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Abstract

Lagrangian subspaces are linear subspaces that appear naturally in control theory applications,
and especially in the context of algebraic Riccati equations. We introduce a class of semidefinite
Lagrangian subspaces and show that these subspaces can be represented by a subset I ⊆
{1, 2, . . . , n} and a Hermitian matrix X ∈ C

n×n with the property that the submatrix XII
is negative semidefinite and the submatrix XIcIc is positive semidefinite. A matrix X with
these definiteness properties is called I-semidefinite and it is a generalization of a quasidefinite
matrix. Under mild hypotheses which hold true in most applications, the Lagrangian subspace
associated to the stabilizing solution of an algebraic Riccati equation is semidefinite, and in
addition we show that there is a bijection between Hamiltonian and symplectic pencils and
semidefinite Lagrangian subspaces; hence this structure is ubiquitous in control theory. The
(symmetric) principal pivot transform (PPT) is a map used by Mehrmann and Poloni [SIAM
J. Matrix Anal. Appl., 33(2012), pp. 780–805] to convert between two different pairs (I, X) and
(J , X ′) representing the same Lagrangian subspace. For a semidefinite Lagrangian subspace,
we prove that the symmetric PPT of an I-semidefinite matrix X is a J -semidefinite matrix X ′,
and we derive an implementation of the transformation X Ô→ X ′ that both makes use of the
definiteness properties of X and guarantees the definiteness of the submatrices of X ′ in finite
arithmetic. We use the resulting formulas to obtain a semidefiniteness-preserving version of
an optimization algorithm introduced by Mehrmann and Poloni to compute a pair (Iopt, Xopt)
with M = maxi,j |(Xopt)ij | as small as possible. Using semidefiniteness allows one to obtain a
stronger inequality on M with respect to the general case.
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1 Introduction and preliminaries

The symmetric principal pivot transform of a matrix X ∈ C
n×n with respect to an index set

K ⊆ {1, 2, . . . , n} is defined as the matrix Y such that

YKK=−X−1
KK, YKKc=X−1

KKXKKc ,

YKcK=XKcKX−1
KK, YKcKc=XKcKc − XKcKX−1

KKXKKc ,
(1)
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where we denote by XIJ a submatrix of X with rows and columns indexed by the sets I and
J , respectively (the order of the indices does not matter as long as it is chosen consistently),
and Kc denotes the complement of K in {1, 2, . . . , n}.

For instance, if K = {1, 2, . . . , k} is the set of indices corresponding to the leading block of
X, then

X =

[ k n−k

k X11 X12

n−k X21 X22

]
, Y =

[ k n−k

k −X−1
11 X−1

11 X12

n−k X21X−1
11 X22 − X21X−1

11 X12.

]
.

Note the peculiar structure of this transformation: we invert a principal submatrix of X and
we perform a Schur complementation on its complement.

The map X Ô→ Y defined in (1) is a symmetric variant of the principal pivot transform
(PPT), which appears across various fields under different names. In statistics it is known as
the sweep operator when it is used to solve least-squares regression problems [9], or as partial
inversion in the context of linear graphical chain models [25]. Duffin, Hazony and Morrison
analyze network synthesis [7] and call it gyration. In numerical linear algebra the PPT is often
called the exchange operator and it is of interest since it relates computations in one structured
class of matrices to another. Stewart and Stewart [22] use the exchange operator to generate
J-orthogonal matrices (matrices Q ∈ R

n×n such that QT JQ = J , where J = diag(±1) is a
signature matrix) from hyperbolic Householder transformations. Higham [11] further shows how
to obtain a hyperbolic CS decomposition of a J-orthogonal matrix directly from the standard
CS decomposition via the exchange operator. Moreover, certain important classes of matrices
are invariant under this operation. Tucker [24] shows that the principal pivot transform of
a P -matrix (a matrix whose principal minors are all positive) is again a P -matrix when the
matrix is real. This result was extended to complex P -matrices by Tsatsomeros in [23], where
further details of the history and properties of the PPT can be found. An overview by Higham
[11, sec. 2] provides additional references.

Mehrmann and Poloni [18] use the symmetric PPT (1) in the context of Lagrangian sub-
spaces, which are an essential structure in control theory applications (e.g. [1, 8, 14, 17]), to
obtain their permuted Lagrangian graph representation, and show that it both preserves the
Lagrangian structure in computations and is numerically stable to work with. In this repre-
sentation a Lagrangian subspace is identified with the pair (I, X), where I ⊆ {1, 2, . . . , n} and
X ∈ C

n×n is Hermitian. The symmetric PPT (1) is used to convert between two different
representations in an optimization algorithm [18, Alg. 2] which computes a subset Iopt and
an associated Xopt whose elements are bounded by a small constant. Using this matrix Xopt

improves numerical stability in several contexts, see [20].
In this paper we focus on a class of Lagrangian subspaces whose representation (I, X) has

additional structure. Let the symbol ≻ denote the Löwner ordering: A ≻ B (A ² B) means
that A − B is positive (semi)definite. We say that a Hermitian matrix X = X∗ ∈ C

n×n is
I-definite, for I ⊆ {1, 2, . . . , n}, if

XII ≺ 0 and XIcIc ≻ 0. (2)

If the previous definition holds with the symbols ≻, ≺ replaced by ², ° then X is I-semidefinite.
For I = ∅ an I-definite matrix is simply a positive definite matrix and for I = {1, 2, . . . , n} an
I-definite matrix is negative definite. In all other cases, an I-definite matrix is a generalization
of a quasidefinite matrix, which is I-definite for I = {1, 2, . . . , k} with some k < n.

Identifying this class of subspaces and exploiting its properties in applications has several
advantages: one can improve a bound on the elements of the matrix Xopt and preserve this
additional structure, which is, for instance, crucial for the existence of a positive semidefinite
solution X of an algebraic Riccati equation.



2 PPTs and Lagrangian subspaces 3

The rest of the paper is structured as follows. In Section 2 we present the basic definitions
and concepts related to Lagrangian subspaces and their representations (I, X). We introduce a
class of Lagrangian (semi)definite subspaces in Section 3 and prove that for these subspaces the
Hermitian matrix X in the pair (I, X) which represents the Lagrangian semidefinite subspace
is I-semidefinite for all possible choices of I. In Section 4 we link Lagrangian semidefinite
subspaces to Hamiltonian and symplectic pencils appearing in control theory. In Section 5
we derive an implementation of the symmetric PPT (1) which converts between two different
representations (I, X) and (J , X ′) of a Lagrangian semidefinite subspace. Specifically, we show
how an I-semidefinite matrix X can be converted to a J -semidefinite matrix X ′ for a given index
set J by the PPT that both makes use of the definiteness properties of X and guarantees the
definiteness of the blocks of X ′ in finite arithmetic. The symmetric PPT in one case requires the
computation of the inverse of a quasidefinite matrix with factored diagonal blocks and we also
present an inversion formula which uses unitary factorizations to directly compute the factors
of the diagonal blocks of the quasidefinite inverse. In Section 6 we prove that all elements
of an Iopt-semidefinite matrix Xopt associated with a semidefinite Lagrangian subspace are
bounded by 1 in modulus, and present the optimization algorithm which computes an optimal
representation. We test the performance of the algorithm on several numerical experiments in
Section 7 and present some concluding remarks in Section 8.

2 PPTs and Lagrangian subspaces

An n-dimensional subspace U of C2n is called Lagrangian if u∗Jnv = 0 for every u, v ∈ U , where
u∗ denotes the conjugate transpose of a vector u,

Jn =

[
0 In

−In 0

]
,

and In is the identity matrix. A full column rank matrix U ∈ C
2n×n is a basis for a Lagrangian

subspace if and only if U∗JnU = 0. For U, V ∈ C
2n×n of full column rank we write U ∼ V if

U = V M for a square invertible M ∈ C
n×n. Note that this implies that U and V have the

same column space, i.e. Im(U) = Im(V ).
In computational practice, a subspace U is typically represented through a matrix U whose

columns span it. A key quantity is its condition number κ(U) = σmax(U)/σmin(U): the sensitiv-
ity of U = Im(U) as a function of U depends on it [21, p. 154], as well as the numerical stability
properties of several linear algebra operations associated to it, for instance, QR factorizations
and least-squares problems [10, Chap. 19 and 20]. Hence, in most applications the natural
choice for a basis is a matrix U with orthonormal columns, which ensures κ(U) = 1. However,
if a matrix U is partitioned as

U =

[
U1

U2

]
∈ C

2n×n, U1, U2 ∈ C
n×n,

then it spans a Lagrangian subspace if and only if U∗
1 U2 = U∗

2 U1, which is a property very
difficult to preserve in finite arithmetic. If the matrix U1 is invertible, one can write

U =

[
In

X

]
U1, X = U2U−1

1 , (3)

and hence obtain a different matrix V =
[

I
n

X

]
whose columns span the same subspace.

