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Preface 

The InGRID workpackage 23 on high-performance statistical quality management focuses on improvements in 
the development and accuracy of indicators. That requires the construction of a shared knowledge on theories 
and best practices to judge the quality and appropriateness of indicators through an empirical analysis. This 
covers methodological advances as well as practical considerations of indicators for poverty, social exclusion, 

and related fields. Additionally to methodological advances, a simulation lab is developed to foster open and 
reproducible research for future developments in the InGRID research area using SILC related data. 

This first deliverable covers methods in several areas: 
- Multidimensional Indicators 
- Non-response and Imputation 
- Small Area Estimation, and 
- Measuring Level and Change 

As an additional asset, the AMELIA dataset, which was originally started within the FP7 project AMELI 
(http://ameli.surveystatistics.net), was further developed to provide a sound basis for comparable and 
reproducible research. The start of AMELIA was related to SILC data. Further developments will integrate time 

change and will allow to enhance the data with other sources of interest for the InGRID research.  
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European policy-oriented research can and must deliver useful 
contributions to tackle the Europe 2020 challenges of Inclusive 
Growth. Key tools in this social sciences research are all types of 
data earning statistics, administrative social data, labour market 
data, surveys on quality of live or working conditions, policy 
indicators. The project aims to integrate and optimise these 
existing European data infrastructures and accompanying 
expertise. 
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1 The AMELIA Dataset - A Synthetic Universe for Repro-

ducible Research

Hariolf Merkle Jan Pablo Burgard Ralf Münnich

Economic and Social Statistics Department

Trier University

1.1 Introduction

Open and reproducible research is one of the important steps in modern research. For

survey statistics when introducing new estimators and methods, this is often accompanied

with simulation studies. The InGRID research, however, focusses of SILC data and meth-

ods using these data. Poverty measurements is one of the major examples in this context.

To evaluate survey statistical methodology adequately, real(istic) data shall be considered

as a sound basis for performing simulation studies. The aim of AMELIA is to provide a

realistic synthetic universe that is based on SILC data and its structures.

Changing simulation settings my lead to interesting behavior or to discovery of peculiarities

which hardly can be found with mathematical proofs and sometimes the observations may

lead to proofs. The use of careful set-ups makes it possible to learn about the applicability

and gather experience of the different kinds of estimators in various situations. In practice,

we have only one sample. This raises the question if our approach is adequate. But the

set-up including the corresponding evaluation of a Monte Carlo study is utmost important.

There should be a distinction between examples and simulation studies.

However, there is a problem regarding the availability of appropriate data especially for

design-based simulations. This type of simulations requires a given universe from which

samples can be drawn. Usually, a dataset comprising variables of the whole population is

not obtainable due to confidentiality reasons or it does not simply exist. For this reason, an

artificial dataset has to be generated making use of sample data. The artificial population

should have similar properties as the sample data. Also, the confidentiality requirements

have to be considered. This chapter deals with the generation of the artificial universe

called AMELIA. At first, the requirements are presented. Later on, the generation process,

the properties and further developments are shown.
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1.2 Requirements

The AMELIA dataset is a synthetic dataset created on the basis of the European Union

Statistics on Income an Living Conditions (EU-SILC) scientific-use-file from 2005 and orig-

inates from the project Advanced Methodology for European Laeken Indicators (AMELI).

During this project, AMELIA was created to evaluate estimators considering different

sampling designs using design-based simulations. Alfons et al. (2011a) and Kolb (2013)

give a more detailed description of the AMELIA data. The Sections 1.3 and 1.4 as well as

this one refer to both last-mentioned publications. The results of the AMELI simulation

study are presented in Hulliger et al. (2011).

The dataset contains variables on person- and household-level which encompass variables

regarding social, economic, and regional attributes. The following list shows an overview

on some of the requirements that had to be met for the AMELI project:

• Heterogeneity: the heterogeneity of different entities has to be considered to evaluate

the performance loss of small area estimators.

• Administrative structure: an administrative structure must be available for the im-

plementation of different sampling designs and for the evaluation of small area and

small domain methodologies.

• Micro structures: the household structure which differs across countries in the orig-

inal dataset has to be retained.

• Income components: income components are necessary to calculate Laeken indicators

(e.g. quintile share ratio, at risk of poverty rate) and should reflect the distributions

of EU-SILC.

• Zero values of income components: the dependencies between different income com-

ponents must be considered for consistency.

• Outliers: the treatment of outliers has to be regarded.

• Missing values: missing values in the original dataset have to be replaced by synthetic

values.

• Editing: logical editing is necessary to ensure consistency, statistical editing is im-

portant for the data structure.
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1.3 Generation of AMELIA

This section deals with the generation of the AMELIA dataset. Since this is a synthetic

dataset that does not reproduce the true underlying population exactly, the size of the

synthetic population characteristics have to be defined at first. These are number of

persons, number of regions and the size of the regions. These regions are artificial and

were generated by grouping countries from the EU-SILC dataset.

In general, the generation of the AMELIA dataset is based on sampling from distributions.

The initial step of the generation of the AMELIA universe is based on resampling of

households according to their respective weight from the EU-SILC dataset. Households

are drawn with replacement within their particular artificial region to which they are

assigned beforehand. For this purpose, the set of variables is divided into blocks because

pure resampling with all desired variables simultaneously would lead to exact replications

of the households. In this case, the synthetic population would contain real confidential

data.

In the first block, basic variables like household ID, age class, sex and marital status are

included to preserve the household structure. Households are drawn with these variables

because this basic household structure is complicated to generate. Every household in

the synthetic dataset is assigned a new unique ID that is independent from the original

dataset. Furthermore, a latent class model is used to generate placeholders for profile

clusters, e.g. the economic profile which encompasses variables like activity status and

employment relationship. Further variables are generated block-wise. The blocks group

variables that are dependent to each other. These blocks should be as far as possible

independent from each other.

The dataset contains many different income components. The original variables are di-

vided into categories and the respective category is drawn. Within these categories, the

corresponding value is drawn from a uniform distribution in a first step. Later on, rejec-

tion sampling is applied. This leads to an approximation to the original distribution from

the respective variable of the EU-SILC dataset. It is necessary to obtain similar values for

the Laeken indicators from the synthetic population as from EU-SILC data. Therefore,

the income distribution should reflect the original distribution.
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1.4 Properties of AMELIA

An important feature of the AMELIA dataset is its hierarchical structure. There are many

regional hierarchical levels which are usually not available in other micro datasets. These

administrative structures are also important to draw samples using different sampling

designs. The hierarchical structure of AMELIA is shown below:

1. The AMELIA country itself

2. 4 regions

3. 11 provinces

4. 40 districts

5. 1,592 cities/communities

6. 3,781,289 households

7. 10,012,600 persons

Adapting existing and creating new structures of hierarchical levels between and within the

respective hierarchical components is essential to account for heterogeneity. There is also

an artificial map available. It was decided to create an artificial map so there is no direct

spatial relation between individuals in the AMELIA population and in reality. Figures 1.1

and 1.2 display the map of AMELIA including regional structures whereas Figure 1.1

shows the regions and provinces. Figure 1.2 depicts the districts and cities/communities.
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Figure 1.1: Regions (left) & provinces (right) of AMELIA

Figure 1.2: Districts (left) & cities/communities (right) of AMELIA

Figure 1.3 depicts the spatial distribution of the equivalised disposable income (EDI) by

cities/communities. Region 3 has the highest equivalised disposable income on average

whereas the differences between the other regions are not very large. The means by region

are shown in Table 1.1.

REGION 1 2 3 4

EDI (mean) 27,085 27,342 42,526 31,424

Table 1.1: Equivalised disposable income by regions
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Figure 1.3: Equivalised disposable income by cities/communities

1.5 Steps Forward

The first part of Section 1.5 explains the evolution of the AMELIA dataset since the

AMELI project. The second part looks ahead of the status quo.

1.5.1 Proceedings of AMELIA

For the AMELI project, AMELIA was created to provide a universe for design-based

simulations to researchers. Since the original EU-SILC data has to be protected and is

only a sample, this synthetic dataset was generated. There was not only the need of

an artificial population for the AMELI-project, AMELIA is also used for InGRID. This

dataset is used in Chapter 5 for a simulation study which deals with variance estimation

for estimators where the variable of interest is a categorised continuous variable.

After the AMELI project, the artificial population is still maintained and developed at the
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Economic and Social Statistics Department at the Trier University. For instance, main-

taining involves restructuring and the creation of additional variables which is currently

the challenge. Making use of the Eurosystem Household Finance and Consumption Survey

from the European Central Bank, variables describing the amount of different financial

assets are currently being generated using regression model approaches. The concepts of

these regression model approaches considered here to create new variables are described

in Alfons et al. (2011b).

For the asset variables, the two-step regression approach was used. The first step involves

the estimation of a logit model. This is necessary for the treatment of semi-continuous

variables. The predictions from the logistic regression indicate whether the respective

outcome of a variable is zero or not. For the non-zero outcomes, a linear regression is

conducted with a logarithmized dependent variable and random draws from the residuals

are added. Otherwise, all individuals with the same characteristics would have identical

outcomes.

In addition to this, the Labour Force Survey is taken as a basis for the estimation of a

logit model indicating individuals with occupation as supervisors. This model is estimated

only for individuals that are marked as employed. Also, the prediction of this variable is

conducted on the respective individuals. The reason for this is to account for consistency.

Otherwise, it might be possible that some unemployed individuals turn out as supervisors.

Considering this issue in the estimation and in the generation process, the effort of editing

can be set to a minimum. Once the models are estimated, the outcomes of new variables

are predicted using the relevant variables from the AMELIA dataset as regressors.

Figure 1.4 shows the share of supervisors at working individuals. This share does not show

a large variation across the 40 districts and is often just under 30%.
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Figure 1.4: Share of supervisors at working individuals by district

1.5.2 The Future of AMELIA

There is not only the need of individual researchers for an artificial universe for design-

based simulations. Moreover, there is also the issue of reproducing results from statistical

studies. Often, reviewers of journals demand for the data that is used in the study to

reproduce the results. Unfortunately, the data can not be delivered due to confidentiality

reasons.

Amongst others, Peng (2015) describes some cases with issues concerning the repro-

ducibility of scientific results. Also, Stodden (2015) deals with the issue of reproducing

statistical results. She presents five reasons why reproducibility using statistical methods

might fail. These are low power and sampling issues, misapplication of statistical tests,

robustness and lack of generalization, lack of access to data, software and tools of analysis,

and ineffective cultural incentives.
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In the near future, AMELIA will be publicly available on a web platform. Researchers can

download the variables they need as well as the already drawn samples of different sampling

designs. Most of them are similar to the sampling designs that were used in Hulliger

et al. (2011). These encompass one- and two-stage sampling designs considering simple

random sampling, stratified sampling and sampling proportional to size. There already

exist web platforms to enable reproducible statistical research, e.g. researchcompendia.org

(Stodden et al., 2015), and RunMyCode.org (Hurlin et al., 2014). These platforms link

code and data as well as the article so other researchers can validate the results of the

respective studies. The web platform here will be slightly different. The main difference

is the usage of only that one specific AMELIA dataset.

The following list shows one of the most important properties of this platform:

• English language

• freely accessible

• version control if updates are available

• link publications with the platform

• open to extensions

• url: http://amelia.surveystatistics.net/

Soon, a more detailed description of the available variables and sampling designs will

be disseminated via the web platform. From this point on, the evolution of AMELIA

will also be community-driven. Users have the possibility to develop the dataset and the

supplements, i.e. the sampling designs or new variables. The development of AMELIA is

a long term process. Currently, adding the longitudinal component to AMELIA is part

of the work. This creates the opportunity to consider longitudinal sampling designs, e.g.

rotation sampling designs.
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2 Robust domain estimation of income-based inequality in-

dicators

Stefano Marchetti

Department of Economics and Management

University of Pisa

2.1 Introduction

Social deprivation is the reduction or prevention of culturally normal interaction between

an individual and the rest of society. Social deprivation is included in a broad network of

correlated factors that contribute to social exclusion and include mental illness, poverty,

poor education, and low socioeconomic status. The European Union has proposed a

core of statistical indicators to quantify deprivation and social exclusion in each country

commonly known as Laeken Indicators. This is a set of 21 indicators that includes the

incidence and the intensity of poverty for a set of domains (for example, young unemployed

individuals), the incidence of particular social situations (for example, low education),

inequality measures and life expectancy. These indicators were agreed by the European

Council in December 2001, in the Brussels suburb of Laeken (cf. Commission of the

European Communities, 2003).

The Laeken indicators at national or regional levels (NUTS 1 and 2 level) are usually

estimated by the Survey of Income and Living Conditions (EU-SILC). This survey is often

designed to obtain accurate estimates at NUTS 1 or 2 level while policy makers require

estimates of social exclusion and living conditions at finer levels of geographical/domain

disaggregation for which direct estimates are often inaccurate. This is mainly due to the

small sample sizes for the domains of interest. Given that oversampling is not feasible due

to budget constraints, there is need to resort to small area estimation methods.

The majority of the small area literature focuses on the estimation of domain averages, but

recent methodology has also focused on the estimation of non-linear statistics (incidence of

income poverty, the poverty gap and percentiles of the income distribution function). More

specifically, until very recently the industry standard for estimating poverty indicators

was based on the so called World Bank (WB) method, proposed firstly by Elbers et al.

(2003). From a small area perspective Molina and Rao (2010) proposed the Empirical
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Best Predictors (EBP) that is the best estimation method for in-sample domains when

the normality assumptions of the nested error regression model hold. As an alternative to

the EBP Marchetti et al. (2012a) and Tzavidis et al. (2010a) proposed robust small

area methods of poverty indicators when the parametric assumptions of the nested error

regression model do not hold.

In this work the focus is on extending the methodology in Marchetti et al. (2012a)

and Tzavidis et al. (2010a) for estimating two specific Laeken indicators namely, the

income quintile share ratio (S80/S20) and the Gini coefficient (G). First, we define the

two income-based inequality measures of interest. Second, we present the M-quantile-

based small area methodology for estimating the two inequality measures and the related

Mean Squared Error estimator. Then, we present results from Monte-Carlo simulations

and from an application of the methodology to real data. The aim of this application is to

obtain estimates of G and S80/S20 for unplanned domains (domains that do not feature in

the design and allocation of the EU-SILC sample) in Tuscany. For the application in this

chapter these domains are defined by provinces in Tuscany cross-classified by the gender

of the head of the household. Finally, some final remarks and open areas for research.

2.2 Definition of S80/S20 and G

S80/S20 is the ratio of the total income received by the 20% of the country’s popula-

tion with the highest income (top quintile) to that received by the 20% of the country’s

population with the lowest income (lowest quintile).

Denote by N the population size, by q0.2 and q0.8 the 20th and 80th percentiles of the

income distribution and by yj the corresponding income for household j. The S80/S20 is

defined as follows,

S80/S20 =

N∑
j=1

[
yjI(yj > q0.8)

]
N∑
j=1

[
yjI(yj < q0.2)

] . (2.1)

G measures the relationship of the cumulative shares of the population arranged according

to the level of income, to the cumulative share of the equivalised total net income received

by them.
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Denote further by (j) the order of the income of household j. Let’s assume that yj denotes

the ordered income values. Then, G can be defined as follows,

G =
N + 1

N
−
−2

N∑
j=1

[N + 1− (j)]yj

N
N∑
j=1

yj

. (2.2)

2.3 M-quantile approach to Small Area Estimation of Inequality Mea-

sures

In this section we describe the methodology for estimating S80/S20 and G for small areas

(domains) of interest. Our approach is based on the use of M-quantile models for small

area estimation (cf. Chambers and Tzavidis, 2006) and their extension for estimating

deprivation indicators (cf. Marchetti et al., 2012a, Tzavidis et al., 2010a).

Let xjd be a vector of p auxiliary variables that is known for each population unit j in small

area d and let the income variable of interest, yjd, be available from a random sample, s,

that includes units from all target domains. Population size, sample size, sampled part

of the population and non-sampled part of the population in a given domain are denoted

respectively by Nd ,nd ,sd and rd. As usual in small area estimation framework we further

assume that conditional on the covariates available, the sampling design is ignorable.

The data needed to use the method we propose are: i. survey data on an income variable

and explanatory variables, ii. Census/administrative data on the same set of explanatory

variables. Some methods further assume that the Census and survey data are linked.

However, this assumption is fairly unrealistic as in most cases the link between the survey

and the Census data is unknown. Having said this, the estimation methods can be modified

so that the linkage assumption is not necessary.

Usually, model-base methods which work with income variable as outcome variable often

use a box-cox transformation (WB and EBP). In contrast, the M-quantile approach uses

the raw values of the income variable. However, before proceeding to small area estimation,

it is always advisable to use model diagnostics. Depending on the results of the model

diagnostics, all methods can be implemented either by using the raw or the transformed

values of the income variable.
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The classical regression model summarizes the behavior of the mean of a random variable

at each point in a set of covariates. Instead, quantile regression summarizes the behavior

of different parts of the conditional distribution f(y|x) at each point in the set of the x’s.

Because of notational simplicity the area-specific subscript d is dropped for the moment.

Let (xj ,yj ), j = 1, . . . , n denotes the observed values of a random sample consisting of n

units, where xj are p-vectors of a known design matrix x and yj is a scalar response variable

corresponding to a realization of a continuous random variable with unknown continuous

cumulative distribution function. A linear regression model for the q conditional quantile

of f(y|x) is

Qy(q|x) = xTβq.

