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Abstract 

In this work, recent results obtained by means of 
1
H NMR relaxation studies of liquid crystals 

having a large range of thermal stability of the twist grain boundary (TGB) phases are reviewed. In 

particular, three chiral rod-like lactate derivative mesogens, with the same chiral lateral chain, were 

investigated from the molecular dynamics point of view. In the isotropic phase, a three-exponentials 

magnetization decay was observed and the three relaxation times were assigned to three specific 

nuclear spin groups of these molecules (i.e. aromatic core, methyl and methylene groups). In the 

liquid crystalline phases the magnetization decay detected was mono-exponential and a single spin-

lattice relaxation times (T1) was measured at each temperature. Focusing in the TGBA* and TGBC* 

phases, the main features of the dispersion curves (spin-lattice relaxation rates as a function of the 

Larmor frequency) in terms of molecular dynamics are here discussed and compared. 
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1. Introduction 

Twist grain boundary (TGB) liquid crystals [1] represent a fascinating example of interplay 

between molecular chirality, volume-excluded and energetic balances related to the occurrence of 

helical supramolecular arrangements. In these phases, chiral molecules pack in layers, as in typical 

SmA or SmC* phases, but, at a domain level, these layers form helical structures in a discontinuous 

way, giving rise to grain boundaries (see Scheme 1). [3,4] Since the first investigations based on X-

ray and microscopy, coupled with theoretical models [1-4], the structural details of both TGBA 

(having a SmA-like domain structure) and TGBC* (with local SmC or SmC* layer structures) have 

been recently confirmed by 
2
H NMR studies [5,6]. These works [5,6] put in evidence the delicate 

nature of TGB phases and their supramolecular structure, which can be deformed or unwounded by 

external magnetic and electric fields, such as magnetic and electric ones. Moreover, in most of the 

chiral liquid crystals having TGB phases, these mesophases are stable but often observed in short 

temperature ranges of few degrees, thus making their investigation hard. being complicate to 

investigate. 

However, in the recent years, our group had the chance to investigate several compounds 

showing TGBA and TGBC* phases stable in wide temperature ranges [7,8]. Besides the structural 

features of TGB phases, we investigated the main molecular dynamic processes active in these 

phases by means of 
1
H NMR relaxometry [9,10]. 

This technique is extremely powerful in detecting and characterizing both slow and fast 

motions in liquid crystals [9-17]. By measuring the proton spin-lattice relaxation time (T1) over a 

wide range of Larmor frequencies, from a few kHz to hundreds of MHz, it is possible to identify 

single molecular motions, overall and internal ones, translational self-diffusion and collective 

motions, which are very typical of liquid crystals. Among those, order director fluctuations (ODF), 

in nematic phases [14,15], and layer undulations (LU), in smectic phases, have been widely 

explored by these techniques in several liquid crystalline systems [12,17]. Additionally, rotations 

mediated by translational displacements (RMTD) have also been investigated by NMR relaxometry 

[12]. 

In this paper, we are reporting the main results obtained by 
1
H NMR relaxometry applied 

to three rod-like mesogens having TGB phases stable in wide temperature ranges. The three 



molecular systems have the same chiral lateral chain, based on the (S)-2-methylbutyl-(S)-lactate 

unit [7,8], but different achiral lateral chains and/or aromatic cores. Two of these systems have been 

analyzed in two independent works [9,10]. Here, the addition to the analysis of a third compound 

we take the opportunity to make some more general comments on both TGBA and TGBC* 

dynamics. 

 

2. Experimental 

The molecular structure of the three chiral liquid crystals is reported in Scheme 2. Two of them, 

HZL 7/* and HZL 9/* differ only for the number of carbons on the achiral lateral chain, while the 

10BBL system has a completely different aromatic core. Their polymorphisms, determined by 

differential scanning calorimetry (DSC), on cooling from the isotropic phase, at a scan rate of 

10°/min are here reported: 

HZL 7/* mesogen: 

 

Iso - 123 °C- N* - 120 °C - TGBA* - 86 °C -TGBC1* - 70 °C - TGBC2* - 27 °C crystal 

 

HZL 9/* mesogen: 

 

Iso - 120 °C- N* - 111 °C - TGBA* - 95 °C -TGBC1* - 80 °C - TGBC2* - 66 °C crystal 

 

10BBL mesogen: 

 

Iso - 122 °C- BP - 118 °C - TGBA* - 108 °C -TGBC* - 99 °C - SmC* - 53 °C crystal 

 

The HZL 7/* and HZL 9/* samples present the same mesophases, but different temperature 

transitions. Both HZL samples have a cholesteric phase (N*) below the isotropic phase, while the 

10BBL has a blue phase (BP). Moreover, the 10BBL mesogen shows only one type of SmC*-like 

TGB phase, named here TGBC* phase, while the two HZL mesogens have two types of SmC*-like 

TGB phase, named here TGBC1* and TGBC2* phases. 

