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Abstract. The complexity and cost of managing high-performance com-
puting infrastructures are on the rise. Automating management and re-
pair through predictive models to minimize human interventions is an
attempt to increase system availability and contain these costs. Building
predictive models that are accurate enough to be useful in automatic
management cannot be based on restricted log data from subsystems
but requires a holistic approach to data analysis from disparate sources.
Here we provide a detailed multi-scale characterization study based on
four datasets reporting power consumption, temperature, workload, and
hardware/software events for an IBM Blue Gene/(Q installation. We show
that the system runs a rich parallel workload, with low correlation among
its components in terms of temperature and power, but higher correla-
tion in terms of events. As expected, power and temperature correlate
strongly, while events display negative correlations with load and power.
Power and workload show moderate correlations, and only at the scale
of components. The aim of the study is a systematic, integrated char-
acterization of the computing infrastructure and discovery of correlation
sources and levels to serve as basis for future predictive modeling efforts.

Keywords: Data science, correlation analysis, HPC system monitoring,
log data integration, predictive modeling.

1 Introduction

As the size and complexity of high-performance computing (HPC) infrastruc-
tures continue to grow driven by exascale speed goals, maintaining reliability
and operability levels high, while keeping management costs low, is becoming
increasingly challenging. Continued reliance on human operators for manage-
ment and repair is not only unsustainable, it is actually detrimental to system
availability: in very large and complex settings like data centers, accidental hu-
man errors have been observed to rank second only to power system failures as
the most common causes of system outages [14].

Large computing systems produce large amounts of data in the form of logs
tracing resource consumption, errors, events, etc. These data can be put to use for



understanding system behavior and for building predictive models to tackle the
management challenges. Most studies in this direction have focused on particular
subsystems rather than the system as a whole, which is a necessary condition
for achieving realistic models with good predictability traits [16]. With recent
progress in Data Science and Big Data, it is becoming increasingly feasible to
carry out such a holistic analysis towards improving predictions by considering
data from a variety of sources covering different subsystems and measures [8].

In this paper we report the results of a characterization study integrating four
datasets from different subsystems in an effort to understand the behavior of a
10-rack IBM Blue Gene/Q [10] installation and quantify the correlations among
power, temperature, workload, and hardware/software events as well as among
different system components. In certain cases, we report the lack of correlations,
which can be just as important as their presence. These results provide a first
step towards identifying important features for future predictive studies.

The contributions of this paper are threefold. First, we provide a charac-
terization of a Blue Gene/Q system from thermal, power, workload, and event
log perspectives, highlighting significant features for system behavior and the
presence and absence of correlations between different components. No corre-
lation in terms of power and thermal behavior was found across components,
yet events exhibit significant spatial correlations, indicating possible propaga-
tion of errors. Secondly, an integrated analysis of the four datasets searches for
correlations among various metrics so as to identify further possible relations
for future modeling and prediction studies. This reveals significant positive cor-
relation between power consumption and temperature, and a weaker negative
correlation between hardware/software events and power or workload. There are
also indications of correlations between workload and power but only at a finer
spatial granularity (at rack rather than at system scale). Thirdly, we use the
preliminary indications on the importance of different features for explaining
system behavior to propose a feature set to be used in future work for event
prediction. An important feature of our study is its holistic nature integrating
multiple datasets, to an extent not present in the literature, neither in terms of
system characterization, nor in terms of correlation and predictive studies.

In the next section we describe the data, while Section 3 contains our anal-
ysis for individual and integrated datasets. Section 4 includes related work, and
Section 5 discusses future predictive studies and data quality.

2 Dataset description

Our data source is Fermi [7], an IBM Blue Gene/Q system run by CINECA, a
consortium operating the largest data center in Italy. Fermi has 163,840 com-
puting cores with a peak performance of 2.1 PFLOPS. Its workload includes
large-scale models and simulations for several academic projects, including 3D
models of the cell network of the heart, simulation of interaction between lasers
and plasmas, neuronal network simulations, models of nano-structures and com-
plex materials. Fermi is organized as 10 racks, each with 2 mid-planes of 16



Table 1. Four datasets that are analyzed

lDataset ‘Time span (2014)‘Time resolution ‘Component ‘Total records
Power 28 Mar — 25 Jul |5 min Bulk Power Module 9,655,298
Temperature |23 Apr — 25 Jul |15 min Node-board 2,648,331
Workload 1 May — 27 Jul |NA System 78,128

RAS 23 Apr — 25 Jul |NA All 774,555

node-boards with 32 16-core nodes. Each mid-plane is powered by 18 bulk power
modules (BPM). Logging is based on standard Blue Gene/Q tools [10]. The
Mid-plane Manager Control System performs environmental monitoring, pro-
viding power and temperature logs. The Machine Controller handles access to
the hardware components and provides so-called Reliability, Availability and Ser-
viceability (RAS) logs. Workload is extracted from the Portable Batch System
scheduler logs, using a custom tool by CINECA. Given that all data used in
our analysis originate in logs from standard Blue Gene tools, we consider the
information they contain to be correct. Table 1 summarizes the four datasets.