Estimates of the quantile regression parameter βq are obtained by minimising

n∑
j=1

|yj − xTj βq|{(1− q)I(yj − xTj βq ≤ 0) + qI(yj − xTj βq > 0)} .

M-quantile regression (cf. Breckling and Chambers, 1988) is a “quantile-like” general-

ization of regression based on influence functions (M-regression). The M-quantile q of the

conditional density f(y|x), m, is defined as the solution to the estimating equation

∫
ψq(y −m)f(y|x) dy = 0,

where ψq denotes an asymmetric influence function, which is the derivative of an asym-

metric loss function ρq. A linear M-quantile regression model is defined by

my(q|x) = xTβψ,q.

Estimates of βψ,q are obtained by minimising

n∑
j=1

ρq(yj − xTj βψ,q). (2.3)

The choice for ρq is the Huber loss function (cf. Breckling and Chambers, 1988). The
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estimating equation defined by (2.3) is

n∑
j=1

2ψ(rjq){(1− q)I(rjq ≤ 0) + qI(rjq > 0)} = 0,

where rjq = s−1(yj − xTj βψ,q), and s is an estimate of scale such as the Mean Absolute

Deviation. Provided that the tuning constant of the influence function is strictly greater

than zero, estimates of βψ,q are obtained by using iterative weighted least squares (IWLS).

Using the M-quantile (or even the quantile) regression it is possible to characterise the con-

ditional variability across the population of interest by the M-quantile coefficients of the

population units (cf. Chambers and Tzavidis, 2006). For unit j with values yj and xj ,

this coefficient is the value θj such that my(θj |xj) = yj . If a hierarchical structure explains

part of the variability in the population data then units within domains should have sim-

ilar M-quantile coefficients. An area specific semi-parametric (empirical) pseudo-random

effect, θd, is then computed by taking the expected value of the M-quantile coefficients θj

in area d.

After we briefly described the M-quantile small area model, we now focus on the estimation

of the Laeken indicators of interest at small area level.

Let us define the S80/S20 for area d by

S80/S20d =

∑
j∈sd

yjI(yj > qd,0.8) +
∑
k∈rd

ykI(yk > qd,0.8)∑
j∈sd

yjI(yj < qd,0.2) +
∑
k∈rd

ykI(yk < qd,0.2)
. (2.4)

As an alternatives, one can use income quantiles defined at an aggregate level instead of

the area-specific income quantiles. This leads to an alternative definition of S80/S20. In

(2.4) the realised household income values in the sample is denoted by yj , j ∈ sd and the

unobserved out of sample income values are denoted by yk, k ∈ rd. The yks should be

predicted to estimate the area-specific S80/S20. Moreover, since linked Census and survey

data hardly ever exist, we further replace the sample y values also by their prediction

under the model. This leads to the following definition of S80/S20 at the population level

S80/S20d =

∑
j∈Ud

E(yjI(yj > qd,0.8))∑
j∈Ud

E(yjI(yj < qd,0.2))
, (2.5)

where Ud is the set of population units in area d.
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The estimates of E(yjI(yj > qd)) can be obtained non-parametrically using a smearing-

type estimator motivated by the work of Duan (1983) leading to

E(yjI(yj > qd)) =

∫
(xTj βψ,θd + ε)I((xTj βψ,θd + ε) > qd) dF (ε). (2.6)

We estimate the unknown error term distribution F (ε) by using the empirical distribution

function of the estimated model residuals. Further, substituting βψ,θd by their estimates

under the M-quantile small area model β̂ψ,θ̂d leads to

Ê(yjI(yj > qd)) =

∫
(xTj β̂ψ,θ̂d + ε̂)I((xTj β̂ψ,θ̂d + ε̂) > qd) dF̂ (ε). (2.7)

The evaluation of Ê(yjI(yj > qd)) is achieved by means of Monte-Carlo simulation. The

technique is as follows

1. estimate the M-quantile model and compute the residuals

2. draw a with replacement sample of size Nd from the empirical distribution of the

residuals

3. microsimulate a population of synthetic income values for each small area

4. from micro simulated population draw a random sample and estimate q0.8,d, q0.2,d

and Ê(yjI(yj > qd))

5. repeat step 2 to 4 H times, each time estimating ̂S80/S20
h

d , h = 1, . . . ,H

6. the S80/S20 estimate in area d is obtained by taking the average of the S80/S20

values over the Monte-Carlo replications

A similar approach to the one described above is used for estimating the area-specific Gini

coefficient Gd. Let us define G in area d by

Gd =
Nd + 1

Nd
−
−2

∑
j∈Ud

(Nd + 1− (j))yj

Nd
∑
j∈Ud

yj
. (2.8)

Similar to the case of S80/S20, yj in (2.8) is replaced by its expectation under the model

Ê(yj) =

∫
(xTj β̂ψ,θ̂d + ε̂) dF̂ (ε).

The expectation is evaluated also by using Monte-Carlo simulation.
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2.4 Mean Squared Error Estimation

Mean Squared Error (MSE) estimation for small area estimators under the M-quantile

model is discussed in detail in Marchetti et al. (2012a) and is based on the use of a

non-parametric bootstrap scheme. Here we recall the main steps of this bootstrap scheme.

Starting from sample s, selected from a finite population U without replacement, we fit

the M-quantile small area model and obtain estimates θ̂ and β̂ψ,θ̂d which are used to

compute the model residuals. We then generate B bootstrap populations, U∗b. From each

bootstrap population we select L bootstrap samples using simple random sampling within

the small areas and without replacement such that n∗d = nd. Applying the methodology

described in 2.2 to the bootstrap samples we obtain estimates of the inequality indicators

of interest.

To generate the bootstrap populations there are two alternatives: i. sampling from the

empirical distribution of the residuals or ii. sampling from a smoothed version of this

distribution. For each of these alternatives the sampling can be conditional or uncondi-

tional on the small areas. So we have a total of four possibilities to generate the bootstrap

population. Denoting by τ̂d the estimated small area parameter, bootstrap estimators of

the bias and variance are defined respectively by

B̂(τ̂d) = B−1L−1
B∑
b=1

L∑
l=1

(τ̂∗bld − τ∗bd ),

V̂ (τ̂d) = B−1L−1
B∑
b=1

L∑
l=1

(τ̂∗bld − ˆ̄τ∗bld )2.

In the expressions for the bias and the variance τ∗bd is the small area parameter of the b

bootstrap population, τ̂∗bld is the small area parameter estimated by using the l sample

from the b bootstrap population and ˆ̄τ∗bld = L−1
L∑
l=1

τ̂∗bld . The bootstrap MSE estimator of

the estimated small area target parameter is then defined as

M̂SE(τ̂d) = V̂ (τ̂d) + B̂(τ̂d)
2.
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2.5 Empirical Evaluations

In order to compare the performances of the various small-area estimators defined in

the preceding sections we used a model-based simulation study. Small-area population

and sample data were simulated based on a two-level linear mixed model with different

parametric assumptions for the area- and unit-level random effects. As usual in model-

based simulation the sample design is a stratified random sampling, where the strata

correspond to the small areas and the allocation is proportional to the population size in

the small area.

We generated data for D = 30 small areas which are partitions of a population of size

N = 6000 with 100 ≤ Nd ≤ 300, d = 1, . . . , D. For each area, we selected a simple random

sample (without replacement) of size 5 ≤ nd ≤ 8, leading to an overall sample size of

n = 175.

We used a random intercept model yjd = 5000 + βxjd + ud + ejd to generate target values

in the population. The xjds are generated as independently and identically distributed

realizations from a mixture model (1 − γ)N(µd, 1) + γN(ηd, 1) where the weight γ was

set to 0.2 and held fixed over the simulations. The small-area x-means µd and ηd were

themselves drawn at random from the uniform distribution on the interval [1, 10] and

[81, 90] respectively, and held fixed over the simulations.

A total of 1000 populations and related samples were generated and used to estimate the

small-area quintile share ratio (S80/S20) and the Gini coefficient (G).

We generate the area and unit level error according to two different distributions, in

this way generating two simulation scenarios. In the first simulation experiment (Sce-

nario 1) the random effects ud and edj were independently and identically generated as

N(0, 40000) and N(0, 640000) realizations respectively. In this scenario β was set equal to

250. In the second simulation experiment (Scenario 2) the random effects ud and ejd were

independently and identically generated as mean-corrected Singh-Maddala distribution

realizations, both with parameters (a = 2.8, b = 100−5/14, q = 1.7). The Singh-Maddala

distribution has density function equal to

f(y) =
aqya−1

ba
(

1 + ya

ba

)1+q .
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The mean correction was set as 15000ud − D−1
∑D

d=1 15000ud and

15000 ejd − D−1n−1
d

∑D
d=1

∑nj

j=1 15000 ejd. The purpose of Scenario 2 was to examine

the effect of misspecification of the Gaussian assumptions of a mixed model using a den-

sity function able to mimic an income distribution.

The reason why we used a mixture distribution for generating auxiliary variables is to

ensure realistic values of the target parameters in the simulated population. Indeed, in

Scenario 2 the Gini coefficients vary between 0.12 and 0.5 and the S80/S20 between 1.9 and

11.8 over areas and simulations. In Scenario 1 the Gini coefficient and the S80/S20 range

respectively between 0.29 and 0.39, and 3.9 and 6.2. These values are considered realistic in

the sense that in the Euro Area in 2012 Eurostat reported a Gini Coefficient between 0.23

(Norway) and 0.36 (Latvia) and a Quintile Share Ratio between 3.5 (Czech Republic)

and 7.2 (Spain) (http://epp.eurostat.ec.europa.eu/portal/page/portal/income_

social_inclusion_living_conditions/data/main_tables). Similar results are obtai-

ned in others years.

Using the simulated data, point estimation and MSE estimation is performed using the

methodology described in sections 2.3 and 2.4. All computations were performed by using

R (cf. R Core Team, 2015). Biases and root MSEs over these simulations, summarized

over the 30 areas, are shown in Table 2.1, Table 2.2 and in Table 2.3. Moreover, in

Table 2.4 and Table 2.5 we also show the bias of the root MSE estimator we presented in

section 2.4.

The bias for both estimators in both scenarios is negative. In the first scenario - results

in Table 2.1 - it is fairly small with the maximum absolute relative bias being 3.7% for

the Gini coefficient and 7.3% for the quintile share ratio. Using a heavy tailed error

distribution - scenario 2 - results in an increase, albeit small compared to Scenario 1, in

the bias for both estimators - results in table 2.2. In Scenario 2 the mean of the relative

bias for the Gini coefficient is equal to -3% and the mean of the absolute relative bias is

equal to 5.6%. For the quintile share ratio the mean of the relative bias and the absolute

relative bias are equal to -3.5% and 8% respectively. Also considering the minimum and

maximum values of the relative bias and the absolute relative bias, the results obtained

are still acceptable in both scenarios.

Table 2.3 shows the empirical MSE of the Gini coefficient and quintile share ratio estima-

tors for both scenarios summarized over areas. The empirical MSE for an estimator θ̂d of
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Table 2.1: Scenario 1 (Normally distributed errors). Distribution over areas and Monte
Carlo simulations of the bias, absolute bias, relative bias and absolute relative
bias of the Gini coefficient (G) and the quintile share ratio (S80/S20).

Min. 1st Qu. Median Mean 3rd Qu. Max.

Bias(Ĝ) −0.005 −0.004 −0.004 −0.003 −0.003 −0.002

Abs. Bias(Ĝ) 0.009 0.010 0.011 0.011 0.012 0.013

Rel. Bias(Ĝ) % −1.340 −1.130 −1.050 −1.000 −0.890 −0.630

Rel. Abs. Bias(Ĝ) % 2.770 3.080 3.410 3.310 3.580 3.690

Bias( ̂S80/S20) −0.133 −0.104 −0.090 −0.091 −0.079 −0.058

Abs. Bias( ̂S80/S20) 0.228 0.279 0.312 0.313 0.350 0.391

Rel. Bias( ̂S80/S20) % −2.430 −1.980 −1.800 −1.770 −1.510 −1.140

Rel. Abs. Bias( ̂S80/S20) % 5.120 5.540 6.240 6.170 6.700 7.320

θd is computed as

MSE(θ̂d) = N−1
H∑
h=1

(θ̂dh − θdh)2,

where θdh and θ̂dh are respectively the true and the estimated values of the target statistics

(G and S80/S20) for area d in the iteration h of the Monte Carlo simulation, and H is

the total number of Monte Carlo runs (1000). The true values are computed from the

corresponding Monte-Carlo population in each small area. The empirical MSEs are treated

as true MSEs of the proposed estimators and are used in Tables 2.4 and 2.5 to compute

the bias, absolute bias and relative bias of the root MSE bootstrap estimator (rmse) we

proposed in section 2.4.

The rmse bootstrap estimator performs well in both the scenarios, Tables 2.4 and 2.5.

The known tendency to underestimate the true root MSE observed by Marchetti et al.

(2012a) is also confirmed in this simulation. Some improvements of the used bootstrap

technique are currently under study. Moreover, given that there are no remarkable differ-

ences in the behavior of the rmse estimators under both scenarios, we can assume that the

non-parametric rmse bootstrap estimator is robust to the assumed unit- and area-level

error distributions. The rmses estimates have been obtained sampling from the empirical

distribution of the residuals conditionally to the small areas. Furthermore, we can note
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Table 2.2: Scenario 2 (Singh-Maddala distributed errors). Distribution over areas and
Monte Carlo simulations of the bias, absolute bias, relative bias and absolute
relative bias of the Gini coefficient (G) and the quintile share ratio (S80/S20).

Min. 1st Qu. Median Mean 3rd Qu. Max.

Bias(Ĝ) −0.012 −0.010 −0.009 −0.009 −0.008 −0.006

Abs. Bias(Ĝ) 0.014 0.016 0.017 0.017 0.018 0.020

Rel. Bias(Ĝ) % −3.800 −3.400 −3.070 −2.990 −2.660 −1.970

Rel. Abs. Bias(Ĝ) % 4.690 5.230 5.840 5.640 6.070 6.360

Bias( ̂S80/S20) −0.247 −0.188 −0.162 −0.163 −0.137 −0.096

Abs. Bias( ̂S80/S20) 0.281 0.338 0.389 0.380 0.417 0.484

Rel. Bias( ̂S80/S20) % −4.920 −4.020 −3.560 −3.520 −2.950 −2.120

Rel. Abs. Bias( ̂S80/S20) % 6.540 7.320 8.040 8.040 8.580 9.620

that the true root MSEs are in general small values hence a small difference between the

estimated value and true values can lead to a large relative bias. Examining the absolute

bias the error of the rmse estimator for the Gini coefficient is maximum 0.007 and it is

maximum 0.366 for the rmse estimator of the Quintile Share Ratio.

2.6 Estimating G and S80/S20 for unplanned domains (LAU 1) in Tus-

cany

The aim of the application presented here is to estimate G and S80/S20 for unplanned

domains in the region of Tuscany in Italy. We used data from EU-SILC 2008 and from

the Italian Population Census 2001. The domains of interest are defined by the cross-

classification of provinces in Tuscany (LAU 1) by the gender of the head of the household.

The domains are 20 in total (10 provinces × 2 gender categories).

The EU-SILC 2008 surveys the household equivalised income which is our outcome vari-

ables. For each individual the equivalised total net income is calculated as its household

total net income divided by the equivalised household size according to the modified OECD

scale, where the head of the household has weight equal to 1, other household members

aged 14 or more have a weight of 0.5 and members aged 13 or lesser have a weight of 0.3.

The set of explanatory variable must be selected within the set of common variables in EU-
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Table 2.3: Distribution over areas of the empirical root MSE (RMSE) of the Gini coefficient
(G) and the quintile share ratio (S80/S20).

Scenario 1

Min. 1st Qu. Median Mean 3rd Qu. Max.

RMSE(Ĝ) 0.012 0.013 0.014 0.014 0.015 0.016

RMSE( ̂S80/S20) 0.288 0.347 0.388 0.393 0.438 0.492

Scenario 2

Min. 1st Qu. Median Mean 3rd Qu. Max.

RMSE(Ĝ) 0.018 0.021 0.022 0.022 0.023 0.026

RMSE( ̂S80/S20) 0.386 0.460 0.532 0.530 0.593 0.676

SILC and the Italian Population Census. The explanatory variables we selected are the

marital status of the head of the household (four categories, single, married, divorced and

widow), the employment status of the head of the household (working/not working), the

years of education of the head of the household, the mean house surface (in square meters)

at municipality level (LAU 2 level) and the number of household members. It is impor-

tant to underline that EU-SILC and Census datasets are confidential. The datasets were

provided by ISTAT, the Italian National Institute of Statistics, to the researchers of the

SAMPLE (2009) project and were analyzed by respecting the confidentiality restrictions.

We carried out some exploratory analysis on the sample data, resumed in Figure 2.1 and

2.2. In particular the Figure 2.1 shows box-plots of the household equivalised income in

the 20 domains. The box-plots highlight the asymmetry of the income distribution in

each domains. Furthermore, we observe differences in the income distribution between

households whose head is female and those whose head is male. The only exceptions are

the provinces of Massa-Carrara (MC) and Prato (PO) where this difference is less evident,

but present. Income quantiles in the household leads by a female tend to be lower.

