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Abstract 

In azidic binders for solid propellants, the N3 functionality is introduced by substitution of a 

halogen or tosyl group, but recently the mesyl group has been suggested as an alternative. The 

mesylate group has two advantages, mainly related to its small dimension and low cost. 

Poly(glycidyl azide) and poly 3-azidomethyl-3-methyl oxetane were prepared by using both 

tosylate and mesylate precursors. The azidation kinetics were studied at three different 

temperatures while keeping equal all the other operating parameters. The results confirmed 

the good potential of the mesylate precursors for the production of azidic binders. 
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1. Introduction 

In solid propellant formulations, a reducer and an oxidizer in form of dry powder are mixed 

with a liquid pre-polymer that allows the formulation to be cast into large and irregular cases 

[1]. The polymer is then cross-linked to form an elastomeric network that provides 

mechanical integrity and safety during storage and transportation [2]. The most commonly 

used binder is hydroxy-terminated polybutadiene (HTPB), which, after cross-linking with 

isocyanates, provides optimal mechanical properties. However, HTPB do not contributes to 

the overall energy output and therefore the research is focused on alternative binders that 

could improve the propellant performance. During the last decades, several energetic binders 

have been developed and the interested reader may find detailed information in the reviews by 

Agrawal [3], Provatas [2], Badgujar et al. [4], Sikder and Sikder [5] and Gaur et al. [6]. 

Among the proposed binders, polyethers containing azidic functionalities are very promising 

and glycidyl azide polymer (GAP) is the most studied one. Several publications may be found 

concerning the synthesis as well as the thermal behavior and explosive properties of GAP [7-

22]. The GAP synthesis was first described in a patent filed in 1972 by Vandenburg [23] who 

did azidation of polyepichlorohydrin (PECH) by using sodium azide in dimethylformamide. 

Twenty years later, Frankel et al. described a semi-industrial production of GAP in USA [24]. 

Other suggested polymeric azides are poly(3,3 bis(azidomethyl)oxetane-co-ε-caprolactone) 

[25], 3,3 bis(azidomethyl)oxetane-tetrahydrofuran [26, 27], polyglycidylazide-b-

poly(azidoethyl methacrylate) [28] and polyoxetanes [6, 29-35], first synthesised by Manser 

[36-38], such as 3-nitratomethyl-3-methyl oxetane (NIMMO), 3,3-bis-(azidomethyl)oxetane 

(BAMO) and its analog monofunctional 3-azidomethyl-3-methyl oxetane (AMMO). In the 

first synthesis, the chlorinated or tosylate monomer was azidated and then subjected to 

cationic ring-opening polymerization by using a diol and a Lewis acid as catalyst. The 

approach is now changed, since the azidated ring-monomers are highly dangerous and may 
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easily explode during processing and handling. Therefore, it is better if the azidation step 

follows the polymerization of non-energetic monomers [34]. This is a low technology, low-

risk approach, but gives less opportunity to tailor the final properties of the polymer and 

suffers from the usual complications of modifying a macromolecule [39]. This means that 

azidation became the critical step: it may be time demanding and often does not proceed to 

complete substitution of the functional groups into azidic ones. Sodium azide is the preferred 

reagent for azidation, which has been performed in several organic solvents as well as in 

water [24, 40]. A procedure involving molten azidic salts has also been described [41]. In the 

first case, the reaction is much faster and proceeds in a homogeneous reaction medium, while 

in water, the use of a phase transfer catalyst is necessary. 

The research in the synthesis of azidated polyethers is therefore mainly focused on both the 

tailoring of the binder properties and, in view of the industrial process, the optimization of the 

azidation step. The goal is to overcome the production difficulties and make the process 

competitive with that of HTPB, while keeping the advantages related to the higher energy 

input of the final product. 