Power logs report input/output voltages and current levels for each BPM,
with a 5-min resolution. By summing the input power levels over the different
components, we obtained time series of power consumption for individual mid-
planes, racks, and for the entire system. Power at the node-board scale cannot
be reliably computed since 18 BPM power 16 node-boards (redundant system).
Temperature logs are reported by the node-board monitor (two sensors/node-
board), with a 15-min resolution. From these we computed averaged time series
at node-board, mid-plane, rack, and system scales.

Workload data consist of a list of jobs with date of completion, running time,
number of cores, queue time, and queue class. Fermi uses six queues, with in-
creasing job length and core count: serial (on login nodes only), debug, longdebug,
smallpar, parallel and bigpar. Two other classes — wvisual and special — exist,
with very few jobs reserved for dedicated users. We computed the CPU time per
job and time series of total daily CPU time, number of cores, and queue time.
The daily CPU time per queue class was also extracted. Since only the date of
job completion (not the exact time) is available in the data, totals are approxi-
mate, yet they give a very good indication of the daily load at system scale. No
load information at other scales (node-board, mid-plane, rack) was available.

RAS logs consist of hardware and software events from all system compo-
nents and are labeled FATAL, WARN or INFO, in decreasing order of severity. The
dataset contains 163,134 FATAL, 473,982 WARN, and 137,438 INFO events. For
each event, the exact time and location are included. From these data, we com-
puted the distribution of inter-event times at system scale and also time series
of the number of events in each category at various time and space resolutions.

3 Data analysis

Each dataset alone may provide useful insight into the functioning of Fermi,
while an integrated analysis has even greater potential. Hence, in this section we
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Fig. 1. Distribution of total power, sampled every 5 min, at system and mid-plane
scale and of power correlations between racks and mid-planes.

first study each dataset individually, identifying and comparing their features,
then we integrate them to study how metrics from different subsystems correlate.
Pearson correlation coefficient is used across the paper to quantify correlations.

3.1 Individual datasets

Power logs. The specifications for a Blue Gene/Q system declare the typi-
cal power consumption to be around 65kW, with a maximum of 100kW per
rack [13]. However, real consumption varies depending on system load and state
of components (e.g., how many nodes are up). Fig. la-b displays the distribu-
tion of power consumption sampled at 5-min intervals, at system and mid-plane
scale. Distributions are centered around the official average values: 650kW at the
system scale (10 racks) and 32.5kW at the mid-plane scale, confirming the spec-
ifications. Moving from higher to lower scale, the distribution becomes broader.
While total consumption is mostly between 50kW and 70kW per rack, with a
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Fig. 2. Distribution of average temperatures, at system and node-board scale, and of
temperature correlations among racks and node-boards.



bell-shaped distribution, for individual mid-planes additional peaks emerge with
some showing power consumptions up to 46kW, but also frequent values un-
der 20kW. Similar results were obtained at rack scale. This shows that power
consumption is very heterogeneous, which needs to be taken into account for
modeling. Indications are that while predicting overall system power might be
easier due to greater stability in time, finer grained predictions at mid-plane
scale might produce more accurate results.

It is interesting to see if power correlates across different components (racks
or mid-planes). Traditional load balancing algorithms try to even out the work
performed by different processing elements, and power increases with load, so we
would expect power to be correlated across different system components under
heavy load. Fig. lc-d shows correlations of power consumption between rack
pairs, and between mid-plane pairs. At both scales, correlations are in general
very low. Only a few mid-plane pairs have correlation values above 0.5. As we
will see later, the observed system load is generally high. The lack of strong
correlation for power consumption among components could be interpreted as
an effect of energy-aware scheduling [18], yet, this is not the case here since Fermi
uses the native IBM LoadLeveler scheduler which is not optimized for power.
A different explanation for the weak correlations could be poor design of the
applications running on the system: if synchronization requires some program
threads to wait, these will keep the nodes occupied but without using them fully.
However, given the coarse resolution of the workload dataset, this hypothesis
cannot be tested with the current data.

