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Abstract We describe a model-based assessment of information and
communication technology (ICT) risk that produces statistical samples
by simulating the attacks of intelligent agents. To support this assess-
ment, we have developed an integrated set of tools, the Haruspex suite.
Some of its tools build the models of the target system and those of
the agents that other tools apply to simulate the agent attacks. Further
tools analyze the output of the simulation. After outlining the proposed
approach and the suite, we describe the assessments of two industrial
control systems that supervise, respectively, a thermoelectric generation
plan and a hydroelectric one. To simplify the presentation of the out-
put of these assessments, we introduce the security stress, a synthetic
measure of how a system resists to attacks.
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1. Introduction

Intelligent agents are among the most dangerous threats of information and
communication technology, ICT, systems because they escalate their privileges,
i.e. access rights, through a sequence of attacks that uses the rights that an
attack grants to execute the following ones.

To assess the risk due to these agents we propose a model based approach
that collects statistical samples by applying a Monte Carlo method to a scenario
where some agents attack the target system of the assessment. The method uses
abstract models of an ICT system and of the agents in multiple step-by-step
simulations of how each agent selects and executes its attacks. These simulations
return a sample to compute the statistics to assess and manage the risk. Our
approach does not need to collect historical data because it is model based.
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The Haruspex suite is an integrated set of tools to support the proposed
approach. These tools build the simulation models, apply the Monte Carlo
method, and analyze the samples it returns. We describe how the suite assess
two critical ICT systems, each acting as an Industrial Control System, ICS, of a
power generation plan. Each assessment determines the probability that some
attackers acquire the control of the plan and proposes cost effective counter-
measures.

This paper is structured as follows. Sect. 2 briefly reviews works on security
metrics, vulnerabilities, and attack simulation. Sect. 3 describes the Haruspex
tools to build the models and simulate the agent attacks. After discussing the
selection of countermeasures, Sect. 4, introduces synthetic measures to simplify
an assessment. Lastly, it discusses the validation of the suite. Both sections refer
to the same running example to simplify the suite description. Sect. 5 describes
the adoption of the suite to assess and manage the ICT risk of two industrial
control systems, ICSs, that supervise and manage, respectively, a hydroelectric
power generation plant and a thermoelectric one. After briefly resuming the
lesson learned in these assessments, we draw some conclusions.

This work integrates the results outlined in [1, 2] and presents them sys-
tematically. Furthermore, it applies the suite tools to assess and manage the
ICT risk of two ICSs, each supervising a distinct power generation plant. Each
assessment considers a scenario where attackers aim to control power generation
by acquiring the proper access rights on some ICS components. Each assess-
ment models both insider and external attackers. Lastly, the paper introduces
the security stress, a synthetic measure to simplify the communication of the
results of an assessment.

2. Related Works

This section reviews previous works on the description and the simulation
of attacks against ICT system as well as on metrics of ICT robustness. We also
review some works on the impact of ICT risk on power generation and smart-
grids. While a large number of works has addressed attack simulation, ICT risk
assessment and management, just a few works propose an integrated approach
to these issues. This integrated approach is the main original contribution of
our work on the Haruspex suite.

[3, 4, 5] analyze the simulation of attacks against ICT systems. [6] discuss
intelligent, goal oriented agents with reference to terrorism. [7] describes attack
pre conditions and pairs an attack with the proper countermeasure. [5] models
agents with partial information. These papers do not exploit attack simulation
to produce data to assess a system. Furthermore, most tools to analyze privilege
escalation do not discover attack sequences. The taxonomy in [8] introduces a
classification of vulnerabilities. [9, 10] discuss the modeling and the selection of
countermeasures through attack graphs. [11] considers goal oriented attackers.

[12, 13] review security metrics. [14, 15, 16] propose metrics of the robustness
of an ICT system under attack by intelligent agents but they do not integrate
these metrics with alternative attacks. The metric in [17] focuses on zero-day
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Table 1: List of Abbreviations
S the target system
c a component of S
ag a threat agent
g a goal of an agent
at an elementary attack
v a vulnerability

v(at) the vulnerabilities enabling at
pre(at) the set of rights an agent needs to implement at
res(at) the resources to execute at
post(at) the set of rights at grants if it succeeds
succ(at) the success probability of at
time(at) the execution time of at
λ(ag) the look-ahead of ag

vulnerabilities. The one in [18] is similar to security stress as it considers the
amount of work to attack a system. [19] computes the probability that an agent
reaches a goal but it neglects alternative attacks for a goal.