The thermodynamics and kinetics of the azidation reaction depend on two main factors: the 

chemical nature of the leaving group and the operating conditions. With regard to the first 

point, many different functionalities may be used as leving group to facilitate the introduction 

of the azidic group through a SN2 type mechanism. The most used ones are halogens, which 

however present a few disadvantages mainly related to the difficulty of obtaining their 

complete substitution that may require very long reaction times. Moreover, considering the 

well-known flame-retardant effect of halogens, it may be supposed that an incomplete 

substitution, could considerably limit the efficacy of the energetic binder. The tosyl group is 

an interesting alternative to halogens. This is a very good leaving group, but its steric 

hindrance may represent a problem. In other words, it may be difficult to remove the tosyl 
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group from a polymeric chain. This is because, even if the macromolecules are dissolved in a 

solvent, the presence of many neighboring tosyl groups may considerably limit the access of 

N3 groups to the reactive site and thus also the overall kinetic of azidation. This problem has 

been recently discussed by Cappello et al. [42] with respect to the synthesis of ether-HTPB-

ether tri-block copolymers. Moreover, the steric hindrance may also play a role during 

polymerization and influence i.e. the molecular weight of the polymeric precursor. 

With regard to the operating conditions, these include the appropriate choice of the solvent (or 

mixture of solvents) and temperature. The solvent must be a good one for monomers and the 

forming polymers and, of course, it has to solubilize at least partially the sodium azide. 

Another important aspect is the solvent boiling point. Higher boiling points allow higher 

reaction temperatures and thus shorter reaction times, but may complicate the purification of 

the final product. Moreover, too high temperatures may lead to partial decomposition of the 

azide groups [34]. Polymeric precursor and operating condition must be chosen in order to 

balance and optimize the above-mentioned factors. A partial list of azidation conditions 

described in the scientific and patent literature is reported in Table 1. DMF 

(dimethylformamide) and DMSO (dimethyl sulphoxide) are by far the preferred solvents. 

To better understand the role of the leaving group in the synthesis of azidic binders, we 

prepared two different polyethers starting from tosylate and mesylate precursors. While the 

tosyl (Ts) group is well known and already adopted in the synthesis of energetic binders, the 

mesyl (Ms) one has not yet been used in this field. Therefore, on one side we have a bulky 

and heavy aromatic group, which is potentially one of the better leaving groups, while on the 

other one there is a smaller and lighter functional group, theoretically less suitable for 

azidation. The synthesized polymers are GAP and poly 3-azidomethyl-3-methyl oxetane 

(PAMMO). Thus, we compared tosyl and mesyl groups with both oxirane and oxetane 

starting monomers. This corresponds to four synthesis, as summarized in Figure 1. All the 
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monomers, polymeric precursors and azidic binders were characterized by Fourier-Transform 

Infra-Red (FTIR) analysis and Nuclear Magnetic Resonance (NMR); the molecular weight of 

the polymers were evaluated by Gel Permeation Chromatography (GPC); their thermal 

behavior by Thermogravimetric Analysis (TGA). Moreover, the azidation reactions were 

performed at different temperatures, with time/conversion curves obtained by FTIR and used 

to evaluate the kinetic parameters. 

 

2. Materials and methods 

2.1. Materials 

All the chemicals, unless differently stated, were purchased from Sigma Aldrich. Toluene 

(99,8%), dimethylformamide (DMF) (99.8%), methanol (99.9%), sodium azide (>99.5%), 

boron trifluoride tetrahydrofuranate (BTF·THF), triethylamine (TEA) (≥99%), 3-hydroxy-

methyl-3-methyloxetane (HMMO) (98%), glycidol (G) (96%), toluene-4-sulfonyl chloride 

(TsCl) (≥99%), methanesulfonyl chloride (MsCl) (>99.7), sodium chloride (>99%), sodium 

hydroxide (>98%), sodium carbonate anhydrous (>99.7), magnesium sulfate (>99.5), 

phosphorous pentoxide, hydrochloric acid, potassium hydroxide were used as received. 

Diethyl-ether and dichloromethane (DCM) were dried with P2O5 and distilled at 1 atm. 

Epichlorohydrin (ECH) and butanediol (99.9%) (BDO) were distilled under the reduced 

pressure. 

