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Abstract. Haruspex is a suite of tools based upon a Monte Carlo method
to manage and assess the risk posed by an ICT system. The tools apply
a scenario-based method and simulate how some intelligent threat agents
compose the attacks enabled by the system vulnerabilities to reach some
prede�ned goals. Some tools of the suite build a description of the sce-
nario of interest with the vulnerabilities, the attacks they enable and the
various agents. Another tool applies a Monte Carlo method to simulate
step by step the sequence of attacks each agent implements. This tool
returns samples on the attacks of each agent, the goals it has reached
and the resulting impact. Further tools analyze these samples to re-
turn information to support the assessment. This paper is focused on
the manager, the risk management tool to select the countermeasures
to deploy. To take into account that an intelligent agent may react to
countermeasure by selecting distinct attacks, this tool adopts an iter-
ative solution that alternates the selection of countermeasures and the
application of the Monte Carlo method. Lastly, we consider three ICT
systems with SCADA components and show how the manager reduces
the risk due to each of these systems.

Keywords: Risk Assessment and Management; Countermeasures; Sce-
nario; Monte Carlo Method.

1 Introduction

Intelligent threat agents, or agents, chain the attacks enabled by the system
vulnerabilities into sequence of attacks, or sequences, to reach some prede�ned
set of privileges. Each sequence implements a privilege escalation [1] where an
agent uses the privileges by some attacks to implement the following ones in the
sequence till collecting all the privileges in a goal. The privilege escalation of an
agent may involve one or several computing nodes of an ICT network.

Haruspex is an integrated set of tools to support a probabilistic risk assess-
ment of an ICT system with respect to some intelligent agents. The suite adopts
a scenario based approach where each scenario includes the target ICT system
and some agents. Some Haruspex tools build the description of a scenario start-
ing from the output of a standard vulnerability scanner of each system node.
Further tools receive this description and apply a Monte Carlo method that runs
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multiple simulations of how an agent select and implement sequences. In each
simulation, samples are collected to compute statistics to assess and manage the
risk in the considered scenario.

This paper discusses themanager and the planner, the tools of the Haruspex
suite that uses the outputs of the Monte Carlo method to mitigate the risk by
selecting cost e�ective countermeasures to deploy.

The paper is structured as follows. Sect. 2 brie�y reviews related works on
vulnerabilities, attacks, agents and their simulation. Sect. 3 presents the main
tools of the suite. Sect. 4 introduces themanager, the planner and the algorithm
they apply to select cost e�ective countermeasures. Sect. 5 discuss the application
of the two tools to three versions of an industrial control system to supervise
a power generation plant. Lastly, sect. 6 draws some conclusions and outlines
some future works.

Some tools of the Haruspex suite have been previously described in [2,3,4,5]
that consider the building of a scenario description and the application of the
Monte Carlo method. These papers focus on the simulation engine and the de-
scription builder rather than on the planner and the manager.

2 Related Works

We brie�y review the main related works on attacks, plans, their description,
and the evaluation of the corresponding risk.

[6,7,8,9,10,11] analyze the simulation of attacks against ICT or critical in-
frastructures. Intelligent, goal oriented agents have been analyzed with reference
to terrorism [12,13]. [14] presents a formal model of plans similar to the one
we have adopted. [15] describes the prerequisites and the e�ects of attacks and
pairs each attack with the proper countermeasure. [12,16,17] describe how the
deployment of countermeasures may a�ect the behavior of threat agents. [11]
discusses the modeling of agents with partial information and [18] de�nes the
notion of look-ahead but in a di�erent perspective than the one of Haruspex.

Most of the tools that analyze attacks or attack chains do not support their
automated discovery and the automatic selection of countermeasures. [19] pro-
poses a taxonomy focused on a series of use case events. The vulnerability clas-
si�cation in [20] maps each vulnerability into just one class. The theoretical
approach in [21] analyzes attack plans involving distinct computing nodes of an
infrastructure and it is focused on the compromised level of a node. The re-
sulting approach sacri�ces completeness as it does not enumerate all sequences.
[22,23] de�ne, respectively, a language to model attack scenarios and a run time
algorithm to detect stepping stones. [24] speci�es M2D2 a formal data model for
IDS alert correlation. [19] supports the discovery of attack plans but computes
their success probability by analyzing each plan in isolation. [25] discusses the
modeling of countermeasures through attack graphs. [26] considers goal oriented
attackers.