The use of the M-quantile approach instead of the linear-model-based approach is moti-

vated when the normal hypothesis of the linear model does not hold. A graphical analysis

of level one and two residuals obtained by fitting a two-level random effects model to the

EU-SILC data is shown in Figure 2.2. Here, households are the level one units and the

20 domains define the level two units. The plots in Figure 2.2 suggest departures from

the normality assumptions of the random effects model. Also the use of the Shapiro test
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Table 2.4: Scenario 1 (Normally distributed errors). Distribution over areas and Monte
Carlo simulations of the bias, absolute bias and relative bias of the bootstrap
root MSE estimator of the Gini coefficient (G) and the quintile share ratio
(S80/S20).

Min. 1st Qu. Median Mean 3rd Qu. Max.

Bias rmse(Ĝ) -0.003 -0.002 -0.001 -0.001 0.000 0.001

Abs bias rmse(Ĝ) 0.001 0.001 0.001 0.002 0.002 0.003

Rel bias rmse(Ĝ) % -17.070 -11.620 -5.860 -6.000 -2.270 12.680

Bias rmse( ̂S80/S20) -0.108 -0.046 -0.033 -0.032 -0.011 0.047

Abs bias rmse( ̂S80/S20) 0.043 0.058 0.068 0.071 0.077 0.125

Rel bias rmse( ̂S80/S20) % -26.410 -12.160 -8.040 -7.290 -2.710 19.260

statistic confirms that the hypothesis of normally distributed level one residuals, both

when using the raw and log-transformed income variable, is rejected.

The results of the application are shown in Table 2.6 which reports model-based estimates

of the Gini coefficient (G) and of the quintile share ratio (S80/S20). Results are obtained by

applying the M-quantile-based small area methodology presented in section 2.2. Estimated

root mean squared errors are reported in parentheses. Table 2.6 also reports the sample

and population sizes in each domain.

Looking at the results in Table 2.6 we observe that the inequality in those domains where

the head of the household is female is in the majority of cases higher than in those do-

mains where the head of the household is male. Moreover, the coefficient G provides some

evidence of higher inequality in the provinces of Grosseto (GR), Pistoia (PT) and Florence

(FI) in the domains where a female as the head of the household. Furthermore, it is impor-

tant to take into account the uncertainty of the estimates to make detailed comparisons.

According to estimates by Eurostat (http://epp.eurostat.ec.europa.eu/tgm/table.

do?tab=table&language=en&pcode=tessi190) the Gini coefficient in Italy in 2008 was

31%, a number consistent with the estimates we present in Table 2.6.

With respect to the quintile share ratio, the results in table 2.6 indicate again that inequal-

ity in those domains where the head of the household is a female is very often higher than

in those domains where the head of the household is a male. The estimates indicate higher
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Table 2.5: Scenario 2 (Singh-Maddala distributed errors). Distribution over areas and
Monte Carlo simulations of the bias, absolute bias and relative bias of the
bootstrap root MSE estimator of the Gini coefficient (G) and the quintile share
ratio (S80/S20).

Min. 1st Qu. Median Mean 3rd Qu. Max.

Bias rmse(Ĝ) -0.006 -0.002 -0.001 -0.001 0.001 0.003

Abs bias rmse(Ĝ) 0.003 0.004 0.004 0.004 0.005 0.007

Rel bias rmse(Ĝ) % -20.210 -9.800 -5.790 -4.840 2.560 15.390

Bias rmse( ̂S80/S20) -0.132 -0.049 -0.008 -0.009 0.04 0.119

Abs bias rmse( ̂S80/S20) 0.141 0.194 0.24 0.245 0.284 0.366

Rel bias rmse( ̂S80/S20) % -19.410 -9.940 -2.160 -0.440 7.860 28.240

inequality in the Province of Pistoia (PT), Livorno (LI) and Florence (FI) when the head of

the household is a female. The quintile share ratio (S80/S20) in Italy in 2008 is estimated

by Eurostat and is equal to 5.1 (http://epp.eurostat.ec.europa.eu/tgm/table.do?

tab=table&init=1&language=en&pcode=tessi180&plugin=1), which is consistent with

the estimates in Table 2.6.

It is often recommended to represent the estimates on a map, when possible. Figure 2.3

and 2.4 are asymetric maps that offer a representation of the model-based estimates of the

Gini coefficient and of the quintile share ratio. In both figures the map on the left refers

to the provinces with a female as the head of the household, while the one on the right

refers to households leads by a male. The provinces are grouped in four different classes

of colors, where the darker the color the lower the Gini coefficient and the quintile share

ratio. To facilitate the comparison between males and females we used a common scale

for the classes of colors.

The inequality in the provinces of Tuscany, measured by the small area estimates of the

Gini coefficient and quintile share ratio, is in line with national (reliable) estimates. The

insight of this application is some evidence of differences in inequality between males and

females heads of household. This result is sensible, given that in Italy most households

where the head is a female are often cases where there is a widow living alone or a widow

living with dependents. These results allow us to identify domains with potentially higher
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Figure 2.1: Boxplots of the equivalised household income for Tuscany Provinces by gender
of the head of the household (F=Female, M=Male).

inequality, which alongside other poverty indicators can better depict the monetary-based

deprivation with an high geographical resolutions. Last but not least, they can assist

policy makers and stakeholders to plan and implement appropriate social policies at local

level.

2.7 Conclusions

The increased demand for producing estimates of deprivation and inequality indicators at

the level of unplanned domains stimulate a rapid development in model-based small area

methodologies. However, the request of non-linear statistics, such as most of the Laeken

indicators, together with the strong asymmetry and irregularity of income distributions

is still a challenge for statisticians. In this work we presented a small area methodology

that is based on the use of linear M-quantile regression model and is used for estimating

inequality indicators such as the Gini coefficient and the quintile share ratio. One of the

advantages of the M-quantile approach to small area estimation is that it avoids the use
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Figure 2.2: Normal probability plots of level one and level two residuals derived by fitting
a two level linear mixed model to the EU-SILC data using the original income
variable (left) and a log-transformed income variable (right).

of strong parametric assumptions in estimation.

Point and MSE estimation is facilitated by the availability of open source software that

has been written in the statistical language R (cf. R Core Team, 2015) and can be easily

adapted for estimating other Laeken indicators.

Despite the availability of a wide range of small area methodologies for estimating income-

based deprivation and inequality, there are practical problems that require the development

of new methodology.

Finally, it is known that the use of only monetary-based indicators, such as the Laeken

indicators, can not fulfill a real picture of deprivation and social exclusion. To fill this gap

multidimensional indicators that incorporate additional dimensions such as educational,

health and social security inequality have been developed. Also other approaches to mea-
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Figure 2.3: Model-based estimates of Gini coefficient for Provinces in Tuscany by gender
of the head of the household: female (left) and male (right).

sure deprivation, like the capability approach, are under study. Research for developing

small area methodologies appropriate to tackle this problem is currently under way.
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Table 2.6: Model-based (M-quantile) estimates of the Gini coefficient (G) and the quintile
share ratio (S80/S20) with corresponding estimated Root Mean Squared Errors
(in parantheses). The population and sample size of households in each domain
(n and N) are also reported.

Province HH Gender n N Ĝ(%) ̂S80/S20

MC Female 34 24608 30.07 (3.66) 6.57 (3.96)

Male 71 56202 28.13 (2.07) 4.56 (0.50)

LU Female 38 41622 29.63 (3.68) 5.90 (2.14)

Male 112 104495 28.98 (2.84) 4.88 (0.93)

PT Female 51 27684 36.85 (3.96) 10.41 (6.35)

Male 85 76782 28.89 (2.93) 4.24 (0.86)

FI Female 140 110484 32.63 (2.36) 6.92 (1.45)

Male 275 265771 28.64 (1.70) 4.45 (0.60)

LI Female 31 37646 31.79 (3.49) 6.32 (2.28)

Male 74 96083 24.33 (2.00) 3.53 (0.44)

PI Female 44 37673 30.81 (3.89) 5.74 (1.90)

Male 105 112586 26.55 (2.53) 4.32 (0.87)

AR Female 34 30589 26.86 (2.15) 4.73 (0.76)

Male 109 93291 31.47 (2.79) 4.97 (1.11)

SI Female 29 25699 28.13 (3.04) 5.47 (1.54)

Male 75 75700 28.07 (3.34) 4.40 (1.08)

GR Female 30 24531 32.89 (3.62) 6.98 (2.41)

Male 35 63189 33.54 (6.32) 6.77 (8.57)

PO Female 37 19130 27.27 (3.40) 4.52 (1.24)

Male 86 64487 25.92 (2.47) 3.89 (0.67)
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Estimation in Spain

Nikos Tzavidis
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Iñaki Permanyer Pinar Koksel
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University Autonoma Barcelona

Summary

This part of the deliverable describes the cooperation between different pillars of the

INGRID consortium, namely the statistical pillar represented in this report by Nikos Tza-

vidis (University of Southampton) and the poverty pillar represented by Iñaki Permanyer

(CED, Autonoma University of Barcelona). The aim of this cooperation was to support

researchers from the poverty pillar with the implementation of statistical methodology for

estimating poverty in disaggregated geographic areas. Support involved organising two

meetings, one for explaining the methodology and for providing software for implementing

the methodology and a second meeting for testing the implementation of the code and for

examining the results. For doing so, Nikos Tzavidis visited CED in November 2014 and

Iñaki Permanyer visited Southampton in December 2014.

3.1 Introduction

Estimating economic indicators is crucial for achieving a targeted implementation of wel-

fare policies. However, for such policies to be effective policy makers must have access

to a detailed picture of deprivation that goes beyond aggregate estimates at the country

(national) level, extending to finer geographical levels and to other domains of interest

for example, specific groups of individuals. Such a picture can only be constructed by

having access to survey and administrative/Census data at appropriate spatial scales that

are timely and accurate. One possible solution for obtaining accurate indicators at finer

spatial scales is by using small area estimation methodologies. The term ”small areas”

is typically used to describe domains (e.g. geographic areas) whose sample sizes are not
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large enough to allow sufficiently precise direct estimation i.e. estimation that is based

only on the sample data from a domain (cf. Rao, 2003). Small area-specific sample sizes

often also hamper the use of conventional design-based estimators. In such cases model-

based estimation procedures can be considered for improving the precision of the direct

estimates. Small area estimation is conventionally concerned with the estimation of small

area averages and totals. More recently some of the research effort has been shifted to-

wards methods for estimating poverty (deprivation) indicators at the small area level, also

known as poverty mapping. Poverty mapping can offer a detailed description of the spatial

distribution of poverty and inequality within a country. It combines individual and house-

hold survey data with Census/administrative data with the objective of estimating welfare

indicators for geographic areas or domains of interest. In recent years a range of alternative

model based small area methodologies for poverty mapping have been proposed.

The seminal paper by Elbers et al. (2003) proposed a methodology for estimating poverty

indicators at the small area level. The methodology consists of a nested error regression

(random effects) model with cluster random effects that is estimated by using survey data.

The response variable, which is not available in the Census, is the logarithm of a welfare

variable, e.g. income or consumption, and the explanatory variables, used for modeling

the welfare variable, are available both in the survey and in the Census datasets. Once

the model has been estimated using the survey data, the estimated model parameters

are combined with Census micro-data to form unit level synthetic Census predictions of

the welfare variable. The synthetic values of income/consumption alongside a defined

poverty line are then used for estimating deprivation indicators for example, the incidence

of poverty (HCR), the poverty gap (PG) and the poverty severity (cf. Foster et al.,

1984). Routinely we refer to this poverty mapping methodology as the World Bank (WB)

approach.

More recently, Molina and Rao (2010) proposed an Empirical Best Prediction (EBP)

approach for estimating poverty indicators at the small area level, which is similar to the

WB approach but generates Census predictions of income/consumption by using the con-

ditional predictive distribution of the out of sample data given the sample data. Molina

and Rao (2010) demonstrated the superior performance of the EBP approach, when com-

pared to the WB approach, under the nested error regression model.

The aim of this report is to review some of the recently proposed small area methodologies

for poverty estimation that mainly use the nested error regression model and present a
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case study by applying the EBP approach using data from the EU-SILC survey in Spain.

The report is organised as follows. In Section 2 we present the WB and EBP approaches

to small area poverty estimation. In Section 3 we review robust methodologies and in

Section 4 we apply the EBP methodology using data from the survey of income and

living conditions (EU-SILC) in 2004 and 2011 from Spain and a sample of Census micro-

data from the Integrated Public Use Microdata Series (IPUMS) in 2001 and 2011. The

target parameters include the Head Count Ratio (HCR), the Poverty Gap (PG) and the

Gini coefficient (Gini). Finally, in Section 5 we provide a summary and outline current

challenges.

3.2 Small Area estimation of poverty indicators using the nested error

regression model

In what follows we assume that a vector of p auxiliary variables xij is known for each

population unit i in small area j = 1, . . . ,m and that values of the welfare variable of

interest yij are available from a random sample, s, that includes units from all the small

areas of interest. We denote the population size, sample size, sampled part of the popula-

tion and non-sampled part of the population in area j respectively by Nj , nj , sj , rj . We

assume that the sum over the areas of Nj and nj is equal to N and n respectively. We

further assume that conditional on covariate information, for example design variables,

the sampling design is ignorable.

All poverty mapping methods we describe in this deliverable assume the availability of

survey data on a welfare variable (income/consumption) and explanatory variables that

can be used for modelling the outcome variable. In addition, the methods assume the

availability of Census/administrative data on the same set of explanatory variables. Some

methods further assume that the Census and survey data are linked. However, this as-

sumption is fairly unrealistic as in most cases the link between the survey and the Census

data is not known. Finally, the methods that are based on the nested error regression

model (WB and EBP) conventionally use a logarithmic transformation of the welfare vari-

able. Nevertheless, before proceeding to small area estimation, it is always advisable to use

model diagnostics because a logarithmic transformation may not be the optimal one. In

this report we focus on the estimation of HCR and PG as defined by Foster et al. (1984)

and on the estimation of the Gini coefficient. Denoting by t the poverty line, different
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poverty indicators are defined by the area-specific mean of the derived variable

zij (α,t) =

(
t− yij
t

)α
I (yij ≤ t) , i = 1, . . . , Nj .

Setting α = 0 defines the HCR in small area j, zj (0,t), which is the mean of zij (0,t).

Similarly, setting α = 1 defines the PG in small area j, zj (1,t), which is the mean of

zij (1,t).

3.2.1 The WB method

The most widely used method for small area poverty mapping is the so-called WB method

(cf. Elbers et al., 2003). In its simplest form and assuming a non-informative sampling

design, the WB method assumes a nested error regression model on the logarithmically

transformed values of yij ,

yij = xijβ
T + uj + εij , uj ∼ N

(
0, σ2

u

)
, εij ∼ N

(
0, σ2

ε

)
. (3.1)

The WB method starts by estimating equation (3.1) using the sample data. Once estimates

of the fixed effects, β̂, of the variance components, σ̂2
u σ̂

2
ε , and of the area random effects

ûj have been obtained, the WB method uses the following bootstrap population model for

generating L synthetic Censuses,

y∗ij = xijβ̂
T

+ u∗j + ε∗ij , u∗j ∼ N
(
0, σ̂2

u

)
, ε∗ij ∼ N

(
0, σ̂2

ε

)
. (3.2)

The exact steps of the Monte-Carlo simulation are as follows. Start by estimating equa-

tion (3.1) using the sample data; draw L population vectors of y∗ij using equation (3.2);

Using the synthetic values of the welfare variable, y∗ij , compute the WB estimate from the

lth synthetic Census, ẑ
∗WB (l)
j (α,t) ; average the results over L Monte Carlo simulations.

Using the bootstrap population model equation (3.2), one can further compute the MSE

of the estimated poverty indicators,

MSE
[
ẑWB
j (α,t)

]
= L−1

L∑
l=1

[
ẑ
∗WB(l)
j (α,t)− E

(
ẑ∗WB
j (α,t)

)]2
.

One distinct aspect of the WB method is that the random effect is specified at the cluster

(e.g. primary sampling units) level and not necessarily at the level of the target small area.
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This is in contrast to the alternative methodologies we describe later on in this deliverable.

To simplify things, for the purposes of this report we assume that clusters and target small

areas coincide. As Molina and Rao (2010) pointed out, when small areas and clusters

coincide and since
(
u∗j

)
= 0, E

(
ε∗ij

)
= 0, in the simplest case of estimating a small

area mean, and denoting by Uj the population of units in domain j, the WB method

leads to E
(
y∗ij

)
= N−1

j

∑
k∈Uj

xkjβ̂
T, which is a regression synthetic estimator. It may

be reasonable to assume that in many cases a regression synthetic estimator will be less

efficient than competing indirect estimators.

3.2.2 The EBP method

The EBP method was proposed by Molina and Rao (2010). Like the WB approach,

the EBP approach also relies on the use of a nested error regression model on the loga-

rithmically transformed welfare variable. Let us start the description of the method by

decomposing the population small area-specific poverty indicator as follows,

zj (α,t) = N−1
j

∑
i∈sj

zi (α,t) +
∑
k∈rj

zk (α,t)

 . (3.3)

The first component in equation (3.3) is observed in the sample whereas the second compo-

nent is unknown and should be estimated by using a small area model, which is estimated

with the sample data. Similarly to the WB method, the EBP method starts by estimating

the nested error regression model to obtain estimates of the fixed effects, β̂, of the variance

components, σ̂2
u σ̂

2
ε , and of the area random effects ûj .