Matrices of the form

G(X) =

[
In

X

]
, X ∈ C

n×n (4)
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are called graph matrices, since their form resembles the definition of the graph of a function
as the set of pairs (x, f(x)), or Riccati matrices, since they are related to the algebraic Riccati
equations [14]. Namely, the matrix X is a solution to a continuous-time algebraic Riccati
equation Q + XA + A∗X − XGX = 0, where A, G, Q, X ∈ C

k×k and G = G∗, Q = Q∗, if and
only if

H

[
Ik

X

]
=

[
Ik

X

]
(A − GX), (5)

where the associated matrix H is Hamiltonian and given by

H =

[
A −G

−Q −A∗

]
.

Unlike previous publications, we prefer to use the name Riccati matrix here for G(X), since
it is less likely to induce confusion with graphs as the mathematical objects with nodes and
edges. From (3), since U1 is nonsingular it follows that

U ∼ G(U2U−1
1 ) (6)

and it is easy to see from the definition that ImG(X) is Lagrangian if and only if X = X∗, a
condition which is trivial to ensure in numerical computation. Hence, if the object of interest is
the Lagrangian subspace ImU , one can associate it with the Hermitian matrix X and use only
this matrix to store and work on the subspace. The potential difficulties with this approach
come from computing X = U2U−1

1 since U1 could be ill-conditioned or even singular.
Mehrmann and Poloni [18] consider a slightly more general form instead. For each subset

I ⊆ {1, 2, . . . , n}, the symplectic swap matrix associated with I is defined as

ΠI =

[
In − D D

−D In − D

]
∈ R

2n×2n, (7)

where D is the diagonal matrix such that

Dii =

{
1, i ∈ I,

0, i Ó∈ I.

The matrices ΠI are symplectic (ΠT
I JnΠI = Jn) and orthogonal (ΠT

IΠI = I2n), and the multi-
plication with ΠI permutes (up to a sign change) the elements of a 2n-length vector, with the
limitation that the ith entry can only be exchanged with the (n+ i)th, for each i = 1, 2, . . . , n.

Example 1. When n = 2, the four symplectic swap matrices are

Π∅ = I4, Π{1} =




0 0 1 0
0 1 0 0

−1 0 0 0
0 0 0 1


, Π{2} =




1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0


, Π{1,2} = J2.

Given a full column rank matrix U ∈ C
2n×n such that ImU is Lagrangian and a set I ⊆

{1, 2, . . . , n}, define the symplectic swap ΠI as in (7) and partition

ΠIU =

[
U1

U2

]
, U1, U2 ∈ C

n×n. (8)

If the top n × n block U1 is invertible then

U ∼ GI(U2U−1
1 ), (9)
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where

GI(X) = ΠT
I

[
In

X

]
, X ∈ C

n×n. (10)

Note that (10) generalizes the notion of a Riccati matrix (4) by not requiring that the identity
matrix is contained in the top block but that it can be pieced together (modulo signs) from a
subset of rows of the matrix GI(X). Clearly, the pair (I, X), with X = U2U−1

1 , identifies ImU
uniquely.

The representation (9) is called the permuted Lagrangian graph representation in [18] and
it generalizes the representation (6), while keeping the property that ImGI(X) is Lagrangian if
and only if X is Hermitian. We use the name permuted Riccati representation (or basis) here.

Theorem 2.1 ([18, sec. 3]). Let U ∈ C
2n×n. The following properties are equivalent.

1. ImU is Lagrangian.

2. For a particular choice of I ⊆ {1, 2, . . . , n} we have U ∼ GI(X) and it holds that X = X∗.

3. For all choices of I ⊆ {1, 2, . . . , n} such that U ∼ GI(X), it holds that X = X∗.

Moreover, for each U satisfying the above properties there exists at least one Iopt ⊆ {1, 2, . . . , n}
such that U ∼ GIopt

(Xopt) and Xopt = X∗
opt satisfies

|(Xopt)ij | ≤
{
1, if i = j,√
2, otherwise.

(11)

As with the Riccati matrix representation, we can use any of the matrices X such that
U ∼ GI(X) to store the Lagrangian subspace ImU on a computer and operate on it, since the
property that X must be Hermitian can be easily enforced. The choice with Iopt is particularly
convenient from a numerical point of view: using (11), one can prove that κ(GI(X)) cannot be
too large [18, Thm. 8.2].

Example 2. For the matrix

U =




1 1
2 1
5 3
8 5


 ,

whose column space ImU is Lagrangian we have

U∼G∅

([
1 2
2 3

])
, U∼G{1}

([
−1 2
2 −1

])
,

U∼G{2}

([
−1/3 2/3
2/3 −1/3

])
, U∼G{1,2}

([
3 −2

−2 1

])
.

All the matrices X in GI(X) are Hermitian. For Iopt = {2}, the condition (11) is satisfied.

Example 3. For the matrix

U =




1 1
2 1
6 4
6 4


 ,

whose column space ImU is Lagrangian we have

U ∼ G∅

([
2 2
2 2

])
,
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and for both

U ∼ G{1}

([
−1/2 1
1 0

])
and U ∼ G{2}

([
0 1
1 −1/2

])

the condition (11) is satisfied. The top 2 × 2 block of Π{1,2}U is singular, hence the permuted
Riccati representation (9) does not exist for I = {1, 2}.

The following result shows how the symmetric PPT (1) converts between two different
permuted Riccati representations, which is then used in the optimization algorithm [18, Alg. 2]
to compute (Iopt, Xopt).

Lemma 2.2 ([18, Lem. 5.1]). Let I, J ⊆ {1, 2, . . . , n}, and let U ∈ C
2n×n be a matrix whose

column space is Lagrangian and such that U ∼ GI(X). Let K be the symmetric difference set

K = {i ∈ {1, 2, . . . , n} : i is contained in exactly one among I and J }.

Then, U ∼ GJ (X
′) if and only if XKK is invertible, and in this case X ′ = DY D, where Y is

the symmetric PPT of X defined in (1) for the index set K, and D is the diagonal matrix such
that

Dii =

{
−1, i ∈ I \ J ,

1, otherwise.

Informally speaking, when we wish to transform the matrix X such that U ∼ GI(X) into
the matrix X ′ so that U ∼ GJ (X

′) for a new set J , we have to perform a symmetric PPT (1)
with respect to the indices that we wish to add to or remove from I, and then flip the signs in
the rows and columns with the indices that we remove from I.
Example 4. Take I = {1} and the matrix U from Example 2 so that U ∼ G{1}(X) with

X =

[
−1 2
2 −1

]
.

Applying Lemma 2.2 transforms between the remaining three representations as follows. For
J = ∅ Lemma 2.2 defines K = {1} and D = diag(−1, 1). Applying (1) to X gives

Y =

[
1 −2

−2 3

]
, X ′ = DY D =

[
1 2
2 3

]
.

