
Cooperative Control and Smart Procurement Of
Naturally Generated Energy (SPONGE) for PHEVs
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Abstract—Electric vehicles can potentially be the best means of
transportation for improving air quality, provided that they are
powered by electricity from natural gas or wind, water or solar
power. In this paper we describe a simple cooperative algorithm
that exploits the energy management units of Plug-in Hybrid
Electric Vehicles (PHEVs) to absorb the expected forthcoming
energy available from renewable sources. The proposed approach
bridges the gap between mobility patterns and power grid
constraints, and allows to prevent green energy from being
wasted while at the same time reducing the complexity burden
of the power grid to charge unexpected loads of electric vehicles.
Simulation results are given to show the efficacy of the proposed
method.

I. INTRODUCTION

The increasing electrification of the transportation fleet is
opening previously unexplored possibilities for a synergistic
collaboration between hitherto disconnected fields of the
electric power grid, i.e., the smart grid, and the intelligent
transportation network to achieve a system-level integrated
optimisation.

Electric Vehicles (EVs) and Plug-in Hybrid Vehicles
(PHEVs) have been seen by the power grid community as
a potential threat to the power grid, since accommodating
a not-fully predictable large load could ultimately cause
thermal overload of some network components, low voltages
at sensitive locations of the network and increase the chances
of phase unbalances, see [1], [2] and [3]. At the same time,
the potential of EVs and PHEVs to provide ancillary services
to the grid (e.g., Vehicle-to-Grid (V2G) applications) were
investigated in [4], [5], [6] and [7]. Finally, references [8], [9]
and [10] investigate optimal charging of electric vehicle in
the presence of intermittent power generation from renewable
energy sources (e.g., solar and wind).

Note that most of the related literature, including the previous
references, tend to consider separately the transportation
viewpoint and the power grid one. This is due to the fact that
the mobility needs of PHEV owners and the requirements of
the power grid are obviously decoupled. On the other hand,
in this work we take a completely different point of view,
and formulate an optimisation problem that jointly takes into

account both mobility patterns and also the concerns of the
power grid, as better explained in the following section.

A. Contribution

The main contribution of this paper is to propose and
evaluate a completely new paradigm to control the way in
which hybrid vehicles discharge and recharge their batteries.

In particular, we propose that a central management
service orchestrates the mode in which PHEVs travel, i.e.,
between the Internal Combustion Engine (ICE) and the
Electric Mode (EM). In this way, it is possible to control
the depletion of the batteries of a fleet of a PHEVs, and
make it equal to any pre-specified quantity. Accordingly, the
power grid can know, and decide, in advance the amount
of the load required by the fleet of PHEVs. In particular,
we control the depletion of the batteries of single vehicles
in order to minimise an overall utility function that takes
into account the cost of recharging the PHEVs, and in doing
so encourages the use of energy generated from renewable
sources for battery charging. The proposed framework allows
us to achieve the following two main objectives:
• We use weather forecasts to predict the expected energy

available from renewable sources, e.g., in the next 24
hours. Then, we make the PHEVs travel in EV mode
for enough time to deplete their batteries in order to ac-
commodate for the energy available from natural sources.
In this way we prevent naturally generated energy from
being wasted due to the absence of a consistent electrical
load, or of alternative storage systems;

• In principle, it allows the smart grid to decide in advance
(e.g., a day-ahead) the amount of energy that will be
required to fully recharge the PHEVs, given that the
battery discharge is controlled in a centralised fashion.