The EBP method then simulates out of sample data from the conditional distribution

of the out of sample data given the sample data. This is done by using the following

bootstrap population model for generating L synthetic Censuses:

y∗ij = xijβ̂
T

+ ûj + u∗j + ε∗ij , u∗j ∼ N
(
0, σ̂2

u(1− γj)
)
, ε∗ij ∼ N

(
0, σ̂2

ε

)
, (3.4)

γj =
σ̂2
u

(σ̂2
u + σ̂2

ε/nj)
.

The exact steps of the Monte-Carlo simulation are as follows. Start by estimating equa-

tion (3.1) using the sample data; draw L out of sample vectors of y∗ij using equation (3.4);

combine the sample yij with the out of sample y∗ij values; compute the EBP estimate for the
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lth synthetic Census, ẑ
EBP (l)
j (α,t) ; average the results over L Monte Carlo simulations.

Focusing again on the simplest case of estimating a small area mean and since E
(
u∗j

)
= 0 ,

E
(
ε∗ij

)
= 0, the EBP approach leads to E

(
y∗ij

)
= N−1

j

[∑
i∈sj yi +

∑
k∈rj xkjβ̂

T
+ ûj

]
,

which is expected to be more efficient than the regression synthetic estimates obtained

with the WB approach.

MSE estimation for the EBP estimates relies on a parametric bootstrap scheme (see also

González-Manteiga et al., 2008). In particular, using the bootstrap population model

equation (3.2) B bootstrap populations are generated and the target population parameters

are computed for each bootstrap population. From each bootstrap population a sample is

selected and the EBP approach is implemented using the sample and bootstrap population

data. MSE estimates of the EBP estimates are computed over the B bootstrap replications.

3.3 Outlier robust methodologies

Recent small area estimation literature has been concerned with methods that are outlier

robust. Relying on parametric assumptions as is the case with the EBP can have an impact

on the quality of the small area estimates. In this section we review some methodologies

that are recently proposed or are currently under development.

An alternative approach to small area estimation is based on the use of a quantile/M-

quantile regression model (cf. Chambers and Tzavidis, 2006). Chambers and Tza-

vidis (2006) extended the use of M-quantile regression models to small area estimation.

Following their development, these authors characterize the conditional variability across

the population of interest by the M-quantile coefficients of the population units. For unit

i with values yi and xi, this coefficient is the value θi such that MQy(θi|xi;ψ) = yi. The

M-quantile coefficients are determined at the population level. Consequently, if a hierar-

chical structure does explain part of the variability in the population data, then we expect

units within clusters (domains) defined by this hierarchy to have similar M-quantile coef-

ficients. An area specific semi-parametric (empirical) random effect, θj , can be computed

by the expected value of the M-quantile coefficients in area j.

Similarly to the EBP approach, we start by decomposing the population small area-specific
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poverty indicator as follows:

zj (α,t) = N−1
j

∑
i∈sj

zi (α,t) +
∑
k∈rj

zk (α,t)

 . (3.5)

The first component in equation (3.5) is observed in the sample whereas the second com-

ponent is unknown and predicted values can be obtained by using a small area model. The

EBP approach (cf. Molina and Rao, 2010) makes Gaussian, assumptions for the nested

error regression model error terms. If it is known that the error distribution is normal,

the EBP will offer the optimal approach for estimating poverty indicators for small areas.

What if, however, the true error distribution is unknown?

A non-parametric approach to estimating equation (3.5) is offered by using a smearing-

type estimator that can be motivated by the work of Duan (1983). More specifically:

zj (α,t) = N−1
j

∑
i∈sj

zi (α,t) +
∑
k∈rj

E (zk (α,t))

 . (3.6)

We are now interested in finding an estimator for E [zk (α,t)]. For simplicity, let us focus

on the simplest case, i.e. that of estimating the HCR, zk (0,t). In this case, zk (0,t) =

I (yk ≤ t). The yk values are unknown and hence we can use the M-quantile small area

model for predicting these values. It follows that:

E [zk (0,t)] =

∫
I
(
xTi βψ (θj) + ε ≤ t

)
dF (ε) . (3.7)

Since we make no assumptions about the error distribution, F (ε), we can estimate F (ε)

by the empirical distribution of the residuals:

F̂ (ε) = n−1
n∑
i=1

I (ε̂i ≤ ε) .

It follows that:

Ê [zk (0,t)] =

∫
I
(
xTk β̂ψ

(
θ̂j

)
+ ε̂i ≤ t

)
dF̂ (ε) = n−1

j

∑
k∈rj

∑
i∈sj

I
(
xTk β̂ψ

(
θ̂j

)
+ ε̂i ≤ t

)
,

(3.8)

where ε̂i are the estimated residuals from the M-quantile fit. An estimator of zj (0,t) is
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then obtained by substituting equation (3.8) into equation (3.5) leading to:

ẑj (0,t) = N−1
j

∑
i∈sj

zi (0,t) + Ê [zk (0,t)]

 . (3.9)

The same approach can be followed for estimating zj (1,t) or for any other of the FGT

poverty measures. Since robust estimation for the M-quantile model is automatic, con-

ventionally the M-quantile model is estimated using the raw values of the welfare survey

variable. However, the decision as to whether to use the logarithmically transformed or

the untransformed values depends on what the model diagnostics suggest.

Mean Squared Error estimation for equation (3.9) is discussed in detail in Marchetti

et al. (2012a) and is based on a non-parametric bootstrap scheme. Here we recall the main

steps of this bootstrap scheme. Starting from sample s, selected from a finite population

U without replacement, we fit the M-quantile small area model and obtain estimates

of θ̂j and β̂ψ

(
θ̂j

)
which are used to compute the model residuals. We then generate

B bootstrap populations, U∗b. From each bootstrap population we select L bootstrap

samples using simple random sampling within the small areas and without replacement

such that n∗j = nj . Bootstrap populations are generated by sampling from the empirical

distribution of the residuals or a smoothed version of this distribution conditionally or

unconditionally on the small areas. Bootstrap estimators of the bias and variance of the

estimated target small area parameter, τ̂j , are defined respectively by:

B̂ (τ̂j) = B−1L−1
B∑
b=1

L∑
l=1

(
τ̂∗blj − τ∗bj

)

V̂ (τ̂j) = B−1L−1
B∑
b=1

L∑
l=1

(
τ̂∗blj − ¯̂τ

∗bl
j

)2
,

where τ∗bj is the small area parameter of the bth bootstrap population, τ̂∗blj is the small

area parameter estimated by using the lth sample from the bth bootstrap population and

¯̂τ
∗bl
j = L−1

∑L
l=1 τ̂

∗bl
j . The bootstrap MSE estimator of the estimated small area target

parameter is then defined as:

M̂ (τ̂j) = V̂ (τ̂j) + B̂ (τ̂j)
2 (3.10)

More recently there has been work on other approaches that attempt to impose less strict
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parametric assumptions. To start with Gershunskaya and Lahiri (2011) and Elbers

and Van der Weide (2014) proposed the use of EBP by using normal mixtures. A

more recent alternative is the use of EBP under an alternative parametric distribution in

particular, the generalised beta distribution of the second kind (cf. Molina et al., 2015). A

further recent alternative is to use a random effects model for the quantiles of the empirical

distribution function of income. Modelling a grid of quantiles of the empirical distribution

allows us to obtain a good approximation of the target distribution from which synthetic

income values can be micro-simulated (cf. Weidenhammer et al., 2015). Evaluating the

performance of the outlier robust methodologies is work in progress.

3.4 An application of the EBP methodology: Poverty mapping for

NUTS2 areas in Spain

In Spain the European Survey on Income and Living Conditions (EU-SILC) is carried

out yearly by INE with the aim of producing estimates of poverty and living conditions

both at national and at regional levels. Regions are planned domains for which EU-

SILC estimates are published, while the provinces (LAU-1 level) are unplanned domains.

Provinces are further partitioned into municipalities (LAU-2 level). In this section we

describe the application of small area methodologies for estimating small area poverty and

inequality indicators (HCR, PG, Gini) for NUTS2 regions in Spain. For the purposes of

this application we used survey data from the 2004 and 2011 EU-SILC surveys. Although

the real target would have been to obtain estimates of those indicators at NUTS3 level,

the cooperation between Southampton and CED only served for transferring knowledge

on how to implement the small area methodologies. In the last section of this report

we discuss further the current data limitations that prevented us from considering more

disaggregated domain estimation although in some cases the data are available.

The small area methods presented in the previous sections require auxiliary information

available for all units (households) in the population. In this application we draw this

information from the publicly available IPUMS data in 2001 and 2011. IPUMS auxiliary

variables in the case of Spain, also available in the EU-SILC 2004 (closest survey to 2001)

and 2011 and survey dataset, included access to phone, access to a car, number of rooms,

number of household members, tenure, education and employment. These explanatory

variables are included in the small area model that is used to model equivalised household

income.

42



Before proceeding with the presentation of the results, two comments are in order at this

stage. The target geography in this application is NUTS 2 level. Although the main

target geography is NUTS 3 and the NUTS 3 identifiers are available in the IPUMS

dataset, NUTS 3 identifiers are not available in the EU-SILC survey. Hence, this prevents

the application of the EBP methodology at NUTS 3 level. Should NSIs be interested in

NUTS 3 estimation, they identifiers should be made available to researchers possibly in a

safe setting. The second comment relates to the use of IPUMS data. In theory the EBP

method should be implemented with the latest Census micro-data available. However,

for the purposes of this application, the use of the IPUMS public dataset can offer some

useful insights and a benchmark against which estimates that use more detailed data can

be compared to.

Table 3.1: EBP estimates of the HCR, PG and of the Gini in NUTS2 areas of Spain in
2004 and 2011.

2004 2011

NUTS2 hcr gini pgap hcr gini pgap

11 0.29 0.32 0.11 0.27 0.38 0.15

12 0.19 0.30 0.06 0.22 0.35 0.11

13 0.19 0.30 0.06 0.29 0.39 0.16

21 0.14 0.29 0.04 0.17 0.33 0.08

22 0.14 0.29 0.04 0.14 0.32 0.07

23 0.23 0.31 0.08 0.26 0.37 0.14

24 0.16 0.29 0.05 0.22 0.35 0.12

30 0.14 0.29 0.04 0.20 0.34 0.10

41 0.27 0.32 0.10 0.27 0.38 0.15

42 0.32 0.33 0.13 0.32 0.40 0.19

43 0.40 0.35 0.17 0.29 0.39 0.17

51 0.15 0.29 0.05 0.19 0.34 0.10

52 0.23 0.31 0.08 0.29 0.39 0.16

53 0.19 0.30 0.07 0.22 0.35 0.11

61 0.32 0.33 0.13 0.32 0.40 0.19

62 0.29 0.32 0.11 0.31 0.40 0.18

63 0.32 0.34 0.13 0.24 0.36 0.13

64 0.30 0.33 0.12 0.30 0.39 0.17

70 0.27 0.32 0.10 0.30 0.39 0.17

In 2011 both the IPUMS and the EU-SILC contained 19 NUTS2 areas. In addition,

the 2001 IPUMS also included 19 NUTS2 areas but the 2004 EU-SILC only included 18

NUTS2 as Melilla was missing.

The poverty line used for computing estimates of HCR and PG corresponds to 60% of the

43



Spanish median equivalised household income. This estimate is derived by using the 2004

and 2011 EU-SILC income values which are available for the entire sample in Spain with

weights equal to the cross-sectional EU-SILC household weights. Model-based estimates

are presented in Table 3.1 and in Figure 3.1, 3.2 and 3.3.
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 Figure 3.1: EBP estimates of HCR for NUTS2 in Spain in 2004 and 2011
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Figure 3.2: EBP estimates of PG for NUTS2 in Spain in 2004 and 2011
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 Figure 3.3: EBP estimates of Gini for NUTS2 in Spain in 2004 and 2011
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3.5 Concluding remarks and challenges

This report reviews some recently proposed model-based methods for small area poverty

estimation with particular emphasis on Empirical Best Prediction and on the estimation of

linear and non-linear indicators. We have further alternative robust methods that attempt

to reduce the dependency on parametric assumptions about the model error terms. One

area of current research activity is the use of appropriate transformations that will allow the

implementation of the EBP approach assuming Normality of the model error terms. This

has the advantage of a model that can be readily estimated by using standard software.

However, selecting an appropriate transformation requires the use of diagnostic analysis

and careful model selection before implementing the final small area model.

The final remark concerns the availability of data and the target geography. As we men-

tioned in this report the CED team could not get access to the NUTS3 identifiers in the

EU-SILC survey. However, in the past we have worked with the EU-SILC data at more

refined than NUTS2 geographies by special arrangements with National Statistical Insti-

tutes. Hence, NSI could provide access to data with suitable geographical detail within

a secure environment. A second data challenge is the requirement for access to Census

microdata. IPUMS provides an excellent publicly available dataset that can be used for

evaluation and training purposes. However if NSIs are interested in producing official

statistics that are accredited as National Statistics, then use of Census microdata may be

more appropriate. As this is a highly confidential dataset, implementation of small area

methodologies has to be done within a safe setting.
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4 Accuracy measures for changes over time

Yves G. Berger

University of Southampton, UK

The work presented in this deliverable is submitted to the International Statistical Review

journal (Berger and Escobar, 2015).

Measuring change over time is a central problem for many users of social, economic and

demographic data. The primary interest of many users is often in changes or trends from

one time period to another. Smith et al. (2003) recognised that assessing change is one

of the most important challenge in survey statistics. A common problem is to compare

two cross-sectional estimates for the same study variable taken on two different waves or

occasions. These cross-sectional estimates often include imputed values to compensate for

item non-response (e.g. Lohr, 2009, ch. 8). The estimation of the variance of an estimator

of change is useful to judge whether the observed change is statistically significant.

We propose to use a multivariate linear regression approach (Berger and Priam, 2016)

to estimate these covariances. The proposed estimator is not a model-based estimator,

as it is valid even if the underlying model does not fit the data. We show how this

approach can be used to accommodate the effect of imputation. The regression approach

gives design-consistent estimation of the variance of change when the sampling fraction is

small. We illustrate the proposed approach using random hot-deck imputation, although

the proposed estimator can be implemented with any other imputation techniques.

4.1 Rotating surveys

The estimation of variance of change would be relatively straightforward if cross-sectional

estimates were based on the same sample. Furthermore, because of rotations that is used

in repeated surveys, cross-sectional estimates are not independent. Let s1 and s2 denote

respectively the first and the second wave samples. The samples s1 and s2 are usually not

completely overlapping sets of units, because repeated surveys use rotation designs which

consist in selecting new units (k ∈ s2 \ s1) to replace old units (k ∈ s1 \ s2) that have been

in the survey for a specified number of waves. Without lost of generality, we assume that

s1 and s2 have the same sample size n. Let n12 denote the sample size of the common

sample, s12 = s1 ∩ s2. The units sampled on s12 represent usually a large fraction of s1;
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that is, n12/n is usually large. The Figure 4.1 gives a visual representation of the samples

considered.

Figure 4.1: The overall sample s̃ = s1 ∪ s2.

Let y`;k denote the value of the variable of interest y` for the wave (` = 1, 2). Suppose, we

wish to estimate the absolute change

∆ = τ2 − τ1, (4.1)

between two population totals τ1 and τ2 from waves 1 and 2, where τ` =
∑

k∈U y`;k. Here,

U denotes the population of size N , assumed to be the same at both waves. It is possible

to extend the approach we proposed for other measures of changes, such as relative change

or change between means.

4.2 Non-response

Our main objective is to address the problem of variance estimation under non-response

rather than the non-response issue. Little has been done on variance estimation of change.

However, there are many design-based variance estimators of cross-sectional estimates (e.g.

Wolter, 2007). The use of models to address non-response is also popular. A model-

assisted approach can be found in Deville and Särndal (1994), Fay (1994), Steel

and Fay (1995), Särndal and Lundström (2005). A Bayesian treatment of imputation

can be found for example in Rubin (1987). See Brick and Montaquila (2009) for

a wide discussion on non-response. A discussion on which inference-approach to use for

non-response in surveys can be found in Haziza (2009). These approaches deal with cross-

sectional estimators, and cannot be directly implemented with estimators of changes.
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We propose to use a design-based approach combined with random hot-deck imputation. A

recent review on cross-sectional hot-deck imputation can be found in Andridge and Lit-

tle (2010). The random hot-deck imputation has the advantage of guaranteeing unbiased

estimation of population distributions (Rao and Shao, 1992). The approach proposed is

also valid under deterministic regression imputation.

Suppose that the change ∆ in (4.1) is estimated by

∆̂I = τ̂ I2 − τ̂ I1 , (4.2)

where

τ̂ I` =
∑
k∈s̃

yI`;k
π`;k

(` = 1, 2) (4.3)

is the cross-sectional imputed Narain (1951), Horvitz and Thompson (1952) estimators

at wave `. Here yI`;k the values of the imputed variable.

4.3 Variance of the hot-deck imputed estimator of change

We propose to estimate the variance of ∆̂I defined by equation (4.2) using a reverse

approach for non-response (Fay, 1991, Shao and Steel, 1999). Let Ur` be the population

of respondents at wave `, where Ur` ⊂ U . In other words, at both waves, the population

is randomly split into a population of respondents and a population of non-respondents

according to an unknown response mechanism. Note that the response mechanisms can

be such that the set of respondents of the wave 2 depends on the set of respondents at

wave 1.