Therefore, U ∼ G∅(X
′) holds. For J = {2} we have K = {1, 2} and D = diag(−1, 1). In this

case

Y = −
[
1 −2

−2 3

]−1

=

[
−1/3 −2/3
−2/3 −1/3

]
, X ′ = DY D =

[
−1/3 2/3
2/3 −1/3

]
,

leading to the representation U ∼ G{2}(X
′). Finally, for J = {1, 2} we have K = {2} and

D = I2. It follows that U ∼ G{1,2}(X
′) for

X ′ = Y =

[
3 −2

−2 1

]
.
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3 Semidefinite Lagrangian subspaces

The equation (5) shows that solving a continuous-time algebraic Riccati equation Q + XA +
A∗X − XGX = 0 is equivalent to solving an invariant subspace problem for the associated
Hamiltonian matrix H, if we impose that the subspace is represented via a Riccati basis G(X).
If the matrices Q and G are positive semidefinite, under standard conditions (see, e.g. [5, 17, 19])
the Riccati equation has a unique positive semidefinite solution, and this is the solution that is
usually of interest. A common approach to computing it is to determine a basis for the stable
invariant subspace of H, i.e., the one corresponding to the eigenvalues of H in the open left half

plane (e.g. [2, 15, 17]). This subspace is Lagrangian and if U =
[

U1

U2

]
is its basis then the matrix

U1 is invertible and X = U2U−1
1 is the positive semidefinite solution to the Riccati equation

[19]. Specifically, U ∼ G(X) and the matrix X = X∗ ≥ 0.
In this section we take a closer look at Lagrangian subspaces which have a Riccati basis

with this property. We call a Lagrangian subspace definite if it can be written as

U = ImG(X), X = X∗ ≻ 0, X ∈ C
n×n,

where G(X) is defined in (4). The following result relates I-definite matrices defined by the
property (2) and definite Lagrangian subspaces.

Theorem 3.1. Let U ∈ C
2n×n have full column rank. The following properties are equivalent.

1. U = ImU is Lagrangian definite.

2. For some I ⊆ {1, 2, . . . , n} we have U ∼ GI(X), where X is I-definite and GI(X) is
defined in (10).

3. For all I ⊆ {1, 2, . . . , n} we have U ∼ GI(X) and X is I-definite.

Proof. Let U ∼ G(X) and X ≻ 0. From the definition of a symplectic swap matrix (7) it
follows that Π∅ = I2n and hence G∅(X) = G(X). Therefore, the definition of a Lagrangian
definite subspace can be reformulated as stating U ∼ GI(X), where X is I-definite for I = ∅. If
this holds, then for each J ⊆ {1, 2, . . . , n} Lemma 2.2 defines K = J and D = In. Since X ≻ 0
every principal submatrix XKK is also positive definite and therefore U ∼ GJ (X

′) for every J ,
where X ′ is the symmetric PPT (1) of X. It is clear from the formulas (1) and the properties
of Schur complements [12, sec. 12.3] that X ′ is J -definite, as required.

On the other hand, if U ∼ GI(X) and X is I-definite for some I, then X is Hermitian by
definition and hence U spans a Lagrangian subspace. We prove that the subspace is Lagrangian
definite by applying Lemma 2.2 with J = ∅ to X. It follows that K = I and since XKK =
XII ≺ 0, we have U ∼ G∅(X

′) = G(X ′), with X ′ = DY D as in Lemma 2.2. Since X ′ is
defined via congruence it is sufficient to prove that Y , the symmetric PPT of an I-definite
matrix with respect to the index set I, is positive definite. This follows from (1) due to the
definiteness properties of the blocks of X: both YKK = −X−1

II and its Schur complement XIcIc −
XIcIX−1

II XIIc = YKcKc are positive definite, so again by the properties of Schur complements
Y is positive definite and the proof is complete.

More interesting is the corresponding semidefinite case, in which existence of the permuted
Riccati representation is not guaranteed for all I, cf. Example 3.

Theorem 3.2. Let U ∈ C
2n×n have full column rank. The following properties are equivalent.

1. For some I ⊆ {1, 2, . . . , n} we have U ∼ GI(X), where X is I-semidefinite and GI(X) is
defined in (10).
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2. For all I ⊆ {1, 2, . . . , n} such that the permuted Riccati representation exists, i.e., U ∼
GI(X), the matrix X is I-semidefinite.

When these properties hold, we call the subspace Lagrangian semidefinite.

Proof. Let I be such that U ∼ GI(X) and X is I-semidefinite. Consider the matrix Y obtained
by perturbing the diagonal entries of X so that the blocks XII and XIcIc become strictly
definite, that is, for some ε > 0,

YII=XII − εI ≺ 0, YIIc=XIIc ,
YIcI=XIcI , YIcIc=XIcIc + εI ≻ 0.

Then the subspace ImUε, with Uε ∼ GI(Y ), is Lagrangian definite, and by Theorem 3.1, the
permuted Riccati representations Uε ∼ GI(Z) exist for every I with Z having the required
definiteness properties. By passing to the limit ε → 0, we get the semidefiniteness of the blocks
of Z (whenever the representation exists).

Example 5. Consider the subspace in Example 3. We have U ∼ G∅(X) for X positive semidef-
inite, so U is Lagrangian semidefinite. Other choices of the index set for which the permuted
Riccati representations exist are I = {1} and I = {2} and the corresponding matrices X are
{1}-semidefinite and {2}-semidefinite, respectively.

4 Semidefinite Lagrangian subspaces associated with control-theory pencils

Section 6 of [18] introduces a method to map matrix pencils with special structures to La-
grangian subspaces. The main reason why this kind of bijection is used is that changing a
basis in the subspace is equivalent to premultiplying the pencil by a nonsingular matrix, which
preserves eigenvalues and right eigenvectors of regular pencils. This makes it possible to apply
several techniques based on PPTs to pencils as well. Specifically, we write

M1 − xN1 ∼ M2 − xN2,

and say that the two pencils are left equivalent, if there exists a nonsingular square matrix S
such that M1 = SM2 and N1 = SN2. It follows that M1 − xN1 ∼ M2 − xN2 if and only if[
M1 N1

]∗
∼

[
M2 N2

]∗
. Hence, if we are interested in the eigenvalues and right eigenvectors

of a regular pencil we may instead work with any regular pencil left equivalent to it.
We construct here a simple variation of the map from [18] which sends the pencils appearing

in most applications in control theory to semidefinite Lagrangian subspaces.
A Hamiltonian pencil is a matrix pencil M −xN ∈ C

2k×2k[x] such that MJkN∗+NJkM∗ =
0. In several problems in control theory, e.g. [16, 17], one deals with Hamiltonian pencils in the
form [

A −G
−Q −A∗

]
− xI2k, A, G, Q ∈ C

k×k, G = G∗ ² 0, Q = Q∗ ² 0; (12)

moreover, factorizations G = BB∗ and Q = C∗C (with B ∈ C
k×t, C ∈ C

r×k, r, t ≤ k) are
known in advance. In the following theorem, we show that this kind of structure is mapped to
a semidefinite Lagrangian subspace by a special bijection between pencils and 4k ×2k matrices.

Theorem 4.1. Let

M − xN =
[
M1 M2

]
− x

[
N1 N2

]
, M1, M2, N1, N2 ∈ C

2k×k
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be a matrix pencil without common row kernel (i.e., there exists no vector v Ó= 0 such that
v∗M = v∗N = 0). Construct the matrix

U =
[
M1 −N1 −N2 M2

]∗
. (13)

Then,

1. M − xN is Hamiltonian if and only if ImU is Lagrangian.

2. If M − xN is in the form (12), then ImU is Lagrangian semidefinite.

Proof. The first claim is proved by expanding the relation U∗J2kU = 0 into blocks. This leads
to the expression −M1N∗

2 − N1M∗
2 + N2M∗

1 + M2N∗
1 = 0, which we can recombine to get

MJkN∗ + NJkM∗ = 0.
For the second claim, take M − xN as in (12), and I = {1, 2, . . . , k}. We have

ΠIU =




0 0 Ik 0
0 Ik 0 0

−Ik 0 0 0
0 0 0 Ik







A∗ −Q
−Ik 0
0 −Ik

−G −A


 =




0 −Ik

−Ik 0
−A∗ Q
−G −A


 ∼




Ik 0
0 Ik

−Q A∗

A G


 . (14)

Hence, U ∼ ΠT
I G(X) = GI(X), with X =

[
−Q A

∗

A G

]
, which is I-semidefinite. Thus, by Theo-

rem 3.2, the subspace ImU is Lagrangian semidefinite.

Equation (6.4) in [18] gives a matrix U in a form similar to (13), which satisfies only the
first part of the theorem.

Similarly, a symplectic pencil is a matrix pencil M − xN ∈ C
2k×2k[x] such that MJkM∗ =

NJkN∗. In several problems in discrete-time control theory, e.g. [8, 16, 17], one deals with
symplectic pencils in the form

[
A 0

−Q Ik

]
− x

[
Ik G

0 AT

]
, A, G, Q ∈ C

k×k, G = G∗ ² 0, Q = Q∗ ² 0; (15)

again, factorizations G = BB∗, Q = C∗C as above are often available. Similarly to the
Hamiltonian case, there is a bijection which maps this structure into a semidefinite Lagrangian
subspace.