Temperature logs. Fig. 2a-b shows histograms of average temperatures
sampled every 15 min. For the overall system, with few exceptions, the distri-
bution is again bell-shaped and narrow with one mode around 50°C. As we
zoom in at node-board scale (the lowest available in the data), the distribution
becomes again wider with additional peaks appearing at very high and very
low temperatures. Individual node-boards can reach up to 75°C, significantly
greater than the system average. Similar results were obtained at intermedi-
ate scales (rack and mid-plane). This again shows how the system appears to
behave differently at different scales, with greater heterogeneity in time at the
finer-grained logs. For temperature correlations among different components of
the same type (Fig. 2c-d), a pattern similar to power consumption is observed.
With very few exceptions, temperature exhibits low correlation across compo-
nents. Results are consistent across all scales (including mid-plane not shown
here). In terms of thermal isolation, this is good news, since having one hot
node-board does not imply surrounding node-boards are hot as well. Yet, the
fact that power consumption showed a similar pattern, this can be additional
evidence that workload is not well balanced or applications need improvement.

Workload logs. An important question in terms of workload regards the
types of jobs submitted to the system. Fig. 3a-c displays the distribution of
several job attributes: CPU time, running time, and number of cores used. In
terms of time requirements, jobs are very heterogeneous as evidenced by a long-
tailed CPU time distribution, with a few very heavy jobs and many short jobs
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Fig. 3. Workload structure: distribution of CPU time, running time, number of cores
per job, and CPU time consumed by jobs completed on the same day (normalized by
the overall capacity of Fermi, which is 14,069,376,000 s/day).

present. Effective running times are bimodal, with many short jobs and many
long jobs (all running times under 24 hours), and slightly fewer medium-length
jobs. The number of cores per job is less heterogeneous, with only eight different
values present, most jobs using over 100 cores and up to 32,768. So, in general,
jobs are highly parallel. Out of all 78128 jobs submitted, only ~75% were started
(running times > 0) and only those will be used in the subsequent sections.

The structure of the workload data enables analysis of patterns in time only
at system scale and 24-hour resolution. Fig. 3d shows total CPU time for all jobs
completed each day, normalized by the overall system capacity. This does not
represent the exact system load for that day, but it still is a very good indication.
The data contain only the date of job completions not the exact time, making
it impossible to compute how many hours each job ran in a given day — jobs
completed on one day could have been started the previous day. This is why some
days reach capacity exceeding 100%. Again, roughly a bell-shaped distribution
is observed, with a mean around 94% usage, indicating very high load levels.

RAS logs. The inter-event times at system scale, for the three event types,
do not appear to follow a known distribution (Figure 4a). FATAL events show a
few very large and many very small intervals, indicating a pattern with spikes of
events in short periods of time with large breaks between them. INFO and WARN
events are more evenly spread in time, missing the very large inter-event times,
and having a smaller fraction of very short intervals.

Fig. 4b displays the time-series of daily number of events in each category
and their relative correlations. WARN and INFO events are more common daily,
whereas FATAL events come in spikes and appear in only a few of the monitored
days. The 4 larger spikes in FATAL events correspond to issues related to the
BPMs which caused shutdown of the entire system several times between 27/05
and 30/05 and shutdown of rack R30 on 04/07 and 17/07. Daily INFO and WARN
events are highly correlated, and so are WARN and FATAL events. However INFO
and FATAL events seem to appear together less frequently. This could mean that
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INFO events could be useful to predict WARN events while WARN events could
predict FATAL events at this time resolution. Hence, considering both INFO and
WARN events to predict FATAL events could facilitate longer prediction lead time.

A different question is whether events correlate across different components.
Fig. 4c-d shows the distribution of correlations between rack and node-board
pairs for FATAL events. Similar results were obtained for the other events and
at mid-plane scale. Unlike power and temperature, FATAL events have higher
correlation across components, with a significant number of pairwise correlations
larger than 0.5. This indicates that failures may propagate across components.
We studied for various FATAL event types the number of different components
(node-boards, power modules, etc.) affected in 5-min windows. We found that
most event occurrences do involve a large number of components, sometimes up
to a few hundred. So, when trying to predict component failures, one needs to
take into account not only their individual behavior, but also that of the others.
The way failures propagate can also give indications of the possible causes (e.g., a
faulty job running on all components) and enable their automatic identification.