 

2.2. Synthesis of the monomers 

2.2.1. Glycidyl tosylate (GT) 

The synthesis was performed according to a procedure described by Nakabayashi et al [46]. A 

250 mL two-necked round bottom flask, fitted with a nitrogen inlet and a mechanical stirrer 

set at 180 rpm was fed with 50 mL of anhydrous toluene and 4.2 mL of TEA (corresponding 
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to a G/TEA=1/1 molar ratio). In a beaker a solution of 5.42 g TsCl (corresponding to a 

TsCl/G=0.95/1.0 molar ratio) in 12 mL of toluene was also prepared. The round bottom flask 

and the beaker were then conditioned at -15°C for 1.5 h. At the end of conditioning time, the 

round bottom flask was fed with 2 mL of distilled G (also cooled to -15°C) and then drop-

wise with the TsCl solution while maintaining the system under gentle stirring. At the end of 

the TsCl feeding, the stirrer was stopped and the system maintained at -15 °C for 24 h. Then, 

the solution was filtered under vacuum to remove the solid TEA·HCl complex and distilled at 

65 °C and 2000 Pa to remove the toluene. The remaining liquid was dropped slowly into cold 

petroleum-ether (containing a few GT crystals previously prepared with the same procedure, 

in order to favor the crystallization process) thus forming a white suspension that crystallizes 

while cooled at -15°C. The petroleum ether was finally removed by distillation under vacuum. 

The GT was obtained with a 98.6% yield, as white anhydrous crystals. 

 

2.2.2. Glycidyl mesylate (GM) 

The synthesis was performed according to a procedure described by Nakabayashi et al [46]. A 

500 mL two-necked round bottom flask, fitted with a nitrogen inlet and a mechanical stirrer 

set at 180 rpm was fed with 100 mL of anhydrous toluene and 22.2 mL of TEA. In a 250 mL 

beaker a solution of 11.7 mL MsCl in 20 mL of toluene was also prepared. The round bottom 

flask and the beaker were then conditioned at -15°C for 1.5 h. At the end of conditioning time, 

the round bottom flask was fed with 11 mL of distilled G (also cooled to -15°C) and then 

drop-wise with the MsCl solution while maintaining the system under gentle stirring. At the 

end of the MsCl feeding, the stirrer was stopped and the system maintained at -15 °C for 24 h. 

Then, the solution was filtered under vacuum and distilled at 65 °C and 2000 Pa to remove the 

toluene and obtain GM as a yellowish liquid with a 84% yield. 
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2.2.3. 3-tosyloxymethyl-3-methyl oxetane (TMMO) 

The synthesis was performed in the solid state, according to a procedure described by Kazemi 

et al [47]. A mortar was fed with 31.8 g of anhydrous Na2CO3, 10.2 g of HMMO 

(Na2CO3/HMMO=3/1 molar ratio) and manually milled with a pestle for about 7 min. Then 

28.7 g of TsCl (TsCl/HMMO=1.5/1 molar ratio) where added and milled for further 23 min. 

Finally, 28.05 g of KOH were added (KOH/HMMO=5/1 molar ratio) and milled for about 50 

min to remove the unreacted TsCl. The whole reaction was conducted in a glove box under 

nitrogen atmosphere. The obtained solid was added to 200 mL of diethyl-ether and filtered 

several times. The obtained clear liquid phase was finally subjected to distillation at 48°C and 

8500 Pa thus inducing the crystallization of TMMO that was obtained with a 40 % yield. 

 

2.2.4 3-mesyloxymethyl-3-methyl oxetane (MMMO) 

The synthesis was performed according to a procedure described by Nakabayashi et al [46]. A 

500 mL two-necked round bottom flask, fitted with a nitrogen inlet and a mechanical stirrer 

set at 180 rpm was fed with 150 mL of anhydrous toluene and 13.7 mL of TEA. In a 250 mL 

beaker, a solution of 7.22 mL MsCl in 30 mL of toluene was also prepared. The round bottom 

flask and the beaker were then conditioned at -15°C for 1.5 h. At the end of conditioning time, 

the round bottom flask was fed with 10 mL of distilled HMMO (also cooled to -15°C) and 

then drop-wise with the MsCl solution while maintaining the system under gentle stirring. At 

the end of the MsCl feeding, the stirrer was stopped and the system maintained at 4 °C for 24 

h and distilled at 65 °C and 2000 Pa to remove the toluene. The remaining liquid was then 

placed in a fridge to crystallize and recover the MMMO. 

