands

forever (within either de Sitter or Minkowski spacetime).

4 Higgs evolution after inflation

In this section we study the evolution of the Higgs field after inflation, considering that in-

flation ends with a matter-dominated phase, characterised by inflaton oscillations, followed

by the reheating process, which ignites the usual thermal phase characterised by a gas of

SM particles.

12Note, however, that the physical bubble radius is obtained after multiplication by the divergent factor

exp(Htp).

– 21 –



J
H
E
P
0
9
(
2
0
1
5
)
1
7
4

4.1 Higgs evolution during pre-heating

We start by considering the pre-heating phase, during which the energy density of the

universe is dominated by the inflaton oscillations around its minimum. The interest of this

phase lies in the case in which the Higgs potential has an extra mass term 1
2m

2h2 induced

either by a non-minimal coupling to gravity (m2 = −12ξHH
2) or by a coupling to the

inflaton φ (m2 = λhφφ
2). In either case, the mass term rapidly shuts off after inflation.

However, we will show that the induced m2 can still have an important stabilising effect

during the pre-heating phase.

Let us suppose that, at the end of inflation, the universe enters a matter-dominated

phase, where the equation of state is that of a pressure-less gas, which is a good approxi-

mation when the inflaton field is oscillating before reheating. In this case the effective mass

of the Higgs field is m2 = −3ξHH
2
m and the Hubble rate scales as Hm = H/a3/2 where we

have set the value of the scale factor a at the end of inflation to unity.13

We consider a region in which, once inflation ends, the Higgs field has the value hend.

If the Higgs mass term during inflation (m2 = −12ξHH
2) is larger than (9/4)H2 (i.e. if

ξH < −3/16), then the Higgs field is anchored at the origin and hend = 0. We are interested

here in the opposite regime, when −3/16 < ξH < 0 and quantum fluctuations of the Higgs

are generated during inflation; in this case, hend is generally not zero. The subsequent

evolution of the Higgs field is governed by the equation

d2h

dt2
+ 3Hm(t)

dh

dt
+
∂V

∂h
= 0 ⇒ d2h

da2
+

5

2a

dh

da
+

a

H2

∂V

∂h
= 0. (4.1)

Keeping only the mass term in V and neglecting the quartic term, we find (a/H2)∂V/∂h =

−3ξHh/a
2 and then the solution of eq. (4.1) is

h(a) = hend a
− 3

4

(
1−
√

1+ 16
3
ξH

)
|ξH |→0
≈ hend a

2ξH , (4.2)

where we have neglected the solution with h ∝ a−3/2, which is rapidly damped with respect

to eq. (4.2), and where the last approximation is valid only for |ξH | � 3/16.

As the amplitude of the Higgs field and the contribution to the potential from the

m2 term are both decreasing in time, we need to investigate if the Higgs field has time

enough to roll down to the safe region h < hmax before the instability starts to become

more important than the fading m2 term, reverting the evolution of h. An example of the

Higgs field behaviour is shown in figure 8a. The time at which the instability starts driving

the Higgs dynamics can be estimated by requiring that the quartic term in the scalar

potential (λh4/4 with λ = −b lnh2/h2
max

√
e) is comparable with the mass term (m2h2/2

with m2 = −3ξHH
2/a3) at hmax, which corresponds to

a3 = a3
max ≈ −

12ξHH
2

bh2
max

. (4.3)

13We recall that the Ricci scalar is given by R = −6(ä/a + ȧ2/a2) for a spatially flat universe. During

inflation a = exp(Ht) with H constant, hence R = −12H2. In a matter-dominated phase (a ∝ t2/3) we

have R = −3H2
m with Hm = ȧ/a ∝ a−3/2, while R = 0 in the radiation-dominated phase (a ∝ t1/2).
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Thereby, the instability is avoided if

hend<∼hmaxa
−2ξH
max . (4.4)

This estimate is confirmed by the result of a numerical computation illustrated in figure 8b,

in which eq. (4.1) is solved using the full SM potential.

The qualitative conclusion, whenever ξH 6= 0, is the following. Higgs field values

that, at the end of inflation, are even a factor of O(2) above the instability scale hmax are

brought back into the metastability region (h < hmax) and saved from collapse into the AdS

vacuum by the non-minimal gravitational coupling ξH during pre-heating dynamics. The

bound on the Hubble scale during inflation in eqs. (3.20) and (3.21) are correspondingly

weakened by an O(2) factor. On the other hand, in regions where the Higgs remains in

the instability region h(amax)>∼hmax during pre-heating, the field quickly falls down into

its deep minimum, in a time t ∼ 4π/hmax, unless a large enough temperature prevents the

collapse, as we discuss in the following section.

The dynamics discussed above is similar to the one in which the Higgs field is coupled

to the inflaton field by a coupling of the form λφhφ
2h2/2 that generates a contribution

m2 = λφhφ
2 to the Higgs mass. As discussed in section 3.1, if during inflation m > 3H/2

Higgs inflationary perturbations are suppressed and the Higgs is efficiently anchored at

h = 0. If instead m < 3H/2, Higgs fluctuations are generated as in eq. (3.22) and they may

pose a threat. After the end of inflation, when the inflaton field oscillates and its amplitude

is redshifted away as φ ∼ a−3/2, the effective mass squared of the Higgs, m2 = λhφφ
2,

decreases as a−3, exactly as the m2 induced by the ξH coupling (m2 = −3ξHH
2
m). One

can therefore deduce the dynamics upon identifying the two m2. Of course, if the coupling

of the inflaton field with the Higgs field is of a different nature, e.g. a non-renormalisable

coupling of the form φ4h2/M2
Pl, one needs to account for the different behaviour of the

Higgs effective mass.

4.2 Higgs evolution during reheating

In this section we study how the reheating process affects the bounds on the Hubble

constant H during inflation. Indeed, the dynamical evolution during the thermal phase

can bring back the Higgs field towards the EW vacuum, even in regions where h has

fluctuated beyond the instability barrier (h>∼hmax) at the end of inflation. As a result, the

bounds on H derived in section 3 are effectively relaxed.

At the end of inflation, the energy density of the universe is dominated by the coherent

oscillations of the inflaton field φ with energy density ρφ(t). The oscillations of φ, started at

time t ∼ 1/H, give a matter-dominated stage that gradually ends at t ∼ 1/Γφ, where Γφ is

the inflaton decay width. The decay of the inflaton field into light degrees of freedom, which

quickly thermalise via SM interactions giving rise to an energy density ρR(t), initiates the

radiation-dominated era of the universe. The process is described by the equations
dρφ
dt

= −3Hrρφ − Γφρφ ,

dρR
dt

= −4HrρR + Γφρφ ,

(4.5)
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Figure 9. Maximal value of the Higgs field at the end of inflation hend that is brought back to the

stable region, h < hmax, as a function of the Hubble constant during inflation, for different values of

Tmax and ξH . This result, presented only in terms of ratios, negligibly depends on the absolute value

of the instability scale hmax, which suffers from large uncertainties mainly due to the top quark

mass. In the red region the inflationary fluctuations typically drive the Higgs to its negative-energy

minimum, and therefore the corresponding values of hend and H are a highly unlikely outcome of

inflation. In the parameter region below the dashed line, the field h rolls towards the SM vacuum,

even in the absence of any thermal effect.

where Hr = ȧ/a =
√

8π(ρφ + ρR)/(3M2
Pl) is the time-dependent Hubble constant during

reheating.

The solution for the time evolution of ρφ is

ρφ(t) =
ρφ(0)

a3(t)
e−Γφt, ρφ(0) =

3H2M2
Pl

8π
(4.6)

where the initial condition ρφ(0) is given by the total energy density at the end of inflation.

The second equation in the system (4.5) can be more conveniently written as

dR

da
=

γa3/2Φ√
Φ +R/a

, R ≡ ρRa4 , Φ ≡ ρφa3 , γ ≡
√
π2g∗
30

T 2
RH , (4.7)

where g∗ is the number of degrees of freedom in the thermal bath (g∗ = 106.75 in the SM)

and TRH is the temperature of the system once all the inflaton energy is converted into

thermal energy at the decay time,

TRH =

(
45

4π3g∗

)1/4

M
1/2
Pl Γ

1/2
φ . (4.8)

Equation (4.7) can be approximately solved at the early stage of reheating (t � Γ−1
φ ),

by taking e−Γφt ≈ 1 in eq. (4.6) and neglecting the thermal-energy contribution to Hr
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(R/a� Φ). Once we express ρR in terms of the effective temperature T ,

ρR(t) ≡ π2g∗
30

T 4(t), (4.9)

the solution of eq. (4.7), at early times, gives the evolution of the temperature T (valid till

the universe enters the radiation-dominated phase)

T ≈ k1 Tmax a
−3/8(1− a−5/2)1/4 , Tmax = k2

(
HMPlT

2
RH

g
1/2
∗

)1/4

, (4.10)

where k1 = 26/53−3/205−1/4 = 1.3 and k2 = (3/8)2/5(5/π3)1/8 = 0.54.