Theorem 4.2. Let

M − xN =
[
M1 M2

]
− x

[
N1 N2

]
, M1, M2, N1, N2 ∈ C

2k×k

be a matrix pencil without common row kernel (i.e., there exists no vector v Ó= 0 such that
v∗M = v∗N = 0). Construct the matrix

U =
[
M1 −N1 −M2 −N2

]∗
. (16)

Then,

1. M − xN is symplectic if and only if ImU is Lagrangian.

2. If M − xN is in the form (15), then ImU is Lagrangian semidefinite.

Proof. The proof of both claims is analogous to the proof of Theorem 4.1. Specifically, the
Lagrangian semidefinite subspace U from (16) is also associated to the quasidefinite matrix

X =
[

−Q A
∗

A G

]
.
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Once again, a construction given in Equation (6.2) in [18] provides an analogous bijection
that satisfies only the first part of the theorem. The main use for these bijections is producing
left-equivalent pencils with better numerical properties. We show it in a simple case.

Example 6. Consider k = 1, A = 1, G = 105, Q = 0.1. The Hamiltonian pencil M − xN
obtained as in (12) has the condition number κ(

[
M
N

]
) ≈ 105, that is, a perturbation of relative

magnitude 10−5 can turn it into a singular pencil (one in which M, N have a common kernel).
If we construct the matrix U in (13) associated with it and apply Algorithm 1 described in
Section 6 to obtain an equivalent permuted Riccati representation of U with smaller entries, we
obtain a left-equivalent pencil

M̂ − xN̂ =

[
0.1 0

−10−5 1

]
− x

[
10−5 −1

−10−5 0

]
,

with κ(
[

M̂
N̂

]
) ≈ 14, a considerably lower value. The two pencils are Hamiltonian and have the

same eigenvalues and right eigenvectors, so they are completely equivalent from a numerical
perspective.

The optimization algorithm [18, Alg. 2] uses the PPT formulas (1) to compute the optimal
permuted Riccati representation of a Lagrangian subspace and it can be used to normalize
pencils [18, sec. 6]. If a PPT is applied to a Lagrangian semidefinite subspace ImU , where
U is for example given in (13) or (16), the definiteness properties of the blocks G and Q are
not exploited. Furthermore, due to Theorem 3.2, for the computed optimal representation
(Iopt, Xopt) the matrix Xopt must be Iopt-semidefinite but the definiteness properties of its
submatrices are not guaranteed due to possible numerical errors. Note the structure of the
matrix X appearing in the proof of the second part of Theorem 4.1 and Theorem 4.2: when
the factors B and C are known for representations (12) and (15), the quasidefinite matrix X is

X =

[
−Q A∗

A G

]
=

[
−C∗C A∗

A BB∗

]
.

In the next section we describe the structure preserving implementation of the symmetric PPT
(1) for I-semidefinite matrices X in factored form, which resolves the issues described above
and leads to the structured version of the optimization algorithm presented in section 6.

5 Applying a PPT to a factored representation of an I-semidefinite matrix

Let X ∈ C
n×n be I-semidefinite and k = card(I), where card(I) denotes the number of elements

of the set I. Due to the definiteness properties there exist matrices A ∈ C
(n−k)×k, B ∈ C

(n−k)×t

and C ∈ C
r×k such that

XII = −C∗C ∈ C
k×k, XIcI = A, XIIc = A∗, XIcIc = BB∗ ∈ C

(n−k)×(n−k). (17)

Any A, B and C satisfying (17) are called the factors of the I-semidefinite matrix X. We also
introduce the following compact form of (17):

X = CI

([
C 0
A B

])
,

and say that the map CI converts between any factor representation of the I-semidefinite matrix
X and the real matrix. Clearly, the factors B and C are not unique as for any unitary matrices
H and U of conformal size we have

X = CI

([
C 0
A B

])
= CI

([
HC 0
A BU

])
.
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Given an I-semidefinite matrix X in a factored form (17) and an index set J , our goal in
this section is to derive formulas for the symmetric PPT (1) needed in Lemma 2.2 to compute
a J -semidefinite matrix X ′ so GI(X) ∼ GJ (X

′) where

X ′ = CJ

([
C ′ 0

A′ B′

])
,

and the factors A′, B′ and C ′ are computed directly from A, B and C. We distinguish three
cases for the index set J we are converting to:

Case 1: J ⊆ I (the negative semidefinite block shrinks, the positive semidefinite block ex-
pands), in which case K = I \ J ,

Case 2: J ⊇ I (the negative semidefinite block expands, the positive semidefinite block shrinks),
where K = J \ I, and

Case 3: I \ J Ó= ∅ and J \ I Ó= ∅, in which case K = (I \ J ) ∪ (J \ I).

We now derive the formulas for A′, B′ and C ′ in each case. For simplicity, so that we
may use a simpler matrix form instead of working with a generic block partition (17), take
I = {1, 2 . . . , k} so that X is

X = CI

([
C 0
A B

])
=

[ k n−k

k −C∗C A∗

n−k A BB∗

]
. (18)

5.1 Case 1.

Recall that we have A ∈ C
(n−k)×k, B ∈ C

(n−k)×t, C ∈ C
r×k as factors of X. Again for simplicity,

we take J = {1, 2, . . . , k − l} for some l with 1 ≤ l ≤ k. Let H be a unitary matrix such that

A =
[ k−l l

n−k A1 A2

]
, HC =

[ k−l l

r−l C11 0
l C21 C22

]
. (19)

Then the factor representation (18) of X is

X = CI

([
HC 0

A B

])
=




−C∗
11C11 − C∗

21C21 −C∗
21C22 A∗

1

−C∗
22C21 −C∗

22C22 A∗
2

A1 A2 BB∗


 .

Now we use Lemma 2.2. The pivot index set is K = {k − l + 1, . . . , k}. Note that for this PPT
to exist it must hold r ≥ l, otherwise the matrix −C∗C has rank r < l and hence XKK, which
is a submatrix of −C∗C, cannot be invertible. For the pivot submatrix XKK = −C∗

22C22 to be
nonsingular, the square matrix C22 must be invertible. The diagonal sign change matrix D is
the block diagonal matrix D = diag(Ik−l, −Il, In−k), and applying (1) to X to compute Y we
get

X ′ = DY D =




−C∗
11C11 −C∗

21C−∗
22 A∗

1 − C∗
21C−∗

22 A∗
2

− C−1
22 C21 (C∗

22C22)
−1 (C∗

22C22)
−1A∗

2

A1 − A2C−1
22 C21 A2(C

∗
22C22)

−1 BB∗ + A2(C
∗
22C22)

−1A∗
2


 .
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The matrix X ′ is J -semidefinite (as follows by Theorem 3.2) and it is easy to check that it

can be represented as X ′ = CJ

([
C ′ 0

A′ B′

])
for A′ ∈ C

(l+n−k)×(k−l), B′ ∈ C
(l+n−k)×(l+t),

C ′ ∈ C
(r−l)×(k−l) given by

A′ =

[
−C−1

22 C21

A1 − A2C−1
22 C21

]
, B′ =

[
C−1

22 0

A2C−1
22 B

]
, C ′ = C11. (20)

5.2 Case 2.

Case 2 is very similar to Case 1. We again start from A ∈ C
(n−k)×k, B ∈ C

(n−k)×t, C ∈ C
r×k

and now take 1 ≤ m ≤ n − k, with m ≤ t, to apply Lemma 2.2 to X from (18) for J =
{1, 2, . . . , k, k + 1, . . . , k + m}, for simplicity. Let U be a unitary matrix such that

A =

[ k

m A1

n−k−m A2

]
, BU =

[ m t−m

m B11 0
n−k−m B21 B22

]
. (21)

The factor representation (18) expands to

X = CI

([
C 0

A BU

])
=




−C∗C A∗
1 A∗

2

A1 B11B∗
11 B11B∗

21

A2 B21B∗
11 B21B∗

21 + B22B∗
22


 .