3.2 The big picture

Individual datasets have shed some light into the functioning of the Fermi sys-
tem, and correlations between components. Here we integrate the four datasets
to uncover further correlations between the different components and logs.

A first analysis looks at different measures for the overall system for 24-hour
time windows. Figure 5 shows all pairwise correlations between several time
series datasets. We note strong correlation between temperature and power,
confirming what has been observed in other systems as well [3]. In terms of
workload, total daily CPU time, number of cores, and queue time are included.
These do not appear to correlate among themselves, while CPU time is the
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Fig. 5. Correlation between datasets at 24-hour resolution for the overall system.

only one among the three that does correlate with other datasets, although only
moderately. Specifically, positive correlation with the temperature is present,
so the system does show thermal symptoms of working harder under a high
workload. A negative correlation with RAS events also exists, which is somewhat
counterintuitive: one would expect more events to appear when the system works
harder. However, it is quite possible for large numbers of RAS events to have
resulted in system failure, which in turn resulted in fewer completed jobs for
that day, explaining the negative correlation. In fact, a closer analysis of the
data shows that, in general, a system shutdown (signaled by long periods of
missing data in the trace) is preceded by fatal events. In some situations, events
may appear also at system restore, which could be due to operator interventions
made while the system was down. A negative correlation also appears between
power/temperature and RAS events, again rather counterintuitively and due to
the same factors as before. So, when trying to predict power consumption or
FATAL events, one needs to take into consideration the negative dependence.
The data do not show any correlation between overall workload and power,
however correlation could depend on the job class (queue). So we analyzed (same
Fig. 5) the daily CPU Time per job class and also the coefficient of variation (CV)
of the total CPU Time across the classes. A higher CV means a more unbalanced
workload across the queues. The negative correlation between CPU time and
RAS events is present for individual queues as well, with strongest effect for
smallpar jobs. CPU Time CV displays some positive correlation to WARN events,
which means that heterogeneity in terms of jobs per queue can be a factor leading
to WARN events. However, even at this scale, no link between workload and power
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consumption can be found (we also explored other measures, such as job count,
core count, queue time per class, with similar results). This suggests that the way
workload is distributed on components is important to understand power in this
system. Higher correlations might be obtained by zooming in at rack, mid-plane
or node-board scales. We can do this for power, but not for workload due to
the structure of our dataset. Fig. 6 shows how CPU Time correlates with power
consumption per rack. Indeed, higher correlations do appear, indicating structure
is important, but still more detailed workload data is required. This suggests
the need for changes in the structure of workload logs for Fermi and improving
system logging practice, in order to see exactly at which scale correlations appear.
In a second analysis, the resolution of the data was increased to 5 min. Cor-
relations at system, rack, and mid-plane scales are shown in Fig. 7. Due to its
coarse time structure, the workload data was excluded. Power and temperature
correlation grows with increased time and space resolution. This suggests that
for predictions, using only one of the two features might suffice, which is good
news since power logs at node-board scale are not available. However, to account
for the possibility that temperatures are affected by cooling issues, power should
still be monitored, even if not to be used as a modeling feature, but to check
that assumed correlation is correct. A sudden decrease in correlation could also
flag cooling anomalies. The negative correlation between temperature/power and
RAS events is maintained, albeit at a lower value, only at system scale between
power and FATAL events.This can be again explained by the existence of pe-
riods of system shutdown before or after events. So, correlations will be high
over 24 hours, but for 5-min windows, only FATAL events are correlated with
power (temperatures take longer to drop, while other event types could have ap-
peared much earlier). Between RAS events, correlations are higher within racks,
indicating that propagation of errors might be strongest at the rack scale.

4 Related work

Log analysis for characterization of large computing infrastructures has been the
focus of numerous recent studies. The release of two Google workload traces has
triggered a flurry of analysis activity. General statistics, descriptive analyses, and
characterization studies [12, 15] have revealed higher levels of heterogeneity when
compared to grid systems [5]. Some modeling work has also appeared based on



these data [19,2,17]. While they have provided important insight into Google
clusters, focusing only on workload aspects of the system has been limiting.
To be effective, it is essential to integrate data from different components and
sources. Other traces have also been studied in the past [4], and tools for their
analysis developed [9], but again concentrating on a single data type. Here we
perform similar analyses for a Blue Gene/Q system but from several viewpoints:
workload, RAS, power, and temperature, providing a more complete picture of
the system under study.