The temperature T of the SM-particle gas raises from 0 to the maximum value Tmax as

long as, soon after inflation, the scale factor of the universe a grows by an order-one factor

in a time t ∼ 1/H. After reaching Tmax, the temperature decreases as a−3/8, signalling

the continuous release of entropy from the decay of the inflaton field. When this energy

release ends, at time t ∼ 1/Γφ, the temperature is equal to TRH, which is called the

reheating temperature, and then radiation cools in the standard way, T ∝ 1/a, due to

space expansion. Note that the entire reheating process can be described by only two

parameters, which we choose to be H and TRH. The decay of the Higgs condensate at the

end of inflation has been discussed in ref. [54, 55].

Let us now consider the evolution of the Higgs field throughout the thermal phase.

Because of thermal corrections, the Higgs potential receives an extra mass term 1
2m

2
Th

2,

where mT ∼ gT and g represents the relevant combination of coupling constants. This

expression for the thermal mass holds up to field values h<∼ 2πT . The thermal corrections

to the potential can be approximated as [56]

VT ≈
(

0.21− 0.0071 log10

T

GeV

)
T 2h

2

2
e
− h2

(2πT )2 , (4.11)

where we added an exponential cut-off at high values of h. VT helps in stabilising the Higgs

potential by shifting the instability to higher scales, in much the same way as the mass

term due to the coupling ξH does.

Figure 9 shows the maximum allowed value of hend in order for the Higgs not to fall

into its true vacuum at (or above) Planckian field values. A direct comparison with the

right panel of figure 8 shows that, for high enough reheating temperatures, thermal effects

are indeed of extreme relevance.

It is not difficult to understand the behaviour of the maximum allowed value of hend

as a function of the Hubble rate. Let us consider for simplicity the case ξH = 0 (left panel

in figure 9). From eq. (4.1) one can see that in a time scale of the order of the Hubble

time, when the scale factor changes by order unity and the maximum temperature has

been reached, the Higgs field changes by an amount (we neglect factors of order unity)

h− hend ' −
1

H2
V ′(hend) ' −

m2
T (Tmax)hend

H2
−
λh3

end

H2
, (4.12)
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Figure 10. Minimal reheating temperature TRH needed to prevent the fall of the Higgs down

into its deep true vacuum, assuming two different values for the instability scale hmax of the Higgs

potential.

where we have approximated the zero temperature potential as λh4/4 and one has to

remember we are considering the region where λ < 0. Therefore, we obtain the approximate

expression, valid soon after inflation,

h ' hend

(
1− T 2

max

H2
− λ

h2
end

H2

)
. (4.13)

For h to roll towards the origin, a necessary condition is that the right-hand side of eq. (4.13)

is smaller than one, which implies hend<∼Tmax/|λ|1/2. This explains the approximate flat-

ness of the curves in the right panel of figure 9 for small H. For H � Tmax, the approximate

scaling of the bound on hend as H−1/3T
4/3
max can be understood in the following way. Being

the Hubble rate large, the term (a/H2)∂V/∂h in eq. (4.1) can be neglected up to the mo-

ment when the second time derivative term or the first time derivative term become of the

order of the potential term. This means that the Higgs field does not move much from its

initial condition hend up to the moment when

5

2a

dh

da
∼ a

H2
m2
T (T )h =

a

H2
T 2

maxa
−3/4h. (4.14)

This implies that the Higgs field starts moving away from hend when

a ∼ a∗ =

(
45H2

8T 2
max

)4/9

. (4.15)

Imposing that at this value of a the finite temperature term in the potential dominates

over the negative quartic term gives

hend<∼

(
8

45

)1/6 H−1/3 T
4/3
max√

|λ|
, (4.16)

which reproduces the right scaling shown in figure 9.
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Figure 11. Penrose diagram describing an AdS bubble that expands in external Minkowski. Left :

the wall trajectory corresponding to line C of figure 15, in AdS space. Right : the wall trajectory

corresponding to line C of figure 15, in the Schwarzschild geometry.

In figure 9 we let hend and H vary independently. However, the inflationary dynam-

ics correlates the two variables, assigning a certain probability to hend for any given H.

Although we have not used any relation between the two variables, in figure 9 we have in-

dicated in red the region in which the field h has overwhelming probability to slide towards

large values and thus the corresponding parameters essentially cannot be the outcome

of inflation.

Figure 10 shows the minimal value of TRH for which the thermal corrections prevent the

fall of h down to its deep minimum. In other words, it shows how the limit on the Hubble

constant H corresponding to the orange area of figure 6 can be relaxed, depending on the

reheating temperature TRH. For sufficiently large TRH, regions in which the Higgs field

fluctuates around its instability scale hmax can be recovered by post-inflationary thermal

effects. On the other hand, the thermal phase cannot save regions in which the Higgs fell

down into its deep negative-energy minimum during inflation. In the next section we will

show that most of these regions eventually expand and hence a viable cosmology require

that no such regions are produced during inflation. This excludes the red area in figure 6.

4.3 Bubble evolution in Minkowski spacetime

The discussion of bubble evolution in an external Minkowski spacetime is analogous to

the de Sitter discussion of section 3.3. A first difference is that the effective potential of

eq. (3.28), which dictates the evolution of the bubble, is simplified when we set `out = ∞
(i.e. δ = 0). A second key difference is that the external Minkowski space has no causal

horizons: if, after inflation ends, bubbles expand at the speed of light, they engulf the

whole space.

An important task is to determine whether Higgs bubbles expand or shrink. The

complete analysis is presented in appendix A, where all the possible wall trajectories are
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determined. In summary, there are two scenarios in which bubbles do not take over the

whole space: either they start small enough so that they shrink, or they expand but

remain hidden behind a black-hole horizon (a possibility that corresponds to ∆ < 0). In

the following we examine if either of these possibilities is realised for Higgs bubbles, making

them benign.

We first consider bubbles with positive

∆ ≡ 1/`2in − (4πGσ)2 > 0, (4.17)

which are bigger than their Schwarzschild radius and thereby can expand in the naive

Newtonian way. This is the case depicted in the Penrose diagram in figure 11, to be

compared with figure 7 for external dS. The black continuous curve denotes the trajectory

of the wall: the bubble starts small and expands indefinitely within the asymptotically

flat spacetime. The total space is constructed by patching the part of the diagram on the

right of the wall with the part of the left diagram on the left of the wall. The shaded

areas correspond to the parts that must be eliminated in order to join the remaining

parts along the wall trajectory. From the point of view of an external observer, the bubble

asymptotically expands at the speed of light and asymptotically reaches null infinity, filling

all space.

Bubbles may also shrink because of their surface tension, if they are small enough

(R < Rcr), and start with a small wall velocity. The critical radius, separating the two

types of evolution, can be computed from the potential of eq. (3.28), but the resulting

expression is not very illuminating. We present the complete discussion in appendix A.6.

The result can be simplified by assuming Ṙ = 0, and the Newtonian limit κ� 1 (such that

∆ > 0). In this case, the critical radius is obtained by extremising the sum of the surface

and volume energy (4πR2σ − 4πR3Vin/3) with respect to R, thus finding Rcr = 2σ/Vin

and a bubble mass M = 16πσ3/3V 2
in. The exact result, valid even beyond the Newtonian

approximation, is shown in figure 12. In the ultra-relativistic limit the critical radius

becomes Rcr = 3GM , slightly larger than the Schwarzschild radius 2GM .

Figure 12 also shows the estimated M(R) corresponding to Higgs bubbles for different

values of hin, the unknown Higgs value at its deep minimum. We use Vin ∼ |λ|h4
in and

estimate the surface tension from the Newtonian expression

σ ≈
∫
dr

[
1

2

(
∂h

∂r

)2

+ V (h)− V (hin)

]
∼ h2

in

∆r
+ ∆r|λ|h4

in
>∼
√
|λ|h3

in (4.18)

minimised for a bubble thickness ∆r ∼ 1/(hin

√
|λ|).