[20, 21, 22] discuss the role and the assessment of ICT risk in power gener-
ation and smart grids.

3. The Haruspex Suite: Running Experiments

for the sake of brevity, we use risk assessment as a synonymous of proba-
bilistic risk assessment while right and privilege are shorthands for access right.

The Haruspex suite supports risk assessment and management of an ICT
system with reference a scenario where it is the target of some agents that aim
to reach their predefined goals. Some tools of the suite build the models of the
target system and of the agents. Other tools use these models to implement
independent simulations of the agent attacks. These simulations return a sta-
tistical sample with information on, among other, the attacks the agents have
executed, the goal they have reached and the time this takes. The resulting
approach supports a security-by-design strategy to assess an ICT system during
its design and before its deployment.

This section briefly describes the builder and the descriptor, the tools to
build the models of, respectively, the system and an agent. Then, it introduces
the engine, a tool that applies the Monte Carlo method and simulate the agent
attacks. The following section describes the tools of the suite that analyze the
samples the engine returns.

Table 1 defines some abbreviations and the main parameters of the two
models. In the following, we use the system in Fig. 1a) as a running example
to describe the tools and the information they return.
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Figure 1: Running Example

3.1. Modeling an ICT System

The builder model decomposes S into components, i.e. hardware/software
modules, that define some operations that the users of S and/or the other
components invoke. The security policy of S defines the operations each user is
entitled to invoke.

The component vulnerabilities enable some attacks [23, 24]. Haruspex sup-
ports both effective vulnerabilities, those already known, and potential ones,
those that the user suspects. Haruspex pairs each potential vulnerability with
the probability the attackers discover it at a given time. To model social engi-
neering attacks, vulnerabilities may affect even the users of S [25].

The model of S neglects the actions of at and pairs it with the parameters
in Table 1. at is enabled if any vulnerability in v(at) is effective and it succeeds
with a probability succ(at), otherwise it fails.

The builder receives the effective vulnerabilities of S through the output of
a vulnerability scanning of each node of S [26]. The assessment can extend the
vulnerabilities the scanning return by specifying potential vulnerabilities and/or
those of the users.

As an example, to assess the system in Fig. 1 first of all we scan each of its
seven nodes to discover its vulnerability. Then, for each node, the assessment
can insert further, suspected, vulnerabilities.

The builder maps each vulnerability v into the attacks it enables. To this
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purpose, it classifies v by matching some predefined patterns against the de-
scription of v in the Common Vulnerability Enumeration, CVE, database [23],
a de facto standard [1]. The class of v determines the attributes of each attack
at it enables such as succ(at) and time(at). The builder signals any vulnera-
bility it cannot classify. Let us suppose that a vulnerability of a component c
of a node n enables an attack at that is a buffer overflow [27]. Here, pre(at)
includes the right of invoking the proper function of c. post(at) depends upon
the role of c. As an example, if c is a component of the OS of n, then post(at)
may include any right of the administrator of n.

The builder also discovers if at is a remote attack that ag can launch against
n from another node. For this reason, one input of the builder is the logical
topology of S and the components that control it, e.g. firewalls. The builder
assumes that only a node administrator can launch a remote attack. ag exploits
remote attacks to acquire some rights on a node n where it is not entitled to any
access right. If the logical topology prevents any interaction between n and any
node that ag controls, first of all ag has to implement some attacks to become
the administrator of a node that can interact with n. From this node, ag may
implement remote attacks against n. Assume that Fig. 1 b) shows the logical
topology of the system in Fig. 1 a) and that a vulnerability in N2 enables a
remote attack against this node. Even after becoming an administrator of N1,
ag cannot implement this remote attack because N1 cannot directly interact
with N2. Given the logical topology, only the administrator of N4 can launch a
remote attack against N2. If ag only owns some rights on a component on N1

then it should at first attack and become an admistrator of N4 to launch from
this node a remote attack against N2.

3.2. Modeling Agents

An agent ag is a user of S that legally owns some rights on some components
of S and aims to illegally reach one or more goals, each a set of rights. No
generality is lost by assuming that ag is a user of S because the security policy
of S can grant no right to ag. ag reaches a goal after acquiring all its rights and
this results in an impact, i.e. a loss the owner of S pays per each unit of time ag
owns the rights in g. While the security policy forbids ag to acquire any right
in g, there is an impact only if, and when, ag reaches g.