The simulation of agent attacks has been analyzed in the framework of game
theory [27,28]. With respect to this approach, the Haruspex suite assumes that
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an assessment is interested in the probability that some agents reach their goals
in some scenarios of interest. Hence, we are interested in reducing this probability
rather than in diverting the agent to a distinct target [29,30].

[31,32] survey agent-based simulation, whereas [33,34] model the components
of a critical infrastructure as agents to simulate it and discover dependencies
among components. [35] discusses the measurement of the risk posed by ICT sys-
tems, while [36] reviews the problems posed by a Delphi approach. [37] describes
alternative approaches to evaluate the risk due to software systems. [38,39,40]
review multi objective optimization that underlies agent selection strategies.

3 The Haruspex suite

This section details the core of the Haruspex suite, namely the tools that, respec-
tively, builds the description of a scenario and applies the Monte Carlo method
to this description. The next section is focused on the tools to manage the risk.
For the sake of brevity, we assume the risk posed by a system may be quanti�ed
through the loss for the owner of the system and the probability that the event
occurs.

3.1 Describing a Scenario

After introducing some de�nitions, we outline the most important information
in a scenario description. In the following, we show how this information is
produced by mapping the output of a vulnerability scanner. Table 1 de�nes the
acronyms used in this paper.

A scenario includes S, the system to be assessed, the agents that attack S.
Haruspex describes S in a modular way by decomposing into a set of components
that are described in terms of operations, vulnerabilities and attacks. Vulnera-
bilities enable the attacks in the sequences the agents implement to illegally
acquire some privileges, e.g. access rights or rights. Each vulnerability may be
known or suspected. Each suspected vulnerability is paired with a probability
distribution of being discovered at time t. The pre and the post conditions of an
attack at describe, respectively, the rights required to implement at and those
that at grants if it is successful. A threat agent, or agent (ag), is one instance of
a threat, e.g. an attacker of S, with the resources and the capability to violate
the security policy of S to reach some goal g. g is a set of rights and it may be
paired with a loss for the owner of S that occurs when, and if, ag owns the rights
in g. The description of ag includes its goals, the resources it can access and the
initial rights, e.g. the operations ag is entitled to invoke. Agents are rational and
adaptive as they minimize their e�orts to reach a goal and selects the attack
to implement according to the goal of interest. Rational agents are the worst
case of attackers because, besides minimizing their e�orts, they can change the
attacks they implement if some countermeasures are deployed.
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Table 1. List of Components and Attributes

S the target of the assessment
c a component of S
op an operation de�ned by a component
ag a threat agent

res(ag) the resources ag can access
g a goal of an agent
at an attack
v a vulnerability

v(at) the vulnerabilities enabling at
pre(at) the rights to execute at
res(at) the resources to execute at
post(at) the rights acquired if at is successful
succ(at) the success probability of at

AttGr(S, ag) the attack graph with the plans of ag
against S

n a node of AttGr(S, ag)
r(n) the rights paired with the node n
λ(ag) the look-ahead of ag
na(ag) the number of attacks ag executes

before a new selection

3.2 Building the Scenario Description

We outline the design of the builder [4], the Haruspex tool that builds the de-
scription of S, of its components, their vulnerabilities and the corresponding
attacks. Since most of the scenarios that an assessment considers di�er because
of the agents only, the builder strongly reduces the complexity of the assessment
and, as a further advantage, it increases both the accuracy of the description
and the complexity of the system that can be described.

The input of the builder is a MySQL database with all the vulnerabilities in
the various components in the nodes of S. This database is produced by merging
the outputs of the vulnerability scanning of the nodes of S. Distinct scanners
can be applied to distinct nodes and the user can insert, remove or edit, any
vulnerability in the database. The builder discovers global vulnerability, e.g.
sets of correlated vulnerabilities where two vulnerabilities are correlated if the
attacks they enabled can be sequentialized into a plan because the pre condition
of an attack is included in the post condition of the other. By discovering the
global vulnerabilities of S, the builder computes most of the information to
describe S.

The discover of global vulnerabilities is built around a classi�cation of each
vulnerability v of a component of S into one of seven classes. The classi�cation
of v is driven by the Common Vulnerabilities and Exposures (CVE) description
of the attacks v enables. In this way, the pre and post conditions of the attacks
enabled by v are deduced from the class of v . By considering the CVE description
of v, the builder determines also other attributes of the attacks that v enables
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such as their success probability. We refer to [4] for a detailed discussion of the
current implementation and the accuracy of the classi�cation.