 



1
H-NMR experiments were performed on a Fast Field Cycling NMR relaxometer SPINMASTER 

FFC-2000 (Stelar s.l.r.). All details for the samples HZL 7/* and 10BBL are reported in refs. [9] and 

[10], respectively. For the HZL 9/* compound, about 500 mg of the sample was used for the 

measurement. AND FOR THE OTHER SAMPLES? The proton longitudinal spin-lattice relaxation 

times T1 were measured in the frequency range from 18 MHz to 5 kHz. Above 5 MHz, the non-

prepolarized (NPS) pulse sequence was used for relaxation measurements, while below that 

frequency a prepolarized (PPS) pulse sequence was used. The prepolarization and acquisition 

frequencies were 18 and 9.25 MHz, respectively. A 6.5 s proton spin 90 pulse was used. All other 

parameters were optimized according to each experiment. 

The temperature dependency of proton T1 was measured at the Larmor frequency (I WOULD USE 

L  as L is for angular frequency…) L of 100 MHz over a wide temperature range using a home-

built spectrometer and an Oxford superconducting magnet. The inversion recovery pulse sequence 

with a 2.2 s proton spin 90° pulse was used. 

 

3. Results and Discussion 

3.1 Relaxation behaviour in the isotropic phase 

As observed for HZL 7/* and 10BBL liquid crystals in previous works [9,10], also in the HZL 9/* 

compound, we could observe that in the isotropic phase there were three components in relaxation 

behavior. These relaxation components can be attributed to different proton spin groups, namely 

methyl, methylene and aromatic ones. In order to separate these components, different parts of the 

1
H NMR spectra were integrated, corresponding to different groups. As it can be clearly seen in 

Figure 1 (a), in the isotropic phase the 
1
H NMR spectrum of HZL 9/* recorded at L=100MHz is 

composed by different signals that can be separated: the aromatic signals, and the CH2 and CH3 

proton signals. When the sample is cooled down to the mesophases, the 
1
H NMR spectra are 

dominated by a broad signal (see Figure 1(b) and 1(c)) and the different components cannot be 

separated anymore. On the other hand, the relaxation behavior is characterize by a mono-

exponential trend, giving rise to a single relaxation time. 

In Figure 2 the temperature dependences of the measured relaxation times of the three 

compounds are reported. As previously said, the isotropic phase is characterized by three 



components, while the relaxation rate in the TGB phases presents a monotonous increase by 

decreasing the temperature for all samples. In the case of HZL 7/* the relaxation trends in the 

cholesteric phases (N*) are also not mono-exponential, while in the HZL 9/* the relaxation 

behavior is mono-exponential in the N* and TGB* phases. Similarly, the 10BBL shows a single 

relaxation behavior in the blue phase (BP), TGB* and SmC* phases. 

 

3.2 Relaxation mechanisms in the TGBA and TGBC* phases 

Typical dispersion curves, namely relaxation rates R1 (=1/T1) as a function of the Larmor frequency 

(L), recorded in the TGBA* and TGBC* phases of the two compounds HZL 7/* and HZL 9/* are 

reported in Figure 3. These curves are typical of TGB phases, as reported in ref. [9,10], and reflect 

the particular supramolecular structure of the twist grain boundary phases, as shown in Scheme 1.  

The dispersion curves recorded in the TGBA* phases, and reported in Figure 3(A), are quite 

similar between the two mesogens in the fast and intermediate regions, while, in the low frequency 

regime, the relaxation times are shorter in the HZL 9/* with respect to the HZL 7/*. As it is clear 

from the analysis of dispersion curves in terms of dynamic processes, this can be explain by the 

presence of slower motions in HZL 9/* with respect to HZL 7/*, which can be understandable since 

the HZL 9/* sample is longer than HZL 7/*.  

In the case of TGBC* phases, the HZL 9/* sample is characterized by similar dispersion curves in 

both TGBC1* (grey symbol in Figure 3(B)) and TGBC2* (black symbol in Figure 3(B)), thus 

indicating that, in this case, there shouldn’t be significant differences between the two phases. On 

the contrary, the HZL 7/* sample, which presents TGBC* phases at much lower temperatures than 

HZL 9/*, presents dispersion curves very different in the TGBC1* and TGBC2* phases. On the 

other hand, the dispersion curve of HZL 7/* in TGBC2* phase, recorded at 40°C, reflects the 

presence of a slightly larger rigidity of the phase structure with respect to the TGBC1* phase, as 

reported in ref. [10], and this is more clearly inferred from the quantitative analysis of relaxation 

times in terms of dynamic motions. 