For each agent ag, the user specifies to the descriptor the initial rights, the
resource it can access, and the goals. A further parameter we describe in the
following is the ranking strategy of ag and its parameters.

ag can implement at only if it owns the resources in res(at). Furthermore,
ag also needs the rights in pre(at) that it may have acquired through previous
attacks. Being intelligent, ag selects a sequence of attacks that minimizes the
time to reach a goal or maximizes the probability of reaching it. We model
this selection as a ranking strategy, or strategy, that depends upon the goals
and the preferences of ag, its current rights, the attacks it can implement, and
the information on S it has available or it is willing to acquire. ag sequentially
executes the attacks in the sequence the strategy returns and it invokes again
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the strategy after ns(ag) attacks. ag waits for the discovery of a potential
vulnerability when its strategy cannot return a sequence.

λ(ag), the look ahead of ag, is a parameter of ag that determines the longest
sequence the ranking strategy of ag considers. If some sequences with, at most,
λ(ag)attacks lead to a goal, then the strategy returns one of these sequences
according to the preferences of ag and the attributes of attacks in each sequence.
The strategy selects the sequence to execute according to attack attributes only
anytime λ(ag) is too low to discover sequences that leads to a goal. Here,
the strategy may even return a sequence with useless attacks. at is useless if
rights in post(at) are useless to reach a goal. If λ(ag) = 0 then ag can only
adopt the random strategy that considers any attack ag can implement given
its current rights and that increases these rights. The strategy returns with
the same probability any attack that satisfies both conditions, even if it is not
enabled. Among the other strategies, we recall those used in Sect. 5:

1. maxProb: returns the sequence with the largest success probability,
2. maxIncr: returns the sequence granting the largest set of rights,
3. maxEff : returns the sequence with the largest ratio between success

probability and execution time of attacks.

With reference to our running example, suppose that ag can interact with
some components onN1 and aims to acquire the right of reading a component on
N7. If λ(ag) = 0 then ag randomly selects one attack against N1 and repeats it
till the attack succeeds. Then, ag selects an attack againstN4. When controlling
N4, ag can launch a remote attack against any of N2, N3, N5, and N6. There
is no guarantee ag attacks a component on N5 or one on N6, the nodes that
can interact with N7. If λ(ag) = 1, then ag selects one attack according to its
success probability or the rights it grants. If λ(ag) = 2, ag ranks sequences
with, at most, two attacks. As an example, a sequence may attack N4 and then
N5 or N2. Again, the strategy may favor the joint success probability of the two
attacks or the rights they grant. Lastly, if λ(ag) = 3, ag discovers the sequence
to attack the component on N7 and it can avoid useless attacks. In the example,
larger values of λ(ag) are meaningful only if ag needs more than one attack to
become the administrator of an intermediate node in a path.

The time to reach a goal also includes the one to acquire the information to
select a sequence. To model this time, we assume that ag runs a vulnerability
scanning of n the first time its strategy ranks a sequence with an attack enabled
by a vulnerability of a component executed by n. The scanning takes a time
depending upon n. To model insiders, we pair ag with the nodes it does not
scan as it already knows their vulnerabilities. ag scans a node only once because
the scanning returns any vulnerability in the node components. As an example,
if λ(ag) = 2 then ag scans N1, N2, N3, N4, N5, and N6 before selecting its first
sequence. If, instead, λ(ag) = 1, then ag will initially scan N1. It will scan N4

only after successfully attacking N1. Furthermore, it scans N2, N3, N5, and N6

after successfully attacking N4 only. Hence, larger values of λ(ag) increase the
accuracy of the strategy and avoid useless attacks at the expense of a larger
number of scannings before each selection.
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3.3. Simulation Engine
The inputs of the engine include the model of the system and those of the

agents in a scenario. The engine applies the Monte Carlo method to implement
an experiment with independent runs that simulate, for the same time interval,
the agent attacks and the discovery of potential vulnerabilities. In each run, the
engine collects the samples to return.

In a time step of a run, the engine considers any idle agent that still has to
reach a goal and it applies the ranking strategy of ag. If the strategy cannot
return a sequence, then ag is busy for the ranking time only. Otherwise, the
engine simulates the first ns(ag) attacks of the sequence and ag is busy for
the ranking time plus the sum of the times of these attacks. ag retries a failed
attack for nr(ag) times and then it invokes again its ranking strategy. nr(ag) is
a further attribute of ag. If ag executes the whole sequence and reaches a goal,
the engine updates the corresponding impact.