The builder can work in several modes. In the one of interest for this paper,
at �rst the builder computes the attack surfaces of each node in S by merging
information on attack post conditions with the one on the logical interconnection
topology to discover which nodes can be attacked from a given one. This infor-
mation is fundamental to discover alternative plans of an agent. After computing
the attack surfaces, the builder returns any vulnerability in each component of
S, the attacks it enables and their pre and post conditions.

3.3 Attack Sequences vs Plans

We recall some properties of attack plans and then introduce some parameters
that de�ne how they are selected and implemented by the agents.

A plan of ag is one of the sequence that ag can implement to reach a goal. As
an example, a plan pl of ag to control a node n′ of an ICT network may include
three attacks. The �rst attack gains access to an account on a network node
n. Then, ag uses this account and n as a step stone to attack n′ and control a
further account. Lastly, ag becomes the administrator of n′ through a privilege
escalation attack. A sequence that grants to ag the rights in gbut that includes
further attacks beside those in pl is not a plan because there is a shorter sequence
of attacks to g.

Being intelligent, when ag selects the attack to implement, it should only
consider the plans that lead to a goal and rank them according to some prede�ned
strategy that considers, among others, the number of attacks, the time to execute
the attacks, or their success probability. After selecting a plan, ag implements
its �rst attack and then it repeats the selection to take into account newly
discovered vulnerabilities. However, when selecting a plan, ag needs to acquire
and elaborate some information on S. Suppose, as an example, that ag can
implement one of two attacks, at1 and at2. To select the shortest sequence to a
goal, ag has to acquire information on the attacks that can be executed after at1
and after at2 and so on. Hence, to select plans to reach a goal, ag has to analyze
sequences with a length that depends upon both S and the current rights of ag.
If, as it always happens in a real attack, the length of the sequences is bounded
a priori, then ag may be forced to select a sequence without knowing if leads
to a goal. This implies that ag may implement sequences that are not plans, eg
some of their attacks are useless to reach a goal, due to lack of information on S.
From now on, to take this case into account, we say that ag selects a sequence
rather than a plan.

3.3.1 Information Gathering The selection strategy of ag de�nes how ag
balances costs and bene�ts of alternative sequences [41]. As previously discussed,
alternative strategies may be de�ned and they share a parameter λ(ag), the
look-ahead of ag. λ(ag) is the number of attacks that the selection strategy of
ag considers to rank a sequence. If λ(ag) = 0, then ag neglects any information
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on S and randomly selects an attack according to the current rights of ag, even
if it is not enabled.

To rank a sequence with an attack enabled by a vulnerability of c, ag gathers
information through a vulnerability scanning of c. This scanning requires a time
depending on c. Since this time is paid only the �rst time ag ranks a subplan
with one attack enabled by a vulnerability of c, the time a ranking requires
increases with the number of components to be scanned that, in turn, increases
with λ(ag). To model insiders, each agent may be paired with the components
it knows and does not have to scan.

3.3.2 Attack Graphs An attack graph AttGr(S, ag) is a direct, acyclic, la-
beled graph that represents distinct sequences of ag. Each node n of AttGr(S, ag)
represents the set r(n) of rights that ag owns. The current status of ag is the
last node of AttGr(S, ag) reached by ag. Since node transitions are related to
elementary attacks, there is an arc from n1 to n2 labeled by at if r(n1) includes
pre(at) and r(n2) is equal to r(n1)∪ post(at). A node n is initial if the security
policy of S entitles ag to the rights in r(n). A node n is final if it is the �rst
node on a path from an initial node where r(n) includes the rights of a goal g.
Each path from an initial node to a �nal one de�nes a sequence to reach the cor-
responding goal. An agent ag reaches a node n after acquiring any right in r(n)
or, equivalently, by successfully implementing all the attacks labeling the arcs on
the path from an initial node to n. As an example, a path with four nodes and
three arcs represents a three attacks sequence. If some vulnerabilities enabling
at are suspected, e.g not known yet, then ag can cross the corresponding arcs
only when they are known.

As described in the following, to simulate the strategy of ag, the engine
builds a subset of AttGr(S, ag) starting from the node reached by ag.

