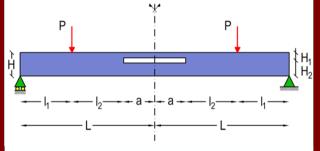
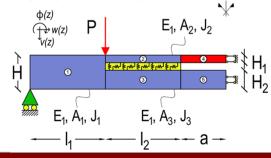


An elastic-interface model for buckling-driven delamination

growth in composite panels under bending


S. Bennati, N. Dardano, P.S. Valvo University of Pisa, Department of Civil and Industrial Engineering

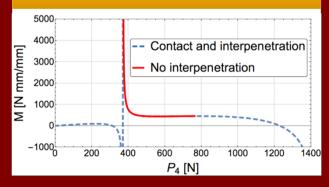
Introduction


Delamination of composite laminates can have multiple causes, such as manufacturing defects, high interlaminar stresses, low-energy impacts, etc. Delamination cracks propagate under both static and fatigue loads [1].

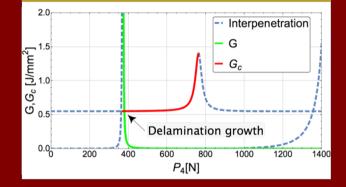
We analyse the delamination growth promoted by local buckling in a laminate subjected to four-point bending [2].

Mechanical model

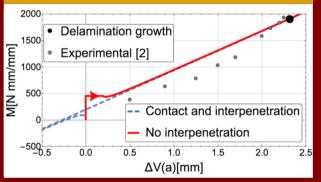
The mechanical model considers the specimen as an assemblage of sublaminates, modelled as beams, partly connected by an elastic interface.


Mathematical problem

```
The model is described by a set of 10 differential equations + 30 b.c.


\begin{cases}
E_{1}J_{1}v_{1}^{IV}(z) = 0 \\
E_{1}A_{1}w_{1}^{II}(z) = 0 \\
E_{1}J_{2}v_{2}^{IV}(z) - Bk_{y}(v_{3}(z) - v_{2}(z)) - \frac{1}{2}H_{1}E_{1}A_{2}w_{2}^{III}(z) = 0 \\
E_{1}A_{2}w_{2}^{II}(z) = Bk_{z}\left(w_{3}(z) - w_{2}(z) + \frac{1}{2}H_{2}v_{2}'(z)\frac{1}{2}H_{1}v_{2}'(z)\right) \\
E_{1}J_{3}v_{3}^{IV}(z) + Bk_{y}(v_{3}(z) - v_{2}(z)) + \frac{1}{2}H_{1}E_{1}A_{3}w_{3}^{II}(z) = 0 \\
E_{1}A_{3}w_{3}^{II}(z) = -Bk_{z}\left(w_{3}(z) - w_{2}(z) + \frac{1}{2}H_{2}v_{2}'(z)\frac{1}{2}H_{1}v_{2}'(z)\right) \\
E_{1}J_{2}v_{4}^{IV}(z) + P_{4}v_{4}^{II}(z) = 0 \\
E_{1}A_{2}w_{4}^{II}(z) = 0 \\
E_{1}J_{3}v_{5}^{IV}(z) = 0 \\
E_{1}A_{3}w_{5}^{II}(z) = 0 \\
A general analytical solution is deduced for the
```

differential problem. The b.c. are non-linear with respect to the axial force in the buckled sublaminate, P_4 . By taking the latter quantity as representation parameter, numerical solutions are determined for specific problems.


Applied bending moment vs. P_4

Delamination growth

Equilibrium path

Essential references

- V.V. Bolotin: Delaminations in composite structures: Its origin, buckling, growth and stability, *Compos. Part B* 27 (1996) 129–145.
- [2] M. Kinawy, R. Butler, G.W. Hunt: Bending strength of delaminated aerospace composites, *Phil. Trans. R. Soc.* A 370 (2012) 1780–1797.