From Lemma 2.2 we have K = {k + 1, . . . , k + m} and D = In. The pivot submatrix is
XKK = B11B∗

11 and B11 must be invertible for this PPT operation to be defined. If this is the
case, we have

X ′ = DY D =




−C∗C − A∗
1(B11B∗

11)
−1A1 A∗

1(B11B∗
11)

−1 A∗
2 − A∗

1B−∗
11 B∗

21

(B11B∗
11)

−1A1 −(B11B∗
11)

−1 B−∗
11 B21

A2 − B21B−1
11 A1 B21B−1

11 B22B∗
22




= CJ

([
C ′ 0

A′ B′

])
,

where A′ ∈ C
(n−k−m)×(k+m), B′ ∈ C

(n−k−m)×(t−m) and C ′ ∈ C
(r+m)×(k+m) are given by

A′ =
[
A2 − B21B−1

11 A1 B21B−1
11

]
, B′ = B22, C ′ =

[
C 0

−B−1
11 A1 B−1

11

]
. (22)

5.3 Case 3

Case 3 is somewhat more complicated. We start from A ∈ C
(n−k)×k, B ∈ C

(n−k)×t, C ∈ C
r×k

and take 1 ≤ l ≤ k and 1 ≤ m ≤ n − k, such that l ≤ r and m ≤ t. For simplicity, we look at
J = {1, 2, . . . , k − l} ∪ {k + 1, . . . , k + m}. Let H and U be unitary matrices such that

A =

[ k−l l

m A11 A12

n−k−m A21 A22

]
, BU =

[ m t−m

m B11 0
n−k−m B21 B22

]
, HC =

[ k−l l

r−l C11 0
l C21 C22

]
. (23)
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In this case (18) is

X = CI

([
HC 0

A BU

])

=




−C∗
11C11 − C∗

21C21 −C∗
21C22 A∗

11 A∗
21

−C∗
22C21 −C∗

22C22 A∗
12 A∗

22

A11 A12 B11B∗
11 B11B∗

21

A21 A22 B21B∗
11 B21B∗

21 + B22B∗
22


 .

(24)

From Lemma 2.2 we have K = {k − l + 1, . . . , k, k + 1, . . . , k + m} and the pivot submatrix
whose inverse is required is the quasidefinite matrix

XKK =

[
−C∗

22C22 A∗
12

A12 B11B∗
11

]
. (25)

5.3.1 An inversion formula for quasidefinite matrices

It is not difficult to see that whenever a quasidefinite matrix is invertible, its inverse is quasidef-
inite, too. Hence, given A, B, C of conformal sizes, one can write

[
−C∗C A∗

A BB∗

]−1

=

[
−NN∗ K

K∗ L∗L

]
(26)

for suitable matrices K, L, N . In this section, we describe a method to compute K, L, N directly
from A, B, C. In principle, one can assemble the matrix in (26), invert it, and then find the
Cholesky factors of its diagonal blocks. However, this does not appear sound from a numerical
point of view, since it means forming BB∗ and C∗C and then factoring the corresponding
blocks in the computed inverse (which may not be semidefinite due to numerical errors). It is
a problem similar to the infamous normal equations for least-squares problems [10, sec. 20.4].
The only condition appearing in Lemma 2.2 is that the pivot submatrix (25) is invertible and
we wish to keep only that assumption for the existence of the PPT. Hence, formulas which rely
on Schur complements [13, sec. 0.7.3] cannot be used, since BB∗ and C∗C are not guaranteed
to have full rank (consider, e.g. the case A = 1, B = C = 0).

In the following, we present an alternative expression that relies heavily on unitary factor-
izations.

Theorem 5.1. Let

P =

[
−C∗

22C22 A∗
12

A12 B11B∗
11

]
, A12 ∈ C

m×l, B11 ∈ C
m×m, C22 ∈ C

l×l

be an invertible matrix and let Q and H be unitary matrices such that

[
B∗

11

A∗
12

]
= Q

[
R∗

0

]
, Q =

[ m l

m Q11 Q12

l Q21 Q22

]
(27)

and

M =

[
Im 0
0 C22

]
Q = H

[
M11 0
M21 M22

]
, H =

[ m l

m H11 H12

l H21 H22

]
. (28)

Then,
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1. R and M22 are invertible.

2. We have

P −1 =

[
−NN∗ K

K∗ L∗L

]
,

with
N = Q22M−1

22 , K = (Q21 − Q22M−1
22 M21)R

−1, L = M11R−1.

3. The following relations hold:

C22N = H22, C22K = H21L, (29)

LB11 = H∗
11, KB11 = −NH∗

12. (30)

Proof. We use a few manipulations of quasidefinite matrices which are standard in the context
of preconditioners for saddle-point matrices; see for instance [4, sec. 10.4].

Note that P is the Schur complement of −Im in

T =




−Im 0 B∗
11

0 −C∗
22C22 A∗

12

B11 A12 0


 ,

so by the standard results on Schur complements T is nonsingular and

P −1 =

[
0 Il 0
0 0 Im

]
T −1



0 0
Il 0
0 Im


 .

Inserting factors Q̂ = diag(Q, I) and its inverse, we get

P −1 =

[
0 Il 0
0 0 Im

]
Q̂


Q̂∗




−Im 0 B∗
11

0 −C∗
22C22 A∗

12

B11 A12 0


 Q̂




−1

Q̂∗



0 0
Il 0
0 Im




=

[
Q21 Q22 0
0 0 I

] 


∗ ∗ R∗

∗ ∗ 0
R 0 0




−1 


Q∗
21 0

Q∗
22 0
0 I


 .

The top–left 2× 2 block which we have marked with asterisks is −M∗M , with M as in (28), so
we can write it also as

P −1 =

[
Q21 Q22 0
0 0 I

] 


−M∗
11M11 − M∗

21M21 −M∗
21M22 R∗

−M∗
22M21 −M∗

22M22 0
R 0 0




−1 


Q∗
21 0

Q∗
22 0
0 I


 . (31)

The middle matrix in (31) is equal to Q̂∗TQ̂, which is invertible. Hence R and M22 must be
invertible, too, which proves our first statement. The inverse of this block antitriangular matrix
can be computed explicitly as

P −1 =

[
Q21 Q22 0
0 0 I

] 


0 0 R−1

0 −M−1
22 M−∗

22 −M−1
22 M21R−1

R−∗ −R−∗M∗
21M−∗

22 R−∗M∗
11M11R−1







Q∗
21 0

Q∗
22 0
0 I




=

[
−Q22M−1

22 M−∗
22 Q∗

22 (Q21 − Q22M−1
22 M21)R

−1

R−∗(Q∗
21 − M∗

21M−∗
22 Q∗

22) R−∗M∗
11M11R−1

]
=

[
−NN∗ K

K∗ L∗L

]
,
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which proves the second claim.
Expanding the multiplications in the second block column of (28), we get C22Q22 = H22M22

and C22Q21 = H21M11 + H22M21, from which the two equations (29) follow easily. From the
first block row of (27) we get B∗

11 = Q11R∗, and again from (28) we get

H∗
[
I 0
0 C22

]
=

[
M11 0
M21 M22

]
Q∗,

whose first block column reads H∗
11 = M11Q∗

11, H∗
12 = M21Q∗

11 + M22Q∗
12. Putting together

these relations, (30) follows.

We now continue computing the factored version of the PPT in Case 3. Assuming that the
matrix XKK from (25) is nonsingular, the symmetric principal pivot transform Y of X from
(24) exists and we partition it as

Y =




Y11 Y ∗
21 Y ∗

31 Y ∗
41

Y21 −Y22 −Y ∗
32 Y ∗

42

Y31 −Y32 −Y33 Y ∗
43

Y41 Y42 Y43 Y44




. (32)

The middle block is −X−1
KK and from Theorem 5.1 defining K, L, N we have

X−1
KK =

[
−C∗

22C22 A∗
12

A12 B11B∗
11

]−1

=

[
−NN∗ K

K∗ L∗L

]
=

[
Y22 Y ∗

32

Y32 Y33

]
. (33)

Lemma 5.2. The remaining blocks of Y from (32) are given by

Y11 = −C∗
11C11 − C∗

21C21 + C∗
21C22NN∗C∗

22C21 + A∗
11K∗C∗

22C21

+ C∗
21C22KA11 − A∗

11L∗LA11,

Y21 = NN∗C∗
22C21 + KA11,

Y31 = −K∗C∗
22C21 + L∗LA11,

Y41 = A21 − A22NN∗C∗
22C21 − A22KA11 + B21B∗

11K∗C∗
22C21 − B21B∗

11L∗LA11,

Y42 = −A22NN∗ + B21B∗
11K∗,

Y43 = A22K + B21B∗
11L∗L,

Y44 = B21B∗
21 + B22B∗

22 + A22NN∗A∗
22 − B21B∗

11K∗A∗
22

− A22KB11B∗
21 − B21B∗

11L∗LB11B∗
21.