At the end of a run, the engine inserts in its output database a sample with
the sequence of each agent, the goals it has reached and the corresponding time.
Then, it initializes the state of S and those of the agents and starts a new run.

An assessment uses the engine output database to compute statistics of
interest. The confidence level of these statistics depends upon the number of
runs because the engine collects one sample for each run. An experiment ends
either after executing the specified number of runs or when a predefined statistic
reaches the required confidence level.

It is worth noticing that no tool computes in advance alternative attack
sequences of an agent because this result in an intolerable complexity. The
suite discovers the sequences an agent executes by simulating its behavior in
the runs of an experiment.

4. Analyzing the Output of Experiments

This section describes the selection of a cost effective set of countermeasures
and then introduces measures to evaluate system robustness. Lastly, it discusses
the validation of the overall suite.

4.1. Selecting Countermeasures
We describe the planner and themanager, the tools that cooperate to select

countermeasures.

4.1.1. Discovering the Agent Plans
The planner analyzes the engine output database to remove useless attacks

from the sequences ag has executed to reach g. As previously discussed, ag may
select useless attacks because of a low value of λ(ag). In the running example,
if λ(ag) = 1 then ag may reach its goal through a sequence that attacks N1, N4,
N3, N6 and, lastly, N7. Obviously, any attack againstN3 is useless. By removing
useless attack, we increase cost effectiveness as we only select countermeasures
for attacks that contribute to reach g. In the following, we denote as a plan any
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sequence without useless attacks. The planner maps each sequence s to reach
g into a plan p(s, g) through a backward scanning of s. The scanning inserts
into p(s, g) any attack of s that grants rights that belong neither to g nor to the
post condition of the current attacks in p(s, g). This algorithm is correct if ag
only executes attacks that increase its rights and s does not interleave distinct
plans. To solve the latter problem, we also map any permutation of s that is
a sequence, e.g. its first j − 1 attacks grants a set of rights that includes the
precondition of the j − th one.

To take into account that distinct sequences may implement the same plan,
the planner computes the success probability of a plan as the percentage of runs
that have successfully implemented it.

4.1.2. Iterative Selection Countermeasures for a Set of Plans
In the following, we assume that any attack at has a countermeasure with

a finite, known cost that decreases succ(at). As an example, the patching of a
vulnerability in vuln(at) results in the failure of at, while we decrease the prob-
ability of discovering passwords or encryption keys by increasing their lengths.
We discuss attacks with no countermeasures at the end of the section. For the
sake of simplicity, we also assume that a scenario includes one agent ag with
one goal g. Extensions to more general scenarios are straightforward.

The manager receives both the engine output database and lowrisk, the
highest success probability of ag the assessment accepts, and it runs a number
of iterations. In each iteration:

1. it applies the planner to the output database to discover the agent plans,
2. it selects some plans and determines one countermeasure for each plan,
3. it updates the model of S to mimic the deployment of countermeasures,
4. it runs a new experiment.

The new experiment discovers how ag reacts to the deployed countermeasures,
i.e. if ag can select other sequences to replace those affected by the counter-
measures. We denote these sequences as dependent ones and their discovery
requires a new experiment because agents implement them only after deploying
some countermeasures. The manager starts a new iteration as long as the risk
due to dependent sequences is larger than lowrisk.

With reference to the system in Fig. 1, suppose that ag reaches its goal
through sequences that attack N5 while it neglects attacks against N6 due to
their low success probability. However, if attacks against N5 fail because of some
countermeasures, ag can select the attacks against N6. The manager runs a
new iteration if the resulting risk is larger than lowrisk.

The countermeasures the manager returns are strongly related to the plans
it considers at each iteration. In the global approach, the i− th iteration selects
countermeasures for all the plans of ag previously discovered, independently
of the iteration that discovers a plan. Hence, an iteration may select counter-
measures that differ from those previously selected. Instead, in the incremental
approach, each iteration extends the countermeasures previously selected with
those for the plans discovered in the current experiment.
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To compare the two approaches, we recall that the selection of countermea-
sures for some plans favors the attacks they share to minimize the number of
countermeasures. Obviously the global approach exploits shared attacks at best.
Instead the incremental one cannot anticipate which attacks the current plans
share with the dependent ones the following iterations will discover.