 

2.3. Polymerizations 
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The polymerization may proceed either by: the Active Chain End (ACE) mechanism, or the 

Activated Monomer Mechanism (AMM). The first one involves protonation of the oxetane 

and subsequent propagation until the chain is terminated either with water or alcohol to give 

the hydroxy-terminated polymer. ACE allows a reasonable molecular weight control, but may 

lead to the formation of cyclic oligomers [39]. In AMM, which has considerable similarities 

with the living polymerization, the growing chain is OH terminated and the “active” role is 

played by the monomer. In this case the side reactions, including cyclization, should be 

minimized [6]. However, it must be underlined that it is not easy to drive the reaction toward 

the desired mechanism and often both mechanisms may be present at the same time [31, 35]. 

For our synthesis, the catalyst and operating conditions were set in order to favor the AMM. 

BTF·THF and butanediol were used to initiate the polymerization and the quantities were 

chosen to have a molar ratio between BTF·THF and OH functionalities equal to 2/1, while the 

molar ratio between monomers and OH functionalities was equal to 50/1. The polymerization 

procedure was as follows. A 1L three-necked round bottom flask , fitted with a reflux 

condenser, a nitrogen inlet and a mechanical stirrer set at 120 rpm was fed with 80 ml of 

DCM, 0.15 mL of BTF·THF, about 0.031 g of BDO and maintained for 2 h under stirring at 

room temperature. Then, the reactor was covered with aluminum foil, immersed in a water 

bath at 20±0.5 °C and the monomer (0.0345 mole), previously dissolved in 30 mL of DCM, 

was added drop-wise to the reactor through a dropping funnel. From the end of the monomer 

feeding, the reaction mixture was kept in the same conditions for 20 or 120 h (mesylate or 

tosylate monomers respectively) and then hydrolyzed with 400 mL of an aqueous solution of 

NaCl (10% w). The mixture was maintained under vigorous stirring for further 2 h and then 

the organic and aqueous phase were separated. The aqueous phase was washed with DCM, 

subsequently recovered and added to the organic phase. The organic phase was washed once 

with a water/methanol = 50/50 v/v solution to remove unreacted monomers and catalyst, then 
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again several times with the aqueous solution of NaCl, dried with MgSO4, filtered and 

distilled at 45 °C, under vacuum (6500 Pa) in order to remove all the DCM. 

 

2.4 Azidation 

The azidation is a second-order reaction with SN2 type mechanism performed using sodium 

azide in DMF. As already underlined (see Table 1) these azidation conditions are well known 

and have been already used by our research group [30, 31, 33-35]. 

A typical azidation procedure was as follows. About 2 g of polymeric precursor were 

dissolved in 100 ml of DMF and fed in a 250 mL three-necked round bottom flask, fitted with 

a reflux condenser, a nitrogen inlet and a magnetic stirrer. The flask was immersed in an oil 

bath set at 85±1 °C and conditioned for 30 minutes. Then, NaN3 was added in 20% molar 

excess with respect to the stoichiometric quantity and the temperature of the bath raised to the 

desired temperature while maintaining the system under constant stirring. Periodically, 

samples were taken from the reactor and subjected to FTIR analysis to evaluate the degree of 

azidation. Once the IR spectra were stationary, the reaction medium was filtered under 

vacuum in order to remove the formed sodium salts and the unreacted sodium azide. 

The solution was then washed several times with an aqueous solution of NaCl (10 % w) in 

order to complete the salts removal. The aqueous phases resulting from the washings were 

mixed together and washed with DCM to remove possible traces of polymer, while the 

organic phase was dried with MgSO4, filtered again and distilled at 45 °C, under vacuum 

(1000 Pa) in order to remove all the organic solvents. 

The structure and purity of all synthesized polymers (before and after azidation) were checked 

by FTIR and NMR, while their thermal properties were determined by TGA. 

 

2.5. Characterization of the monomers and polymers 
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Fourier-transform infrared spectroscopy was performed on a Bruker Tensor 27 and nuclear 

magnetic resonance (1H-NMR, 13C-NMR) on a VXR300 and INOVA600 instruments. 