3.4 Monte Carlo Simulation of Agent Attacks

Starting from a scenario description, the engine returns a database with sam-
ples collected in an experiment with several independent runs that simulate, for
the same time interval, the agent attacks and the discovery of suspected vul-
nerabilities. At each time step of a run, the engine determines which suspected
vulnerabilities are discovered. Then it considers each agent ag that still has to
reach at least one goal and it is idle or it has just completed the execution of
an attack. After building an attack graph AttGr(S, ag) that includes all the se-
quences with at most λ(ag) attacks that ag may select given its current access
rights. Then, the engine applies the selection strategy of ag to determine the
attack at that ag implements. If at is enabled, the engine simulates it and ag will
be busy for time(at) plus the time of the selection. Anytime at successful, the
engine checks if ag has reached a goal and updates the impact due to ag. If at
fails, it is repeated for a user-de�ned number of times before selecting a distinct
attack. At the end of a run, the enginecollects samples it inserts into a database.
A sample includes information on the attacks each agent has implemented, the
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goals it has reached, the time to reach a goal, the number of agents that have
executed each attack, the number of successful execution of an attack. Then, to
guarantee that runs are independent, the engine reinitializes the state of S and
of any agent and starts a new run.

The con�dence level of statistics computed through the sample database
depends upon the number of runs in an experiment because each run contributes
to the database with exactly one sample. For each experiment, the user can
specify either the number of runs or the con�dence level for some prede�ned
statistics. In the latter case, Haruspex starts a new run until reaching this level.

3.5 Selection Strategies

Currently, the user can pair ag with one of four strategies:

1. random: returns each attack ag can implement with the same probability,
2. maxprob: returns the sequence with the best success probability,
3. maxincr: returns the sequence granting the largest set of rights,
4. maxe�: returns the sequence with the best ratio between success probability

and execution time.

If λ(ag) > 0, then ag considers the set Cas with the sequences with at most
λ(ag) attacks that ag can implement, where the �rst attack is enabled and it
increases the current rights of ag. If Cas is empty, ag is idle. Otherwise, if a
sequence in Cas leads to a goal of ag, the strategy only ranks the sequences
in Cas leading to a goal. Otherwise, it ranks all the sequences in Cas. Upon
receiving the �rst sequence in the ranking, ag implements its �rst attack.

4 Selecting Countermeasures

This section describes the planner and the manager, the tools to select the
countermeasures to minimize the risk in a scenario.

Here and in the following, for the sake of simplicity, we assume that a scenario
includes one agent ag with one goal g. Extensions to several agents and/or several
goals are straightforward.

4.1 Discovering Plans

The planner analyzes the sample database to remove useless attacks from the
sequences of ag to reach g and discover the plans ag implements and their success
probabilities. By focusing the selection of countermeasures on the plans rather
than on the sequences we increase cost e�ectiveness by deploying countermea-
sures for attacks that are useful to reach g.

Given a sequence s of attacks that ag has implemented to reach g, the planner
executes a backwards scan of s to map it into the plan p(s, g) with the attacks
of s useful to achieve g. In the following,
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� n is the length of s,
� s(i) is the i− th attack of s, where i is bounded by n,
� tp(s, g) is a sequence that is initialized with s(n), the last attack of s,
� useful(i) the set with the rights ag needs before executing s(i) to achieve g.

Initially, useful(n) = pre(s(n))∪ (g− post(s(n))), e.g. before executing s(n)
the set of useful rights includes those in the precondition of s(n) and the rights in
g that do not belong to the post condition of s(n). Informally, before executing
at, the last attack in s, the useful rights are those to execute at and those in the
goal that cannot be acquired through at itself.

Given useful(j), the algorithm does not insert at = s(j) at the beginning of
tp(s, g) if and only if:

1. no right in post(at) belongs to useful(j),
2. before executing at, ag already owns the rights in the intersection between
post(at) and useful(j), i.e. each of these rights is an initial right of ag or it
belongs to the post conditions of an attack in {s(1), ..., s(n− 1)}.

Before analyzing s(j − 1), we assign useful(j − 1). If s(j) is useful, then
useful(j−1) = (useful(j)−post(s(j)))∪pre(s(j)), e.g. we remove from useful(j)
the rights in the post condition of s(j) and add those in its precondition. Other-
wise, useful(j − 1) = useful(j). At the end of the scanning, p(s, g) = tp(s, g).

This algorithm assumes that ag only implements attacks that increase its
rights and it may not return the correct plan if s interleaves several plans. This
can be discovered by mapping into a plan not only s but also any permutation
of s where the �rst j − 1 attacks enable the execution of the j − th one.