The current version of the manager adopts a global approach where the
i− th iteration considers all the plans previously considered and a subset, Cpi,
of those discovered in the current iteration. We insert plans into Cpi starting
from those with the largest success probability and stop as soon as the overall
success probability of the remaining plans is lower than lowrisk. This strategy
reduces the computational overhead but it neglects that countermeasures can
change the success probability of a plan. The user can bound the size of Cpi as
a fixed percentage of the plans discovered in the i− th iteration.

To select countermeasures, the manager maps each attack at in the plans
in Sp into Sp(at) = {i1, ..., ik}, the indexes of the plans that share at. A set of
countermeasures affects all the plans in Sp if it affects all the attacks in a set
Sa that covers Sp, i.e. if all the plans in Sp belong to

⋃
(Sp(at))∀at ∈ Sa. The

coverage problem is NP-Complete and the manager analyzes any coverage to
determine the optimal one. To reduce the execution time, we abort the building
of a coverage as soon as its cost exceeds the current optimum. Furthermore,
the manager removes redundant attacks from the plans. at1 is redundant if
all the plans that share at1 also share a distinct attack at2 with a cheaper
countermeasure. We have experimentally verified that, given the number of
plans and the attacks they share, the manager execution time is acceptable
provided that Sp(at) includes at most 100 plans. If agents have available a
larger number of plans, then S requires a new, more robust design rather than
a more efficient selection of countermeasures.

The manager pairs attacks with no countermeasure with a countermeasure
with an infinite cost. If the manager returns a coverage with an infinite cost,
at least one plan only includes attacks with no countermeasure. The success
probability of this plan is a lower bound on the success probability of ag.

4.2. Security Measures
We briefly describe some measures to synthesize the analysis of the samples

returned by an experiment that adopts the Monte Carlo method.

4.2.1. Metrics based upon Countermeasures
A first measure considers the number, or the cost, of countermeasures to

reduce the risk to a predefined, user defined, value. Besides simplifying the
evaluation of ICT robustness, this metrics also supply information on the weak-
est components of the target system. These components are those affected by
the vulnerabilities targeted by the deployed countermeasures.

4.2.2. Security Stress
We define StrSag,g(t), the security stress at t due to ag that aims to achieve

g, as the cumulative probability distribution that ag reaches g within t.
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StrSag,g(t) is a synthetic measure of the robustness of S that is monotone non
decreasing in t and StrSag,g(0) = 0. To explain its definition, we denote by t0 the
lowest time where StrSag,g(t) is larger than zero. If t0 does not exist, StrSag,g(t)
is of no interest because ag cannot successfully attack S. Furthermore, let t1 be
the lowest time, if it exists, where StrSag,g(t) is 1. If we see the attacks of ag as
a force trying to change the shape of S, then this force is ineffective till t0 when
the shape of S begins to change. S cracks after t1, the ultimate time, because
ag is always successful if t ≥ t1. If both t0 and t1 exist, t1 − t0 evaluates how
long S, partially, resists to the force of ag to achieve g. StrSag,g(t) is the inverse
of a survival function [28] as it plots the success probability of ag as a function
of t instead than the one that S survives ag attacks.

StrSag,g(t) is a synthetic and accurate evaluation of the robustness of S be-
cause several attributes of S and of ag contribute to determine the value of
this function. As an example, distinct selections strategies of ag result in dis-
tinct stress values due to distinct numbers of useless attacks. Other attributes
that influence StrSag,g(t) includes the length of attack sequences and the success
probabilities of attacks.

To generalize StrSag,g(t) to a set of goal Sg, we assume that ag stops its
attacks after reaching any of the goals in Sg. Under this assumption, StrSag,Sg(t)

is the probability that ag is idle after t. To define StrSSag,g where Sag is a set
of agents, we define the most dangerous agent in Sag as the one that results in
the largest stress value at any time.

Starting from the engine output database, we approximate StrSag,g(t) as the
percentage of runs that reach g before t. The confidence level of the approxi-
mation depends upon the one of the experiment.

A further synthetic measure of robustness is AttSS
ag,g(n), the attack stress.

Its definition is similar to the one of security stress but it considers the number
of attacks that an agent as available to reach a goal and that includes both
successful and failed attacks. AttSS

ag,g(n) evaluates in a more detailed way the
amount of work of ag to reach g.