Thermogravimetric analysis was done by using a TA Q500 apparatus, under nitrogen 

atmosphere, with a heating rate of 10°C/min until 600 °C and using samples of about 5 mg. 

The molecular weight of the polymers was measured from solution in CHCl3 (2 mg/mL) by 

using a Gel Permeation Chromatography (GPC) apparatus Jasco PU-1580, equipped with PL 

Mesopore column, calibrated with low polydispersity polystyrene standards. 

 

3. Results and discussion 

3.1. Chemical characterization (IR – NMR) 

The FTIR spectra of all monomers and polymers are reported in Figure 2. The main peaks 

corresponding to the tosyl, mesyl and azidic functionalities are: 1174-1176 cm-1 = υs SO2, 

1280 cm-1 = υs N3, 1350-1360 cm-1 = υas SO2, 1600 cm-1 = υ C=C aromatic ring, 2100 cm-1 = 

υas N3. Some of these peaks have been chosen for the kinetics study, as reported in section 

3.3. 

For the sake of brevity, the NMR spectra are reported only for the mesylate compounds 

(Figure 3), which are not common in the binder literature. Nevertheless, all the NMR spectra 

were recorded and confirmed the chemical composition and high purity of the synthesized 

compounds. Moreover, the NMR spectra were useful to confirm the absence of tosyl or mesyl 

groups in the energetic polymers, so that a final conversion equal to 1 was assumed for the 

azidation reactions. 

 

3.2. Molecular weights 

The GPC analysis was performed on the polymeric precursors. As an example, Figure 4 

shows the spectrum of PGT (a) and the corresponding fit after deconvolution into two 
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separate peaks (b). The spectra of the other polymeric precursors are qualitatively similar and 

in all cases showed a small peak corresponding to the formation of oligomers. A 

deconvolution procedure was then used to calculate separately the mean average molecular 

weights of polymer and oligomers. 

Table 2 reports the number (Mn) and weight (Mw) average molecular weights, the average 

degree of polymerization (Xn=Mn/Mo, where Mo is the molecular weight of the repeating 

unit) as well as the polymer dispersion (PD=Mw/Mn) and the Xn and weight fraction of the 

oligomers. A first observation was that the molecular weights were relatively low. The higher 

Xn was found for the case of PMMO and it is about half that of the HTPB used as binder for 

propellants. However, it should be emphasized that the operating conditions were fixed a 

priori and then applied to all polymerizations. The molecular weight optimization was not an 

objective of this work and may be modulated by changing many operating parameters as 

temperature, BDO concentration, catalyst, solvent etc. Nevertheless, these values are 

comparable with previous results reported for energetic binders (see e.g. [30]). Another 

interesting point is that in both cases the mesylate monomers gave longer polymeric chains. 

Since the four polymerization reactors were fed with the same monomer/initiator ratio and 

molar concentrations, in case of similar yield the polymers should also have similar Xn. 

Therefore, the Xn values can be somehow read as an indicator of the reaction yield. 

 

3.3. Azidation kinetics 

In order to quantify the azidation kinetics of the four polymeric precursors, the time-

conversion curves were obtained at three different temperatures. For each precursor, the 

temperatures were chosen in order to obtain reasonable reaction times. A too fast reaction 

strongly complicates the sampling procedure and may induce errors in the estimation of the 

time-conversion curve. A too slow reaction is not advisable for future potentially large scale 
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productions. As described in section 2.4., samples were taken from the reaction medium at 

different times and their IR spectra recorded and analyzed. Of course, the peaks available to 

follow the azidation are those corresponding to both the incoming N3 and the leaving tosyl or 

mesyl groups. The N3 asymmetric stretching at 2100 cm-1 was chosen among the N3 peaks 

because it falls on a clean zone (for both azidated polymers), where it can be easily detected 

and integrated. This peak has the disadvantage that it tends to increase in intensity at low 

conversion and broaden at high conversions. This may lead to a partial superposition with the 

CO2 peak, which never completely disappears even though the base line was recorded and 

subtracted each time. As a consequence, the integration was a bit noisy at high conversions. 