RAS logs from IBM Blue Gene systems have been included in several earlier
studies. In [6] prediction of FATAL events in a Blue Gene/Q machine is attempted
while an earlier study of a Blue Gene/L installation is [11]. Both compare several
classification tools (SVM, customized KNN, ANN, feature selection, rule-based
models). These predictive studies look only at RAS events, while adding further
data from other system components could improve prediction accuracy signif-
icantly, as noted by the authors themselves. In this paper we provide the first
step towards such an analysis, where we perform descriptive analytics mandatory
before any prediction can be attempted.

Some integration is performed in a very recent study from Google that models
Power Usage Effectiveness using thermal information (temperatures, humidity,
etc) and overall system load, using an Artificial Neural Network [8]. Another re-
cent development in this direction is a novel monitoring system [3] designed for
a hybrid HPC platform. In this study, several types of data including workload,
power, chiller, and machine status are recorded. In principle, these data could
be used for future predictive and modeling studies, but they have not been initi-
ated in the reported study. The OVIS project has also developed an integrated
monitoring platform called the “Lightweight Distributed Metric Service” [1],
recording various system metrics for optimization of application performance.
The platform has been tested on several systems, but again steps towards a
descriptive and predictive analytics for these data are still missing.

5 Discussion and conclusions

Given the need for a holistic analysis of large computing infrastructures, this
paper has presented a characterization study conducted with four datasets de-
scribing different subsystems of an IBM Blue Gene/Q installation. Temperature,
power consumption, workload, and RAS logs were studied independently to char-
acterize the system and then together to identify correlations between datasets.

The results obtained from correlation analysis will serve as a guideline for
a future study aiming to predict in advance FATAL RAS events based on the
rest of the data. One possibility would be predicting, for each node-board, the
number of FATAL events in the next 24 hours. Alternatively, based on the number
of events, we can define discrete failure classes (e.g., NONE, FEW, MANY) to be
predicted. We have compiled a set of possible features that may be suitable
for this predictive task (Table 2). These cover all datasets with various time
resolutions at node-board and system scale.



Table 2. Possible feature set for prediction of FATAL RAS events.

Feature Period |Scale
Temperature average and standard deviation 6h node-board
Correlation between temperature and power 6h mid-plane
Temperature correlation between node-boards 6h node-board
CPU time per queue 24h system
CPU time coefficient of variation across queues 24h system
Number of WARN, INFO, and FATAL events 24h node-board
Stdev of number of WARN, INFO, and FATAL events 24h node-board
Number of WARN, INFO, and FATAL events 24h system
Stdev of number of WARN, INFO, and FATAL 24h system
Correlation between temperature and event count 6h node-board
Correlation between power and event count 6h system

The first two features are suggested by the fact that power and temperatures
are highly correlated. Temperatures can be used a a proxy for power, so that the
higher space resolution is employed and the number of features is decreased. This
only as long as correlation between temperature and power is high. A decrease
in correlation will signal an anomaly, even if the proxy is no longer valid. Large
temperature correlations across node-boards could also signify anomalies, since
node-board temperatures were uncorrelated in our data. Workload related fea-
tures are limited to daily CPU time per queue and coefficient of variation across
queues, which showed highest correlation with other datasets. Features monitor-
ing all types of RAS events at node-board level account for correlation across
RAS event types, while those at system level are justified by correlations across
node-boards and propagation of errors. Since prediction is aimed for 24-hour
periods, we use event values computed over the same time, but also deviations,
to account for varying inter-event patterns. Finally, correlations between power
(or temperature at node-board scale) and events should be monitored since large
negative correlation could signal component failure. Even if indications are that
the features listed will prove important for prediction, final evaluation of the
feature set will be performed during the future predictive study itself.

Besides identifying important features, our analysis has also indicated direc-
tions for improvement in terms of data collection. Workload data in particular
proved to be insufficient for our goals, so we could identify few relations to the
other datasets. In the future, at least timestamps for job completion as well as job
placement should be included. This additional information will enable analyzing
the causes of lack of power correlation across components. Power monitoring was
coarse in terms of space resolution, however more data could be extracted from
the node-board power rails. Temperatures, on the other hand, could be logged
at 5-min intervals rather than 15. We are aiming at prediction with long lead
time, so the 15-min interval may be sufficient for applying the model, however
finer granularity would allow for more refined training data. In the future we will
also use data external to the computing infrastructure, such as the water and
air cooling systems, together with data outside the data center, e.g. weather and
seismic activity. Cross-correlations will also be investigated, resulting in further
features to be added to the proposed set.
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