II. CONTROLLING THE TRAVEL MODE OF A HYBRID
VEHICLE

Based on the mechanical architecture, PHEVs can be clas-
sified into three categories: parallel hybrids, series hybrids,
and power-split hybrids. In the parallel configuration, both the
engine and the electrical motor can individually or collabora-
tively drive the vehicle. In the series case, a single motor is



used to drive the wheels, and it can be either supplied by a
battery, or by a generator transforming the engine power into
electrical power, or both. Finally, the power-split hybrids use a
power-split mechanism (e.g., a planetary gear) to combine the
two previous configurations. Examples of papers describing
the modeling and the management strategies to drive PHEVs
can be found in [11], [12], [13] and [14]. Despite several
techniques have been developed to optimally manage the
switching between the ICE and the electric mode, or the
proportion of torque provided by each of the two units, usually
the following criteria are used as hard constraints (see [12]):

1) The State of Charge (SOC) of the battery should never
drop under a certain threshold (i.e., to avoid endangering
the lifetime of the battery);

2) The driver input (accelerating and braking pedals)
should be consistently executed, unless it conflicts with
the first restriction;

3) The overall energy efficiency and emission levels should
be optimised, as long as the first and the second con-
straints are not violated.

At the same time, another common practice is to decompose
the load power (which generally varies in a random fashion
during real operations due to accelerations, decelerations,
and climbing up and down grades) into a steady (average)
power, and into a dynamic power with a zero average (see
for instance [11]). Then, the common strategy is to use the
ICE to supply the average power (with the advantage that it
is possible to optimally configure the ICE to work very close
to its most efficient working point), and the electric motor
to supply the dynamic power. In this way, the total energy
output from the dynamic powertrain is zero (on average) at
the end of each driving cycle.

Some commercial vehicles do not allow the driver to
bypass the existing Energy Management Unit (EMU) to
override the optimally configured mechanism to switch
between the two modes. However, manual switches are
convenient for a number of reasons, e.g., to drive in some
sensitive spots of a city in electric mode to avoid excessive
pollution, as in Low emission zones (LEZ). Finally, refer
to [15] as a practical example where the driving mode of a
Toyota Prius had been remotely operated to control (via a
Smartphone application) where to emit pollution due to ICE
driving mode. In this paper, we use the same approach of
([15]) to switch the driving mode of a hybrid vehicle, but the
goal is now to monitor the depletion of the battery to match
the expected energy generated from renewable sources.

A. Analogies with Demand Side Management techniques

Our main idea here is to encourage the use of PHEVs
in electric mode when it is expected that energy from
renewable sources will be available soon. Note that similar
ideas have been already applied to other smart electric
domestic appliances (e.g., washing machines, tumble driers,
dishwashers) in the context of so called “Demand Side
Management” (DSM) techniques. In this case, controllable

loads (i.e., loads that do not need to be operated with hard
time constraints) are postponed to match favourable time
slots, e.g., when PhotoVoltaic (PV) roof panels provide
electrical supply, see for instance [16].

In this way, locally low-cost generated energy is prioritised
over more expensive, possibly less environmentally friendly
energy bought from the outer electrical grid. From this
perspective, our approach extends typical DSM practices to
the transportation field.

III. THE SPONGE PARADIGM

A. Smart Procurement of Energy: SPONGE

Let us consider a scenario in which a group of PHEVs,
with maximum number of N , will participate in a SPONGE
charging programme. For conveniences, we discretise every
k’th day (a 24 hour day) into T same time clock periods,
each of length ∆T . We assume that for some fixed period
(e.g. 11pm to 6am) during the day, these vehicles are plugged
in, and that for this period, a reliable day-ahead forecast
of available renewable energy is available. We denote this
available energy by Eav(k + 1). We assume that during
some other fixed time period of the day (e.g. 9am to 6pm),
these vehicles will proactively adjust their energy consumption
patterns at every available clock period so as to make available
space in the electric vehicle battery. We assume that this fixed
time period consists of M clock periods and we index every
available clock period as τ ∈ {1, 2, ...,M}. Let us now denote
the electric energy dissipated by the i’th vehicle at the τ ’th
time clock period by Di(τ). Our objective is to ensure that

M∑
τ=1

n(τ)∑
i=1

Di(τ) ≥ Eav(k + 1), (1)

As stated, the problem is a regulation problem that is depicted
in Figure 1. Under ideal circumstances, a central authority
computes the desired electrical energy consumption, and then
broadcasts some signal which is received by vehicles to
orchestrate the switching between EV and ICE mode, so as to
satisfy the regulation constraint. For instance, the signal can be
the probability to travel in EV mode rather than in ICE mode,
or can be the proportion of the traction torque that should be
provided by the EV engine rather than from the ICE engine.
We shall denote the problem expressed by Equation 1 as the
basic SPONGE problem.