With regard to the tosyl and mesyl groups, the symmetric stretching of SO2 at 1174-1176 cm-1 

was chosen. In this case the disadvantage is that the peaks are in the fingerprint region, where 

1) the superposition with neighbor peaks may happen and 2) it may be difficult to recognize 

the base line. 

In order to find the best way to evaluate the peak area, we compared the data obtained with or 

without a deconvolution analysis of the peaks and we did not found significant differences 

between the two procedures. The presence of the above-mentioned uncertainties (peak 

overlapping, ambiguous base line) is the reason why the time-conversion curves were 

evaluated by using both N3 and tosyl (mesyl) peaks: since the azidic one substituted the tosyl 

(mesyl) groups, the two conversions are supposed to coincide and can be used to crosscheck 

one each other. As the reference peak, the CH2 scissoring at 1456 cm-1 was chosen (see Figure 

2). 

As an example, Figure 5 show the time dependence of the FT-IR spectra during azidation of 

PGM at 85 °C. 

Since the NMR analysis of the final products in all cases indicated a complete azidation, the 

conversions were evaluated as: 
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where the N, R, T, M subscripts indicate azide, reference, tosyl and mesyl groups 

respectively, t is time, t0 and tf are start and end of the reaction and A indicates the area of the 

peak (evaluated in absorbance and expressed in arbitrary units). 

All azidations were performed with a starting quantity of sodium azide corresponding to a 

20% excess with respect to the stoichiometry. In the chosen operating conditions, the sodium 

azide fed to the reactor corresponds to a quantity lower than its solubility limits. Assuming 

that the substitution is an elementary reaction, we have a second order kinetic law. Moreover, 

if we disregard volume changes, the following kinetic expression can be written [34]: 

 

� =
�����

��
= −

���

��
= −�������� (4) 

 

where v is the reaction rate, [T] and [N3] are the concentrations of unreacted tosyl and azido 

groups, respectively, t is the time and k the kinetic constant. Of course, equation (4) is valid 

also for the mesyl precursor, simply substituting [T] with [M] = concentration of the mesyl 

groups. Since: 
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where the subscripts refer to time. Equation (5) has solution: 

��� =
(� !)���
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where r = [N3]0/[T]0=1.2. Equation (6) can be also written as: 

� =
'()�%����(� !)� !

'()�%����(� !)� !/�
	 (7)	

 

Again, the same equation applies to the azidic and mesyl functionalities, therefore equation 

(7) can be “generalized” simply including the initial concentration in the kinetic constant: 

k’=k[T]0: 

� = � = �� = �� =
'()�%,�(� !)� !

'()�%,�(� !)� !/�
	 (8)	

 

Equation (8) can be used to fit the experimental data of xT, xS and xN and obtain an estimation 

of k’. 

 

As already underlined, the experimental time-conversion curves were obtained for each 

reaction by using both the azide and mesyl (or tosyl) signals from the FTIR spectra. These 

values should theoretically coincide, but of course the inevitable uncertainties correlated with 

the use of IR spectra for quantitative analysis lead to small discrepancies. As an example, the 
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comparison of conversion obtained with azide and mesyl signals in the case of PGM at 85°C 

is reported in Figure 6. The image clearly shows that xN has an irregular trend between 30 and 

60 minutes, while xM gives a more reliable and smooth behavior. Nevertheless, the two sets of 

data are in good accordance and the reported example was chosen because it is the one where 

the noise in xN is more pronounced. 

As a second example, the PMMMO azidation kinetics at different temperatures, obtained 

from the mesyl peaks, are reported in Figure 7, together with the best fit obtained from 

equation (8) with k’ as unique fitting parameter. The whole list of estimated k’ values for the 

four polymers is reported in Table 3, together with the activation energy (Ea) and the pre-

exponential factor (A) evaluated by a linear fit in the plot of the logarithmic k’ values against 

the inverse of temperature, expressed in Kelvin degrees. 