The total spin-lattice relaxation rate R1 (=1/T1) can be analyzed by assuming that each 

motional contribution can be considered statistically independent from the others, or otherwise its 

characteristic time of the molecular motions reasonably different from the others. In this respect, the 



total measured R1 can be defined as a sum of different contributions, i, corresponding to the 

different relaxation mechanisms [12,13], according to Eq.[1]: 

 

 

     
  

 

       
 

                                                                                   

Where the subscript i corresponds to:  

1) R, to represent local molecular Rotations, such as fast spinning reorientations or internal 

motions (Rf) and slower ones, such as tumbling reorientations (Rt). These motions are usually 

modeled by means of the Bloembergen, Purcell, and Pound (BPP) relaxation theory [16]. For each 

type of rotational contribution, two parameters can be optimized: the correlation time, R, and the 

pre-factor, AR. 

2) SD, to indicate the translational Self-Diffusion motion. In our approach, the SD contribution 

was described by the model described in ref.[18], and it is defined by a correlation time τD and an 

activation energy ED. 

3) CM, to indicate the collective motions, which are typical of the liquid crystalline phases and 

are characterized by different distributions of fluctuation modes with amplitudes and damping times 

related to the anisotropic viscoelastic properties of these compounds. These CMs are: the Order 

Director Fluctuations (ODFs) typical of nematic phases; the Layer Undulations (LU) present in the 

SmA and other smectic-like phases, and in-plane fluctuations around the tilt director, (cDF), (e.g. 

azimuthal fluctuations of the tilt direction in the smectic C layers), in SmC* phases [12,13]. 

4) RMTD, to indicate the Rotations Mediated by the Translational Displacements, that were 

introduced to explain the relaxation process associated with rotations that are induced by the 

diffusion of molecules along the helical axis, as in the case typical of chiral mesophases, such as the 

Cholesteric (N*) and TGB* phases, . With respect to the RMTD across the TGB grain-boundaries, 

the model was proposed by Vilfan et al.[17] and this contribution depends on the value of the 

helical pitch, p, and on the translational diffusion coefficient, D. 

In order to analyze the experimental dispersion curves, we assume that the correlation times typical 

of each motional contribution are energetically activated, and, in particular, Arrenhius trends are 

assumed. Moreover, in order to avoid the number of fitting parameters becoming too large, in our 

approach, some parameters were estimated according to data available for the mesogens under 



investigation, such as the orientational order, geometrical and conformational features and tilt angle, 

and kept fixed in the least square minimization fitting procedure. 

 

The fitting of the dispersion curves in the TGBA* phase was performed for all mesogens by 

considering the above motional processes. In both HZL samples and in the 10BBL mesogen, the 

values of the fitting parameters are very similar to those referred to in the literature for the SmA 

phase, except that in the low frequency regime. In fact, at lower frequencies, the R1 trend is better 

fitted by a stronger contribution of the RMTD relaxation mechanism, as shown in Figure 4(a). 

Moreover, in the fitting procedure, LUs were also included and they represent a minor contribution 

in the low frequency range, in the case of the HZL samples, while LUs represent an important 

contribution in the 10BBL sample, at low frequency. In all cases, translational self-diffusion 

dominates the relaxation dispersion in the intermediate frequency regime, as observed in many 

other SmA systems [dong’s book Nuclear Magnetic Resonance spectroscopy…], while fast overall 

rotations and internal reorientation motions are relevant only in the high frequency range, as shown 

in Figure 4(a).  

 

The TGBC* phases, which are characterized by in-blocks SmC* phase structure as depicted in 

Scheme 1(B), are very sensitive to applied magnetic and/or electric fields, and in many cases, the 

helical SmC* phase structure is unwound within the TGBC* phases. In the HZL mesogens, two 

types of TGBC* phases were observed [7,9] and, as shown by 
2
H NMR investigations [19], both 

TGBC1* and TGBC2* phases have a supramolecular structure not unwound by magnetic fields 

below 4.2 T, but only partially distorted. The differences between the two TGBC* phases in the 

mesogen HZL 7/* are rather small, and they are related to the TGB pitch, which is short in the 

TGBC1* phase (∼1 μm) and much longer in the TGBC2* phase. Because of that, the TGBC2* phase 

structure is substantially undistorted and more rigid.  