Proof. We get the above formulas after some tedious but straightforward algebra from the PPT
formulas (1), the expression (24) for X and (33).

The sign change matrix D from Lemma 2.2 is D = diag(Ik−l, −Il, Im, In−k−m), and we
finally have

X ′ = DY D =




Y11 −Y ∗
21 Y ∗

31 Y ∗
41

− Y21 −Y22 Y ∗
32 −Y ∗

42

Y31 Y32 −Y33 Y ∗
43

Y41 −Y42 Y43 Y44




,

where the blocks are defined in (33) and Lemma 5.2. What remains is to show that X ′ =

CJ
([

C
′

0
A

′
B

′

])
, where J = {1, 2, . . . , k − l} ∪ {k, k + 1, . . . , k + m}, by finding the factors B′ ∈
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C
(n−k+l−m)×(t−m+l) and C ′ ∈ C

(r−l+m)×(k−l+m) such that
[
−Y22 −Y ∗

42

−Y42 Y44

]
= B′(B′)∗ and

[
−Y11 −Y ∗

31

−Y31 Y33

]
= (C ′)∗C ′. (34)

The factor A′ ∈ C
(n−k+l−m)×(k+m−l) is given by

A′ =

[
−Y21 Y ∗

32

Y41 Y43

]
. (35)

Lemma 5.3. The equalities (34) hold with

B′ =

[
N 0

B21H12 + A22N B22

]
and C ′ =

[
C11 0

H∗
21C21 − LA11 L

]
, (36)

where H12, H21, L and N are defined in Theorem 5.1.

Proof. Define Z = B21H12 + A22N . Then

B′(B′)∗ =

[
NN∗ NZ∗

ZN∗ ZZ∗ + B22B∗
22

]

and we only need to check that these blocks match the blocks specified in (34). From (33) we
have NN∗ = −Y22 and from (30) we get

ZN∗ = B21H12N∗ + A22NN∗ = −B21B∗
11K∗ + A22NN∗ = −Y42,

where we have used the formula for Y42 from Lemma 5.2 for the last equality. What remains is
to show that

ZZ∗ + B22B∗
22 = Y44.

Multiplying out the left hand side and using (30) we see that the above equality holds if and
only if

B21H12H∗
12B∗

21 = B21B∗
21 − B21H11H∗

11B∗
21,

which is true because H from (28) is a unitary matrix and so H11H∗
11 + H12H∗

12 = I.
The proof involving the matrix C ′ uses (29) and is identical to the above.

To summarize the results for Case 3, we have an I-semidefinite matrix X = CI
([

HC 0
A BU

])

for I = {1, . . . , k} and the factors A, BU and HC as in (23), and we wish to transform into
a J -semidefinite matrix X ′ for J = {1, . . . k − l} ∪ {k + 1, . . . , k + m}. Providing that the
matrix XKK from (25) is invertible and its inverse defined by (33), X ′ can be represented as

X ′ = CJ
([

C
′

0
A

′
B

′

])
, where the factor A′ is given by (35) and the factors B′ and C ′ are defined

in Lemma 5.3.

5.4 General formulas

The index sets I and J from the previous sections were chosen for simplicity. Nothing essentially
changes if we use general index sets but the notation becomes much more obscured. To illustrate
this, we briefly sketch the general version of Case 1.

We start from an I-semidefinite matrix X ∈ C
n×n, where I is now any subset of {1, 2, . . . , n}

and Ic = {1, 2, . . . , n} \ I. Let k = card(I) and A ∈ C
(n−k)×k, B ∈ C

(n−k)×t and C ∈ C
r×k

such that
XII = −C∗C, XIcI = A, XIIc = A∗, XIcIc = BB∗.
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Take J ⊆ I and let Ĵ ⊆ {1, . . . , k} be the local index set for the columns of the matrix C
corresponding to the global J . Let Ĵ c = {1, 2, . . . , k}\Ĵ . From Lemma 2.2 we have K = I \J .

Define the unitary matrix H which introduces zeros into each column cj of C, j ∈ Ĵ c,

except in the positions cij for i ∈ L̂, where L̂ is a subset of {1, 2, . . . , r} corresponding to the

local row index set of the matrix C, and such that card(L̂) = card(Ĵ c). Then we have

HC =

[
(HC)L̂cĴ (HC)L̂cĴ c

(HC)L̂Ĵ (HC)L̂Ĵ c

]
=

[ card(Ĵ ) card(Ĵ c

)

card(L̂c

) C11 0
card(L̂) C21 C22

]
.

Note that J ∪ K = I and hence we can partition A as

A =
[
XIcJ XIcK

]
=

[
A1 A2

]
.

Then the negative semidefinite block in X = CI
([

HC 0
A B

])
is now given by

XII = Z, where Z =

[
XJ J XJ K
XKJ XKK

]
=

[
−C∗

11C11 − C∗
21C21 −C∗

21C22

−C∗
22C21 −C∗

22C22

]
.

We apply the PPT (1) with XKK as the pivot matrix, provided that the square matrix C22 is
nonsingular, to get the following X ′:

X ′ = DY D =




X ′
J J X ′

J K X ′
J Ic

X ′
KJ X ′

KK X ′
KIc

X ′
IcJ X ′

IcK X ′
IcIc




=




−C∗
11C11 −C∗

21C−∗
22 A∗

1 − C∗
21C−∗

22 A∗
2

−C−1
22 C21 (C∗

22C22)
−1 (C∗

22C22)
−1A∗

2

A1 − A2C−1
22 C21 A2(C

∗
22C22)

−1 BB∗ + A2(C
∗
22C22)

−1A∗
2


 ,

where the sign change matrix D is partitioned conformally so is the same as in Case 1 (Sec-

tion 5.1). It follows that the matrix X ′ = CJ
([

C
′

0
A

′
B

′

])
is J -semidefinite for A′, B′ and C ′

given by (20).
Note that the above could have also been achieved by defining permutation matrices P1

and P2 and symmetrically permuting the rows and columns of X and X ′ so that the leading
diagonal blocks of the matrices P1XP T

1 and P2X ′P T
2 are XII and X ′

J J , respectively.

6 PPTs with bounded elements

We now use the factor-based formulas for the PPT derived in Section 5 to compute an optimal
permuted Riccati basis for a Lagrangian semidefinite subspace. From [18, Thm. 3.4], which is
here stated as the final part of Theorem 2.1, we know that for a Lagrangian subspace ImU
there exists at least one optimal permuted Riccati representation with Xopt satisfying

|(Xopt)ij | ≤
{
1, if i = j,√
2, otherwise.

The above inequality is sharp, as can be seen from the example [18, sec. 3] where U =
[

I2

X

]
,

X =
[

1
√

2√
2 1

]
. However, a stronger version can be obtained under the additional hypothesis

that ImU is Lagrangian semidefinite (instead of merely Lagrangian).
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Theorem 6.1. Let U ∈ C
2n×n be such that ImU is Lagrangian semidefinite. Then, there exists

Iopt ⊆ {1, 2, . . . , n} such that U ∼ GIopt
(X) and

|xij | ≤ 1 ∀i, j. (37)

Proof. Since ImU is Lagrangian, from the proof of [18, Thm. 3.4] it follows that there exists an
index set I defining the symplectic swap ΠI such that U ∼ GI(X), X ∈ C

n×n is Hermitian and

|xii| ≤ 1,

∣∣∣∣∣ det
[

xii xij

xji xjj

] ∣∣∣∣∣ ≤ 1, i, j = 1, 2, . . . , n. (38)

In addition, since ImU is Lagrangian semidefinite, from Theorem 3.2 it follows that X is I-
semidefinite. We prove that the choice Iopt = I satisfies (37).