Independently on the use of mesyl or tosyl groups, the azidation reaction was faster for GAP 

than for PAMMO. This is why in the first case the adopted temperatures were 75, 85, and 95 

°C, while they were raised to 85, 105 and 125 for PAMMO. As expected, in both cases the 

temperature strongly influences the rate of reaction and the time needed for a quantitative 

azidation may vary from approximately one week to about one day while comparing the 

lower and higher tested temperatures. The k’ values reported in Table 3 confirms that the tosyl 

group is a better leaving group in the case of GAP precursors. In contrast, in the case of 

PAMMO the difference between the two precursors is less pronounced and the mesyl group is 

the one with the highest azidation kinetic. Moreover, it is interesting to observe that for both 

polymers the azidation reaction from the mesylate precursors has a higher activation energy 

(thus indicating a higher dependence on temperature) and a higher pre-exponential factor 

(thus indicating a higher frequency of collisions between reactant molecules).A simple 

theoretical calculation indicates that in the case of GAP the azidation kinetics from the two 

different precursors should coincide at about 110 °C which is still in a feasible range of 
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operating temperature (even lower than those already adopted for PAMMO in the present 

study). 

Finally, it is interesting to report the thermogravimetric analysis of the polymers and 

corresponding precursors (Figure 8). As it has been already observed and discussed in many 

other works, the azidic polymers shows a two-step decomposition behaviour [7, 11, 16, 21, 

48]. The nitrogen release from the N3 group is responsible for the first step, while during the 

second step the main chain decomposition occurs. It is not the aim of this work to discuss this 

well-known behaviour, which has been already showed for both GAP and PAMMO 

polymers. The curves presented here because they allow the comparison between behavior of 

polymers prepared from tosyl and mesyl precursors. It can be clearly seen that the thermal 

behaviour of the azidated polymers are almost identical, with the differences comparable to 

the experimental uncertainty always present while observing fast and uncontrollable 

decomposition phenomena. 

 

4. Conclusions 

Azidic binders are probably the most interesting and promising alternative to HTPB and the 

scientific research was focused on their synthesis for many years. Usually, the N3 

functionality is added to a polymeric precursor by SN2 type substitution of a halogen or tosyl 

group. The use of chlorine and bromine, as groups have some disadvantages, mainly related 

to the possibility of incomplete substitution during azidation. The residual halogen atoms may 

impart a sort of anti-flame character to the binder and significantly reduce its efficiency. 

Analogously, the tosyl group has disadvantages related to its very high molecular weight, 

which strongly increases the weight of reagents and by-product to be processed. This is 

negligible on the lab scale, but may represent a problem to scale up the process for industrial 

production. Moreover, the introduction of several tosyl groups in a polymeric chain may 
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result in a steric hindrance that can limit both the molecular weight of the polymer and its 

reactivity during azidation. This is the reason why the methane-sulfonyl chloride has been 

suggested as a potential alternative to halogen and tosyl groups. On a theoretical basis, the 

mesyl group should be comparable to the tosyl one in leaving the polymeric chain during 

azidation. However, there are also some potential advantages connected with the use of such 

molecule. First of all, it is convenient from an economic point of view, since it is a low cost 

compound that can be easily introduced in the oxetane and oxirane monomers. Secondly, the 

reduced dimension, when compared to the tosyl group, allows a greater mobility of the 

polymeric chains. The synthesis and azidation of GAP and PAMMO starting from tosyl and 

mesyl precursors confirmed the high potential of the latter. The mesylate precursors were 

prepared in form of oxetanic and oxiranic monomers, subsequently polymerized and azidated. 

From the operating point of view, all the synthetic steps were comparable with those adopted 

for the case of conventional precursors. The azidation reaction led to fully substituted 

polymers, with final properties almost identical to those prepared by using the tosyl groups. 

Finally, the kinetic of azidation at high temperatures showed to be perfectly comparable with 

that of the other precursors. This is not surprising if we consider that: 1) the tosyl 

functionality, as a better (more stable) leaving group, simply lowers the transition state 

energy, relative to that of the mesyl analogue; 2) the higher mobility of the mesyl groups 

leads to a pre-exponential factor two or three order of magnitude higher than that of the 

tosylated reactant. We can thus conclude that methane-sulfonyl (mesyl) group is a good 

candidate for the production of azidic binders for solid rocket propellants. 
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Figure captions 

Figure 1 - Synthesis and azidation of GAP and PAMMO. 

Figure 2 – FTIR spectra of monomers, precursors and azidated polymers. 