The estimate for σ is inserted in the full expression for M , eq. (A.11). The meaning

of negative values of M is discussed in the appendix, in sections A.4 and A.6: they cor-

respond to bubbles for which the negative volume contribution to the total energy budget

is dominant. For our present purposes, the conclusion is that inflationary fluctuations

create a number of bubbles with a variety of values of R and σ, including bubbles with

R > Rcr, which expand. Bubbles produced by inflationary fluctuations tend to appear

with characteristic size R ∼ 1/H = `out and with negligible Ṙ. If the Higgs value is near
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Figure 12. The boundary in the (R,M) plane that separates expanding bubbles from shrinking

bubbles. The curves are the estimated masses of Higgs bubbles, as functions of their radius, for

different values of hin, the unknown Higgs field value at the deep minimum.

the deep minimum of the potential, such bubbles are expected to have small or negative

mass (because of the negative volume contribution to the energy) and, therefore, expand.

Bubbles with sufficiently large surface tension σ have ∆ < 0 and their expansion is

energetically disfavoured from a Newtonian point of view. However, there exist expanding

solutions for such bubbles within general relativity. They are discussed in appendix A (see

figure 18). The crucial characteristic is that the expanding region is not accessible to an

observer in the asymptotically flat space. In other words, an observer outside the bubble

only sees a black-hole horizon, that protects him from its expansion. While such bubbles

would be benign, ∆ < 0 represents an extreme case: for the quartic Higgs potential, the

surface tension gives a Planck-suppressed correction, such that

∆ ∼ |λ|
M2

Pl

[
h4

in −
h6

in

M2
Pl

]
(4.19)

is negative only when the deep minimum of the SM potential is super-Planckian, hin>∼MPl.

It is then impossible to make firm predictions; strong gravitational effects may induce var-

ious dangerous effects. As long as the deep minimum is in the calculable sub-Planckian re-

gion (hin<∼MPl), bubbles have super-Planckian tension only for extreme Higgs field config-

urations, e.g. if the variation of h between the two minima happens within a sub-Planckian

length. Inflationary fluctuations tend to create bubbles with bigger thickness and smaller

surface tension. Furthermore, even if the condition ∆ < 0 were initially satisfied, the

bubble would evolve towards a smoother configuration with smaller surface tension by

reconfiguring the Higgs field profile.

Our study has been carried out within the thin-wall limit, because this is the only

setup for which an analytical treatment is possible. As we pointed out above, the realistic

situation is more likely to involve configurations with a smooth transition region from the

interior AdS space to the false-vacuum exterior. For these, the fundamental dynamics
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Figure 13. The SM Higgs potential VE ≡ λEeff(hE)h4
E/4 in the presence of a negative ξH coupling,

written in the Einstein frame in terms of the canonical Higgs field hE .

is mainly determined through the interplay between the negative energy density in the

interior and the positive contribution from the transition region. We expect that our

analysis captures the essential features of the evolution of such configurations as well.

The important conclusion that we draw from our study is the following. No robust

general-relativistic effect prevents large-field Higgs bubbles from expanding and engulfing all

Minkowski space. As a result, a viable cosmology requires that no expanding bubbles are

present in our past light-cone. In other words, the condition p(h→∞) < e−3N for N ≈ 60

e-folds must hold and the red region in figure 6 is excluded.

4.4 The Higgs potential for ξH 6= 0 at zero temperature

We conclude our study of the Higgs evolution after inflation with a remark concerning the

non-minimal gravitational coupling ξH . As previously discussed, a coupling ξH helps to

stabilise the Higgs field during inflation. However, long after inflation, at zero temperature

and H ≈ 0, it could have an opposite effect in the classical potential, in presence of a Higgs

instability generated by SM interactions (λeff < 0). In this setup an additional source of

instability is generated by ξH at Planckian values of the Higgs field, with no effect on our

discussion of the Higgs dynamics during the inflationary and post-inflationary phase.

In order to investigate the phenomenon, we focus on the real component h of the Higgs

doublet ΦH = (0, h/
√

2) and perform a Weyl rescaling to the Einstein frame gEµν = gµν × f
with f = 1 + ξHh

2/M̄2
Pl. Then, the Einstein-Hilbert term becomes canonical and the

action is

LE =
√

det gE

[
−
M̄2

Pl

2
RE + Z

(∂µh)2

2
− VE(h)

]
+ · · · (4.20)

Z =
1

f
+ M̄2

Pl

3f ′2

2f2
, VE(h) =

V (h)

f2
. (4.21)
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We are studying the theory long after inflation, and therefore V (h) = λeff(h)h4/4.14 It is

convenient to define a canonically normalised Einstein-frame Higgs field hE through the

equation dhE/dh =
√
Z, where Z is given in eq. (4.21). The field hE is such that hE ' h

for h� M̄Pl and hE →∞ for h→ M̄Pl/
√
−ξH (hence f → 0).

The Einstein-frame scalar potential becomes

VE(hE) =
λeff(h)h4

4(1 + ξHh2/M̄2
Pl)

2

∣∣∣∣
h=h(hE)

. (4.22)

In the limit of large hE (which corresponds to h → M̄Pl/
√
−ξH), the denominator in

eq. (4.22) nearly vanishes, while λeff is negative. In that regime of field configurations, we

find h(hE)− M̄Pl/
√
−ξH ∝ M̄Pl exp(−

√
2/3hE/M̄Pl) and the potential becomes

VE(hE)

M̄4
Pl

∝ λeff exp

(√
8

3

hE
M̄Pl

)
, for hE →∞ . (4.23)

Here λeff is evaluated at h = M̄Pl/
√
−ξH) and is negative. The exponential behaviour

in eq. (4.23) contributes to amplify the source of instability already present. The effect

is shown in figure 13, where we plot the effective coupling λEeff , defined in analogy with

previous effective quartic couplings by rewriting the potential in the Einstein frame as

VE(hE) ≡ λEeff(hE)h4
E/4. Negative values of ξH appear to trigger a deep instability at

Planckian field values h ∼ M̄Pl/
√
−ξH . However, for nonzero ξH , the ultraviolet cutoff

of the SM is no longer M̄Pl, but M̄Pl/|ξH | [57, 58]. Hence, the instability just described

takes place above that cutoff, where one is losing control of the theory [59–61]. It has been

pointed out that small primordial black holes can seed Higgs-vacuum decay and enhance

its rate [62, 63]. However, this process crucially depends on the number density of black

holes at a given epoch.

5 The quantum gravity prediction for the Higgs mass

In this section we explore how a speculative conjecture that has been put forward in

the context of quantum mechanical completions of gravity can lead to a sharp correlated

prediction for the Higgs and top-quark masses. The intriguing result is that this prediction

agrees quite well with the measured values of these masses. The reasoning is essentially

based on two points.

1. The empirical observation that we live in an accelerating universe.

2. The theoretical conjecture that quantum gravity is ill-defined in de Sitter

space [64, 65].

The difficulties with dS quantum gravity have been argued from various perspec-

tives [64, 65]. We summarise here in a very schematic way some of the arguments against

14During inflation V contains an extra constant term Vφ, which dominates the energy density, and H2 =

Vφ/(3M̄
2
Pl) is the Hubble constant during inflation. By expanding VE at leading order in h2/M̄2

Pl for Vφ 6= 0,

we recover the Higgs mass term considered in the previous sections, m2 = −4ξHVφ/M̄
2
Pl = −12ξHH

2. The

higher order terms were not relevant for our previous discussion.
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a stable dS space, reviewed in [66], extending them in light of some more recent develop-

ments. There is no positive conserved energy in dS (and, as a consequence, there cannot

be unbroken supersymmetry). There is no classical compactification of ten- or eleven-

dimensional supergravity to dS space, and stable dS space cannot be obtained from any

string or M-theory. Even in the general setting of quantum gravity, beyond the particu-

lar UV completion offered by string theory, other problems arise. It has been suggested

that the quantum Hilbert space in dS is of finite dimension, limiting the variations of

complex constructions. Given that the Gibbons-Hawking temperature sets a minimum

temperature, the finite dimensionality of the Hilbert space sets a maximum time scale,

the so-called recurrence time [65]. In particular, this leads to the problem of the so-called

Boltzmann brains [67], and it has been suggested that its resolution calls for an unstable

universe [67]. More generally, a rigorous definition of the Hilbert space in dS seems to be

problematic [64]. In quantum gravity, it is difficult to define precisely local observables and

one can rely only on asymptotic quantities, such as the S-matrix in Minkowski space and

the boundary correlators in AdS. However, in dS, where asymptotic states fall behind the

horizon, no such precisely defined observables seem to be present.

