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Abstract 

We present a physically consistent virtual crack closure technique (VCCT) that can be applied to three-dimensional problems 
involving I/II/III mixed-mode fracture. The crack-tip forces exchanged between the nodes of the finite element model along the 
crack front are decomposed into the sums of three energetically orthogonal systems of forces. The modal contributions to the 
energy release rate are associated to the corresponding amounts of work done to close the virtually extended crack. 
© 2014 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of the Norwegian University of Science and Technology (NTNU), Department of 
Structural Engineering. 
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1. Introduction 

The virtual crack closure technique (VCCT) is widely used to compute the energy release rate, G, in the finite 
element analysis of fracture mechanics problems (Krueger 2004). The technique has been first proposed for two-
dimensional problems by Rybicki and Kanninen (1977), and later extended to three-dimensional problems by 
Shivakumar et al. (1988). For mixed-mode fracture problems, such as the delamination of composite materials and 
interfacial fracture, the VCCT furnishes not only the total G, but also the contributions, GI, GII, and GIII, associated 
to the three basic fracture modes (Krueger et al. 2013). Such contributions are associated to the amounts of work 
done to close the virtually extended crack by the Cartesian components of the nodal forces along the crack front. 
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Focusing on I/II mixed-mode fracture problems, Valvo (2012) has demonstrated that the standard VCCT may be 
inappropriate to analyse problems involving highly asymmetric cracks, for which physically unacceptable, negative 
values for either GI or GII may be predicted. The origin of this shortcoming has been found to reside in the lack of 
energetic orthogonality between the Cartesian components of the crack-tip force. Then, a physically consistent 
VCCT has been proposed, where the crack-tip force is decomposed into the sum of two energetically orthogonal 
systems of forces, and GI and GII are associated to the corresponding amounts of work done to close the virtually 
extended crack. As a result, always non-negative GI and GII are obtained (Valvo 2014). 

Here, we show how the physically consistent VCCT can be extended to three-dimensional problems involving 
I/II/III mixed-mode fracture. To this aim, the crack-tip forces – namely, the forces exchanged between the nodes of 
the finite element model along the crack front – are decomposed into the sums of three energetically orthogonal 
systems of forces. Accordingly, non-negative GI, GII, and GIII are obtained by associating such modal contributions 
to the corresponding amounts of work done to close the virtually extended crack. 

2. Physically consistent VCCT 

2.1. Finite element model 

Let us consider the three-dimensional problem of a cracked body made of a linearly elastic material with 
prescribed static and/or kinematic boundary conditions. We set up a finite element model of the problem and restrict 
our attention to a portion of the mesh in the neighbourhood of the crack front (Fig. 1). Here, we assume a regular 
mesh made of 8-noded solid elements. A local Cartesian reference system, Oxyz, is fixed with the x- and y-axes 
respectively orthogonal and tangent to the crack front, and the z-axis orthogonal to the crack plane. 

The nodes placed on the fracture surface are orderly labelled with the letters A, B, C, … in the direction of crack 
advance (x-axis). Subscripts j – 1, j, j + 1, … orderly denote the nodes along the crack front (y-axis). Superscripts – 
and + respectively correspond to the lower and upper crack faces. The facing nodes on the crack surface are initially 
bonded together by suitable internal constraints, which are progressively released to simulate crack growth. The 
crack front is initially located on the line connecting nodes Cj – 1, Cj, Cj + 1, … 

 

 

Fig. 1. Finite element mesh at the crack front with crack-tip forces (before crack advance). 
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Fig. 2. Finite element mesh at the crack front with crack-tip relative displacements (after crack advance). 

2.2. Energy release rate 

The energy release rate, G, is defined as the total potential energy of the system spent in the crack growth process, 
per unit area of new surface created. According to Irwin (1958), the energy spent to extend the crack is equal to the 
work done to close the crack by the forces that were acting on the crack faces prior to crack extension. Within the 
adopted finite element model, the energy release rate at the j-th node of the crack front is (Krueger 2004) 
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where XCj, YCj, and ZCj are the components of the crack-tip force at node Cj in the Oxyz reference system (Fig. 1). 
Furthermore, uCj, vCj, and wCj are relative displacements occurring between nodes Cj  and Cj  when the crack 
front locally advances from node Cj to Dj (Fig. 2). Lastly, Aj is the area of crack surface related to node Cj. 

Let us define the crack-tip force vector, rC = (XCj, YCj, ZCj)T, and crack-tip relative displacement vector, 
sC = ( uCj, vCj, wCj)T, at node Cj. The relative displacements caused by crack advance are equal in magnitude 

(and opposite in sign) to the relative displacements produced by application of the crack-tip forces. Thus, for a 
linearly elastic body we can write 
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is a (symmetric) flexibility matrix, whose elements can be obtained via preliminary analyses (Valvo 2012). 
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With Eqs. (2) and (3), the energy release rate can be written as follows: 
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2.3. Mode partitioning 

According to the standard VCCT (Krueger 2004), the modal contributions to G simply correspond to the three 
addends in parenthesis in Eq. (1): 
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For I/II mixed-mode fracture conditions, Valvo (2014) has shown that physically consistent partitioning of 
fracture modes is obtained by associating the modal contributions to the amounts of work done by two energetically 
orthogonal systems of forces. Furthermore, the decomposition of the crack-tip force vector, rC, into such systems of 
forces corresponds to the Cholesky decomposition of the flexibility matrix in the form F = UTDU, where U is a unit 
upper triangular matrix and D is a diagonal matrix. Extending this approach to I/II/III mixed-mode problem yields 
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The energy release rate becomes 
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is a corrected crack-tip force vector, whose components are the energetically orthogonal components of rC. 
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The modal contributions to G are 
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where 
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are the (suitably reordered) elements of the diagonal matrix D. 
Since F is a positive definite matrix, it follows that fI, fII, and fIII are strictly positive coefficients. Consequently, 

the modal contributions defined via Eqs. (9) turn out to be non-negative quantities, as required by their physical 
meaning. 

3. Conclusions 

We have shown how the physically consistent virtual crack closure technique (VCCT), previously developed for 
I/II mixed-mode fracture problems, can be extended to three-dimensional problems involving I/II/III mixed-mode 
fracture. The method has been illustrated with reference to 8-node elements, but can be extended quite simply to 
other types of solid or plate/shell elements. Examples of applications will be presented in future publications. 
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