Figure 3 – H-NMR spectra of the mesylate monomers and polymers. 

Figure 4 – GPC curve of PGT (a) and the resultant fitting obtained by deconvolution into two 

peaks corresponding to polymer and oligomers (b). 

Figure 5 – FT-IR spectra of PGM during azidation at 85 °C. 

Figure 6 - Comparison between xN and xM for PGM azidation at 85 °C. 

Figure 7 – xM for PTMMO azidation at different temperatures: ○ 85 °C; □ 105 °C; ◊ 125 °C. 

Solid lines represent the curves calculated with eq. (8). 

Figure 8 – TGA curves of the synthesized polymers. 
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Table 1. Azidation reactions of polyether precursors: exiting group, reaction medium and operating 

temperatures, as reported in literature. 

 

Exiting group medium Temperature (°C) reference 

Tosyl, Br DMSO, DMF 95, 120, 150 [34] 

Cl, Br DMF 90-95 [30] 

Cl DMF 120 [29] 

Cl, Br DMSO 95 [31] 

Tosyl, Br DMSO 120 [35] 

Cl, Br DMSO 120 [33] 

Cl DMSO 100 [8] 

Cl DMF 100 [11] 

Cl DMSO 105 [25] 

Cl DMF 120 [28] 

Cl DMSO 100 [13] 

Cl DMSO 90-95 [24] 

Cl Water 95 [40] 

Cl tetrabutyl 

ammonium azide 

(molten salt) 

105 [41] 

NO2 DMSO 100 [43] 

Cl DMSO 105 [44] 

Cl Water 95-100 [45] 
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Table 2 – Molecular weights of the polymeric precursors calculated by GPC analysis. 

 

Polymer Mn Mw PD Xn Oligomer 

Xn 

Oligomer 

content 

(w%) 

PGT 2300 3200 1.4 14 683 10 

PGM 2150 3380 1.6 22 500 3 

PTMMO 2400 6650 2.8 26 450 6 

PMMMO 3000 5900 2.0 33 700 9 
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Table 3 - Comparison between the kinetic constants evaluated by using the azide (N), tosyl (Ts) and 

mesyl (Ms) signals in the FT-IR spectra. 

 

polymer T 

(°C) 

PGM PGT T 

(°C) 

PMMMO PTMMO 

group N Ms N Ts N Ms N Ts 

k’ 

(s
-1
) 

75 0.041 0.0457 0.1168 0.1334 85 0.0313 0.03321 0.046 0.0445 

85 0.118 0.1064 0.1807 0.1933 105 0.17445 0.14741 0.15097 0.14771 

95 0.172 0.1747 0.2727 0.3288 125 0.49413 0.41202 0.31482 0.35203 

A 

(s
-1
) 

 2.4*10
8
 4.3*10

7
 3.4*10

4
 1.1*10

4
  5.2*10

8
 4.7*10

7
 1.8*10

5
 6.8*10

5
 

Ea 

(KJ/mol 

K) 

 76.6 71.5 47.9 45.1  82.0 74.8 57.1 61.4 
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Figure 1 - Synthesis and azidation of GAP and PAMMO.  
136x92mm (300 x 300 DPI)  
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Figure 2 – FTIR spectra of monomers, precursors and azidated polymers.  
151x121mm (300 x 300 DPI)  
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Figure 3 – H-NMR spectra of the mesylate monomers and polymers.  
165x142mm (300 x 300 DPI)  
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Figure 4 – GPC curve of PGT (a) and the resultant fitting obtained by deconvolution into two peaks 
corresponding to polymer and oligomers (b).  

666x499mm (72 x 72 DPI)  
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Figure 5 – FT-IR spectra of PGM during azidation at 85 °C.  
199x139mm (300 x 300 DPI)  
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Figure 6 - Comparison between xN and xM for PGM azidation at 85 °C.  
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Figure 7 - xT for PTMMO azidation at different temperatures: ○ 85 °C; □ 105 °C; ◊ 125 °C. Solid lines 

represent the curves calculated with eq. (8).  
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Figure 8 – TGA curves of the synthesized polymers.  
426x612mm (300 x 300 DPI)  
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