In addition to these problems that have been known for some time, it has been found

in [68–70] that there is a sharp universal bound on how much reheating volume slow-roll

inflation is capable to create without being eternal. This is given by eSdS/2, where SdS

is the entropy of the would be de Sitter space with Hubble rate evaluated at the time

of reheating. Larger overall expansion is possible only by making space infinite. This

generalises at the quantum level the bound on the duration of inflation found in [71], and

determines the universality of such a bound under the number of fields involved, higher

derivative corrections, number of space time dimensions and slow roll parameters. The

same phenomenon, i.e. not being able to produce arbitrarily large finite volumes, is shared

by false vacuum inflation. These results seem to suggest that there are bounds on the

kind of global spacetime structures that local quantum field theory can generate. This is

related to, and somewhat supporting, the argument against de Sitter space in nature that

we follow here.

Though none of these arguments raise to the level of a proof of the inconsistency of dS

space, they clearly give an idea of the conceptual difficulties that arise when considering

quantum mechanics in dS space.

It could well be that the problems of asymptotic dS space are circumvented by Planck-

ian dynamics, which can for example open channels for vacuum tunnelling to a ‘landscape’

of other minima with zero or negative vacuum energy. This is certainly a possibility.

However, it is interesting to note that, even without any special hypothesis about the

gravitational sector, the SM Higgs offers an easy way out to the problem. A solution is

automatically found if the present dS space is only metastable.

As soon as the decay rate per unit space time volume Γ of the false vacuum is non

zero, the asymptotic space is not dS. True vacuum bubbles are nucleated and expand at

the speed of light. There are two critical values of the decay rate [72], both valued around

H4
Λ, with HΛ being the Hubble rate of the would-be de Sitter region.
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If Γ is larger than the largest critical point, bubbles percolate, fill the whole space,

inflation ends globally, and the asymptotic spacetime is the one of the true vacuum (if this

is AdS, the instability grows and leads to a singularity in about one Hubble time). The

value of this critical point is Γ2/H
4
Λ = 9/4π ' 0.71 [66].

The precise value of the second critical point is unknown, but is bounded to be in the

range [72] 1.1 × 10−6 ≤ Γ1/H
4
Λ ≤ 0.24. If the decay rate lies between these two critical

points, then bubbles percolate and long chains of bubbles form, connecting arbitrarily

distant point in the otherwise dS space. Finally, when the decay rate is even slower than

the second critical point, then bubbles do not percolate, and the asymptotic spacetime is

the one called ‘false vacuum eternal inflation’. In this phase, there is an infinite amount of

space that keeps inflating, but each single point decays at some time into the true vacuum

through the nucleation of a bubble.15

On the other hand, there is no question that AdS and Minkowski are well-defined

spaces from the point of view of quantum gravity, although we have a non-perturbative

formulation of quantum gravity only for AdS. So, it is possible that quantum gravity allows

for an eternally inflating false-vacuum space-time, but not for dS space. We will show that

the opportunity of circumventing dS space through the Higgs field is given to nature only

for a narrow range of Higgs boson masses. Interestingly, it seems that nature did not miss

the opportunity because the measured Higgs boson mass lies exactly within this range.

Let us for a moment accept the quantum-gravity arguments against stable dS space,

and let us assume that our universe, which we observe to be today in a dS phase, escapes

the problems through a future decay of the Higgs vacuum. This implies the bound on the

Higgs boson mass [1–3]

Mh

GeV
< 129.6 + 2.0

(
Mt

GeV
− 173.34

)
− 0.5

(
α3(MZ)− 0.1184

0.0007

)
± 0.3 . (5.1)

The vacuum decay rate induced by the SM Higgs instability, exponentially suppressed

by the action of its bounce solution, S ≈ 8π2/(3|λ|) ∼ 103, is always faster, and typically

much faster, than what is needed to avoid the dS problems. Indeed, for comparison, the

de Sitter entropy is SdS ∼ πM2
Pl/H

2
Λ ∼ 10120. In general, the action of any Coleman-de

Luccia instanton out of a false vacuum with positive energy density is never larger than

SdS, no matter how high we make the false vacuum barrier (see the discussion of [66] for a

review).16 Therefore, when the Coleman-de Luccia instanton is present and can be reliably

computed, the lifetime is bound by the Poincaré recurrence time of de Sitter space, of order

eSdS/H, up to logarithmic factors. It is expected that this lower bound on the decay rate

is a property shared by all theories with a de Sitter false vacuum within field theory and

perturbative gravity.

15Bubbles continuously form and collide an infinite number of times among each other but they do so in

relatively smaller and smaller regions: there are points in the inflationary space for which the probability

that they are connected by a stream of bubbles is zero. When bubbles collide in our past light cone, a very

sharply defined disk shape is impressed in the CMB [73]. The optimal analysis to search for such a signal

in the WMAP data has been recently performed, with no evidence found [74, 75].
16One can check this by taking the limit in which the wall energy density goes to infinity in eq. (3.16) of

the paper by Coleman and de Luccia [25].
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Figure 14. The allowed meta-stability window of the Higgs mass. The ellipse indicates the

measured values of Mh and Mt. The orange region is excluded by assuming that “stable dS” is

unacceptable. The red region is excluded by vacuum decay at zero temperature. The pale-red

region is excluded by the requirement that the universe must have been hot in the past (the dashed

red curves show boundaries for different values of the reheating temperature). The bottom panel

shows the same result in the full range of a-priori possible Higgs masses, in order to emphasise the

smallness of the surviving meta-stability region.

There are also lower bounds on the Higgs mass. A first bound is obtained by requiring

that the tunnelling rate away from the EW breaking state with small and positive cos-

mological constant is not faster than the age of the universe. In the current universe, the

volume of our past light cone at the current time TU is

Vol4(TU ) = 0.08H4
Λ , (5.2)

where H2
Λ = Λ4/3M̄2

Pl is the Hubble rate produced by the observed vacuum energy Λ4.

Imposing that the probability p = e−Vol4(TU ) Γ that our universe experienced vacuum decay

in the past is small enough, implies an upper bound on the vacuum decay density rate Γ

Γ <
1

Vol4(TU )
log

(
1

p

)
(5.3)

and, within the SM, a lower bound on the Higgs mass [1–3]

Mh

GeV
> 111 + 2.8

(
Mt

GeV
− 173.34

)
− 0.9

(
αs(MZ)− 0.1184

0.0007

)
± 1. (5.4)

A stronger lower bound is obtained from the requirement that the universe underwent

a hot phase. There are good reasons to believe that the universe has been very hot at
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an early epoch. Indeed, processes such as inflation and leptogenesis suggest that the

primordial universe reached high temperatures. We have seen in section 4.2 how a large

reheating temperature helps in forcing the Higgs to its weak scale meta-stable minimum.

However, such high temperatures could have prematurely destabilised the Higgs metastable

vacuum. The requirement that this did not happen implies

Mh

GeV
> 124.2− 190

log2
10

TRH
GeV

+ 2.0

(
Mt

GeV
− 173.34

)
− 0.6

(
αs(MZ)− 0.1184

0.0007

)
± 1. (5.5)

Equations (5.1) and (5.5) define a fairly narrow range of possible Higgs masses (see fig-

ure 14). Loosely speaking, one might claim that quantum-gravity favours

122 GeV < Mh < 129.4 GeV for Mt = 173.34 GeV. (5.6)

Given that the Higgs mass is now precisely measured, one can better use Mh as input and

predict the top mass in the range

171 GeV < Mt < 175 GeV. (5.7)

The coincidence that the Higgs and top masses are within the predicted range can be

viewed as an indirect indication that nature took the opportunity offered by the Higgs to

avoid the problem of an asymptotic dS space.

6 Conclusions

Assuming that the SM holds up to large energies, we studied under which conditions the

cosmological evolution does not disrupt the electroweak vacuum, in spite of the presence

of an instability of the SM effective Higgs potential V (h) at field values h > hmax.

As a preliminary step, in section 2 we clarified the gauge-dependence of the effective

potential. The Nielsen identities show that the gauge-dependence of the effective action

corresponds to different ways of parameterising the same physics in field space: the physi-

cal content of the effective action is gauge-independent. We have shown how this implies

that the classical equation of motion (as well as the related Langevin and Fokker-Planck

equations used later) are gauge-independent, because the gauge-dependence of the effective

potential is compensated by the gauge-dependence of the kinetic term. Furthermore, we

showed how, in the basis in which the kinetic term is canonical, the full effective poten-

tial becomes gauge-independent in the limit in which only the leading-log corrections are

retained (which, for our purposes, is a very good approximation, see figure 1). For the

present best-fit values of the SM parameters one has hmax ≈ 5 × 1010 GeV, but hmax can

vary by orders of magnitude if the top mass Mt is varied within its uncertainty band.