After discovering the plans of ag, the planner computes the success proba-
bility of a plan p as the percentage of runs that have successfully implemented
p. This considers that distinct sequences may implement the same plan.

4.2 Selecting Countermeasures for a Set of Plans

The manager applies the planner to the sample database to discover the plans
ag implements. Starting from these plans, it determines the countermeasures to
deploy to reduce the corresponding risk. An input parameter, lowrisk, de�nes
the highest success probability of ag that may be accepted.

In the following, we assume that for any attack at there is a countermeasure
that decreases its success probability. As an example, the patching of a vulnera-
bility in vuln(at) results in the failure of at, while a longer password or a longer
encryption key decrease the probability they are guessed. c(at) denotes the cost
of a countermeasure for at. At the end, we discuss how to handle attacks with
no countermeasure.

The manager has an iterative behavior where, after selecting some counter-
measures, it updates the description of S to model their deployment and runs
another experiment with this version to discover how ag reacts to countermea-
sure, e.g. which plans ag implements to replace those a�ected by the deployed
countermeasures. The new experiment discovers whether, when attacking S, ag
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neglects some plans it can successfully implement against the new version of S.
Any of these plans is denoted as a dependent one because ag selects it only when
other ones are a�ected by countermeasures. Only a new experiment can discover
dependent plans as they cannot be deduced from the output of an experiment
where ag neglects them. If the new experiment shows that the success probabili-
ties of dependent plans is larger than lowrisk, the manager selects and deploys
further countermeasures, runs another experiment and so on.

Two features that strongly in�uence number of selected countermeasures are
the plans that the manager considers at each iteration. In a �rst solution, at
the i− th iteration the tool deploys countermeasures a�ecting a set Si of plans
that depends upon all the plans that ag implements in any previous iteration.
Hence, these countermeasures may completely di�er from those the manager
has considered in any previous iteration. Instead, in the incremental approach,
at each iteration the manager only considers the dependent plans discovered at
that iteration and it extends the previous set of countermeasures with those that
a�ect these dependent plans.

In the current version, Si includes all the plans considered in the previous
iterations and a subset,Cpi, of the plans ag executes in the i− th iteration. We
insert plans into Cpi starting from those with the largest success probability and
stop as soon as the sum of the success probabilities of the remaining plans is
lower than lowrisk. This heuristic strategy reduces the computational overhead
but neglects that the success probability of a plan may strongly increases after
deploying some countermeasures for other plans. The user can handle cases where
the agent executes a large number of plans by bounding the size of Cpi as a �xed
percentage of successful plans.

4.3 Countermeasures Selection

To minimize the number of countermeasures, we focus the selection of counter-
measures for plans in Sp on the attacks these plans share because a countermea-
sure for at a�ects all the plans where at appears.

To describe the selection of countermeasures for the plans in Sp, we consider
all the attacks they implement and pair each of these attack at with Sp(at) =
{i1, ..., ik}, the set of the indexes of the plans in Sp that share at. Now, to
compute a set of countermeasures for all the plans in Sp with the lowest cost we
compute a coverage [42] with the minimal cost of {1, ..., n} through the elements
of Sa =

⋃
(Sp(at))∀at ∈ Sp. When computing a coverage we neglect an attack

at1 if all the plans that share at1 also share another attack at2 with a cheaper
countermeasure. After removing any attack that can be neglected, the manager
considers any possible coverage and select the cheapest one. Given the number
of plans and the attacks they share, the resulting execution time is acceptable
even if the coverage problem is NP-Complete. As a matter of fact, if both the
previous number are very large, then ag can attack S in several, distinct ways,
e.g. through a large number of distinct plans, and this requires a rather extensive
redesign of S rather than some countermeasures. To further reduce the execution
time, we abort the building of a set as soon as its cost exceeds the current best.
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Figure 1. The three versions of the experimental ICT infrastructure

The adopted solution clearly shows the disadvantages of an incremental ap-
proach. In fact, by considering at each iteration all the plans to be stopped, we
minimize the number of countermeasures by exploiting the best information on
the attacks these plans share. Instead, when the incremental approach selects
at the i− th iteration the attacks to be a�ected by a countermeasure, it cannot
anticipate the dependent plans the agent implements in the following iterations
and of the attacks these plans share with those that are actually considered.

To handle attacks with no countermeasure, �rst of all when building a cov-
erage of a set of plans we assume that the cost of some countermeasure may be
in�nite. If the manager return a coverage with an in�nite cost, then there is
at least one plan that only include attack with no countermeasure. The success
probability of this plan is a lower bound on the agent success probability.

