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Abstract

We show how to obtain rising hadronic total cross sections in QCD, in the framework of the nonperturbative
approach to soft high-energy scattering based on Wilson-loop correlators. Total cross sections turn out to be of
“Froissart”-type, i.e., the leading energy dependence is of the form σtot ∼ B log2 s, in agreement with experiments.
The observed universality of the prefactor B is obtained rather naturally in this framework. In this case, B is entirely
determined by the stable spectrum of QCD, and predicted to be Bth = 0.22 mb, in fair agreement with experiments.
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1. Introduction

Explaining the behaviour of hadronic total cross sec-
tions at high energy is a very old problem, which is
very rarely attacked within the framework of QCD.
Most of the approaches to this problem are based on
phenomenological models, which are sometimes QCD-
inspired, but a full derivation from first principles of
QCD is still lacking.

The observed rise of hadronic total cross sections
at high energy is well described by a “Froissart-like”
behaviour σtot ∼ B log2 s with a universal prefactor
B � 0.27 ÷ 0.28 mb [1]. This behaviour respects
unitarity, as encoded in the Froissart-Łukaszuk-Martin
bound [2, 3, 4], σtot ≤ BFLM log2 s

s0
, since B � BFLM =

π/m2
π � 65 mb.

Besides deriving σtot from the first principles of
QCD, one should be able to explain the observed uni-
versality of B, and also the two orders of magnitude
separating B and BFLM. A step in this direction has been
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“Lendület” grant No. LP2011-011.

made in Ref. [5], where we have derived the asymp-
totic behaviour of hadronic total cross sections in the
framework of the nonperturbative approach to soft high-
energy scattering [6, 7, 8], finding indeed a “Froissart-
like” behaviour, and a theoretical prediction for B in fair
agreement with experiments.

2. Nonperturbative approach to soft high-energy

scattering

Understanding the rise of σtot is part of the prob-
lem of soft high-energy scattering, characterised by
|t| ≤ 1 GeV2 � s. In this regime perturbation theory
is not fully reliable, and a nonperturbative approach is
needed. In a nutshell, the nonperturbative approach to
elastic meson-meson scattering is as follows [6, 7, 8]:

1. mesons are described as wave packets of transverse
colourless dipoles;

2. in the soft high-energy regime, the dipoles travel
essentially undisturbed on their classical, almost
lightlike trajectories;

3. mesonic amplitudes are obtained from the dipole-
dipole (dd) amplitudes after folding with the
appropriate squared wave functions, A(s, b) =
〈〈A(dd)(s, b; ν)〉〉.
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Figure 1: The relevant Euclidean Wilson loops.

Here b is the impact parameter2, ν denotes collectively
the dipole variables (longitudinal momentum fraction,
transverse size and orientation), and 〈〈. . .〉〉 stands for
integration over the dipole variables with the mesonic
wave functions. This approach extends also to processes
involving baryons, if one adopts for them a quark-
diquark picture [9].

At high energy the dd amplitude is given by the nor-
malised connected correlator CM of the Wilson loops
(WL) running along the classical trajectories of the two
dipoles, A(dd)(s, b; ν) = −CM(χ, b; ν), with χ � log s

m2

the hyperbolic angle between the trajectories, and m the
mass of the mesons (taken to be equal for simplicity).

The correlator CM is obtained from the correlator CE

of two Euclidean WL at angle θ (see Fig. 1),

CE(θ, b; ν) ≡ lim
T→∞

〈WC1WC2〉
〈WC1〉〈WC2〉

− 1 , (1)

through the analytic continuation (AC) [10, 11]

CM(χ, b; ν) = CE(θ → −iχ, b; ν) . (2)

A more detailed discussion of the approach can be
found in Ref. [5] and references therein. The Eu-
clidean formulation has allowed the study of the rele-
vant WL correlator by means of nonperturbative tech-
niques, which include instantons [12, 13], the model of
the stochastic vacuum [14], holography [15, 16, 17, 18,
19], and the lattice [13, 20, 21].

2We are interested in unpolarised scattering, so only the impact
parameter modulus matters; for definiteness, we keep it oriented along
direction 2 in the transverse plane.