4.3. Validation of the Suite

We have designed and implemented consistency checks to validate the cor-
rectness of the suite. However, these checks cannot guarantee that the simu-
lations mimic in a realistic way the behavior of the agents. We have tackled
this problem in two steps. The first one has assessed and managed the risk of
an ICT system consisting of a set of virtual components with a large number
of vulnerabilities. Then, we have produced an improved system that adopts
the countermeasures selected by the manager. When white hat attackers have
attacked both systems, they have not been able to reach their goals in the
improved system. We believe this confirms, at least partially, that our tools
simulate in a realistic way intelligent attackers.
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5. Risk Assessment and Management of Two ICSs

This section describes two assessments that have adopted the Haruspex suite.
The targets of the assessments are two ICSs that supervise, respectively, a ther-
moelectric power generation plant and a hydroelectric one. The two assess-
ments show how the availability of data resulting from the simulation of attacks
strongly simplifies ICT risk assessment and management to achieve a better
level of assurance on the risk due to the target system. This characterizes the
Haruspex approach with respect to methodologies that cannot access data on
possible attacks against the target system.

5.1. Overall Structure of the Assessments
We have discovered the vulnerabilities in both ICSs through a Nessus vulner-

ability scan [29]. We have developed some dedicated plug in modules to scans
the programmable logical components, PLCs, in both ICSs. PLCs interface the
ICS with the industrial plant it has to control. We assume the assessment has
no information on the attackers. As a consequence, any experiment covers any
combinations of the agent parameters. As an example, there is a distinct agent
for each value in the Cartesian product of initial rights, goals and ranking strate-
gies. This does not imply that there is a distinct attackers for each value in the
Cartesian product but only that an experiment analyzes each combination to
discover the most dangerous agent. An assessment can consider a lower number
of agents, e.g. neglect some ranking strategy, provided that further information
is available. We neglect values of λ larger than 2 after experimentally verifying
they are not effective. Each experiment consists of 60.000 runs. This results in
a 95% confidence level on the components an agent attacks to reach a goal. The
time limit of each run is three days or 72 hours because both ICSs can detect
the attacks after this limit. To simplify the presentation, for each assessment we
only discuss the security and the attack stresses due to the agents of interest.
In both assessments, a countermeasure for an attack patches one of its enabling
vulnerabilities.

5.2. Thermoelectric ICS: Risk Assessment and Management
After briefly describing this ICS, we discuss its assessment and the manage-

ment of the corresponding risk.

5.2.1. Structure of the ICS
This experimental ICS consists of three subnets: the intranet network, the

process network and the control one. Each subnet is flat as any two of its nodes
can interact. A switch and some firewalls define the perimeters of each subnet
and filter communications to/from subnets. This ICS adopts a defense in depth
strategy where only the nodes in the process network can connect to those in
the control one. For the same reason, intranetnodes can only interact with
those in the process one. The six nodes in the intranet network interface the
nodes in the generation plant to nodes in the control network. The main nodes
are a Windows Domain Server and two VPN Clients that remotely access the
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process network. The 17 nodes in the process network run SCADA servers and
clients that supervise and control power generation. Through these nodes, the
operators can control the whole production plant. Some nodes are redundant
for safety reasons. Lastly, the 7 nodes in the control network simulate the power
generation plant through hydraulic circuits and two PLCs. Any agent aims to
control the PLCs to control of a subset of the plant.

More than 2700 vulnerabilities affect the ICS nodes and they enable 1900
attacks. We have manually verified that agent can implement more than 700
attack sequences. The Windows Domain Server is the intranet node with the
largest number of vulnerabilities, 61. The process network node with the largest
number of local vulnerabilities, 634, is the ASC server. Finally, the PLCs are
the control network nodes with the largest number of vulnerabilities, 10.

The builder has not classified three vulnerabilities only. We have manually
verified the correctness of the classification.

5.2.2. Agents in the Scenario
As previously discussed, the agents in each experiment cover four ranking

strategies and, where appropriate, two λ values, 1 and 2. We define now the
other parameters that characterize an agent: the goal and the initial rights. An
o − agent aims to control at least one PLC while a b − agent aims to control
both PLCs. Furthermore, initially an insider agent controls a process network
node, while an external attacker controls an intranet node. To cover all the
combinations, each experiment simulates the attack of 28 distinct agents.

5.2.3. Output of the Assessment
The most dangerous insider, o−agents adopt the MaxProb and MaxIncr

strategies with λ = 2. After 1 hour and 50 minutes, they reach their goal with a
probability equal to 0.75. The probability is 1 after 3 hours. The attack stress
is 0.75 after 3 attacks and it is 1 after 8 attacks. The least dangerous o− agent
adopts the random strategy. The security stress positive after 7 hours and 45
minutes and it reaches 1 after more than 20hours. The attack stress is positive
after 12 attacks and becomes 1 after 36 attacks.