Figure 4.2: Non-response at wave ` = 1, 2.
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Let Er{·} and Vr{·} denote respectively the expectation and variance operators with re-

spect to the response mechanism. Rotation samples s1 and s2 are selected from the

population U according to a rotation sampling design. The samples of respondents are

given by sr` = Ur` ∩ s`, (` = 1, 2). Let Ed{·} and Vd{·} denote the expectation and the

variance operators with respect to the sampling design. Let EI{·} and VI{·} denote the

expectation and the variance operators with respect to the random imputation.

We proposed to estimate the variance of the imputed estimator (4.2) by

V̂ {∆̂I} = V̂d{EI{∆̂I |S,R}|R} + V̂I{∆̂I |S,R}, (4.4)

where

V̂d{EI{∆̂I |S,R}|R} = ∇(τ̂ )> V̂d(τ̂ |R)∇(τ̂ ), (4.5)

V̂I{∆̂I |S,R} =
H∑
h=1

2∑
`=1

VI{y∗`;k|S,R}
∑
k∈s̃

z
(h)
`;k

π2
`;k

(1− a`;k)·

Berger and Escobar (2015) proposed a multivariate (or general) linear regression model

to estimate the covariance matrix Vd(τ̂ |R) involved in the estimator (4.5). Berger and

Escobar (2015) showed that the proposed estimator (4.4) is an approximately unbiased

estimator of the variance V (∆̂I).

The advantages of the proposed variance estimator (4.4) are that it is approximately unbi-

ased under the unknown response mechanisms and that it does not involve the estimation

of the response probabilities. Moreover, note that the estimator (4.4) can be generalised

for other types of imputation, as long as EI{∆̂I |S,R} is a function of Narain-Horvitz-

Thompson estimators of totals.

4.4 Simulation study

4.4.1 Labor Force Population

We use the Labor Force Population dataset from Valliant et al. (2000, Appendix B.5)

available at the John Wiley worldwide website. The dataset is duplicated 50 times to

obtain a large population suitable for different levels of rotation and small sampling frac-

tions in the sampling design. We consider two variables: the weekly wages and the hours

worked per week (HW ). The units with the value 99 for the weekly wage and 999 for the
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hours worked per week were removed from the population frame. These units were not

treated as missing. We obtain a population frame of size N = 23 550. The target variables

y1;k and y2;k are given by,

y1;k = Weekly wages,

y2;k = y1;k +
√
y1;k + ψk,

where ψk denotes randomly generated values according to a Normal distribution N(0, 52).

The true absolute change between the two wave totals is given by ∆ = 377 960.66. We

estimate ∆ by the hot-deck imputed point estimator ∆̂I defined by equation (4.2). The

first wave sample s1 is selected using the Rao (1965) and Sampford (1967) unequal

probability sampling design. We consider two scenarios for the inclusion probabilities: the

π1;k are constant (π1;k = n/N), and the π1;k are proportional to the variable hours worked

per week which has values all larger than 5. We consider that we have a single stratum.

For the second wave sample s2 we select a simple random sample of n12 units taken from

s1, where g = n12/n = {0.40, 0.60, 0.80, 0.95}, and a sample of n− n12 units from U \ s1

selected with probabilities proportional to π2;k = π1;k/(1−π1;k). We have that π2;k l π1;k

(Berger and Priam, 2016).

Let a1;k = 1 if u1;k ≤ q1 and a1;k = 0 otherwise, where q1 is a fixed quantity which specify

the response rate at wave 1, and u1;k are independent uniform random variables U(0, 1).

Let a2;k = 1 if u2;k ≤ (0.95) a1;k + (0.65) (1 − a1;k) and a2;k = 0 otherwise, where u2;k

are independent uniform random variables U(0, 1). Note that a1;k and a2;k are dependent

because a respondent at wave 1 is more likely to be also a respondent on wave 2. The

items non-response are imputed using random hot-deck. We consider that we have a single

imputation class. A new set of respondents (a1;k, a2;k) is generated randomly before each

selection of s1 and s2.

For each simulation, 10 000 samples are selected to compute: the empirical relative bias

RB = Bias(v̂ar(∆̂I))/var(∆̂I) where Bias(v̂ar(∆̂I)) = E(v̂ar(∆̂I))− var(∆̂I), the empirical

relative root mean squared error RRMSE = (MSE(v̂ar(∆̂I)))1/2/var(∆̂I), and the cover-

age of the 95% confidence interval ∆̂I ± 1.96 v̂ar(∆̂I)1/2. The term var(∆̂I) denotes the

empirical variance computed from the 10 000 observed values of ∆̂I . Computations were

performed in R (R Core Team, 2015) using some routines from the R packages ‘sampling’

(Tillé and Matei, 2013) and ‘samplingVarEst’ (Escobar and Barrios, 2014). We com-
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Table 4.1: RB, RRMSE and Coverage of 95% confidence interval of the variance estima-
tors. Hot-deck imputed point estimator ∆̂I . π1;k = n/N .

q1;k q2;k g f RB RRMSE Coverage

Prop. Näıve Prop. Näıve Prop. Näıve

(%) (%) (%) (%) (%) (%) (%) (%)
0.70 0.86 40 0.5 -2.8 -33.8 15.5 35.3 95.0 88.7

1.0 -0.7 -32.3 11.2 33.2 94.8 89.3
1.5 -0.4 -32.1 9.1 32.7 94.7 89.5
2.0 -2.7 -33.7 8.2 34.1 94.6 88.8

60 0.5 -1.8 -31.3 17.6 33.7 94.7 89.1
1.0 -1.2 -30.9 12.5 32.2 94.8 89.7
1.5 -1.1 -30.8 10.2 31.7 94.7 89.2
2.0 0.0 -30.1 8.7 30.8 94.8 89.9

80 0.5 -1.8 -28.8 20.1 32.7 94.7 89.8
1.0 -0.4 -27.5 14.4 29.8 95.0 90.4
1.5 -0.4 -27.5 11.6 29.0 95.0 90.5
2.0 -2.2 -29.0 10.0 30.0 94.6 90.0

95 0.5 -1.8 -25.3 22.8 31.9 94.8 90.8
1.0 -1.9 -25.5 16.0 29.0 94.5 90.8
1.5 -0.9 -24.8 13.1 27.2 94.8 90.7
2.0 -1.6 -25.3 11.2 27.0 94.7 90.9

0.90 0.92 40 0.5 -0.7 -15.9 14.5 20.2 94.8 92.9
1.0 0.2 -15.2 10.2 17.6 95.3 93.2
1.5 -2.1 -17.2 8.5 18.5 94.7 92.6
2.0 -0.7 -15.9 7.2 17.1 95.1 92.8

60 0.5 0.4 -14.4 17.2 21.0 94.9 93.2
1.0 0.2 -14.6 12.1 18.2 94.9 92.9
1.5 0.6 -14.2 9.9 16.7 95.1 93.1
2.0 0.0 -14.8 8.5 16.7 94.8 92.7

80 0.5 -2.2 -15.3 21.4 25.5 94.7 93.0
1.0 -2.0 -15.0 15.0 20.8 95.0 93.1
1.5 -0.2 -13.7 12.3 18.2 94.8 92.9
2.0 -1.0 -14.4 10.7 17.7 94.6 92.9

95 0.5 -2.9 -13.4 27.7 33.0 94.5 92.9
1.0 -2.4 -13.2 19.4 24.8 94.5 93.2
1.5 -1.1 -12.0 15.9 21.3 95.1 93.6
2.0 -0.9 -12.0 13.8 19.3 94.9 93.5

pare the proposed estimator V̂ (∆̂I) from (4.4) versus a näıve approach which consists in

treating the imputed values as real values. Note that there is no other competitor for the

proposed approach, as design-based variance estimators for imputed change estimators is

non existent in the literature.

Tables 4.1 and 4.2 give the rb, the rrmse and the coverage for different values of the

overlapping fraction g between waves. In Table 4.1, π1;k = n/N and in Table 4.2 the π1;k

are proportional to the variable hours worked per week.
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Table 4.2: RB, RRMSE and Coverage of 95% confidence interval of the variance estima-
tors. Hot-deck imputed point estimator ∆̂I . π1;k ∝ HW .

q1;k q2;k g f RB RRMSE Coverage

Prop. Näıve Prop. Näıve Prop. Näıve

(%) (%) (%) (%) (%) (%) (%) (%)
0.70 0.86 40 0.5 -1.6 -29.1 32.3 52.7 94.3 88.7

1.0 -2.5 -29.9 23.3 42.8 93.5 87.3
1.5 -3.4 -30.5 19.0 39.7 93.0 86.8
2.0 -1.5 -29.4 16.4 36.7 92.4 86.5

60 0.5 -2.0 -27.7 36.2 57.1 94.3 89.3
1.0 -1.2 -27.5 26.1 44.0 94.2 88.9
1.5 -0.8 -27.1 21.4 39.1 94.1 88.9
2.0 -0.7 -27.5 18.2 36.4 93.5 87.8

80 0.5 -0.1 -25.6 40.7 59.2 94.8 90.4
1.0 0.0 -25.2 29.3 45.5 94.9 89.7
1.5 -0.4 -25.1 23.6 40.4 94.8 90.2
2.0 -0.6 -25.8 20.4 37.1 94.5 89.7

95 0.5 -1.5 -24.3 43.9 63.6 94.5 90.8
1.0 0.4 -22.9 31.7 48.5 95.2 91.3
1.5 0.5 -23.4 26.0 41.4 94.9 91.2
2.0 -0.8 -24.3 22.3 38.1 94.9 90.6

0.90 0.92 40 0.5 -0.5 -15.5 34.3 51.2 94.1 91.7
1.0 -1.5 -15.6 23.5 37.7 93.1 90.4
1.5 -0.5 -14.8 19.9 33.1 92.9 90.2
2.0 -1.7 -16.0 16.9 29.7 91.8 88.9

60 0.5 -0.1 -14.2 41.2 61.1 94.3 92.3
1.0 -2.4 -15.3 29.2 48.1 93.8 91.6
1.5 0.2 -13.4 23.6 38.1 93.9 91.3
2.0 -1.0 -14.4 20.5 34.3 93.0 90.6

80 0.5 -0.3 -12.8 51.9 78.6 94.5 93.1
1.0 -0.3 -11.7 36.3 59.9 94.7 93.1
1.5 -1.3 -12.8 29.3 49.3 94.2 92.0
2.0 -0.4 -12.4 25.6 42.1 94.2 92.1

95 0.5 -0.8 -11.5 64.3 99.0 94.7 94.4
1.0 -1.9 -11.5 44.0 71.4 94.3 93.5
1.5 -1.5 -11.9 35.5 58.8 94.6 93.2
2.0 -0.8 -11.3 30.7 49.7 94.6 93.4

The proposed approach gives negligible rb. As expected, the näıve approach tends to

severely underestimate the variance; in particular, when the fraction of non respondents

is large; that is, when q1;k is small. Furthermore, by comparing Table 4.1 and 4.2, we

observe smaller RB with unequal inclusion probabilities.

The proposed approach has smaller rrmse than the näıve approach. However, with un-

equal probabilities we observe larger rrmse. The coverage of the proposed approach is

closer to 95%. The coverage of the näıve approach is lower because of the under-estimation
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of the variance.

4.4.2 Missing not at random response and multiple imputation-classes

Four variables, y1, y2, x1, x2 and w1, are generated from a multivariate normal distribution

with means 20, 10, 20, 10 and 20. All the variables have the same variance equals to 5.

The correlation between y1 and y2 is either ρ(y1, y2) = 0.7 or ρ(y1, y2) = 0.9. The other

correlations are ρ(y`, x`′) = ρ(y`, w1) = 0.7 and ρ(x`, x`′) = ρ(x`, w1) = 0.5 (` 6= `′). The

wave 1 variables are y1, x1 and w1. The wave 2 variables are y2 and x2. We generate

N = 20 000 values for each variables.

The values y1;k and y2;k are the values of the variable y1 and y2. The parameter of interest

is the absolute change between means: ∆µ = ∆/N . The imputed estimator is ∆̂I
µ = ∆̂I/N .

The sample s1 is a randomised systematic sample with first-order inclusion probabilities

π1;k proportional to w1;k, where w1;k denotes the k-th value of w1. The sample s2 is a

simple random sample of n12 units selected from s1 combined with a randomised systematic

sample of n2 − n12 units selected without replacement from U \ s1 with probabilities

proportional to π1;k/(1 − π1;k). We have that π2;k l π1;k (Berger and Priam, 2016).

The sample sizes are n1 = n2 = 500 and n12 = 375. We consider that we have a single

stratum. 10 000 samples s1 and s2 are selected. The Hansen and Hurwitz (1943)

variance estimator is used for cross-sectional variance estimation.

We consider hot-deck imputation with multiple imputation-classes. The number of impu-

tation classes, denoted by C, is the same on wave 1 and 2. We consider three types of

imputation classes.

(i) “Population imputation classes”: The imputation classes of wave ` are C quantile

classes based on the variable x`. The bounds of the classes are the (100c/C)%

quantiles (c = 1, . . . , C) of the population values {x`;k : k ∈ U}, where x`;k denotes

the k-th value of x`.

(ii) “Sample imputation classes”: The imputation classes of wave ` are are C quantile

classes based on the sample values of the variable x`. The bounds of the classes are

the (100c/C)% quantiles (c = 1, . . . , C) of the sample values {x`;k : k ∈ s`}.

(iii) “Across-waves imputation classes”: For the classes of wave 1, we use C quantile

classes based on the sample values of the variable x1, as in (ii). The wave 2 im-
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putation classes are C quantile classes based on the sample values {ỹ1;k : k ∈ s2},

where

ỹ1;k =

 yI1;k for k ∈ s12,

β̂0 + β̂1x2;k for k ∈ s2 \ s1·
(4.6)

Here, x2;k is the value of the variable x2 for unit k. The quantity β̂0 and β̂1 are the

ordinary least square coefficients of the regression yI1;k = β0 + β1x2;k, with k ∈ s12.

For the classes (i), the class indicators do not depend on the samples selected. For the

classes (ii) and (iii), the class indicators depend on the samples. Note that the classes of

wave 1 are different from the classes of wave 2, unless we have a single class.

We consider a “missing not at random response mechanism”. The first and second wave

response probabilities q1;k and q2;k are given by q`;k = exp(η`;k){1 + exp(η`;k)}−1, where

η1;k = 4− 0.15 y1;k and η2;k = 3− 0.2 y2;k. The resulting response probabilities lies within

the range [0.25, 0.95]. We have a`;k = 1 if u`;k ≤ q`;k and a`;k = 0 otherwise, where u`;k

are independent uniform random variables U(0, 1). The resulting response mechanism is

missing not at random because large q1;k and q2;k are associated with small values of y1;k

and y2;k. The overall response rate are 73% and 72% for the first and second wave. The

correlation between q1;k and q2;k is approximately 0.7. The response probabilities are not

constant within the imputation classes. Missing values are generated randomly before

each selection of s1 and s2.

The simulation results are given in Table 4.3. Large number of classes reduces the bias

of the point estimator. With a single imputation class (C = 1), the variance estimator

has the smallest bias and is more stable (small root mean square error, rmse), but with

low coverages (92.9% and 91.8%). The low coverages is explained by the largest bias

of the point estimator. Note that the point estimator is more precise with C > 1 and

ρ(y1, y2) = 0.9, in term of bias and variance. However, there is only negligible differences

between the variance for C > 5. We only notice a decrease in the variance, as C increases,

for population level imputation classes with ρ(y1, y2) = 0.9. For C > 5, we observe a slight

positive bias for the variance estimator and an increase in the rmse. For population level

classes, the rmse increases with C. The coverage observed are slightly larger than 95%

for C > 5. We do not observe significant differences between the imputation classes (i),

(ii) and (iii).
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Table 4.3: Overall expectation, variance, root-mean squared error (rmse) and coverage
of 95% confidence interval based on the estimator proposed. Missing not at
random response mechanisms. ρ(y1, y2) denotes the correlation between the
variables of interest. N = 20 000, n1 = n2 = 500 and n12 = 375. ∆µ = ∆/N

and ∆̂I
µ = ∆̂I/N .

ρ(y1, y2) Imputation C ∆µ E(∆̂I
µ) V (∆̂I

µ) E{V̂ (∆̂I
µ)} rmse Coverage (%)

0.7 (i) Population 1 -10.03 -10.09 0.022 0.021 0.0016 92.9

level 5 -10.03 -10.06 0.017 0.019 0.0029 95.9

10 -10.03 -10.06 0.016 0.019 0.0031 96.0

20 -10.03 -10.06 0.016 0.019 0.0036 96.3

(ii) Sample 5 -10.03 -10.06 0.016 0.019 0.0031 96.2

level 10 -10.03 -10.06 0.015 0.019 0.0037 96.7

20 -10.03 -10.06 0.015 0.019 0.0039 96.8

(iii) Across 5 -10.03 -10.09 0.017 0.019 0.0029 94.5

waves 10 -10.03 -10.08 0.016 0.019 0.0033 95.3

20 -10.03 -10.08 0.016 0.019 0.0032 95.2

0.9 (i) Population 1 -9.99 -10.06 0.019 0.019 0.0015 91.8

level 5 -9.99 -10.03 0.014 0.017 0.0030 95.7

10 -9.99 -10.03 0.014 0.016 0.0031 96.0

20 -9.99 -10.03 0.013 0.016 0.0031 96.2

(ii) Sample 5 -9.99 -10.03 0.013 0.017 0.0034 96.3

level 10 -9.99 -10.03 0.013 0.016 0.0035 96.2

20 -9.99 -10.03 0.013 0.016 0.0033 96.3

(iii) Across 5 -9.99 -10.01 0.013 0.016 0.0032 96.8

waves 10 -9.99 -10.00 0.013 0.016 0.0037 97.3

20 -9.99 -10.00 0.013 0.016 0.0035 97.2

The missing not at random response mechanism tends to under-represent the large values

of the variables of interest and therefore the observed correlation between y1;k and y2;k

is lower than ρ(y1, y2). As a result, the correlation between τ̂ I2 and τ̂ I1 is slightly under-

estimated. This explains the slight positive bias for the variance estimator (Berger, 2004,

p. 462). However, this bias is negligible because the coverages of the confidence intervals

are of an acceptable order. This bias is only observed for C 6= 1. For C = 1, the larger

variance compensates the bias.