For i = j this trivially follows from (38). When i Ó= j, we distinguish four cases.

Case A: i, j ∈ I The block XII is negative semidefinite, hence its submatrix (X){i,j}{i,j} is
negative semidefinite, too, and this implies

|xij |2 = xijxji ≤ |xii||xjj | ≤ 1. (39)

Case B: i, j Ó∈ I The proof is analogous to the previous one, since XIcIc is positive semidefinite.

Case C: i ∈ I, j Ó∈ I By semidefiniteness it follows that −1 ≤ xii ≤ 0 and 0 ≤ xjj ≤ 1. More-
over, by the 2 × 2 case from (38) we get

|xiixjj − |xij |2| = |xii|xjj + |xij |2 ≤ 1,

and hence |xij | ≤ 1.

Case D: i Ó∈ I, j ∈ I The proof is analogous to the previous one by swapping i and j.

6.1 The optimization algorithm

Algorithm 1, which is a modified version of [18, Alg. 2], can be used to compute Iopt such
that (37) holds. The algorithm is based on the following observation: in a Lagrangian semidef-
inite matrix X with factors A, B, C the entry of maximum modulus cannot occur in an off-
diagonal entry of XII or XIcIc , because those blocks are semidefinite and thus the first in-
equality in (39) holds. So there can be three possible locations for the entry of maximum
modulus:

• in the block C∗C: then it must be on the diagonal and equal to the squared norm ‖C:,j‖2

of a column of C;

• in the block BB∗: then it must be on the diagonal and equal to the squared norm ‖Bi,:‖2

of a row of B;

• in the block A, and then nothing more specific can be said on its position.

When this maximum modulus exceeds a given threshold τ ≥ 1, in each of the three cases we
can perform a PPT that strictly reduces this maximal entry. We repeat this procedure until
all entries are smaller than τ . The algorithm terminates since each PPT uses a pivot matrix
with determinant at least τ and hence |detX| is reduced by a factor at least τ2 at each step.
This argument is similar to, but slightly different from, the one used in [18, Thm. 5.2], where a
determinant argument is applied to U1 in (8) rather than X.
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Algorithm 1: Computing a bounded permuted Riccati basis of a semidefinite Lagrangian
subspace.

Input: Iin ⊆ {1, 2, . . . , n}, and factors Ain, Bin, Cin of an Iin-semidefinite matrix
Xin = X∗

in ∈ C
n×n as defined by (17); a threshold τ ≥ 1.

Output: Iout ⊆ {1, 2, . . . , n}, and factors Aout, Bout, Cout of an Iout-semidefinite matrix
Xout = X∗

out ∈ C
n×n such that GIin

(Xin) ∼ GIout
(Xout) and |(Xout)ij | ≤ τ for

each i, j.
A = Ain, B = Bin, C = Cin, I = Iin;
for it = 1, 2, . . . ,max iterations do

̂ = argmax‖C:,j‖2;

if ‖C:,̂‖2 > τ then
use the formulas in Case 1 in Section 5.1, with J = I \ {̂}, to update
(A, B, C, I) ← (A′, B′, C ′, J );
continue;

end

ı̂ = argmax‖Bi,:‖2;

if ‖Bı̂,:‖2 > τ then
use the formulas in Case 2 in Section 5.2, with J = I ∪ {ı̂}, to update
(A, B, C, I) ← (A′, B′, C ′, J );
continue;

end

ı̂, ̂ = argmax|Ai,j |;
if |Aı̂,̂| > τ then

use the formulas in Case 3 in Section 5.2, with J = (I \ {̂}) ∪ {ı̂}, to update
(A, B, C, I) ← (A′, B′, C ′, J );
continue;

end

break;

end

Aout = A, Bout = B, Cout = C, Iout = I;
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6.2 Special formulas for the scalar cases l = 1, m = 1

The pivot sets used in the algorithm have at most 2 elements, so some simplifications can be
done to the general formulas (20), (22), (35) and (36).

For Case 1, the factor partition (19) is (up to the ordering of indices)

A =
[ k−1 1

n−k A1 a
]
, HC =

[ k−1 1

r−1 C11 0
1 c∗ γ

]
,

and the PPT that gives the updated factors in (20) for J = {1, . . . , k − 1} is

[
HC 0

A B

]
=




C11 0 0
c∗ γ 0

A1 a B


 Ô→




C11 0 0

− γ−1c∗ γ−1 0

A1 − γ−1ac∗ γ−1a B


 =

[
C ′ 0

A′ B′

]
.

Similarly, for Case 2 the starting factors (21) are now partitioned as

A =

[ k

1 a∗

n−k−1 A2

]
, BU =

[ 1 t−1

1 β 0
n−k−1 b B22

]
,

and the updated factors (22) for J = {1, . . . , k, k + 1} corresponds to the PPT

[
C 0

A BU

]
=




C 0 0

a∗ β 0
A2 b B22


 Ô→




C 0 0

−β−1a∗ β−1 0

A2 − β−1ba∗ β−1b B22


 =

[
C ′ 0

A′ B′

]
.

For Case 3 the initial partition of factors (23) is

A =

[ k−1 1

1 a∗ α
n−k−1 A21 d

]
, BU =

[ 1 t−1

1 β 0
n−k−1 b B22

]
, HC =

[ k−1 1

r−1 C11 0
1 c∗ γ

]
.

The PPT for the updated factors for J = {1, . . . k−1}∪{k+1} has the pivot set K = {k, k+1}
and it requires the inverse of the 2 × 2 matrix XKK =

[
−|γ|2 α

α |β|2

]
, which can be computed

explicitly as

X−1
KK =

1

∆2

[
−|β|2 α

α |γ|2
]

, ∆ =
√

|α|2 + |βγ|2.

Therefore, we can write X−1
KK =

[
−NN∗ K

K∗ L∗L

]
for N = β/∆, K = α/∆2 and L = γ/∆.

Lemma 5.3 gives

B′ =

[
β/∆ 0

(βd − αb)/∆ B22

]
and C ′ =

[
C11 0

(αc∗ − γa∗)/∆ γ/∆

]
.
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Finally, the factor update formula for is

[
HC 0

A BU

]
=




C11 0 0 0
c∗ γ 0 0

a∗ α β 0
A21 d b B22




Ô→




C11 0 0 0
(αc∗ − γa∗)/∆ γ/∆ 0 0

− Y21 Y ∗
32 β/∆ 0

Y41 Y43 (βd − αb)/∆ B22


 =

[
C ′ 0

A′ B′

]
,

where

Y21 = (γ|β|2c∗ + αa∗)/∆2,

Y41 = A21 − 1

∆2

[
d b

] [
γ|β|2 α

−αβγ β|γ|2
] [

c∗

a∗

]
,

Y32 = α/∆2,

Y43 = (αd + |γ|2βb)/∆2.

7 Numerical experiments

We have implemented a MATLAB version of Algorithm 1 and carried out the tests in MAT-
LAB R2014a on a machine with an Intel Core i7-4910MQ 2.90GHz processor and 16GB RAM.

In our first experiment we use randn to generate random factors C ∈ R
14×14, A ∈ R

16×14,
B ∈ R

16×16 and a random index set I with card(I) = 14 defining the I-semidefinite matrix X
of order 30. The threshold parameter for the optimization algorithm is τ = 1.5. In Figure 1
we display a color plot of the matrix |X|, where (|X|)ij = |xij | at the start of the optimization
procedure, after 10 and 20 iterations, and the final matrix. The algorithm took 31 iterations and
produced the matrix X with max |xij | = 0.46 and card(Iopt) = 16. The effect of semidefinite
blocks on the reduction can be seen in plots (b) and (c) of Figure 1, where the dark red stripes
that appear are due to the fact that whenever a diagonal pivot is chosen (Case 1 or 2), all
elements in the corresponding row and column of the matrices −C∗C or BB∗ are also reduced
below τ .

For the same example, Figure 2 displays maxi,j |xij | and |detX| during the iterations. The
quantity maxi,j |xij | is not guaranteed to decrease with iterations and we see this behaviour on
the left plot but |detX| must decrease with each iteration as we explain in Section 6.1, and
this is evident in the log-lin graph on the right.

