
Motivation

Haplotype assembly is the computational problem of reconstructing haplotypes in diploid organisms

and is of fundamental importance for characterizing the effects of Single Nucleotide Polymorphisms

(SNPs) on the expression of phenotypic traits. Minimum Error Correction (MEC) is one of the

prominent combinatorial approaches for haplotype assembly. It aims at correcting the input data

with the minimum number of corrections to the SNP values, such that the resulting reads can be

unambiguously partitioned into two sets, each one identifying a haplotype.

Haplotype assembly highly benefits from the advent of “future generation” sequencing technologies

and their capability to produce long reads at increasing coverage. Existing methods are not able to

deal with such data in a fully satisfactory way, either because accuracy or performances degrade as

read length and sequencing coverage increase, or because they are based on restrictive

assumptions. In particular, three current state-of-the-art approaches are:

1. REFHAP: a heuristic approach, offering a good accuracy with good performance under the

all-heterozygous assumption.

2. PROBHAP: a probabilistic dynamic programming algorithm, that is slower than RefHap, but

improving its accuracy.

3. WHATSHAP: an exact algorithm, properly designed for long reads offering good accuracy, but

with coverage up to 20x

In this paper, we exploit a novel characteristic of future-generation technologies, namely the uniform

distribution of sequencing errors, for introducing an exact fixed-parameter tractable algorithm for a

new constrained variant, called 𝑘-cMEC, of the MEC problem where the parameters are (i) the

maximum number 𝑘 of corrections that are allowed on each SNP position and (ii) the coverage. The

designed algorithm, called HAPCOL, is able to work with or without the all-heterozygous

assumption and can solve the weighted variant of the problem, exploiting the confidence degrees

assigned to the SNP values, such as the phred scores, in order to improve the accuracy of the

reconstructed haplotypes.

We have experimentally compared accuracy, in terms of (switch) error rate and number of phased

positions, and performance, in terms of running time and peak memory usage, of HAPCOL on real

and realistically simulated datasets with three state-of-the-art approaches for haplotype assembly –

REFHAP, PROBHAP, and WHATSHAP:

 NA12878 dataset: on a real standard benchmark of long reads produced using a fosmid-based

technology from the HapMap sample NA12878 by Duitama et al., 2012, we executed each tool

under the all-heterozygous assumption, since this dataset has low coverage (∼3x on average)

and since the covered positions are heterozygous with high confidence.

 Simulated datasets: we also assessed accuracy and performance of HAPCOL on a large

collection of realistically-simulated datasets reflecting the characteristics of “future-generation”

sequencing technologies that are currently (or soon) available (coverage up to 25x, read length

from 10 000 to 50 000 bases, error rate up to 5%, and indel rate equal to 10%). At higher

coverage, interesting applications such as SNP calling or heterozygous SNPs validation

become feasible and reliable. Since these applications require that haplotypes are

reconstructed without the all-heterozygous assumption, on the simulated datasets we only

considered the tools that do not rely on this assumption – WHATSHAP and HAPCOL.

A prototypical implementation of HAPCOL is available under the terms of the GPL at:

http://hapcol.algolab.eu/.

Since coverage varies across columns, HAPCOL adaptively adopts a different maximum number kj

of corrections for each column depending on the estimated error rate (𝜀) and significance level (𝛼),

given in input by the user.

Table 1 reports, for each tool, the overall error rate and the percentage of phased positions over all

the phasable positions, the total running time, and the peak of memory for the whole dataset.

Table 1.

HAPCOL reconstructed the most accurate haplotypes and phased the largest number of positions

compared with the other tools. To the contrary, REFHAP was the fastest and most memory efficient

tool among the four considered. Overall, all the tools can be run with modest/medium computing

resources. However, PROBHAP was significantly slower than the others (∼20 minutes) and

WHATSHAP required significantly more memory than REFHAP (44 times). In particular, since

HAPCOL and WHATSHAP model the gaps as zero-weight elements, their performances degrade

due to a small number of consecutive positions on chromosomes 2, 3, and 10 where coverage is

high (up to 30x), but most of values are gaps. Clearly, a simple pre-filtering step can easily find (and

possibly remove) such positions from further analyses. In fact, if we exclude chromosomes 2, 3, and

10, HAPCOL becomes the most memory-efficient method (0.06 GB) and fast (60 sec), whereas

WHATSHAP becomes the the fastest (30 sec).

Table 2 reports, for two combination of input parameters 𝜀 and 𝛼, the number of instances with a

feasible solution found by HAPCOL (column “feas.”), the average error of the reconstructed

haplotypes, the average running time, and the average memory usage over all the instances of a

given coverage (15x and 20x), and error rate e (1% and 5%).

Table 2.

In terms of accuracy, on all the instances HAPCOL obtained the same phasing error rate of

WHATSHAP. However, in terms of performances HAPCOL is both faster and significantly more

memory-efficient than WHATSHAP. In particular, on average, HAPCOL is at least twice faster than

WHATSHAP when the coverage is 20x even for the largest values of maximum number k of

corrections per column. Concerning memory usage, we observe the same general trend, except

that differences are even more evident. In fact, the average memory usage of WHATSHAP on

chromosome 1 (the largest one) at coverage 20x is ∼138GB, while HAPCOL requires only ∼5GB.

Table 2 reports the same results of Table 3 for instances

with coverage 25x and with read length of 50 000 bases.

In this case, WHATSHAP was not able to successfully

conclude the execution on these instances since it

exhausted the available memory (256GB). Hence, we

evaluated how accuracy and performances of HAPCOL

vary between instances with coverage 20x and 25x. In

particular, we observe that increasing coverage allows to

improve accuracy (∼9%) of the reconstructed haplotypes

(as we already observed for coverage 15x and 20x).
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Conclusions

On a standard benchmark of real data, we showed that HAPCOL is competitive with state-of-the-art

methods, improving the accuracy and the number of phased positions. Furthermore, HAPCOL is

able to overcome the traditional all heterozygous assumption and to process datasets with coverage

25x on standard workstations/small servers, while the current state-of-theart methods either rely on

this assumption or become unfeasible on coverages over 20x. Thanks to these results, HAPCOL is

potentially able to directly perform SNP calling or heterozygous SNPs validation that become

feasible and reliable on coverage up to 25x.
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