4.5 Discussion

The proposed variance estimator is applicable for unequal rotating stratified sampling

designs when random hot-deck imputation is used at both waves and the sampling frac-

tions are negligible. The proposed variance estimator may be extended in various ways.
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Point estimators, such as calibration estimators (Huang and Fuller, 1978, Deville

and Särndal, 1992) which employ auxiliary population information may often be ex-

pressible as functions of totals. The proposed variance estimator (4.5) can be modified to

accommodate this situation.

The main advantages of the proposed variance estimator are that it is approximately

unbiased under the response mechanisms and that it does not require the estimation of

the response probabilities.

The proposed approach is not limited to hot-deck imputation, as it can be extended to

other method of imputation, as long as the expectation of the imputed estimator of change

under random imputation can be expressed as a function of totals.

The variance estimator is based on the assumption that the imputation class are fixed.

However, this assumption does not hold when the imputation classes are based on sampled

data. This is also the case when the imputation at wave 2 is based on classes constructed

from sample variables observed at wave 1. In Section 4.4.2, we suggest using the the wave 1

variable to impute at wave 2, by using imputation classes based on the variable of interest

of wave 1 (see (iii) “Across-waves imputation classes”). Our simulation study showed that

sample based imputation classes have a negligible effect on the variance estimates, even

with across-waves imputation classes. Adjusting the variance estimator to accommodate

this situation is beyond the scope of this paper. This is a topic which would need further

investigation.
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5 Estimating income poverty and inequality

from income classes

Simon Lenau Ralf Münnich

Economic and Social Statistics Department

Trier University

5.1 Introduction

Fighting poverty and social exclusion is one of the main goals of the EU. Following the

Council of the European communities (1985, p. 24), ’the poor’ are defined as

”persons, families and groups of persons whose resources (material, cultural

and social) are so limited as to exclude them from the minimum acceptable

way of life in the Member States in which they live.”

Clearly, poverty and social exclusion do not only mean lack of (current) financial ressources

(cf. Atkinson et al., 2005, p. 79). Nevertheless, income poverty and inequality constitutes

a central element thereof.

Indicators used to measure poverty and social exclusion as well as changes over time (cf.

AMELI, 2011, Social Protection Committee, 2001, SAMPLE, 2009) are commonly

estimated from surveys. Thus, these estimates are subject to errors, of which we focus on

sampling errors here. The European statistics code of practice (Eurostat, 2012) requests

those errors to be estimated and documented as well.

Focussing on the three core indicators proposed by the Indicators Subgroup of the Social

Protection Committee (European Commission, 2009b), we choose the following selection

from the indicators on poverty and social exclusion:

• The At-risk-of-poverty rate (ARPR),

which solely depends on the lower to medium range of the income distribution.

• The Gini-Coefficient (Gini),

reflecting income inequality of the entire distribution.

• The Quintile-Share-Ratio (QSR),

based mainly on extreme points of the distribution.
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These indicators and their estimates are briefly presented in the following. Since their

sampling errors can be approximated by linearization, the corresponding linearized values

are also treated (cf. Deville, 1999, Osier, 2009). As this works only for the case of a

continuous income variable, bootstrapping procedures are discussed briefly.

5.2 Framework for Point- and Variance-Estimation

Focussing on estimation on national level, we restrict ourselves to design-based approaches,

not taking into account model-based (small-area) estimation (cf. Burgard et al., 2015,

and the references therein). To consider the designs of EU-SILC appropriately, which are

summarized in (Graf et al., 2011b, pp. 31f), multi-stage sampling has to be treated. This

is possibly combined with inclusion probabilites proportional to the size of households or

municipalities. The following methodology is used to account for such complex sampling

designs in point and variance estimation. Lacking better terminology, we consider strati-

fication being a sampling stage, even though all strata are selected, thus contradicting a

random selection (cf. Särndal et al., 1992, p. 125).

Let ip be the sampling unit i on sampling stage p in sample S. Its first order sampling

inclusion probability πp,i is

πp,i = P (ip ∈ S) . (5.1)

For unit k at stage p, we get the estimator for the total of the variable y

τ̂ p,k(y) =

∑
i∈qkp

τ̂ (p+1),i(y)

π(p+1),i
, (5.2)

where qkp is the set of all sampling units on stage (p + 1) included in kp. At the lowest

stage, the total estimator is the value y of element kp. Corresponding to equation (5.1) ,

be πp,ij the second-order inclusion probability, that is, the inclusion probability of ip and

jp being in the sample simultanuously:

πp,ij = P (ip ∈ S ∩ jp ∈ S) . (5.3)
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The variance of the total estimator τ̂p,k(y) can be estimated by:

V̂
(
τ̂ p,k(y)

)
=

∑
i∈qkp

∑
j∈qkp

(
1−

π(p+1),i · π(p+1),j

π(p+1),ij

)
·
τ̂ (p+1),i(y)

π(p+1),i
·
τ̂ (p+1),j(y)

π(p+1),j

+

∑
i∈qkp

V̂
(
τ̂ (p+1),i(y)

)
π(p+1),i

(5.4)

(cf. Cochran, 1963, Demnati and Rao, 2004, Deville and Särndal, 1992, Eurostat,

2013, Horvitz and Thompson, 1952, Münnich and Zins, 2011, Wolter, 2007).

To estimate ARPR, Gini and QSR, we start with the distribution function F (x) = p(y ≤ x)

of a variable y. Its design-based estimate following from equation (5.2) is

F̂ (x) =

n∑
i=1

I (yi ≤ x) · π−1
i

n∑
i=1

π−1
i

, . (5.5)

Quantiles can be estimated by its inverse

F̂−1 (p) = inf
q

{
q : F̂ (q) ≥ p

}
, 0 ≤ p ≤ 1 . (5.6)

A design-based estimate of the Lorenz curve is then given by

L̂ (p) =

n∑
i=1

I
(
yi ≤ F̂−1 (p)

)
· yi · π−1

i

n∑
i=1

yi · π−1
i

. (5.7)

The at-risk-of-poverty rate is the share of persons with an equivalized disposable in-

come below a certain at-risk-of-poverty threshold (ARPT). For the EU, this threshold is

commonly set to 60% of the median income in the reference population, other possible

definitions are discussed in Atkinson et al. (2005). Using equations (5.5) and (5.6), the

at-risk-of-poverty is estimated as

ÂRPR = F̂
(

0.6 · F̂−1 (0.5)
)

. (5.8)
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Linearized values, which can be used for variance estimation via equation (5.4) are

z
k,ÂRPR

=
1

N

(
I(yk ≤ 0.6 · F̂−1 (0.5))−ARPR

)

−
0.6 · F̂ ′

(
0.6 · F̂−1 (0.5)

)
N · F̂ ′

(
F̂−1 (0.5)

) ·
(
I
(
yk ≤ F̂−1 (0.5)

)
− 1

2

)
(5.9)

for every observation k, where I is a indicator function (cf. Deville, 1999, Osier, 2009).

The Gini is commonly used to express inequality and concentration of wealth regarding

the whole income distribution. It is defined through the area between the angle bisector

and the Lorenz curve (eqn. 5.7) and a standardization to the range [0; 1]. Estimation is

done by

ĜINI = 1− 2 ·
1∫

0

L̂ (p) dp (5.10)

(cf. Morgan, 1962). The corresponding linearization can be done via

z
k,ĜINI

=
2

Nµ


(
F (yk)−

ĜINI + 1

2

)
yk +

(
1

n

n∑
i=1

I
(
yi ≥ yk

)
yi

)
− µ

2

(
ĜINI + 1

)
(5.11)

(cf. Kovacevic and Binder, 1997, p. 50).

The Quintile-Share-Ratio represents the ratio between the mean income of the richest

and the poorest 20%. Thus it is primarily based on the tails of the distribution. The mean

is used instead of the total to avoid instabilities due to varying estimated case numbers

corresponding to the quantiles. Using equation (5.7) , the estimate is

Q̂SR =
1− L̂ (0.8)

L̂ (0.2)

(5.12)

(cf. Eurostat, 2003, Social Protection Committee, 2001) with linearized values
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z
k,Q̂SR

=

yk −

((
yk − F̂−1 (0.8)

)
· I
(
yk ≤ F̂−1 (0.8)

)
+ 0.8 · F̂−1 (0.8)

)

L̂ (0.2)

−
Q̂SR ·

((
yk − F̂−1 (0.2)

)
· I
(
yk ≤ F̂−1 (0.2)

)
+ 0.2 · F̂−1 (0.2)

)

L̂ (0.2)

(5.13)

(cf. Hulliger and Münnich, 2006, p. 3155).

Those variance approximations by linearization are constructed assuming continuous in-

comes. Up to date, income classification can not be taken into account. In this case, merely

naive linearizations can be used. This means equations (5.9), (5.11) and (5.13) are used,

even though their applicability for estimating from income classes seems questionable.

In overcoming this problem, resampling methods seem more suitable (cf. Münnich, 2008).

As the variance of point estimates can not in general be given in a closed form (cf. Bruch

et al., 2011, p. 2), those approaches approximate it by Monte Carlo methods and are ap-

plicable even for estimators where no linearization is available. From this class of variance

estimation methods, the Monte Carlo bootstrap (cf. Efron, 1979, Shao and Tu, 1995a)

and the rescaling bootstrap (cf. Rao and Wu, 1988) are used here.

From a sample with T stages of size nt on stage t

S =
(
i1,1, . . . , in1,1, . . . , i1,t, . . . , int,t, . . . , i1,T , . . . , inT ,T

)
, (5.14)

an estimate θ̂ is a function of this sample

θ̂ = T (S) . (5.15)

In the Monte Carlo bootstrap, B independent subsamples are drawn according to the

original design, but with replacement

SMC
b =

(
iM1,1, . . . , i

M
n1,1, . . . , i

M
1,t, . . . , i

M
nt,t, . . . , i

M
1,T , . . . , i

M
nT ,T

)
, b = 1, . . . , B. (5.16)
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Problems when applying this to SILC arise from this approach are the i.i.d-assumption

and accounting for design weights. The rescaling bootstrap is a solution for these. Here,

subsamples of size mt at stage t are drawn without replacement:

SRscb =
(
iR1,1, . . . , i

R
m1,1, . . . , i

R
1,t, . . . , i

R
mt,t, . . . , i

R
1,T , . . . , i

R
mT ,T

)
, b = 1, . . . , B. (5.17)

As a sampling fraction, mip/nip = 0.5 in sampling unit ip (unit i on sampling stage p) is

common. Let gs be the sampling unit on stage s containing ip and δip,b :=
mp∑
k=1

I
(
ip = iRk,p

)
be the number of times that ip is selected in bootstrap iteration b. Based on this, the

original design weights wip = π−1
i,p of unit ip in this iteration are rescaled by

w∗ip,b =



(
1 + λg1,b ·

(
ng1
mg1

δg1,b − 1
))
· wip , p = 1

(
1 + λg1,b ·

(
ng1
mg1

δg1,b − 1
)

+

(
p∑
s=2

λgs,b

(s−1∏
t=1

√
ngt
mgt

δgt,b

)
·
(
δgs,b

ngs
mgs
− 1
)))

·

(
p−1∏
s=1

wgs
w∗gs,b

)
· wip , p > 1,

(5.18)

where

λgs =



√
mgs ·

1−ngs/Ngs
ngs−mgs

, s = 1√
mgs ·

1−ngs/Ngs
ngs−mgs

·
(
s−1∏
t=1

ngt
Ngt

)
, s > 1 .

(5.19)

In contrast, the Monte Carlo bootstrap can be interpreted as rescaling weights by to the

number of times ip is drawn

w∗ip,b = wip ·
np∑
k=1

I
(
ip = iMk,p

)
. (5.20)

Using equation (5.15) with the respective B sets of rescaled weights produces the B

bootstrap statistics in each case,
((
θ̂MC

1 , . . . , θ̂MC
B

)
and

(
θ̂Rsc1 , . . . , θ̂RscB

))
. The variance

of the point-estimator can be approximated by the Monte Carlo variance of the bootstrap

statistics:

V̂BT

(
θ̂
)

=
1

B

B∑
b=1

(
θ̂b −

(
1

B

B∑
b=1

θ̂b

))2

. (5.21)
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By means of equations (5.5) and (5.6), confidence intervals (CIs) can als be computed

directly from the quantiles of the bootstrap statistics (cf. Preston, 2009, Rao and Wu,

1988, Rao et al., 1992, Shao and Tu, 1995b)). For the designs used in the simulation,

the MC-bootstrap has to be nested within the strata or selected PSUs, respectiveley.

5.3 Problems estimating poverty and social exclusion from income classes

Not all indicators on poverty and social exclusion in Europe are based on the EU-SILC.

The prerequisite of a continuous measurement of income is not necessarily met by those

other surveys. German federal statistical offices and charities, for example, make regular

use of the German Microcensus to estimate those indicators, particularly for (regional)

ARPRs. The reasons for this are presumably the case number and duty of disclosure, as

then again this survey has the serious disadvantage of an income variable which is classified

into 24 groups (cf. Deutscher Paritätischer Wohlfahrtsverband, 2009, 2013).

We assume a general classification into L income classes with boundaries (t1, . . . , tL+1).

Thus, for the j-th class, only the sample units belonging to and the boundaries (tj , tj+1)

of the class are known. Hence, the distribution functional values of income variable y can

only be estimated at the class boundaries (F̂ (tj) and F̂ (tj+1)), using survey weights if

necessary. What remains unknown is the distribution within the income classes. Figures

5.1 and 5.2 should give a first impression on how severe this loss of information might

be. Depending on the choice of income classes in terms of the number of classes and class

boundaries, we obtain different levels of inaccuracy due to classification.

Selecting equidistant boundaries results in equal classwidth along the entire distribution.

In contrast, with ascending distances, the classwidth increases the higher the income. As

higher income values are less frequent than lower ones, this results in less varying class

frequencies compared to the equidistant case. The highest income class is unbounded from

above to cover all possible income values. The scheme of 24 classes of ascending width

coincides with the one used in the German Microcensus.

While the red line indicates the true values resulting from the continuous income, the

green area illustrates possible scenarios which would lead to the the same information

on income classes. As already mentioned, precise distribution function values can be

calculated directly at least at the class boundaries. However, this is not the case for the

Lorenz curve, since the average income of every income class would be needed. Thus, even
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Figure 5.1: Information loss due to classification (distribution)
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at the boundaries, the values can only be approximated. Using class centers as expectation

for each income class results in the displayed points. Please note that non-standardized

Lorenz curves are presented, as standardization would result in different scalings of area,

points and true curve.

5.4 Possible solutions for estimations from income classes

Due to classification, information about the distribution within the classes is lost. Hence,

we can not use equations (5.5) to (5.7) directly. In fact, additional assumptions or external

informations are needed to perform point- and variance estimation for poverty indicators

(cf. Stauder and Hüning, 2004, Strengmann-Kuhn, 1999).

German statistical offices thus use linear interpolation of the distribution function.

Since this approach is mainly used for estimating the ARPR, further options are proposed

and compared hereto. These include non-parametric as well as parametric approximation.

The three approaches are presented in Sections 5.4.1 to 5.4.3.

5.4.1 Linear interpolation of the distribution function

As a first approach used by German statistical offices, the known values of the distribution

function are interpolated linearly. For the distribution function, a straight line is assumed

within the income class j between F̂ (tj) and F̂ (tj+1):

F̂ (yu) = F̂ (tj) +
yu − tj
tj+1 − tj

·
(
F̂ (tj+1)− F̂ (tj)

)
, tj ≤ yu < tj+1 . (5.22)

This corresponds to an assumed uniform distribution within the classes (cf. Information

und Technik Nordrhein-Westfalen, 2009). As linear interpolation is a special case

of spline-interpolation, the estimation methodology coincices with the one presented in

Section 5.4.2.

Primary aim of this approach was estimating the ARPR, which anyways is only affected by

information loss in two income classes – containing the median and the poverty threshold –

and based on a rather stable area of the income distribution. The question whether this

approach is transferable to other indicators on poverty and social exclusion, is thus one

aim of this study.
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5.4.2 Non-parametric modelling: Splines

The second goal is to compare different approaches in dealing with income classes. One

alternative to this linear interpolation is spline modeling, which is used here similar to

empirical likelihood (see Chapter 4 and Berger and Escobar, 2015). The main idea

here is to estimate a non-parametric regression function

ŷj = m̂ (xj) , j = 1, . . . , L (5.23)

between independent variable x and dependent variable y.