Next, in section 3 we studied Higgs fluctuations during inflation. In our study, we also

took into account the effect of a Higgs mass m2 induced, during inflation, either by a mixed

quartic coupling between the Higgs and the inflaton, or by a non-minimal Higgs coupling

to gravity ξH . Not being radiatively stable, such a coupling is expected to be generally

present and leads to m2 = −12ξHH
2, where H is the Hubble constant during inflation,
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given by H ≈ 8×1013 GeV
√
r/0.1. Present cosmological data constrain r <∼ 0.1, but future

measurements will have greater sensitivity.

If m2 < 9H2/4 the Higgs undergoes inflationary quantum fluctuations, which we com-

puted via a Langevin equation that bypasses the need of imposing appropriate boundary

conditions encountered in the Fokker-Planck equation used in previous works. We find

that the parameter space in the plane H/hmax vs ξH splits into 3 regions (see figure 6):

• ‘green’ region, where the Higgs remains below its instability scale at the end of infla-

tion, and thus inflationary fluctuations do not destabilise the electroweak vacuum.

• ‘orange’ region, where the Higgs can probe field values above the instability scale

(|h| > hmax), but quantum fluctuations dominate over classical evolution and prevent

the Higgs from falling into its true AdS minimum; the ultimate fate of the Higgs is

determined by post-inflationary dynamics.

• ‘red’ region, where the Higgs fluctuates above the instability scale and falls down into

its true minimum, presumably ending inflation in that patch of space.

In section 4 we followed the evolution of the Higgs field through the reheating process, in

order to assess the viability of parameters corresponding to the ‘orange’ region. Thermal

effects can rescue the Higgs field, letting it slide towards the origin of the SM potential,

if the reheating temperature after inflation TRH is sufficiently large. We derived upper

bounds on H/hmax, for given TRH, as shown in figure 10. The result is that thermal effects

can easily make the ‘orange’ region cosmologically acceptable.

On the contrary, we found that the ‘red’ region is problematic. By approximating

the large-field Higgs patches as spherical bubbles with small thickness, we could perform

a general relativistic computation in order to determine whether such bubbles shrink or

expand. The computation addresses several relevant counter-intuitive phenomena. While

we identified mechanisms that can make some of the bubbles innocuous (small bubbles

with low wall velocity shrink, bubbles with large tension expand hidden behind a black-

hole horizon), we find that inflation produces Higgs ‘bubbles’ that expand, at least as long

as they are in the computable sub-Planckian regime. During inflation these bubbles are

not lethal, as they remain behind a de Sitter horizon and are diluted by space expansion.

However, after inflation they keep on growing at the speed of light, eventually swallowing

all space. Therefore, we must require that inflationary fluctuations do not produce any of

these regions in our past light-cone.

This leads us to our final result: the ‘red’ region of figure 6 is excluded. If |ξH | <
0.01 one needs a Hubble constant smaller than 0.045 hmax. This constraint gets weaker

(stronger) for negative (positive) ξH : e.g. H < 104 hmax for ξH ≈ −0.03. A small negative

ξH however leads to a new, super-Planckian instability of the SM potential in the Einstein

frame, see figure 13. In a similar way, a direct coupling of the inflaton to the Higgs could

also relax the limits on H but, contrary to the case of ξH , it does not lead to any instabilities

at large field values.

Finally, in section 5 we explore a new speculative idea. Assuming that the present

acceleration of the universe is due to a small cosmological constant, and accepting the
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conjecture that quantum gravity is ill-defined in a de Sitter space, we argue that vacuum

decay is a necessary way out for the universe. We show that vacuum decay triggered by

the Higgs instability is fast enough to resolve this conceptual problem.

Basically the SM phase diagram in the (Mt,Mh) plane is reinterpreted: the instability

region remains ‘bad’, the stability region becomes ‘bad’, and the only ‘good’ region is the

narrow meta-stability strip of parameter space. As discussed in section 4.2 a large enough

reheating temperature may play an important role in the universe, and the requirement that

thermal effects do not induce an excessively fast vacuum decay provides a further restriction

in the Higgs and top masses, as shown in figure 14. One could view this restriction as a

remarkably precise post-diction for the Higgs or top masses.
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A Evolution of bubbles

In this appendix we study the evolution of a region of true vacuum with negative vacuum

energy density, which lies within the false-vacuum asymptotically flat or de Sitter space.

The basic question is whether this region, which we call a bubble (assuming spherical sym-

metry), expands or contracts. For an outside observer, the presence of the bubble has a

gravitational effect equivalent to the presence of a central mass. As a result, the exterior

metric is of the Schwarzschild or Schwarzschild-de Sitter (SdS) type. We study an idealised

configuration with constant vacuum energy density in the interior and exterior of the bub-

ble, as well as constant surface tension. The study of a realistic bubble, corresponding to a

space-time dependent Higgs configuration, is not possible analytically. However, we believe

that our treatment captures the main aspects of the problem, determined essentially by

the difference in the local energy density of the Higgs field on either side of the bubble wall.

We employ the thin-wall approximation and parameterise the wall and the inner and

outer space as described in section 3.3. The interior of the bubble is assumed to be a part

of anti-de Sitter spacetime, described by the metric (3.23). The exterior of the bubble is
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described by the metric (3.24). The case Vout 6= 0 corresponds to the SdS spacetime, while

the case Vout = 0 to an exterior Schwarzschild metric. The metric on the wall is given by

eq. (3.25).

A.1 Matching the geometries

The metric must be continuous over the whole space. This means that

fin(R) η̇ = ε1

(
Ṙ2 + fin(R)

)1/2
, (A.1)

fout(R) ṫ = ε2

(
Ṙ2 + fout(R)

)1/2
, (A.2)

where ε1 = ±1, ε2 = ±1 are possible sign choices and a dot denotes a derivative with

respect to τ . Since fin ≥ 1, the value of ε1 determines the relative flow of the two timelike

coordinates η and τ . It is natural to make the choice ε1 = 1, which is also the only

consistent choice (see below). We consider only this value in the following. The relation

between t and τ is more complicated because fout can be negative. We follow the convention

of [76], according to which the flow of proper time is such that future-directed world lines

correspond to a growing Kruskal-Szekeres coordinate V (so that V̇ > 0).

The matching of the two regions can be done following [76]. The four-velocity of a

point on the wall is Uµin = (η̇, Ṙ,~0) and Uµout = (ṫ, Ṙ,~0) in each of the frames. A spacelike

vector ξµ perpendicular to the wall must be orthogonal to Uµ. In order to determine it

uniquely, we have to specify whether it points towards the interior or the exterior. For

spaces with horizons, such as the exterior space, we adopt the convention of [76]. We

assume that ξµ points towards increasing values of the Kruskal-Szekeres coordinate U . We

also assume that the exterior lies on the ‘right’ of the wall in the Penrose diagram. For the

AdS space in the interior, we assume that ξµ points towards increasing values of the global

coordinate r. With these conventions ξµ points from the interior towards the exterior. It

is given by

ξµin =

(
Ṙ

fin
, fin η̇,~0

)
=

(
Ṙ

fin
, (fin + Ṙ2)1/2,~0

)
(A.3)

ξµout =

(
Ṙ

fout
, fout ṫ,~0

)
=

(
Ṙ

fout
, ε2(fout + Ṙ2)1/2,~0

)
, (A.4)

in each of the frames. It has been normalized to −1.

The junction conditions connect the discontinuity in the extrinsic curvature to the

surface tension:

(Kout)
i
j − (Kin)ij = −4πσGδij . (A.5)

We match the θθ component of the extrinsic curvature (the other components give equiva-

lent relations), which is Kθθ = ξµ∂µr
2/2. Evaluated on either side of the wall, it is given by

(Kin)θθ = (fin + Ṙ2)1/2R ≡ βinR, (A.6)

(Kout)θθ = ε2(fout + Ṙ2)1/2R ≡ βoutR. (A.7)
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Thereby, the θθ matching condition is

ε2(fout + Ṙ2)1/2 − (fin + Ṙ2)1/2 = βout − βin = −4πGσR. (A.8)

A.2 Bubbles in asymptotically flat spacetime

We consider first the case Vout = 0, which corresponds to an exterior Schwarzschild metric.

We shall discuss later the case Vout 6= 0, corresponding to a SdS spacetime.

The square of eq. (A.8) can be put in the form:

2GM =

(
κ2 − 1

`2in

)
R3 + 2ε2κR

2

(
1− 2GM

R
+ Ṙ2

)1/2

. (A.9)

For large R and non-relativistic wall velocity, the last parenthesis becomes equal to 1. The

resulting expression indicates that the mass M of a large-radius bubble is dominated by a

volume contribution proportional to κ2− 1/`2in. The total volume effect can be negative or

positive, depending on the value of

ε ≡ sign

(
1

`2in
− κ2

)
. (A.10)

As a result, it is possible for the total mass M to become negative.