5 Case Study and Evaluation of Results

We have applied the Haruspex suite to three distinct versions of an ICT infras-
tructure with SCADA components to control power generation. The infrastruc-
ture includes 98 nodes segmented into subnets. There are four kind of subnets:
Central, Power Context, Process, and Control. The nodes in a Central subnet
are assigned to the company intranet users. The operators use the nodes in
a Power Context subnet to manage the SCADA system. The SCADA servers
and clients that act as the supervision and control system of the electric power
production process belong to a Process subnet. Finally, the PLC systems that
control some devices in the plant belong to a Control subnet. In the �rst version
of the infrastructure the Power Context subnet and the Central one have been
merged.
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Table 2. Details of the Manager Iterations in the Three Assessments

Iter. N. of plans N. of patch N. of plans N. of patch N. of plans N. of patch

1 29 5 563 5 2192 5
2 64 10 271 5 1026 5
3 6 11 275 7 1042 5
4 6 12 673 7 1027 7
5 0 12 688 8 1961 7
6 - - 213 10 1945 7
7 - - 109 11 1960 8
8 - - 109 12 833 10
9 - - 0 12 455 11
10 - - - - 440 12
11 - - - - 0 12

Fig.1 shows the three versions of the infrastructure that include, respectively,
�ve, seven and eight subnetworks.

In the �rst version, the Central subnet includes 48 nodes, the Power Context
includes 14 nodes. Process subnet 1 and 2 include, respectively, 14 and 18 nodes.
Each Process subnet is connected to a Control subnet with two PLC devices.
Three nodes of the Central subnet are connected to the Power Context subnet.
Two pairs of nodes in the Power Context network are connected to nodes in
a Process subnet. Lastly, two nodes in each Process subnet are connected to
the corresponding Control subnet. To increase the complexity of the test and to
properly stress the suite tools, we have inserted further vulnerabilities in some
nodes. Also the second infrastructure has 98 nodes, but the Central subnet is
segmented into two subnets, each with 24 nodes. Lastly, the Central subnet of
the third infrastructure is segmented into three subnets, each with 16 nodes.

5.1 Selecting Countermeasures to Deploy

All the agents we consider to assess the three versions initially own some rights on
the Central Network and scan each node to discover its vulnerabilities. We have
de�ned the other agent attributes by combining goals, strategies and lookahead
values. The four possible goals are the control of the PLC devices in both Control
Networks, the control of the PLC devices in any Control Network and the control
of the PLC devices in a speci�c Control Network. For each goal, we consider one
agent that adopts the random strategy and six agents that adopt, respectively,
one of the other three strategies and one of two lookahead values, 1 and 2. The
latter value minimizes the time to discover a sequence to reach a goal. In this
way, the whole assessment considers 28 agents.

The con�dence level of all the experiments is 95% on the components that
an agent attacks to reach its goal. This requires from 150.000 to 500.000 runs in
each experiment.
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Figure 2. First version of the infrastructure: success probability as a function of time
for the iterations of the manager

Figure 3. Second version of the infrastructure: success probability as a function of
time for the iterations of the manager

In our experiments, the agent that reaches its goal in the shortest time is
the one that aims to control the PLCs in any Control Network and adopts the
maxeff strategy with λ = 2.

We consider now for each infrastructure, the output of the manager for the
considered agent ag under the assumption that we patch any vulnerability and
this results in the failure of the corresponding attack.

For each manager iteration, Table 2 shows the number of plans the planner
returns for ag and the one of countermeasures themanager selects. The leftmost
columns refer to the �rst version, the central one to the second version and
the rightmost columns to the third one. The manager �nds the optimal set of
countermeasures in, respectively, 5, 9 and 11 iterations. The number of plans to
be a�ected increases anytime ag discovers new plans to the goal.

Fig 2, 3 and 4 shows the success probability as a function of the time ag
has available to reach its goals. The value of the curve at time t is computed
as the percentage of the runs in an experiment where ag reaches its goal within
t. Each �gure shows the change in the success probability of ag due to the
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Figure 4. Third version of the infrastructure: success probability as a function of time
for the iterations of the manager

countermeasures the manager selects in the i− th iteration. The curve overlaps
the x axis at the last iteration, when all the plans are stopped.