B-splines are used here as base function, since they provide greater numerical stability,

compared to other base functions. For this base function, so called ’knots’ are used.

Knots are points breaking down the range of possible values of x into sub-intervals. Using

the class-boundaries (t1, . . . , tL+1) as knots, B-splines for our purpose can recursively be

defined as

B0
i (xj) =


1 , xj ∈ [ti, ti+1)

0 , else

(5.24)

and

Bk
i (xj) =

xj − ti
ti+k − ti

·Bk−1
i (xj) +

ti+k+1 − xj
ti+k+1 − ti+1

·Bk−1
i+1 (xj) , (5.25)

where anything divided by zero is set to zero:
z

0
:= 0 ∀ z. The degree of the splines is

denoted by k, whereas depending on k additional outer knots have to be chosen. We do

so by replicating the outermost knots. Spline functions and their derivatives estimated by

the following methods are in general continuous up to order k − 1. In the simulation, we

use cubic B-splines (k = 3).

The estimated regression function m̂ is a linear combination of B-splines:

m̂ (xj) =
L∑

i=1−k
γi ·Bk

i (xj) (5.26)

69



Integrals and derivatives of B-splines are again B-splines of higher and lower degree, re-

spectively

d

d x
Bk
i (x) =

(
k

ti+k − ti

)
Bk−1
i (x)−

(
k

ti+k+1 − ti+1

)
Bk−1
i+1 (x) (5.27)

x∫
−∞

Bk
i (s) ds =

(
ti+k+1 − ti
k + 1

) ∞∑
j=1

Bk+1
j (x) . (5.28)

Hence, (anti)derivatives of the regression function can be represented as

d m̂ (x)

d x
=

L∑
i=1−k

k · γi − γi−1

ti+k − ti
·Bk−1

i (x) (5.29)

x∫
−∞

m̂ (s) ds =
L∑

i=1−k

1

k + 1

 i∑
j=−∞

γj (tj+k+1 − tj)

 ·Bk+1
i (x) . (5.30)

To estimate m̂, we start with model matrix

B =


Bk

1−k (x1) . . . Bk
L (x1)

...
. . .

...

Bk
1−k (xL+1) . . . Bk

L (xL+1)

 . (5.31)

In case of interpolating splines, we get


m̂ (x1,γ)

...

m̂ (xL+1,γ)

 =


Bk

1−k (x1) . . . Bk
L (x1)

...
. . .

...

Bk
1−k (xL+1) . . . Bk

L (xL+1)



γ1−k

...

γL

 !
=


y1

...

yL+1

 (5.32)

m̂ = B γ
!

= y

Since B is in general not a square matrix, k − 1 additional conditions are needed to get

a unique solution. The assumption of natural splines is used, which demands the second

derivatives of m̂ to be 0 at the outermost used values of x:

m̂′′ (x1,γ) = m̂′′ (xL+1,γ) = 0 . (5.33)

This forces m̂ to be linear outside the interval of used knots. Let B∗ be the extension of
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the matrix B including this additional conditions, then equation (5.32) can be solved by

γ = (B∗)−1y . (5.34)

As mentioned, linear interpolation (Section 5.4.1) equals spline interpolation of degree

k = 1.

Smoothing splines does not require the regression function to interpolate all used points,

but rather approximates them. Again, we start from regression equation


m̂ (x1,β)

...

m̂ (xL+1,β)

 =


Bk

1−k (x1) . . . Bk
L (x1)

...
. . .

...

Bk
1−k (xL+1) . . . Bk

L (xL+1)



β1−k

...

βL

 (5.35)

m̂ = B β

Now, the coefficients are given by

β =
(
BTB + λΣ

)−1
BTy , (5.36)

where

Σ =



∫
Bk′′

1 (x)Bk′′
1 (x) dx . . .

∫
Bk′′

1 (x)Bk′′
L+1 (x) dx

...
. . .

...∫
Bk′′
L+1 (x)Bk′′

1 (x) dx . . .

∫
Bk′′
L+1 (x)Bk′′

L+1 (x) dx


. (5.37)

This is equivalent to the often used expression

argmin
β

(
L+1∑
j=1

(
m̂ (xj ,β)− yj

)2

︸ ︷︷ ︸
OLS-part

+λ

∫
m̂′′ (x,β)2 dx︸ ︷︷ ︸

smoothing-part

)
. (5.38)

The smoothing reduces differences in the slopes between differend knots, resulting in a

regression function which oscillates less than a pure OLS estimate (cf. Cheney and Kin-

caid, 2012, De Boor, 1978, Eilers and Marx, 1996, Reinsch, 1967, Ruppert et al.,
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2003, Wahba, 1990). The smoothing parameter λ must be greater than 0 and determines

the degree of smoothing. It can either be set or optimized by generalized cross-validation

(GCV) (cf. Craven and Wahba, 1978) using

argmin
λ

n−1 ·
∣∣∣∣∣∣(I−A (λ)

)
y
∣∣∣∣∣∣2(

n−1 · tr
(
I−A (λ)

))2

 , (5.39)

with identity matrix I and hat-matrix A (λ) = B
(
BTB + λΣ

)−1
BT depending on λ.

Due to their flexibility, splines can be used to model density, distribution- and quantile

function as well as the Lorenz curve. Therefore, we again get several estimation ap-

proaches. As estimation of quantiles and values of the distribution from classified income

is possible without further assumptions, those may be subject to interpolation as well as

smoothing. In contrast, functional values of the density or Lorenz curve require addi-

tional assumptions. For the density, the cumulated probabilites have to be split across the

classes. As a first approach, the class centers

ỹj =
tj + tj+1

2
, j = 1, . . . , L (5.40)

are assigned an assumed density as if the distribution within the classes was uniform:

f̃ (ỹj) =
F̂ (tj+1)− F̂ (tj)

tj+1 − tj
, j = 1, . . . , L. (5.41)

Calculating values of the Lorenz curve lacks knowledge about the average income of every

class. Thus, class centers (ỹj in equation (5.40)) are presumed as expectation for each

class.

As those additional assumptions raise uncertainty, for density and Lorenz curve approxi-

mate spline smoothing seems more reasonable than interpolation. In summary, distribu-

tion and quantile function are estimated by interpolation and smoothing, whereas density

and Lorenz curve are only estimated by smoothing. For this purpose, the corresponding

function arguments are used as independent and the resulting functional values as depen-

dent variable in equations (5.24) to (5.38). Due to the comparably small number of income

classes, every xj-value is used as a knot tj .

From this estimated functions, the indicators of interest can be computed as shown in
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Section 5.2. For this purpose, as the inverse of B-splines (and their (anti)derivatives) are

not in general B-splines, numerical approximation must be applied where needed.

5.4.3 Parametric Income Distributions

As further alternatives, parametric income distributions seem promising. There is a large

variety of potential distributions which have already been evaluated with regard to fitting

to income classes (cf. Bandourian et al., 2002, Dagum, 1977, McDonald, 1984). Con-

sistent results indicate the use of a generalized beta distribution of the second kind as well

as two of its special cases, the Singh-Maddala- and Dagum-distribution.

The GB2-Distribution is given by

FGB2 (y, a, b, p, q) =


(y
b

)a
1 +

(y
b

)a

p

pB(p, q)
· 2F1


p , 1− q ;

(y
b

)a
1 +

(y
b

)a
p+ 1 ;

 , y > 0 ,

(5.42)

with

B (a , b) =
Γ (a) Γ (b)

Γ (a+ b)
, (5.43)

Γ (x) =

∞∫
0

tx−1e−tdt , <(x) > 0 and (5.44)

pFq

a1 , . . . , ap ; x

b1 , . . . , bq ;

 =
∞∑
i=0

(a1)i . . . (ap)i
(b1)i . . . (bq)i

· x
i

i!
, (5.45)

where (a)i is the Pochhammer symbol

(a)i =
i−1∏
j=0

(a+ j) =
Γ (a+ i)

Γ (a)
, i ∈ N . (5.46)

As a larger numbers of free parameters (4 for the GB2) increases flexibility but also

instability, the Singh-Maddala (SM, p = 1) and Dagum-distribution (DA, q = 1) are

also taken into account (cf. Abramowitz and Stegun, 1964, Bandourian et al., 2002,
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Dagum, 1977, McDonald, 1984, Singh and Maddala, 1976, Seger, 2015).

There are different approaches to estimate the vector of free parameters Θ from a sample

with income classes. We can only estimate distribution
(
F̂ (tj)

)
and quantile(

F̂−1
(
F̂ (tj)

)
= tj

)
values for the class boundaries (t1, . . . , tL+1) directly. Denoting the

parametric counterparts, depending on parameter vector Θ, by F̂Θ (tj) and F̂−1
Θ

(
F̂ (tj)

)
,

fitting can be done to (cumulative) classwidths or -frequencies as well as maximum-

likelihood:

Fitting-Method F: Fitting to distribution values

ΘF = argmin
Θ

L+1∑
j=1

(
F̂ (tj)− F̂Θ (tj)

F̂ (tj)

)2
 (5.47)

Fitting-Method Q: Fitting to quantiles

ΘQ = argmin
Θ

L+1∑
j=1

 tj − F̂−1
Θ

(
F̂ (tj)

)
tj

2
 (5.48)

Fitting-Method ∆F: Fitting to frequencies

Θ∆F = argmin
Θ

 L∑
j=1

((
∆F̂ (tj)

)
−
(

∆F̂Θ (tj)
))2

 (5.49)

Fitting-Method ∆Q: Fitting to classwidths

Θ∆Q = argmin
Θ

 L∑
j=1

((
∆tj

)
−
(

∆F̂−1
Θ

(
F̂ (tj)

)))2
 , (5.50)

where ∆ is the difference operator (e.g. ∆F̂ (tj) = F̂ (tj+1)− F̂ (tj)).

Fitting-Method ML: Maximum-Likelihood-Estimation

ΘML = argmax
Θ

N̂ !

L∏
j=1

(
∆F̂Θ (tj)

)N̂j

N̂j !

 (5.51)

with estimated (sub-)population sizes N̂ =
∑
π−1
i and N̂j = N̂ ·∆F̂ (tj).
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As these equations can not generally be solved analytically, numerical procedures are

applied (cf. Bandourian et al., 2002, Dagum, 1977, McDonald, 1984).

From these solutions, the indicators of interest can be computed by

ARPRGB2 = FGB2

0.6 · b ·
(

zα
1− zα

)1

a , a, b, p, q

 (5.52)

where zα is the α-quantile of the beta(p, q)-distribution,

GINIGB2 =

B

(
2q − 1

a
, 2p+

1

a

)
B (p , q)B

(
p+

1

a
, q − 1

a

)

(

1

p

)
3F2

1 , p+ q , 2p+
1

a
; 1

p+ 1 , 2 (p+ q) ;



−

 1

p+
1

a

 3F2

1 , p+ q , 2p+
1

a
; 1

p+
1

a
+ 1 , 2 (p+ q) ;


 (5.53)

and

QSRGB2 =

1− FGB2

(
y0.8, a, b, p+

1

a
, q − 1

a

)
FGB2

(
y0.2, a, b, p+

1

a
, q − 1

a

) (5.54)

(cf. Graf et al., 2011a, McDonald, 1984).

5.5 Monte-Carlo-Simulation

5.5.1 Setup of the simulation study

The methodology presented in Section 5.4 enables estimation of indicators of poverty and

social exclusion from surveys whith income classes, taking into account general sampling

designs. Evaluation and comparison of these methods is done by means of a Monte Carlo

(MC) simulation study. The population is the synthetic AMELIA dataset, described in

Section 1. The four classification options presented in Section 5.3 are used, as well as a

reference case where continuous income values are available. The sampling designs used

are listed in Table 5.1 and correspond to those used in the AMELI project (cf. Hulliger
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Table 5.1: Sampling designs

Stage 1 Stage 2

ID PSU Strata π1,i fr1
Allo-
cation

SSU π2,i fr2

1.2 HID – srs 0.16% – – – –

1.4a HID NUTS2 srs 0.16% prop. – – –

2.7 CIT NUTS2 × DOU srs 16.0% prop. HID srs 1%

srs: simple random sampling without replacement

fr1,fr2: sampling fractions prop.: proportional π1,i, π2,i: sample inclusion probabilites

HID: Household identifier CIT: municipality identifier DOU: degree of urbanization

et al., 2011).

According to these designs, in R = 10 000 MC iterations samples covering 0.16% of the

housholds are drawn. For each sample, estimation according on the presented methodology

is performed. Table 5.2 gives an overview of the used methods and serves as legend for

the following figures.
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Table 5.2: Overview of used methods

Color / Symbol Abbreviation Description

Ct. Estimation from continuous income variable

Lin.

Int.
Linear interpolation of the distribution function

GB2 DA SM Fitting method of parametric distributions

F . . . to distribution values

∆ F . . . to quantiles

Q . . . to class frequencies

∆ Q . . . to classwidths

ML . . . by maximum-likelihood

Splines

Int. Spline-interpolation

F . . . of the distribution function

Q . . . of the quantile function

Smooth-

ing
Spline-smoothing

Density . . . of the density, where λ1 fulfills eqn. 5.39

and λ2 = 6.610706 · 10−5

F . . . of the distribution, where λ1 fulfills eqn. 5.39

and λ2 = 6.978335 · 10−1

Q . . . of the quantiles, where λ1 fulfills eqn. 5.39

and λ2 = 6.610706 · 10−5

LC . . . of the Lorenz curve, where λ1 fulfills eqn. 5.39

and λ2 = 4.511080 · 10−1
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5.5.2 Results of the simulation study

To compare the presented methods under different classification schemes in the most direct

way, we focus on design 1.2, which is simple random sampling of households. The other

sampling schemes are presented in 5.6. The resulting point estimates of the at-risk-of-

poverty rate are plotted in Figure 5.3. Their confidence intervall lengths and coverage rates

are displayed in Figure 5.4. Hardly any method under consideration yields reasonable point

estimates when using 8 classes of equal width. Bias and variance are almost generally by

far to high. The least biased point estimates are obtained by using the Dagum distribution

fitted by the ∆Q-Method. It is likewise the only method allowing for reasonable CIs in

terms of length and coverage by bootstrapping. However, its variance and thus MSE

are still comparativeley high. The lowest MSEs correspond to spline-smoothing of the

density using the fixed λ2 or the linear interpolation of the distribution function. When

looking at 25 equidistant class boundaries, we get considerably better results than before

for quite a number of methods. Some of them perform even better than the reference case

(estimation based on continuous income). The parametric Singh-Maddala distribution

fitted by ML, the Dagum distribution using the ∆F- and the GB2 distribution fitted by

F-,∆F- or ML-Method as well as the spline-interpolation of the distribution function all

have MSEs smaller than this reference case. Also, the spline interpolation and smoothing

of the quantile function using fixed λ seem able to compete. The GB2 ML-method even

achieves zero bias, thus being even better than estimation from continuous income. Its

inference using the MC- or rescaling bootstrap works pretty well. This also applies for

all mentioned spline-estimates as well as the SM ML estimates. Turning to 8 classes of

ascending width, results in rather smaller variances compared to equal classwidth, but

does not necessarily reduce biases. The density smoothing with fixed λ performs best in

terms of bias and MSE. It is closely followed by spline interpolation of the distribution

function and the ∆Q-fitting of the Singh-Maddala distribution. However, inference works

better for the latter, parametric approach. The classification scheme used by the German

Microcensus tends to reduce bias, but not variance compared to the 8 classes before. Also,

it seems clearly in favor of the nonparametric approaches. In terms of bias and MSE,

the linear interpolation as well as spline interpolation and smoothing of the distribution

function (using optimized λ) perform well. The same hold for the smoothing of density,

Lorenz curve and quantile function using fixed λ, as well as the spline interpolation of the

latter. Inference using resampling as well as naive linearization works quite well for all
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Figure 5.3: ARPR: Point estimates for design 1.2
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Figure 5.4: ARPR: Confidence interval length and coverage
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those methods.

Figures 5.5 and 5.6 illustrate the according GINI point estimates and confidence intervals.

Looking at 8 equally spaced classes, bias and variance are almost generally by far to high

again. All parametric F-fittings perform comparabely well in bias and MSE. However, their

CIs cover less than the nominal rate and thus yield no satisfactory inference. Compared

to this, the 24 equally spaced classes tend to decrease the variances, but not biases of the

approaches under consideration. The best options in this case, regarding bias and MSE,

are the F-fitting of the SM and the ML-fit of the GB2. But again, the inference works

not too good for both of them, staying behind the nominal CI coverage rate. Turning

to 8 classes of ascending width, again, variances but not biases are reduced compared to

equal classwidth. The ML estimate of the GB2 performs well in bias and MSE, while

its Q-fit, the ∆Q-method of the Singh-Maddala distribution and the spline-smoothing of

the distribution using fixed λ only do so for bias or MSE, respectiveley. Inference via

resampling works well for all of the above methods with low bias, namely the parametric

ones. In case of 24 ascending classes, neither biases nor variances tend to be smaller than

in the case of 8. There is no method which is best in bias and MSE, the MSE is best

for ML-estimation of the GB2, while bias is smallest for the ∆F-fit of the SM. However,

the CIs for both do not meet the nominal level, even though estimating quantiles by

bootstrapping performs not too bad for the latter one.