The most dangerous o − agent adopts MaxIncr with λ = 2. This agent
reaches a 0.7 success probability after 1 hour and 50 minutes and it is always
successful after 4 hours. The agent reaches these probability values after, re-
spectively, 3 and 8 attacks. The agent that adopts the MaxProb strategy with
λ = 2 results in a lower security stress but similar to this one. The agents with
the worst performances adopt, respectively, the MaxIncr strategy with λ = 1
and the random one that have a non-zero success probability after, respectively,
12 hours and 45 minutes and 4 hours. Both agents are always successful after 24
hours. The attack stress of a MaxIncr, λ = 1 agent is positive after 21 attacks
and it reaches 1 after 41 attacks. The two corresponding values for the random
agent are 5 and 41.

The most dangerous insider b − agent adopts the maxIncr strategy with
λ = 2. It controls both PLCs after 2 hours and 25 minutes or 2 attacks with
a 0.65 probability and it is always successful after 5 hours and 30 minutes or
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Figure 2: Thermoelectric ICS: Security Stress of Insider b− agents

9 attacks. The worst strategy is the random one and an insider b − agent
that adopts it reaches its goal after more than 23 hours and 30 attacks. With
reference to the maxIncr strategy, an increase of λ from 1 to 2 reduces the time
to a goal of more than 60% and the number of attacks of about 75%.

The most dangerous external b − agent adopts the maxIncr strategy with
λ = 2. The agent control both PLCs after 2 hours and 25 minutes or 3 attacks
with a 0.65 probability and it is always successful after 6 hours and 30 minutes
or 16 attacks. Even for external b − agent, the worst ranking strategy is the
random one that results in a 300% increase in the number of attacks and in a
similar increase in the time to a goal. If the agent adopts the maxIncr strategy,
an increase of λ from 1 to 2 halves the number of attacks and results in a 60%
reduction in the time to a goal.

Fig. 2-3-4-5 show some stress curves computed through these experiments.

5.2.4. Countermeasures
In just one iteration, the manager computes a set with 10 countermeasures

that affect 309 plans and patch any vulnerability in the nodes that connect
the process network and control one. By patching less than 1% of the ICS
vulnerabilities, we stop all the plans.

5.3. Hydroelectric ICS: Risk Assessment and Management
5.3.1. Structure of the ICS

This ICS, see Fig. 6, consists of seven subnets: the intranet network, the
central network, the antivirus network, the DMZ network, the PLC network,
and two process networks, PCN1 and PCN2. Three firewalls, fwm, fwpt and
fwagp route and filter the communications among the networks.
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Figure 3: Thermoelectric ICS: Attack Stress of External b− agents

Figure 4: Thermoelectric ICS: Security Stress of Insider o− agents
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Figure 5: Thermoelectric ICS: Attack Stress of External o− agents

Figure 6: Hydroelectric ICS architecture

fwm interconnects the intranet, the central and the antivirus networks and
route messages among these networks. The intranet acts as a bridge that se-
curely connects the SCADA operators and the process network. The central
network has 12 nodes, one of them runs 5 virtual machines that we consider as
further network nodes. Operators manage power generation through SCADA
clients and workstations in this network. The antivirus network consists of one
server to update the virus definitions in the overall ICS.

fwpt interfaces the DMZ and the PCN1 networks. The DMZ network
consists of two Web Servers that collect statistical information on the processes
involving the SCADA components. The PCN1 network consists of 5 servers, one
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is a Domain Controller and two are SCADA servers to manage power generation.
fwagp interfaces the PCN2 network that includes a SCADA Server with

two network interfaces connected to, respectively, the PCN2 network and the
PLC network. The latter includes some PLCs that manage hydroelectric power
production.

The vulnerabilities returned by the scanning of all the nodes, including the
PLCs, enable 764 attacks.

5.3.2. Agents in the Scenario
Also in this assessment, the agents in an experiment cover all possible combi-

nations of agent parameters. However, in this ICS any two PLCs are equivalent
and all the agents aim to control any PLC. Hence, any experiment considers
14 agents only. Any external attacker initially controls a node in the intranet
network. Instead, each insider initially control a node in the PCN1 network.