6 Conclusion

We have outline the Haruspex suite, a set of tools to assess and manage in an
automatic way the risk due to an ICT system under attack by agents that es-
calate their privileges through attack sequences. Then, we have discussed the
manager, the tool of the suite that computes a cost e�ective set of countermea-
sures. This tool runs a sequence of Haruspex experiments. Each experiment in
this sequence determines how the agents react to the countermeasure selected
using the results of the previous experiments. In this way, we take into account
an intelligent agents may react to countermeasures and change the attacks it
implements. Future developments of the Haruspex suite concerns the de�nition
of a set of measures to simplify the evaluation of the robustness of a system.

References

1. Tankard, C.: Advanced persistent threats and how to monitor and deter them.
Network Security 2011(8), 16�19 (2011)

2. Baiardi, F., Sgandurra, D.: Assessing ict risk through a monte carlo method. En-
vironment Systems and Decisions, 1�14 (2013)

3. Baiardi, F., Corò, F., Tonelli, F., Guidi, L.: Qsec: Supporting security decisions
on an it infrastructure. In: Eighth CRITIS Conference on Critical Information
Infrastructures Security, Amsterdam, The Netherlands (2013)

4. Baiardi, F., Corò, F., Tonelli, F., Guidi, L.: Gvscan: Scanning networks for global
vulnerabilities. In: First International Workshop on Emerging Cyberthreats and
Countermeasures, Regensburg, Germany (2013)

5. Baiardi, F., Corò, F., Tonelli, F., Sgandurra, D.: A scenario method to automati-
cally assess ict risk. In: Proceedings of Euromicro PDP 2014, Turin, Italy (2014)

13



6. CONCLUSION

6. Gorodetski, V., Kotenko, I.: Attacks against Computer Network: Formal Grammar-
Based Framework and Simulation Tool. In: Recent Advances in Intrusion Detec-
tion. Lecture Notes in Computer Science, vol. 2516, pp. 219�238. Springer, ???
(2002)

7. Kotenko, I.: Active vulnerability assessment of computer networks by simulation of
complex remote attacks. Int. Conf. on Computer Networks and Mobile Computing,
40 (2003)

8. Helbing, D., Balietti, S.: How to do Agent Based Simulations in the Future (2011)

9. Conrad, S.H., LeClaire, R.J., O'Reilly, G.P., Uzunalioglu, H.: Critical national
infrastructure reliability modeling and analysis. Bell Labs Technical Journal 11(3),
57�71 (2006)

10. Brown, T., Beyeler, W., Barton, D.: Assessing infrastructure interdependencies:
the challenge of risk analysis for complex adaptive systems. Int. Journal of Critical
Infrastructures 1(1), 108�117 (2004)

11. LeMay, E., Unkenholz, W., Parks, D., Muehrcke, C., Keefe, K., Sanders, W.:
Adversary-driven state-based system security evaluation. In: Proc. of the 6th Int.
Workshop on Security Measurements and Metrics. MetriSec '10, pp. 5�159. ACM,
New York, NY, USA (2010)

12. Rios Insua, D., Rios, J., Banks, D.: Adversarial risk analysis. Journal of the Amer-
ican Statistical Association 104(486), 841�854 (2009)

13. Buede, D.M., Mahoney, S., Ezell, B., Lathrop, J.: Using plural modeling for pre-
dicting decisions made by adaptive adversaries. Reliability Engineering and System
Safety 108(0), 77�89 (2012)

14. Cheung, S., Lindqvist, U., Fong, M.W.: Modeling multistep cyber attacks for sce-
nario recognition. In: DARPA Information Survivability Conference and Exposi-
tion, 2003. Proceedings, vol. 1, pp. 284�2921 (2003)

15. Barnum, S.: Common attack pattern enumeration and classi�ca-
tion (capec) schema description. Cigital Inc, http://capec. mitre.
org/documents/documentation/CAPEC_Schema_Descr iption_v1 3 (2008)

16. Diamant, J.: Resilient security architecture: A complementary approach to reduc-
ing vulnerabilities. Security Privacy, IEEE 9(4), 80�84 (2011)

17. Bohme, R., Moore, T.: The iterated weakest link. Security Privacy, IEEE 8(1),
53�55 (2010)

18. LeMay, E., Unkenholz, W., Parks, D., Muehrcke, C., Keefe, K., Sanders, W.: Model-
based Security Metrics using ADversary VIew Security Evaluation (ADVISE). In:
Proc. of the 8th Int. Conf. on Quantitative Evaluation of SysTems (QEST 2011)
(2011)