B. Smart Procurement of Energy: Exact SPONGE

In some cases, the objective can be to make PHEVs travel
in EV mode until they deplete their batteries in order to
exactly match the expected energy that will be available from
renewable sources. We shall denote this problem as “exact
SPONGE”, and its mathematical formulation is as follows:

M∑
τ=1

n(τ)∑
i=1

Di(τ) = Eav(k + 1). (2)



Fig. 1. Feedback loop for energy dissipation problem

The main advantage of the exact SPONGE approach is that
when the fleet of vehicle connect to the grid for recharging, the
quantity of required energy is already known in advance (i.e.,
it is equal to the expected energy available from renewable
sources).

C. Optimised access: Optimal SPONGE

In some situations, certain vehicles may have prioritised
access to the oncoming energy Eav(k + 1) via some utility
function fi. Thus, the above problem can be reformulated in
an optimisation framework as:

maximise
(or minimise)

n(τ)∑
i=1

fi(Di(τ))

subject to
n(τ)∑
i=1

Di(τ) =
Eav(k + 1)

M
.

(3)

where Di(τ) is defined as the average of energy distributed
to the i’th vehicle up to time clock τ . In addition, we assume
that the available energy provided at every time clock τ equals
Eav(k+1)

M , which integrals during these M clock periods gives
the total available energy Eav(k+1). This optimisation may be
solved in many ways under suitable assumptions on the fi’s.
The problem is most interesting when the the f ′is represent
a generalised notion of utility (in which case the interest in
Equation (3) is in maximisation) or a price that the i’th car
pays (in which case one is interested in minimising the sum of
utility functions) and is considered to be private information,
not to be revealed to the utility or to other vehicles. The
problem is then to solve the utility optimisation problem
in a privacy preserving manner. Note that the fi’s may be
incorporated to represent various use cases. Some interesting
examples include the following.

(i) For example, Original Equipment Manufacturers
(OEM’s) may partner with utilities to provide a service
where the price of energy is part of PHEV’s owners car
purchase plans. Those paying more upfront, may have
prioritised access to ’free energy’ as it becomes available.

(ii) The fi’s could represent the price paid by an individual
vehicle owner for energy access.

(iii) Or, they could be used to penalise vehicles with a lower
load factor (fewer passengers).

(iv) They could be used to penalise vehicles that drive close
to schools, hospitals, etc.

(v) Another interesting scenario is as follows. Some hybrid
modes blend the EV motor with the ICE to optimise
fuel economy/emissions. An interesting embodiment of
the optimisation scenario is to take the required energy
in a manner that minimises the impact on fuel economy
of the fleet.

With regard to the SPONGE formulation several comments
are appropriate.

Comment 1: Note that the SPONGE solution has the
potential to simplify the “charging paradigm”. Hitherto, most
charging research has focussed on how to share the available
energy among vehicles in a manner that is compliant with the
desires of the EV owners, the constraints of the grid, and the
available power. In this case, there might arise some problems
in the power grid to accept the unexpected load, with the
ultimate possibility of causing thermal overload, low voltages
at sensitive locations of the network, and increased phase
unbalance ([3]). Even ignoring this, the required optimisations
often place severe constraints on the EV owners in the form
of inconvenient charging profiles. On the other hand, in
the solution of Problem (2), one would compute the same
quantity in advance, and deplete the batteries of the vehicles
while travelling of the same quantity. Thus, the charging
process becomes fully schedulable and programmable. The
charging problem can be reduced to a best-effort problem
where the cars share the available energy during the charging
period using some simple algorithm such as Additive Increase
Multiplicative Decrease (AIMD) algorithms ([6], [17]). Thus,
clearly, the difficulties of matching the demand and the
offer are shifted to the driving stage through an optimal
orchestration of the ICE and EV engines.