We next use the matrices from the examples in the benchmark test set [6] to construct
a quasidefinite matrix X to which we then apply Algorithm 1 with the threshold τ = 1.5.
The test set [6] contains 33 problems, which are taken from the standard carex test suite [3]
for the numerical solution of the continuous-time algebraic Riccati equation, and in addition
some examples use different parameters chosen to make the problems more challenging. Each
example contains factors (cf. Section 4) A, G = GT , Q = QT ∈ R

k×k, B ∈ R
k×t, C ∈ R

r×k,
R = RT ∈ R

t×t and Q̃ = Q̃T ∈ R
r×r, with r, t ≤ k, which define the Hamiltonian matrix

H =

[
A −G

−Q −AT

]
=

[
A −BR−1BT

−CT Q̃C −AT

]
.

From these factors we construct the quasidefinite matrix

X =

[
−Q AT

A G

]
=

[
−CT

f Cf AT

A Bf BT
f

]
,
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Fig. 1: Snapshots of |X| for the starting matrix, iterations 10 and 20, and the final matrix for
Algorithm 1 applied to a random matrix X of order 30 with the factors C ∈ R

14×14,
A ∈ R

16×14 and B ∈ R
16×16.
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Fig. 2: The changes in maxi,j |xij | and |detX| for Algorithm 1 applied to a random matrix X

of order 30 with the factors C ∈ R
14×14, A ∈ R

16×14 and B ∈ R
16×16. In the figure on

the right, a base-10 logarithmic scale is used for the y-axis.
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Tab. 1: Algorithm 1 applied to the matrices defining the test examples from [6].

Ex. k t r κ(GI(X)) Subspace distance max |xij | max |(Xopt)ij | it

1 2 1 2 2.41 4.71e-16 2.000 1.000 2
2 2 1 2 1.62e1 1.31e-15 9.000 9.231e-1 3
5 9 3 9 2.16e2 5.60e-15 1.472e2 7.961e-1 13
6 30 3 5 1.44e8 3.47e-13 1.440e8 1.377 29
7 2 1 1 2.03 7.67e-16 2.000 1.000 2
8 2 1 1 2.72 7.28e-16 2.000 1.000 2
9 2 2 1 1.01e4 1.99e-13 1.000e4 1.000e-1 2
10 2 2 1 1.01e6 4.07e-11 1.000e6 1.000e-1 3
11 2 1 2 1.62 4.71e-16 1.000 1.000 1
12 2 1 2 7.07e5 5.08e-16 1.000e6 1.000 2
13 2 1 2 1.41 4.71e-16 1.000 1.000 1
14 2 2 2 1.91 7.25e-16 2.000 4.000e-1 3
15 2 2 2 2.75 1.04e-15 1.000 1.000 1
16 2 2 2 2.75 1.86e-15 1.000 1.000 1
19 3 3 3 1.91 1.22e-15 2.333 1.486 3
20 3 3 3 3.54 1.12e-15 2.333e6 7.037e-7 7
21 4 1 2 1.91 1.60e-15 1.000 1.000 1
22 4 1 2 1.00e12 1.16e-10 1.000e12 1.000 3
23 4 1 1 4.16 1.09e-15 1.000 1.000 1
24 4 1 1 4.24 9.11e-16 1.000 1.000 1
25 77 39 38 1.00e1 6.44e-15 1.000e1 1.000 39
26 237 119 118 1.00e1 9.88e-15 1.000e1 1.000 119
27 397 199 198 1.00e1 1.31e-14 1.000e1 1.000 199
28 8 8 8 3.00 1.68e-15 2.000 1.400 5
29 64 64 64 3.00 6.11e-15 2.000 1.400 33
30 21 1 1 1.00 6.76e-16 1.000 1.000 1
31 21 1 1 1.00e2 6.76e-16 1.000e2 1.000 2
32 100 1 1 1.22e3 1.84e-13 4.481e2 9.985e-1 200
33 60 2 60 2.41 6.75e-15 1.000 1.000 1

where Bf = BR−1
R ∈ R

k×t, Cf = R
Q̃

C ∈ R
r×k and RR and R

Q̃
are the upper triangular

Cholesky factors of the matrices R and Q̃, respectively. Moreover, the matrix Q̃ = [ 9 6
6 4 ] in

Example 2 in [6] is singular positive semidefinite and therefore we use R
Q̃
= [ 3 2

0 0 ] as its Cholesky

factor. The pair (I, X), with I = {1, 2, . . . , k}, identifies a Lagrangian subspace of C4k which
is associated with the Hamiltonian pencil (12), as described in Section 4.

This construction eliminates Examples 3, 4, 17 and 18 from [6] due to the indefiniteness of
the matrix Q̃, and consequently the matrix Q, since we cannot form a quasidefinite matrix X
from these factors.

In Table 1, for each of the remaining examples we present the dimensions k, t and r defining
the factors Cf , A and Bf of the matrix X, the number of iterations it the optimization took,
the 2-norm condition number κ of the starting matrix GI(X), the maximum modulus of the
elements in X and the computed optimal reduced matrix Xopt, and the subspace distance
between GI(X) and GIopt

(Xopt) computed by MATLAB’s subspace.
Small values for the subspaces distance indicate that the algorithm produced a representa-

tion of the same subspace associated with GI(X), which happens in almost all examples. The
largest value for this quantity corresponds to the Example 22 where the starting representation
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GI(X) is ill-conditioned. Several examples already had X with elements bounded in modulus
by 1 but we include them for completeness. In all other examples, the algorithm achieved the
goal of reducing the modulus of all elements in Xopt below the threshold τ and the number of
iterations required to do this was in general not large.

We also note that the factors Bf and Cf could have been formed from the matrices G and
Q, e.g. by taking their Cholesky factors or semidefinite square roots. We chose not to do this
not only because B and C are readily available, but also since in most examples G and/or Q
are singular, and moreover such Bf and Cf would be square, while those computed from B and
C are rectangular, often with very small number of columns and rows, respectively.

The MATLAB code used for the experiments is available at https://bitbucket.org/fph/

pgdoubling-quad.

8 Concluding remarks

The main motivation for this work was the fact that the definiteness structure possessed by
most matrices to which the PPT is applied in [18] is not used or enforced in general formulas
(1), which means that it could be lost in computation due to numerical errors. These matrices
of interest, which generalize the quasidefinite structure, are called I-semidefinite.

We have shown that I-semidefinite matrices define Lagrangian semidefinite subspaces which
are associated with the standard form of Hamiltonian and symplectic pencils appearing in
control theory, and this makes I-semidefinite matrices ubiquitous in the field. We also proved
that the elementwise bound on the entries of an optimal permuted Riccati representation can
be improved for the case of a Lagrangian semidefinite subspace.

The central part of the paper was dedicated to deriving factored versions of the general
PPT formulas used in the optimization algorithm for computing this optimal representation.
These formulas now exploit the structure of an I-semidefinite matrix X by working on the
(not necessarily square) factors defining the semidefinite blocks and guarantee the definiteness
properties of the resulting matrix by construction. Working directly with the factors of X is
additionally appealing in view of the fact that the factors B and C are often available a priori
in control theory. Furthermore, in this way we avoid forming the Gram matrices C∗C and BB∗

where a possible loss of accuracy might occur.
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Matthias Bollhöfer, Daniel Kressner, Christian Mehl, and Tatjana Stykel, editors, Numer-
ical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory, pages
107–129. Springer International Publishing, 2015.

[21] G. W. Stewart and Ji Guang Sun. Matrix perturbation theory. Computer Science and
Scientific Computing. Academic Press, Inc., Boston, MA, 1990.

[22] Michael Stewart and G. W. Stewart. On hyperbolic triangularization: Stability and piv-
oting. SIAM J. Matrix Anal. Appl., 19(4):847–860, 1998.

[23] Michael J. Tsatsomeros. Principal pivot transforms: properties and applications. Linear
Algebra Appl., 307(1-3):151–165, 2000.

[24] Albert W. Tucker. Principal pivotal transforms of square matrices. SIAM Rev., 5(3):305,
1963.

[25] Nanny Wermuth, Michael Wiedenbeck, and David R. Cox. Partial inversion for linear
systems and partial closure of independence graphs. BIT, 46(4):883–901, 2006.