Solving eq. (A.8) for M one finds a result that, for ε2 = 1, has a simple Newtonian

interpretation:

2GM = −
(

1

`2in
+ κ2

)
R3 + 2κR2

(
1 +

R2

`2in
+ Ṙ2

)1/2

, (A.11)

with κ ≡ 4πGσ. For small R, the mass M attributed to the bubble of AdS by an outside

observer contains a volume term proportional to −1/`2in − κ2. The contribution −1/`2in
corresponds to the vacuum energy density, while −κ2 reproduces correctly the gravitational

self-energy of the wall. The second term in eq. (A.11) can be expanded for small R and

Ṙ. One recovers the surface energy of the bubble, with nonrelativistic correction, and the

surface-volume binding energy [72]. The leading term for small R is the positive surface

energy ∼ κR2, which indicates that small bubbles tend to collapse in order to minimise

their energy. The case ε2 = −1 does not lead to solutions with a simple Newtonian

interpretation, even though it contains acceptable configurations for the global geometry.

By squaring eq. (A.8) a second time, we can express the ‘kinetic energy’ Ṙ2 in terms

of a conserved ‘energy’ E and an effective ‘potential energy’. We express the result as the

equation for the one-dimensional motion of a particle in a ‘potential’ V(
dR̃

dτ̃

)2

+ V (R̃) = E, (A.12)

where

V (R̃) = −

(
εm + εR̃3

R̃2

)2

− εm
γ2

R̃
, E = − κ2

G2M2ρ4
(A.13)
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and

εm = sign(M). (A.14)

The dimensionless ‘coordinate’ variable R̃ and the ‘time’ variable τ̃ are defined as

R̃ = ρR, τ̃ =
2κ

γ2
τ. (A.15)

The parameter ρ, defined as

ρ3 =
1

2G|M |

∣∣∣∣ 1

`2in
− κ2

∣∣∣∣ , (A.16)

sets a characteristic inverse length-scale, while γ parameterises the surface-energy term

in V :

γ =
2κ∣∣`−2

in − κ2
∣∣1/2 , i.e. κ2 =

1

`2in

γ2

γ2 + 4ε
. (A.17)

The form of the solutions of eq. (A.12) can be revealed more easily through the following

observations:

• The sign ε2 disappeared when performing the second squaring, so that eq. (A.12)

describes the solutions of eq. (A.8) with both values of ε2. We can rewrite eq. (A.8)

in terms of the new parameters as

βin = βout + 4πGσR =
G|M |ρ2

κ

1

R̃2

(
εm + εR̃3 +

γ2

2
R̃3

)
, (A.18)

where we have used eq. (A.11). For positive-mass bubbles (εm = 1) we have βin > 0.

This is obvious for ε = 1. It also holds for ε = −1 , because γ2 > 4 in this case. We

conclude that the only consistent value for ε1 for positive-mass bubbles is ε1 = 1 (the

value we assumed).

• We can also write

βout =
G|M |ρ2

κ

1

R̃2

(
εm + εR̃3

)
, (A.19)

from which it is apparent that, for positive-mass bubbles, βout is positive and ε2 = 1

for ε = 1, while βout changes sign at R̃ = 1 for ε = −1.

• For negative-mass bubbles (M < 0 or εm = −1) the variable t is always timelike. The

value of ε2 determines the relative flow of t and τ . It is natural to make the choice

ε2 = 1 in this case. The possibility ε2 = −1 does not lead to a physical solution, as

we discuss in subsection A.4.

• It is apparent from eqs. (A.13), (A.16) that, for fixed `in and κ, the total energy E

is a function of M . As a result, the nature of the various solutions of eq. (A.12) is

directly related to the mass of the bubble.

• The ‘potential’ is maximal at R̃ = R̃max, given by

2R̃3
max = εm

(
ε+

γ2

2

)
+

√(
ε+

γ2

2

)2

+ 8. (A.20)
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Figure 15. The ‘potential’ of eq. (A.13) for γ = 3 and ε = 1, εm = 1 (left), for ε = −1, εm = 1

(middle), and for ε = 1, εm = −1 (right).

The value of the ‘potential’ at its maximum is

V (R̃max) = −3
R̃6

max − 1

R̃4
max

. (A.21)

For positive-mass bubbles (εm = 1) we have R̃max > 1.

• The Schwarzschild radius of a bubble with positive mass M is rH = 2GM , which, in

terms of the variable R̃, becomes

E = − γ2

R̃H
. (A.22)

This relation determines the location of the horizon on a solution of eq. (A.12) with

given E. Making use of the definition (A.13) of the ‘potential’, we can write

E = V (R̃H) +

(
1 + ε R̃3

H

R̃2
H

)2

. (A.23)

For ε = −1 the curve −γ2/R̃H , depicting the location of the horizon, is tangent to

the curve V = V (R̃) at R̃ = 1. For ε = 1 the curve for the horizon is always located

above the curve for the ‘potential’.

The above features are depicted graphically in figure 15. The solid black curve depicts

the ‘potential’ V (R̃), which has a maximum at R̃ = R̃max. The dashed blue curve indicates

the location of the horizon. For ε = 1 (i.e. 1/`2in > κ2) the curve for the horizon is always

located above the ‘potential’. For ε = −1 (i.e. 1/`2in < κ2) the curve for the horizon is

tangent to the ‘potential’ at R̃ = 1. The function βout changes sign at this point. In the

centre plot we have separated with a red vertical dashed line the regions in which ε (and

βout) has opposite signs.

The various types of trajectories can be deduced from these plots. We plot a few lines

with constant E that stop when E = V : at this point Ṙ = 0 and the motion of the wall is

reversed. There are various types of trajectories for which the bubble expands indefinitely.

If ε = −1, such evolution can be obtained only for ε2 = −1.
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Figure 16. Small bubbles with small initial wall velocity do not expand. Left : the wall trajectory

corresponding to line A of figure 15, in AdS space. Right : the wall trajectory corresponding to line

A of figure 15, in the Schwarzschild geometry.

A.3 Evolution of positive-mass bubbles

We consider first the case M > 0, or, equivalently, εm = 1. The evolution of the wall is

best depicted using Penrose diagrams. The diagrams for the most characteristic types of

wall evolution are presented in figures 16, 11, 18. Each figure contains a pair of diagrams.

In each pair, the left diagram depicts AdS space, which has the simple structure of a

cylinder, with the line marked r = 0 corresponding to its centre and the line r = ∞ to

conformal infinity. The right diagram represents the complete Schwarzschild geometry,

which includes two singularities, marked r = 0, and the corresponding horizons. The black

continuous curve in each diagram denotes the trajectory of the wall. Thick black lines

denote singularities, dashed lines horizons and dotted lines denote conformal infinities.

The total space is constructed by patching the part of the left diagram on the left of

the wall with the part of the right diagram on the right of the wall. The shaded areas

correspond to the parts that must be eliminated in order to join the remaining parts along

the wall trajectory.

The crucial relation for the fate of space is between the gravitational self-energy of the

wall κ2 and the vacuum energy −1/`2in. Naively, one expects that, if 1/`2in > κ2 (i.e. ε = 1),

large bubbles will grow indefinitely because the system gains energy in the process. In the

opposite case with 1/`2in < κ2 (i.e. ε = −1), the bubbles will shrink for similar energetic

reasons. These simple expectations, which are based on Newtonian intuition, are only

partly fulfilled in the complete analysis. More complicated scenarios are realised as well.

Case ε = 1:

• Small bubbles with small initial wall velocity do not expand: line A of figure 15 de-

scribes the evolution of a bubble whose volume energy receives its largest contribution

– 42 –



J
H
E
P
0
9
(
2
0
1
5
)
1
7
4

Figure 17. The evolution of negative-mass bubbles. Left : the wall trajectory corresponding to

line H of figure 15, in AdS space. Right : the wall trajectory corresponding to line H of figure 15,

in the negative-mass Schwarzschild geometry.

from the negative vacuum energy density (1/`2in > κ2). However, the surface contri-

bution to the energy, arising from the wall tension, is the dominant factor and tends

to make the bubble shrink. The bubble has small initial wall velocity, which prevents

it from evolving to a size sufficiently large for the volume contribution to the energy

to dominate. As a result the surface tension wins: the bubble reaches a maximum

size and subsequently collapses falling within its own horizon.

The space corresponding to this solution is depicted in figure 16. It results from

eliminating the shaded areas in each of the two Penrose diagrams and patching the

remaining parts along the wall trajectory.