3. Large-s behaviour of σtot

The energy dependence of σtot is determined by the
large-s, large-b behaviour of the amplitude through the
“effective radius” of interaction bc = bc(s), beyond
which the amplitude is negligible, as σtot ∝ b2

c .
To determine bc, in Ref. [5] we employed the follow-

ing strategy. On the Euclidean side, we obtain infor-
mation on the b- and θ-dependencies of CE by insert-
ing between the WL operators (for large enough b) a
complete set of asymptotic states, characterised by their
particle content and by the momenta and spin of each
particle. After AC this gives us information on the s-
and b-dependencies. This requires two crucial analytic-
ity assumptions:

1. AC can be performed separately for each term in
the sum;

2. WL matrix elements are analytic in θ.

A few reasonable finiteness assumptions on the WL ma-
trix elements are also made.

Under these assumptions, at large χ, b, the relevant
Minkowskian correlator reads [5]

CM(χ, b; ν) �
∑
α�0

fα(ν)
∏

a

[wa(χ, b)]na(α) , (3)

where the sum is over (non-vacuum) states α, and na(α)
is the number of particles of type a in state α. Here

wa(χ, b) =
e[r(a)χ−b]m(a)

√
2πbm(a)

, r(a) ≡ s(a) − 1
m(a) , (4)

with (s(a),m(a)) spin and mass of particles of type a, and
fα are functions of the dipole variables only. Particles of
type a contribute only for b � r(a)χ, and so the effective
radius of interaction is given by

bc(s) =
(
max

a
r(a)
)

log
s

m2 ≡
1
μ

log
s

m2 . (5)

Here we assume the maximum to exist and to be posi-
tive. If it were zero or negative, σtot would be constant
or vanishing at high energy. The spectrum is supposed
to be free of massless states: in case they were present
and with spin at most 1, the maximisation should be
performed on the massive spectrum only [5].

Using Eq. 3 we find for σtot

σtot �
s→∞ 2π(1 − κ)[bc(s)]2 � 2π

μ2 (1 − κ) log2 s
m2 , (6)

with |κ| ≤ 1 due to unitarity [5]. In general κ depends on
the colliding hadrons. Analyticity and crossing symme-
try [22, 23] requirements show that universality is most
naturally achieved if κ = 0, corresponding to a vanish-
ing or oscillating correlator as χ→ ∞ at fixed b.
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Figure 2: Plot of 2π
(
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m

)2
for QCD-stable states. The 2++ glueball

state [24, 25] and the experimental value for B [1] are also shown.
Nuclear data are taken from Ref. [26].

4. Total cross sections from the hadronic spectrum

The total cross section satisfies the bound [5]

σtot �
s→∞

4π
μ2 log2 s

m2 = 2Bth log2 s
m2 , (7)

with μ−1 = maxa r(a) determined from the hadronic
spectrum by maximising r(a) over the stable states of
QCD in isolation, as electroweak effects have been ne-
glected from the onset. Only states with s(a) ≥ 1 are
considered, including nuclei (see Fig. 2).

Quite surprisingly, this singles out the Ω± baryon,
which yields Bth � 0.56 GeV−2. The resulting bound
on σtot is much more stringent than the original bound,
and the prefactor is of the same order of magnitude of
the experimental value Bexp � 0.69 ÷ 0.73 GeV−2 [1].
Furthermore, our bound is not singular in the chiral
limit [27].

If universality is achieved as discussed above in Sec-
tion 3, then σtot is entirely determined by the hadronic
spectrum, and reads [5]

σtot �
s→∞

2π
μ2 log2 s

m2 = Bth log2 s
m2 . (8)

This prediction for the prefactor is in fair agreement
with Bexp, taking into account a systematic error of or-
der 10% on Bexp, estimated by comparing the results of
different fitting procedures [1, 28, 29, 30]. The same
conditions leading to universal total cross sections also
give universal, black-disk-like elastic scattering ampli-
tudes [5].

Total cross sections are usually believed to be gov-
erned by the gluonic sector of QCD. However, in the
quenched theory one finds from the glueball spectrum
BQ � 1.6Bexp, suggesting large unquenching effects [5].

5. Conclusions

In Ref. [5] we have derived the asymptotic, high-
energy behaviour of hadronic total cross sections in the
framework of the nonperturbative approach to soft high-
energy scattering [6, 7, 8]. We find a “Froissart-like”
behaviour σtot ∼ B log2 s, with B (mainly) determined
by the hadronic spectrum (see Eqs. 7 and 8), and in fair
agreement with experiments.

Our main results do not depend on the detailed de-
scription of the hadrons in terms of partons: adding glu-
ons and sea quarks to the wave functions would lead to
more complicated WLs, but since our argument is inde-
pendent of their detailed form, our conclusions remain
unchanged.
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