19. Howard, J.D.: An analysis of security incidents on the internet 1989 - 1995. Ph.D
Thesis (1998)

20. Engle, S., Whalen, S., Howard, D., Bishop, M.: Tree approach to vulnerability
classi�cation (2005)

21. Ammann, P., Pamula, J., Ritchey, R., Street, J.: A host-based approach to network
attack chaining analysis. Technical Report SERC-TR-165-P (2005)

22. Cheung, S., Lindqvist, U., Fong, M.W.: Modeling multistep cyber attacks for sce-
nario recognition. In: DARPA Inf. Survivability Conf. and Exposition, 2003, vol.
1, pp. 284�2921 (2003)

23. Zhang, Y., Paxson, V.: Detecting stepping stones (2000)

24. Morin, B., Mé, L., Debar, H., Ducassé, M.: M2d2: A formal data model for ids
alert correlation

14



6. CONCLUSION

25. Ingols, K., Chu, M., Lippmann, R., Webster, S., Boyer, S.: Modeling modern
network attacks and countermeasures using attack graphs. In: Proc. of the An-
nual Computer Security Applications Conf., pp. 117�126. IEEE Computer Society,
Washington, DC, USA (2009)

26. Evans, S., Heinbuch, D., Kyle, E., Piorkowski, J., Wallner, J.: Risk-based systems
security engineering: stopping attacks with intention. Security Privacy, IEEE 2(6),
59�62 (2004)

27. Bier, V.M., Oliveros, S., Samuelson, L.: Choosing what to protect: Strategic defen-
sive allocation against an unknown attacker. Journal of Public Economic Theory
9, 563�587 (2007)

28. Hausken, K., Bier, V.M.: Defending against multiple di�erent attackers. European
Journal of Operational Research 211, 370�384 (2011)

29. Florencio, D., Herley, C.: Sex, Lies and Cyber-crime Survey. In: The Tenth Work-
shop on Economics of Information Security (2011)

30. Florencio, D., Herley, C.: Where Do All the Attacks Go? In: The Tenth Workshop
on Economics of Information Security (2011)

31. Macal, C.M., North, M.J.: Tutorial on agent-based modelling and simulation. Jour-
nal of Simulation 4(3), 151�162 (2010)

32. Rob, A.: A Survey of Agent Based Modelling and Simulation Tools. Technical
Report DL-TR-2010-07, Science and Technology Facilities Council (2010)

33. Ghorbani, A., Bagheri, E., Onut, Zafarani, R., Baghi, H., Noye, G.: Agent-based
Interdependencies Modeling and Simulation (AIMS). Technical report, Technical
Rep. No. IAS-TR01-06, Intelligent and Adaptive Systems Research Group, Faculty
of Computer Science, UNB (September 2006)

34. Casalicchio, E., Galli, E., Tucci, S.: Federated Agent-based Modeling and Simula-
tion Approach to Study Interdependencies in IT Critical Infrastructures. In: Proc.
of the 11th IEEE Int. Symp. on Distributed Simulation and Real-Time Applica-
tions. DS-RT '07, pp. 182�189. IEEE Computer Society, Washington, DC, USA
(2007)

35. Arora, A., Hall, D., Piato, C.A., Ramsey, D., Telang, R.: Measuring the risk-based
value of it security solutions. IT Professional 6(6), 35�42 (2004)

36. Herrmann, A.: The quantitative estimation of it-related risk probabilities. Risk
Analysis, (2012)

37. Alberts, C., Allen, J., Stoddard, R.: Risk-based measurement and analysis: Ap-
plication to software security. Technical report, Software Engineering Inst., CMU
(2012)

38. Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic
algorithms: A tutorial. Reliability Engineering and System Safety 91(9), 992�1007
(2006)

39. Deb, K.: Multi-objective optimization. In: Search Methodologies, pp. 273�316.
Springer, ??? (2005)

40. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for en-
gineering. Structural and Multidisciplinary Optimization 26, 369�395 (2004)

41. Boddy, M., Gohde, J., Haigh, T., Harp, S.: Course of action generation for cyber
security using classical planning. In: Proc. ICAPS 2005, pp. 12�21. AAAI Press,
??? (2005)

42. Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J.,
Bohlinger, J. (eds.) Complexity of Computer Computations. The IBM Research
Symposia Series, pp. 85�103. Springer, ??? (1972)

15