• Small bubbles with large initial wall velocity expand: line C of figure 15 corresponds

to a bubble with similar characteristics as in the previous case, but with much larger

wall ‘kinetic energy’. This is is apparent by the fact that the total energy is less

negative. We can consider a bubble that starts very small (with almost vanishing r

or R̃). Even though the surface contribution to the ‘potential energy’ dominates, the

initial velocity is sufficiently large for the bubble to expand. Eventually the bubble

develops a size for which the volume contribution to the ‘potential energy’ becomes

dominant over the surface contribution. From this point on, the bubble expands

indefinitely, with its wall approaching asymptotically the speed of light.

The corresponding evolution of space is depicted in figure 11. After a finite time

η the wall reaches the boundary of AdS space. As the AdS boundary is timelike,

there is a Cauchy horizon, beyond which the spacetime cannot be determined without

additional boundary conditions. It is expected that, within the full theory beyond the

thin-wall limit, a spacelike singularity develops before the Cauchy horizon [52]. This
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Figure 18. Large bubbles with 1/`2in < κ2 expand behind the horizon. Left : the wall trajectory

corresponding to Line G of figure 15, in AdS space. Right : The wall trajectory corresponding to

Line G of figure 15, in the Schwarzschild geometry.

is depicted by a thick blue line in the left diagram of figure 11. From a mathematical

point of view, the solution also describes the reverse process.

• Large bubbles expand: line B of figure 15 describes the evolution of a bubble so

large that its surface tension is irrelevant. The bubble starts with infinite radius,

shrinks to finite size and then re-expands. There are two singularities in the Penrose

diagram of AdS space, starting from the points at which the wall trajectory reaches

the boundary [52]. The whole trajectory lies with the region I of the Schwarzschild

geometry.

Case ε = −1:

• Small bubbles with small initial wall velocity do not expand: line D of figure 15

describes evolution very similar to that for line A. The contribution from the surface

tension dominates the ‘potential energy’, while the ‘kinetic energy’ is small. The

bubble expands up to a certain size, and subsequently recollapses. The space is

described by Penrose diagrams very similar to those of figure 16.

Line E of figure 15 describes a similar scenario, but now the extrinsic curvature βout

(or, equivalently ε2) changes sign during the evolution. This implies that the wall

trajectory crosses regions IV, III and II of the Schwarzschild geometry instead of the

regions IV, I, II (see figure 16).

• Small bubbles with large initial wall velocity expand behind the horizon: as we have

seen already, the case ε = −1 may lead to evolution that cannot be deduced through

a purely Newtonian approach. For 1/`2in < κ2 the wall self-energy dominates the
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negative vacuum energy, so that the growth of the bubble seems energetically un-

favourable. The Newtonian intuition suggests that such bubbles cannot expand.

However, there is a relativistic solution described by line G of figure 15. The corre-

sponding space evolution is depicted in figure 18. The crucial difference with respect

to the case ε = 1, depicted in figure 11, is that the wall trajectory is located within the

regions IV and III, instead of the regions IV and I of the Schwarzschild space-time:

in simpler words the bubble expands inside its Schwarzschild radius. The extrinsic

curvature βoutR of eq. (A.7) changes sign along the trajectory G of the wall, while

it stays positive for the trajectory C, as can be seen in figure 15 [76]. Asymptotic

regions of flat space-time survive: the growth of the AdS region and its singularity

are hidden behind the horizon and do not affect an observer located in region I.17

• Large bubbles expand behind the horizon: line F of figure 15 describes a large bubble

that initially shrinks, reaches a minimal size and subsequently expands. The whole

evolution lies entirely within the region III of the Schwarzschild space-time and is

hidden behind a horizon for an observer located in region I.

A.4 Evolution of negative-mass bubbles

We next turn to the solutions with negative mass M , or, equivalently, εm = −1. The

metric (3.24), with Vout = 0, has a naked timelike singularity at r = 0 in this case.

However, this metric is relevant only for the bubble exterior, while the interior is described

by the AdS metric (3.23). As long as the bubble expands and the wall moves to increasing

values of R, the global geometry is free of singularities.

The form of the ‘potential’ for 1/`2 > κ2, M < 0, depicted in the right plot of figure 15,

allows for such a solution. For ε = 1, εm = −1, the ‘potential’ has a positive maximal value.

On the other hand, the ‘energy’ E of eq. (A.13) is always negative. This allows for only

one possible type of solutions, the one corresponding to line H of figure 15. It represents

a bubble that starts with infinite radius, shrinks to a finite value of R, and subsequently

re-expands. Its mass is negative, because the radius is always sufficiently large for the

negative volume contribution to the energy content to be dominant. The Penrose diagram

for this solution is depicted in figure 17. There are two singularities in the Penrose diagram

of AdS space, starting from the points at which the wall trajectory reaches the boundary.

The Schwarzschild metric with negative mass has a naked singularity at r = 0, depicted by

the vertical solid line in the right plot of figure 17. However, this singularity is irrelevant

for our problem because it is eliminated when the white areas of the two plots are joined

along the wall trajectory.

It must be pointed out that it is not possible to construct negative-mass solutions

corresponding to horizontal lines extending from R̃ = 0 to the ‘potential’ in figure 15. As

can be seen from eq. (A.19) such lines would require βout < 0, or, equivalently ε2 = −1.

As we have already remarked, this choice would require the timelike coordinates τ and t to

increase in opposite directions. For positive mass, the Schwarzschild geometry has sufficient

17A pictorial representation of an analogous situation for a dS bubble is given in figure 13 of [76], in which

case the AdS singularity is absent.
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Figure 19. The AdS interior of the bubble in conformal coordinates, showing the crunch and (in

color) a patch in FRW coordinates.

structure to permit solutions with both signs of βout, such as the one corresponding to line

G of figure 15, which is depicted in figure 18. However, for negative mass, the Penrose

diagram cannot be extended beyond that depicted in figure 17, unless completely disjointed

regions are introduced. For this reason, the only meaningful solution is the one of figure 17.

A.5 The AdS ‘crunch’

As we have seen, the particular structure of AdS implies that the evolution of the bubble

must lead to a singularity. This is apparent in figure 11: the form of spacetime, after

the finite time η at which the wall reaches the timelike boundary, cannot be determined

without additional boundary conditions. It is expected that, for a physical system that

realises an approximation of the idealised bubble evolution that we consider, a spacelike

singularity must develop in the interior of the bubble [52].

For the problem at hand, the nature of this singularity can be understood through the

picture of the AdS ‘crunch’ presented in [25]. As shown there, a part of AdS space can

be viewed as an open Friedmann-Robertson-Walker (FRW) universe with negative energy

density. The coordinate change [77]

r = `in sin
t̂

`in
sinhψ

cos
t̂

`in
=

(
1 +

r2

`2in

)1/2

cos
η

`in
(A.24)
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puts the AdS metric (3.23) in the form

ds2 = −dt̂2 + `2in sin2 t̂

`in

(
dψ2 + sinh2 ψ dΩ2

2

)
. (A.25)

This metric describes an homogeneous FRW universe that is born with a big ‘bang’ at

t̂ = 0 and collapses in a big ‘crunch’ at t̂ = `inπ. The coordinates t̂, ψ do not cover the

whole AdS space, but only a triangular patch of its Penrose diagram. This is bounded by

the dot-dashed null lines in figure 19. Even though these lines represent only a coordinate

singularity in the idealized picture of a pure AdS bubble interior, the big ‘crunch’ becomes a

true physical singularity in the presence of a fluctuating Higgs field, as argued in [25]. From

continuity it is apparent that the Higgs fluctuations become very large in the neighbourhood

of the null line.

The connection of the AdS ‘crunch’ to the bubble evolution can be obtained by estab-

lishing the relative position of the FRW ‘triangle’ and the wall trajectory on the Penrose

diagram. As the FRW observer views a homogeneous universe, the AdS patch to which he

has access must be located sufficiently deep inside the bubble for the Higgs field to have

a constant value. At late times, the wall moves with approximately the speed of light. It

is expected that the wall trajectory and the lower side of the FRW ‘triangle’ will converge

asymptotically as the AdS boundary is approached, as depicted in figure 19. The singular-

ity developing below the Cauchy horizon appears on a spacelike curve emanating from the

point at which the wall reaches the AdS boundary. The homogeneity of space viewed by

the FRW observer indicates that this singularity should correspond to a constant-t̂ surface.

In figure 19 we depict the slicing of the FRW ‘triangle’ with such surfaces. The thick solid

line represents the possible location of the ‘crunch’, very close to the upper side of the

FRW ‘triangle’.

The most important consequence of the above picture is that the ‘crunch’ never reaches

the bubble wall. This is apparent in figure 19, as the black solid line, representing the wall

trajectory, and the blue solid line, representing the ‘crunch’, never cross. They seem to

merge on the AdS boundary. However, this is an illusion created by the Penrose diagram.