In the analysis of the 
1
H NMR relaxation rates in the TGBC1* phase (see Figure 4(B)), we have 

introduced in-layer fluctuations of the tilting direction (cDF), instead of the layer undulations (LUs) 

typical of smectic A phases. Moreover, this type of fluctuations is superimposed with the fast 

reorientational (Rf) so they are treated as a single process. In the intermediate regime, the cDF and 

SD relaxation mechanisms represent the most important contributions, whereas the RMTD seems to 

be the most relevant relaxation contribution in the low frequency range. These features can be 

generalized also in the case of HZL 9/* and partially in the case of 10BBL mesogen. In Figure 4(C) 

the 
1
H NMR relaxation dispersions of HZL 7/* in the TGBC2* phase is also reported. As already 

stated, this dispersion curve is very different from the others in TGBC*phases (see Figure 3(B)). In 



particular, in the intermediate frequency regime, the relaxation rate shows a ω
-1

 dependence, which 

is well fitted by the dominant LU dispersion. Here, the contribution of molecular tumbling could 

not be estimated since it is partially overlapped with the dominating LU relaxation dispersion. On 

the other hand, in the fast regime, the self-diffusion is treated together with the fast spinning 

rotation (SD+Rf), while in the slow frequency regime, the dispersion is well explained by the 

RTMD model. 

 

Final remarks 

In this work, we reviewed the main dynamic features of the TGB phases, as obtained in recent 

works based on 
1
H NMR relaxometry. The analysis of relaxation rates R1(T) in a wide frequency 

range (from 100 MHz to 5kHz) in three lactate derivatives (namely HZL 7/*, HZL 9/* and 10BBL) 

showing TGBA* and TGBC* phases stable in wide temperature intervals allowed us to get 

interesting information about typical molecular dynamic processes active in these phases. From 

these studies, we could, in particular, confirm for instance the presence of strong rotations mediated 

by translational displacements (RMTD) in the slow frequency regime in all TGBA* and TGBC* 

phases. The high frequency regime is characterized by fast reorientations, which merge with self 

diffusion (SD) in the case of lower temperature TGBC2* phase of HZL 7/*. More complicate 

behavior is observed at intermediate frequency regime. Here, the TGBA* phase is characterized by 

layer undulations (LUs), which are replaced by in-layer fluctuations of the tilting direction in the 

SmC* phase (cDF) in the case of TGBC1* phase of HZL samples, while they are still dominant in 

the TGBC* phase of 10BBL and in the TGBC2* phase of HZL 7/* mesogens. 
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Scheme 1. 

Sketch of the TGBA* and TGBC* mesophase structure. The main features of these supramolecular 

structure are: the presence of TGB helical axis, the dimension of TGB blocks (lb), the distance 

between disclinations (ld), the twist angle () between consecutive TGB blocks and the phase 

director (n); additionally, in the TGBC* phase, the molecular tilt () with respect to normal to the 

smectic layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Scheme 2. 

Molecular formula of (A) HZL 7/* (n=6) and HZL 9/* (n=8); (B) 10BLL. 

 

 

 

  



Figure 1. 

Proton NMR spectra of the sample HZL 9/* recorded at 100MHz at different temperatures: (A) 

420K, (B) 393K and (C) 340K. The scale is in kHz. 

 

 

 

 



 

Figure 2.  

Temperature dependence of the spin-lattice relaxation time (T1) at 100MHz of (A) HZL 7/* (B) 

HZL 9/* and (C) 10BLL mesogens. In the isotropic phase, there are three relaxation components, 

which are assigned to (○) aromatic protons, (▲) CH3 protons and (▼) CH2 protons. In the liquid 

crystalline phases and crystal phase there is only one relaxation time (■). Temperature transitions 

and mesophases are indicated as black lines. 

 

 



 

 

 

 

 

 

  



Figure 3.  

Selection of dispersion curves (
1
H spin-lattice relaxation rates vs Larmor frequency) of the two 

samples HZL7/* and HZL 9/*. (A) In the TGBA* phase: HZL 7/* samples at (■) 111°C and (●) 

95°C, HZL 9/* at (□) 106°C and (○) 101°C. (B) In the TGBC* phases: HZL 7/* samples at (∆) 

60°C and (□) 40°C, HZL 9/* at (●) 91°C, (■) 84°C and (▲) 74°C. 

 

 

 



 

 

Figure 4.  

Frequency dependence of the 
1
H spin-lattice relaxation rates in the TGBA* for the sample 10BBL 

at 113°C (A) and in the TGBC1* and TGBC2* for the sample HZL 7/* at 60°C (B) and at 40°C (C), 

respectively. The empty circles are the experimental data, and the solid black curves are the total 

fitting curves. Curves for the main dynamic mechanisms are also shown. The free fitting parameters 

are reported in ref.s [9,10]. 

 

 

 

 

 

 

 

 

 

  



 
 

 

 

 

 