5.3.3. Security and Attack Stress
Even in this ICS, the most dangerous insider adopts the maxIncr ranking

strategy with λ = 2. Its security stress is positive after 2 hours and 30 minutes
to reach its goal and it is 1 after 11 hours and 15 minutes. The worst ranking
strategy is maxIncr with λ = 1. The security stress of this agent is 0.8 after 72
hours. The attack stress reaches the same value after 99 attacks.

The most dangerous external agent adopts a maxIncr, λ = 2 strategy and
its stress is 1 after at least 12 hours or 23 attacks. The least dangerous external
agent adopts maxIncr and λ = 1. Its stress is 0.8 after 72 hours or 99 attacks.

It is worth noticing that this is the only assessment we have run till now
where the random strategy is not the worst one. It is also the first one where
an agent stress does not reach 1 in a run.

Fig. 7-8 show some stress curves for this ICS.

5.3.4. Countermeasures
The agents execute 9 distinct plans that we can stop by patching the same

vulnerability in each PLC component. If we neglect this, trivial, countermea-
sure, themanager determines in two iterations a set of 7 vulnerabilities to patch.
The first iteration discovers 7 plans and returns a set with 7 vulnerabilities to
patch. The second iteration discovers 2 further, dependent, plans and it selects
a distinct set that also includes 7 vulnerabilities shared among the 9 plans. The
third experiment does not discover further dependent plans. This shows how a
global approach minimizes the number of countermeasure because the second
iteration can select distinct countermeasures for the same plans. Instead, in
an incremental approach each iteration can only extend the countermeasures
previously selected.

5.4. Lessons Learned

The differences between the two ICSs strongly influence the complexities of
the two assessments. In fact, one ICS is an experimental, built and developed
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Figure 7: Hydroelectric ICS: Security Stress of an Insider Agent

Figure 8: Hydroelectric ICS: Attack Stress of an External Agent
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to investigate security issues while the other ICS controls a real plant. The
complexity of a real ICS has influenced the time to build the system and the
agent models and the one to run the experiments. The time to build the system
model has doubled, from less than a day to a couple of days. The time to
run each experiment increases from less than one hour to a few hours. This is
due to the confidence level we require, 95% on the components that an agent
attacks. Because of the complexity of a real system, this level strongly increases
the number of runs in the experiments. However, Haruspex strongly reduces
the time to assess and manage ICT risk with respect to traditional assessments.
We have also verified that a much lower number of runs results in the same
confidence level on the success probability of each agent.

The stress functions of the two ICSs confirm that the adoption of a larger
number of subnets and of firewalls strongly increases the overall robustness.
A further, expected, result is the influence of the agent parameters. All the
scenarios considers more agents than those strictly required to recover the lack
of information on the agents parameters. The availability of the large amount of
data produced by attack simulation simplifies the assessment but has suggested
the adoption of a synthetic measure, the security stress, to simplify results
presentation. It also worth noticing, the similarities between the outputs of
the assessment of an ICS and those of other ICT systems with high security
requirements. As an example, even in ICSs, a low number of countermeasures
suffices to guarantee that the attacker cannot reach their goal.

6. Conclusion

The Haruspex suite is an integrated set of tools to assess and manage ICT
risk through multiple simulations of intelligent, goal oriented agents. These
agents escalate their access rights by composing attacks enabled by the target
system vulnerabilities. Lack of information on the threat agents may recovered
by considering a set of agents, one for each distinct combinations of the param-
eters that determine the agent behavior. The adoption of the Haruspex suite
enables the system architect to discover weakness and the proper countermea-
sures in the design phase before deploying the system. We have applied the suite
to two ICSs that supervise power generation in a scenario where some attackers
aim to control the generation plant. This results in the discovery of the most
dangerous attackers, the probability they reach their goals and the time this
takes. Both assessments have improved the overall resilience of ICT compo-
nents and, hence, of the whole plant by selecting a small set of countermeasures
that prevents an attacker from controlling power generation.

Future developments of our work concern the development of tools to model
a larger class of threat agents, in particular those that heavily exploit malware
or worms. These agents aim control a large number of nodes to launch further
attacks. An even more challenging development concerns the ability of manag-
ing a larger number of countermeasures such as those that update the system
topology. These countermeasures dynamically update the overall system struc-
ture and this has a deep impact on the system models and, hence, on attack
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simulation. However, these developments are fundamental to apply the suite to
highly complex systems such as smartgrids.
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