The bubble wall lies always slightly outside the FRW ‘triangle’, as its speed never becomes

exactly equal to that of light.

A final observation relevant for the asymptotic wall expansion concerns the correspond-

ing time scales in the various frames. Let us consider a very large bubble with ε1 = ε2 = 1,

see eqs. (A.1)–(A.2), expanding almost at the speed of light, such that R � `in, 2GM

and Ṙ � 1. The evolution of the wall in terms of the three time coordinates of the

systems (3.25), (3.23), (3.24) is given by

R = R0e
c1τ =

R0

1− c2η
= R0 + t, (A.26)

with c1 ' 1/(2`2inκ), c2 ' R0/`
2
in for 1/`2in � κ2. It is apparent that the wall reaches the

AdS boundary within a finite amount of the time coordinate η, while it requires an infinite

amount of time τ or t. In particular, an observer in the asymptotically flat spacetime

infinitely far from the bubble is reached by the wall only after an infinite amount of time t.
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Figure 20. The radius and mass of critical bubbles as a function of κ`in for ∆ > 0 (blue curves)

and ∆ < 0 (red dashed).

A.6 Critical bubbles

For given `in and κ, corresponding to given interior vacuum energy and surface tension,

there is a critical bubble radius Rcr. Bubbles that start with negligible wall velocity and

R > Rcr follow trajectories with increasing R, while bubbles that start with R < Rcr have

diminishing R and eventually collapse to a black hole. The critical radius corresponds to

the maximum of the potential of figure 15. One can imagine a horizontal line, tangent to

the top of the potential. The right part of the line is the limiting case of lines starting on the

potential and describing expanding bubbles, while its left part is the limiting case of similar

lines describing collapsing bubbles. As the ‘energy’ E is negative, while the potential has a

maximum with a positive value for εm = −1 (see the third plot of figure 15), it is obvious

that there are no critical bubbles with negative mass.

The maximum of the potential and its value at this point are given by eqs. (A.20)–

(A.21). The value of the ‘energy’ can be obtained from eq. (A.12) with dR̃/dτ̃ = 0 and

R̃ = R̃max. Expressions for Rcr and the corresponding mass Mcr can then be obtained by

combining eqs. (A.13)–(A.17). As these expressions are not very illuminating we do not

present them explicitly. The quantities Rcr/`in, GMcr/`in are functions of the dimensionless

combination κ`in. In figure 20 we present the functions Rcr(κ`in)/`in, GMcr(κ`in)/`in and

[GMcr/`in](Rcr/`in).

The critical bubbles have certain characteristics:

• Their radius is always larger than the Schwarzschild radius. This can be deduced

from figure 15, in which it is apparent that the location of the maximum of the

potential is always outside the horizon.

• There are two branches of critical bubbles, corresponding to 1/`2in > κ2 or ε = 1

(solid lines), and 1/`2in < κ2 or ε = −1 (dashed lines).

• The radius diverges for κ → 1/`in, as the effective energy density in the interior of

the bubble vanishes in this limit.

• The branch with ε = 1 reproduces correctly for κ → 0 the Newtonian limit of

nonrelativistic bubbles with Rcr = 4`2inκ/3 and GMcr = 16`4inκ
3/27.
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• The branch with ε = −1 is not visible to an observer located in region I of the Penrose

diagram.

• For given vacuum-energy scale `in and critical-bubble radius Rcr, the bubbles with

ε = −1 are more massive than the ones with ε = 1. (Note that the two types of

bubbles also have different surface tension κ.)

The most interesting solutions are those that describe bubbles visible to an observer

in the asymptotically flat region. These are bubbles for which a Newtonian limit exists

within their parameter range. Their mass-to-radius relation is depicted in the third plot

of figure 20. The critical bubbles correspond to the solid line. The parameter range above

this line corresponds to collapsing bubbles, while the range below to expanding bubbles.

Expanding bubbles can have negative mass, so their parameter range includes the region

below the positive R-axis.

A.7 Bubbles in asymptotically de Sitter spacetime

The evolution of an AdS bubble within an asymptotically dS spacetime can be analysed

in complete analogy to the previous discussion for an asymptotically flat spacetime. The

metric of eq. (3.24) now contains the function fout(r) = 1−r2/`2out−2GM/r. There are two

horizons, corresponding to the zeros of fout(r). The Penrose diagram of the Schwarzschild-

de Sitter (SdS) spacetime is depicted in the right part of figure 7. It is a combination

of the diagrams for the Schwarzschild and dS spacetimes [27]. Thick blue lines denote

curvature singularities, the dashed lines horizons and the dotted lines conformal infinities.

The two thin vertical lines at the ends of the diagram indicate that the pattern is repeated

indefinitely on either side.

The matching across the domain wall, located at R(τ), proceeds as before. We do not

analyse the many possible cases, as the analysis is a straightforward generalisation of the

discussion in the previous subsections. We focus instead on the novel aspects of the SdS

case. For a positive mass M , the motion of the wall is again determined by eq. (A.12),

with R̃ = ρR. However, the ‘potential’ now has the form

V (R̃) = −

(
1 + εR̃3

R̃2

)2

− γ2

R̃
− δ2R̃2, (A.27)

with

ρ3 =
1

2GM
|∆| , ε ≡ sign ∆, γ =

2κ√
|∆|

, δ2 =
4κ2

`2out∆
2
, (A.28)

where

∆ =
1

`2in
+

1

`2out

− κ2. (A.29)

The form of the ‘potential’ is very similar to that in figure 15. The horizon corresponds to

a value R̃H such that

E = − γ2

R̃H
− δ2R̃2

H . (A.30)
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Figure 21. The ‘potential’ of eq. (A.27) with γ = 3, δ = 1, ε = 1, for AdS bubbles in Schwarzschild-

de Sitter space.

It is again determined by eq. (A.23), but now has a different shape. In figure 21 we depict

the ‘potential’ (solid black line) and the horizon (dashed blue line) for γ = 3, δ = 1, ε = 1.

The various trajectories correspond to solutions of constant E = −κ2/(G2M2ρ4), as

depicted in figure 21. The two types of behaviour, characterised by ε = ±1, correspond

now to the gravitational self-energy κ2 of the bubble being smaller or larger than the total

difference in energy density 1/`2in + 1/`2out between the dS and AdS spacetimes. We do

not analyse the form of all the possible trajectories, as they are similar to those discussed

earlier. In figure 21 we have depicted a few characteristic cases for ε = 1.

Line A corresponds to a bubble that starts below the inner horizon, crosses it, reaches

a maximal radius and collapses falling again behind the horizon.

Line C corresponds to a large bubble that stars with infinite radius, moves within the

outer horizon, reaches a minimal radius and then re-expands moving again outside the

outer horizon. One may consider also the scenario in which the bubble is spontaneously

created with vanishing wall velocity at a certain radius and expands, with the wall moving

outside the outer horizon. In this scenario, line C is covered only once.

Line B corresponds to a bubble that starts with a very small radius and expands

indefinitely, with its wall crossing the inner and outer horizons successively. Its speed

asymptotically approaches the speed of light. The form of the wall trajectory on the

Penrose diagram is depicted in figure 7. The total space is constructed by patching the

white regions of the two plots in figure 7.

Line D corresponds to the evolution of a bubble that does not cross any horizons. The

reason is that ‘energies’ that approach zero correspond to increasing values of the mass

parameter M . For sufficiently large M , the metric function fout(r) does not vanish at any

r, but stays always negative. The space has a naked spacelike singularity at r = 0. However,

this part of spacetime is eliminated and replaced by the interior of the AdS bubble.
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There are many other possibilities for ε = −1 or for negative bubble mass. These can

be analysed in complete analogy to the trajectories depicted in the second and third plot

of figure 15. They correspond to collapsing bubbles or bubbles expanding behind horizons,

which are not visible to an observer located in the asymptotic de Sitter space.

The crucial question pertinent to the scenario of Higgs fluctuations during inflation is

whether the expanding AdS bubbles can completely eliminate the surrounding dS space

and thus terminate inflation. It is apparent from figure 7 that asymptotically the wall

trajectory reaches spacelike infinity. The wall location separates two spacelike regions: one

of them is replaced by the interior of the AdS bubble, while the other remains part of

an external dS spacetime. Asymptotically the total spacetime contains large AdS bubbles

within large dS regions. This scenario is in contrast to the case of asymptotically flat

spacetime, in which the wall asymptotically reaches null infinity and the whole space is

engulfed by the AdS bubbles. In other words, the inflationary growth guarantees that,

even when the size of the AdS regions grows with the speed of light, the external regions

grow even faster, so that they survive at late times.
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