Comment 2: The discerning reader may ask why the
individual vehicle owners should not simply expend the
electric energy completely before switching to ICE mode.
There are many reasons for doing this. First, in some engines,
electrical power and ICE are combined to reduce overall
consumption, or for other objectives of interest (e.g., extend
the lifetime of the battery, as in [18]). Second, access to
LEZs may be restricted to zero emission vehicles. Thus,
maintaining a store of electrical energy for this purpose is
also advantageous. Finally, depleting the battery beyond the
energy levels available during the next charging period, may
lead to a situation where the battery is not filled during the
k + 1’th charging period. Thereby, the ICE may need to be



engaged prematurely in driving, thus leading to unnecessary
emissions and increased fuel consumption.

Comment 3: Note that in some cases, depending on
the number of vehicles on the road, the previous optimisation
problems might not have a feasible solution. For instance,
in the particular case that there are no vehicles on the road,
PHEVs can not deplete their batteries to make room for the
forthcoming energy. In such cases, we will be interested in
a ‘best-effort’ solution, where the closest feasible solution is
achieved instead, see for instance ([6]).

IV. AIMD ALGORITHM

The third scenario illustrated in Section III-C is different
from the previous two, since different probabilities should
be computed for different users, taking personal constraints
into account. Section III-C lists a number of candidate utility
functions to represent the convenience (or the inconvenience)
of the owners in travelling in a given mode. For the sake of
simplicity, we assume from now on that the utility functions
are convex functions that represent the inconvenience of
owners in travelling in EV mode, and that they can be
represented by equations fi(Di(τ)), where Di(τ) represents
the average energy consumed by the i’th vehicle up to time
step τ . Also, other utility functions can be used as well, as
already remarked in Section III-C. Finally, a similar discussion
can be made in terms of discomfort of travelling in ICE mode.

Such an optimal SPONGE scenario allows the central
infrastructure to explicitly take into account personal needs
of PHEVs’ owners and there are many ways to solve the
mathematical problem that arises. In this paper, we formulate
the optimisation problem as a regulation problem with
constraints, and we adopt an AIMD-like algorithm to solve
it ([15], [19]). The main advantage of such an approach is
that it can be implemented in a truly distributed manner (i.e.,
without requiring information exchange among the PHEVs),
with moderate communication requirements.

The AIMD algorithm can be formulated as follows:

if
∑τ
h=1

∑n(h)
i=1 Di(h) < Eav(k+1)

M · τ, ∀τ = 1, ...,M
then pEVi (τ + 1) = min

{
pEVi (τ) + α, 1

}
,∀i = 1, ..., n(τ)

elseif
∑τ
h=1

∑n(h)
i=1 Di(h) ≥ Eav(k+1)

M · τ, ∀τ = 1, ...,M
then with probability probEVi

pEVi (τ + 1) = βpEVi (τ),∀i = 1, ..., n(τ)
or with probability 1− probEVi
pEVi (τ + 1) = min

{
pEVi (τ) + α, 1

}
,∀i = 1, ..., n(τ)

The rationale of the algorithm is the following: some central
entities are targeting to distributed the current available energy
Eav(k+1)

M to the virtual battery of the set of vehicles at each
time step τ , in order to match the expected available energy
from renewable sources at the end of the travelling stage (e.g.,
at the end of the day). If the overall dissipated energy of all
PHEVs up to time clock τ is smaller than the desired one
(i.e.,

∑τ
h=1

∑n(h)
i=1 Di(h) < Eav(k+1)

M · τ ), then each PHEV

increases its probability pEVi of travelling in EV mode (or
alternatively, the proportion of torque provided by the electric
engine) additively by a quantity α at next time clock τ + 1.
Otherwise, if the overall dissipated energy of all PHEVs up
to time clock τ is bigger than the desired one (such an event
is often denoted as congestion event), the vehicles decrease
their probability to travel in EV mode by a multiplicative
factor β < 1 with probability probEVi , or keep increasing
the probability of travelling in EV mode with probability
1 − probEVi . Since at every time step τ either an Additive
Increase or a Multiplicative Decrease step is performed, these
algorithms are denoted as AIMD [20]. It can be proved that
if all vehicles have the same parameters α, β and probEVi ,
then the SPONGE problem is solved by assigning the same
probability (on average) to travel in EV mode to all vehicles.
On the other hand, as proved in [19], by giving a different
probability

probEVi = γ
∂f(Di(τ))/∂Di(τ)

Di(τ)
,∀i = 1, ..., n(τ), (4)

then the solution of the optimal SPONGE problem is achieved,
provided that the utility functions fi(·) have particular proper-
ties (e.g., they are concave is one is interested in maximising
their sum, or they are convex if one is interested in minimising
their sum, as in the case of interest here). Equation (4)
simply states that the probability to back-off at a congestion
event should be proportional to f ′i(Di(τ))/Di(τ), and γ is
the proportionality factor required to map the ratio into a
probability. Reference ([19]) also shows that achieving the
optimal solution corresponds to achieving a consensus on the
values of the derivatives of the single utility functions. Note
that in order to apply the proposed AIMD method, the vehicles
only need to know their own utility functions fi(·), and
communication requirements are limited to a broadcast from
the central agent when

∑τ
h=1

∑n(h)
i=1 Di(h) ≥ Eav(k+1)

M ·τ and
a back-off step is required (i.e., no need of Vehicle-to-Vehicle
communication). An application of the proposed algorithm is
illustrated in detail in the next Section.

V. SIMULATIONS

Brief simulations are performed using the popular mobility
simulator SUMO ([21]) and the given TRACI interface a
a realistic road network imported from OpenStreetMap.
Figure 2 shows the results for the first two algorithms.
They refer to a scenario with about 600 PHEVs and a time
period of 1000 seconds with 4 time windows of 250 seconds
each. Vehicles that are running out of fuel, or whose battery
is getting close to physical constraints are automatically
discarded. The simulation refers to a very simple example,
and might correspond to the case when employees go to
work using their PHEVs, and the infrastructure (which could
be the employer who provides charging stations, a smart grid
operator, etc.) regulates the driving mode in order to meet the
target of energy that will be available at the workplace.



Fig. 2. Figures on the left show the total space for energy in the fleet of PHEVs in the two cases, in solid line, while the available energy from the grid is
shown with the dashed line. Figures on the right show the mode in which the vehicles drive in the two cases to achieve the desired goal (dashed blue is EV
mode, solid green is ICE mode). The vertical lines separate the time windows.

Simulation results referring to the third scenario (utility
optimisation) are shown in Figures 3. We assumed that the
inconvenience of vehicles in travelling in EV mode could
be described through a convex quadratic function fi(Di) =

aiD
2

i + biDi. Parameters ai and bi were different for every
vehicle and randomly chosen in the interval [0,1].

VI. CONCLUSION

In this paper we have presented a new idea that takes
advantage of the ability of PHEVs to both travel in electric
and in fuel mode to absorb naturally generated electrical
energy in a smart manner from the grid. From a theoretical
perspective, such a problem can be easily formulated and
solved using well-known algorithms for sharing a task among
a number of distributed agents, (e.g., AIMD algorithms as in
[17], [19]). From a practical point of view, the technology to
remotely control the driving mode is also already available,
as it was developed in ([15]) for different purposes.

Our current plan is to extend the preliminary simulation
results given in Section V to more realistic and large-scale
examples. In parallel, we intend to start implementing the
approach in a reduced number of PHEVs, as a proof-of-
concept of the paper idea. We shall adapt the experimental
set-up of ([15]) to the new case of interest, to remotely
control the engine switching. The practical implementation

of the algorithm will require a careful handling of possibly
frequent mode switches, and averaging techniques will be
used to implement them in a manner that would not endanger
the life of the battery. Finally, we shall integrate a reliable
weather forecast software, in order to take optimal decisions
about when to switch from one mode to another mode.
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