The corresponding point estimations for the quintile share ratio and their confidence in-

tervals are depicted in figures 5.7 and 5.8. In case of 8 classes of equal width, again

most methods suffer from high bias or variance. The lowest biases are achieved by spline-

interpolation of the quantile function and the GB2 fit by Q. In terms of MSE, the spline-

interpolation of the distribution works best. Regarding the CIs, the latter performs worst

due to its bias, which is not represented in variance estimation. On the other hand, the

estimates with lower bias obtain better inference but, due to their immense variances, at

expense of very long CIs (considerably more than 200% mean relativ CI length, which is

why they are not displayed in the plot). In case of 24 equally spaced classes, the variances

tend again to be smaller than with 8 classes. Spline-smoothing of the quantile function us-

ing λ set by GCV has the lowest bias and MSE. Its inference using resampling works quite

well, especially with the CIs based on variance estimation. 8 classes of unequal width,

tend to decrease variance and bias compared to those with equal width. Still, results are

not too promising. The GB2 distribution performs best, using ∆Q-fit results in the lowest
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Figure 5.5: GINI: Point estimates for design 1.2
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Figure 5.6: GINI: Confidence interval length and coverage
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Figure 5.7: QSR: Point estimates for design 1.2
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Figure 5.8: QSR: Confidence interval length and coverage
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bias, while fitting methods Q and ML provide lower MSEs. Again, out of these, inference

only works for the approach with low bias, since the CIs do not account for bias. Turning

to the classification scheme used in German Microcensus, neither bias nor variance seem

to clearly decrease when compared to 8 classes. The approach minimizing bias and MSE

is the smoothing of the distribution using fixed λ. It performs better than estimation from

continuous income and allows for almost perfect inference for all resampling CIs. Only the

CIs based on naive linearization tend to be too long.
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5.6 Comparison of sampling designs
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Figure 5.9: ARPR: Comparison of point estimates between designs
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Figure 5.10: GINI: Comparison of point estimates between designs
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Figure 5.11: QSR: Comparison of point estimates between designs
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5.7 Conclusion

Estimation of indicators on poverty and social exclusion is commonly done based on the

EU-SILC. But, mainly because of larger sample sizes and better suitability for regional

estimation, other data sources are used in some countries. Those surves do not necessarily

have an continuous income variable. To determine the most suitable way to estimate those

indicators on such data, one has to consider the classification structure.

In general, none of the methods under consideration allow estimating poverty indicators

from few equidistant classes. In this case, bias and variance are simply too high, since all

distributional information except at the class boundaries is lost. Thus, a higher number

of classes or ascending classwidths are necessary to assess poverty in a suitable precision.

Regarding the point estimates, parametric income distributions perform better for few

or equidistant classes. The nonparametric approaches under consideration seem to be a

superior alternative where more classes of ascending width are used. However, the GINI

yields an exception to this, presumabely because the parametric income distributions

ensure theoretical properties of the income distribution, whereas splines (as used here) fail

to do so.

When it comes to inference, the spline-based estimates seem in general more appropriate,

unless their bias is too high. As expected, naive linearization is not the method of choice

when it comes to income classes. Resampling performs considerably better.

Future research in this topic to obtain methods of linearization accounting for income

classes as well as nonparametric modelling of income distributions ensuring their theoret-

ical properties seems promising. The latter might also include studies on how to choose

the ’best’ smoothing parameter λ. Selecting different smoothings for certain areas of the

distribution is also worth thinking.
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6 Missing Data and Imputation

Alexandru Cernat Adrian Byrne Natalie Shlomo

Cathie Marsh Institute for Social Research & Social Statistics, School of Social Sciences

University of Manchester

6.1 Missing data mechanisms

Missing data is a pervasive issue in the social sciences. Although there is significant

statistical literature on how to deal with missing data, applied research seems to still be

lagging behind. Many researchers are still conducting complete case analysis, a procedure

known to be biased even when data is missing completely at random. Below we present a

small overview of the state-of-the-art. The main source for the summary is the book by

Enders (2010). See also Schafer and Graham (2002) and Little and Rubin (2002) for

overviews.

Rubin (1976) first introduced the classification of missing data mechanism. He postulated

that missing values could appear in three ways:

Missing Completely At Random (MCAR) is represented mathematically as:

p(R|φ) (6.1)

Where R is the missing data indicator and φ is a (set of) parameter(s) that describe(s) the

relationship between R and the data. Here, the probability of responding doesn’t depend

on the data and is thus ”completely” random.

Missing At Random (MAR) mechanism implies that the likelihood of having missing

data depends on other observed and auxiliary variables (Yobs, X):

p(R|Yobs, X, φ) (6.2)

Finally, when the data are Missing Not At Random (MNAR) then the availability of

the data depends both on observed and unobserved variables:

p(R|Yobs, Ymis, φ) (6.3)

Recently Thoemmes and Mohan (2015) proposed a graphical way to present the miss-

ing data problem and helped link it to the more general literature on Directed Acyclic

Graphs (cf. Pearl, 2003). Figure 1 shows the three different mechanisms introduced pre-
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viously. Here Y* represents the observed data that includes missingness. This is caused

by the true variable of interest Y which is unobserved (thus the dashed rectangle) and a

propensity to provide missing values on Y, represented by RY . The figure also presents

an explanatory/auxiliary variable X which has an effect on Y. In the MCAR case the

propensity to have missing data is random and thus is not influenced by other factors,

such as X. In the MAR case, on the other hand, we see that propensity to answer, RY , is

caused by the explanatory/auxiliary variable X. In order to have unbiased estimates of the

relationship between X and Y the variable X needs to be included in statistical methods

that can handle MAR (such as multiple imputation or likelihood methods). Lastly, there

are two versions of the MNAR mechanism. In the first one the likelihood to respond or

not depends on your level of Y. In the second case there are other unobserved causes that

influence both Y and RY (L1) that are not measured.

Section 2 of this overview presents compensating for missing data in a cross-sectional

survey setting and Section 3 in a longitudinal survey setting. Section 4 presents some of

the literature containing simulations and comparison studies.

6.2 Compensating for Missing Data in Cross-sectional Survey Data

6.2.1 Single Imputation Methods for Item Missing Data

Listwise deletion/complete case analysis implies using only the cases that have avail-

able information on all the variables, thus eliminating any case that has any missing from

the analysis. It has the advantage of being extremely easy to use (the default in most

computer software) and leading to the same sample in all the analyses (unlike pairwise

deletion described next). Two big disadvantages with this approach: it leads to biased

estimates when MCAR does not hold and loses much power (due to the deletion of any

case with missing). An important advantage of this approach is that ”it can produce un-

biased estimates of regression slopes under any missing data mechanism, provided that

missingness is a function of a predictor variable and not the outcome variable” (Enders,

2010, p.40).

Pairwise deletion/available-case analysis eliminates cases on an analysis basis. This

leads to more power than complete case analysis. The main issues relate to the assumption

of MCAR and the use of different sub-samples for different analyses (which can lead

to nonpositive definite matrices (impossible correlations) and problems with computing

standard errors).

Mean imputation works by replacing missing values with the observed mean of the
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Figure 6.1: Visual representation of the three missing mechanisms
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variable. This method gives biased results even under MCAR. It also leads to reduced

variance and covariance. ”...simulations studies suggest that mean imputation is possibly

the worst missing data handling method available” (Enders, 2010, p. 43).

Single regression imputation/conditional mean imputation replaces the missing

values with predicted scores from a regression equation. The first step is to model the in-

complete variables from the complete ones. Then the predictions based on the regression

models are used to replace the missing values. Disadvantages include overestimating cor-

relations even under MCAR and underestimating variability for the imputed data which

leads to attenuated variances and covariances. To overcome some of these drawbacks,

random errors can be generated from the regression model typically under the normal dis-

tribution with zero mean and variance equal to the mean squared error of the regression

model. These can then be added to the predictions which replace the missing values.

Hot-deck imputation imputes the missing cases with values from similar responders (see

Durrant (2005) and Kenward and Carpenter (2007) for overviews). To do this it

”...replaces each missing value with a random draw from a donor set based on a subsample

of respondents that scored similarly on a set of auxiliary variables” (Enders, 2010, p. 49).

Alternatively, nearest-neighbour hot-deck imputation selects a single donor that is ’closest’

to the case with the missing value. This approach preserves the univariate distributions of

the data. Nevertheless it may bias estimates of correlations and underestimate standard

errors. When multiple variables are missing in a give case, it is the practice that all values

are replaced using a single donor to mitigate the impact on correlations.

Predictive Mean Matching is similar to the nearest-neighbour hot-deck imputation

approach where the distance measure is based on the predictive mean. In this case, a

regression model is used to calculate the distance of the most appropriate donor from

which the value for the missing data is taken.

There are variations and combinations of the methods described in this section which may

inform best practice.

6.2.2 Weighting for Unit Missing Data

Weighting is commonly used to account for sample design but is also used to compensate

for unit non-response in surveys. The inverse probability weighting is typically created

by modelling the probability of response to a survey using a logit or probit model. Vari-

ables that are measured both for participants and non-participants are used to predict

this response propensity. The inverse of the response propensity is used as a non-response
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weight and compensates for differences between the respondents and nonrespondents. Non-

response weights can easily be combined with other types of weights, such as those cor-

recting for unequal selection probability and benchmarking to known population totals,

and are easy to implement. This approach assumes missing at random.

A specific issue of weighting is that some values of the inverse response probabilities can

be very high. This may be due to a misspecified model. In these cases either arbitrary

truncation of high values can be used or alternative statistical methods to estimate them,

such as a tobit regression. In addition, weights can be ’smoothed’ by using the inverse

response propensities to formulate weighting classes where each respondent within the

weighting class receives the same correction factor for non-response based on the average

response propensity within the class.

The inverse probability weighting approach has some characteristics that make it different

to imputation methods. One important difference is that the weighting is based on a model

that explains the probability of being a complete case while imputation methods model the

distribution of the missing data given the observed data (cf. Seaman and White, 2013).

Additionally, weighting can traditionally use only fully observed variables and imputation

can be more efficient.

In a simulation study Alanya et al. (2015) compared the use of multiple imputation

(described in the next section) and propensity-score weighting in order to correct for unit

level non-response. They have found that one does not outperform the other overall. In

this context they highlight that weighting has a number of practical advantages, is easier

to carry out and more user friendly.

6.2.3 Multiple Imputation

Multiple imputation is a collection of approaches that have three common phases in deal-

ing with missing data: imputation, analysis and pooling. The imputation step is also

comprised of two steps: an imputation step (I-step) and a posterior step (P-step). In the

imputation phase a stochastic regression is used to predict the variable with missing data.

This creates the conditional distribution (also named the posterior predictive distribution)

from which random draws are taken in the posterior phase. Formally the imputation phase

can be written as:

Y ∗t ∼p(Ymiss|Yobs, θ∗t−1) (6.4)

Where Y ∗t is the imputed value at each I-step t, Ymiss is the proportion of missing data, Yobs
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is the observed part of the data and θ∗t−1 is the mean vector and the covariance matrix

from the previous P-step. The P-step ”randomly draws a new mean vector and a new

covariance matrix from their respective distributions” (Enders, 2010, p. 193). Formally:

θ∗t∼p(θ|Yobs, Y ∗t−1) (6.5)

Where θ∗t are the simulated parameters from the P-step and Y ∗t−1 contains the imputed

values from the preceding I-step. Repeating the two steps a number of times creates

multiple copies of the data each with unique values for the missing information.

The second stage of using multiple imputation is the analysis one. Here the preferred

analysis of the researcher is applied separately for each of the different m datasets. This

procedure is usually automated in most statistical software and is no different than the

standard application.

Lastly, the results from the analyses undertaken in each of the imputed datasets are pooled.

This is done with the multiple imputation point estimate as the mean of the different

m estimates:

θ̄ =
1

m

m∑
t=1

θ̂t (6.6)

Where θ̄ is the pooled parameter estimate based on the parameter from each dataset t, θ̂t.

Standard errors are computed in a similar way. Here we need to take into account two

types of variance: within-imputation variance and between-imputation variance.

The first one can be written as:

VW =
1

m

m∑
t=1

SE2
t (6.7)

and can be described as a simple average standard error. The between-imputation

variance on the other hand uses the squared difference between the predicted value of

the parameter in each dataset t and the average one:

VW =
1

m− 1

m∑
t=1

(θ̂t − θ̄)2 (6.8)

Both of these contribute to the total sampling variance which is a sum of the two variances
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and a correction for the use of a finite number of imputations:

VT = VW + VB +
VB
m

(6.9)

Goldstein et al. (2014) highlight that there are two approaches to multiple imputation:

the one that uses the joint posterior distribution of all variables when sampling for missing

values and the chained equation approach that uses the conditional distribution for each

variable in turn. A distinct advantage of the former is the implementation of multilevel

data structures and interactions in the imputation process (cf. Goldstein et al., 2009).

The procedure can also be used to deal with the endogeneity issue.

The approach described up till now is based on a parametric model. One can also carry

out a non-parametric method, such as the hot-deck imputation method, and repeat it

multiple times. This is called fractional hot deck imputation (cf. Kim and Fuller,

2004). This approach has a number of advantages. Firstly, it preserves the distributional

properties of the data as observed variables are used to replace the missing values. This

may be important for certain distributions and for categorical data (cf. Durrant, 2005).

More generally the approach makes no distributional assumptions, as opposed to other

multiple imputation approaches. On the other hand Goldstein et al. (2014) highlight

that non-parametric imputation approaches such as hot-deck or related donor methods are

less efficient and can have issues with small donor pools while the parametric versions work

better in smaller samples and are easier to implement. Rubin (2004) presents multiple

imputation for nonresponse in surveys and censuses.

6.2.4 Full-Information Maximum Likelihood Imputation

Full Information Maximum Likelihood (FIML) or direct maximum likelihood is

a means of estimating models by including all the data available. Simulations have shown

that it is unbiased under MCAR and MAR, it has high power, as it uses all the information

available, and is easy to use.

Intuitively this works by calculating a log-likelihood computation for each missing pattern.

When some variables are missing the likelihood estimation will ignore the corresponding

coefficients. The final model log-likelihood will be a combination of the different sub-

models. Standard errors are computed using the observed information matrix which gives

unbiased estimates under MAR (unlike when using the expected information matrix which

is unbiased only under MCAR).

An important distinction from multiple imputation is that FIML integrates the missing
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data and the substantive model into one. Very often the missing mechanism will be differ-

ent from the substantive model of interest, as such auxiliary variables must be introduced

in the model that do not impact the model of interest but help explain the missing data

mechanism. One way to do this is to use the saturated correlates model (Enders, 2010,

p. 134). This is implemented by correlating the auxiliary variables with the explanatory

variables, other auxiliary variables and the residual terms of the outcome variables. One

limitation with this approach is that it can lead to estimation and convergence problems.

As such, it is recommended to choose only the best auxiliary variables (high correlations

with the other variables and low amount of missing data).

FIML assumes multivariate normality. If this does not hold it can impact standard errors.

Enders (2010) highlights two main approaches to dealing with this problem: using the

sandwich/robust estimator or bootstrapping for the variance estimation.

6.2.5 Models for Missing Not at Random

FIML and multiple imputation are some of the best and popular methods to dealing with

missing data. Nevertheless they make the assumption of MAR. In order to bypass this

limitation a number of alternative models were put forward. The most prominent ones

are the selection model and the pattern mixture model.

6.2.5.1 Selection models

The selection model was put forward by Heckman (1979). This approach combines two

analyses: the substantive one of interest and a model for response probabilities. Formally

this can be written as:

p(Y,R) = p(R|Y )p(Y ) (6.10)

The first part of the equation, p(R|Y ), represents the model that predicts missing data

and is also called the conditional distribution of missingness. The second part, p(Y ) is the

substantive model of interest, or the marginal distribution of the data (cf. Enders, 2010).

Intuitively this procedure works by first modelling the probability of having missing data

and then using the residuals in the substantive model of interest. It has been found that

the model works well as long as assumptions are met.

Unfortunately, in a large part of realistic applications the selection models might not hold

which can be problematic as the model assumptions are mostly untestable. The most

important such assumption is that the regression model of missing data has been correctly

98



specified. Additionally, problems arise when the variables used in the substantive and the

missing models are correlated. Finally, the correct estimation is dependent on the bivariate

normality assumption of the residuals. It has been found that when assumptions do not

hold the selection model can be more biased than the MAR counterparts (cf. Enders,

2010).

6.2.5.2 Pattern-mixture Models

Another approach to dealing with MNAR data is to use pattern mixture models (cf.

Little, 1993) to factorize the joint distribution depending on the different missing data

patterns:

p(Y,R) = p(Y |R)p(R) (6.11)

Here we model the conditional distribution of the data given a value of the response R,

p(Y |R), over the marginal distribution of missingness, p(R). Here we have the reversal of

the selection model as the data is dependent on the different missing patterns (cf. Enders,

2010). Molenberghs et al. (1998) show that missing data mechanisms can be applied to

pattern-mixture models.

One way to see this approach is as a way of integrating the patterns of missing data in

the analysis. This is done by creating subgroups based on the different patterns. The

issue with this approach is that patterns with missing values have one or more inestimable

parameters. This is solved by grouping different patterns of missing in different ways. The

complete case missing variable restriction assumes that the inestimable parameters

are the same as those in the complete case. Another approach is the marginal parameter

estimate which averages out the pattern-specific estimates. Alternatively, neighbouring

case missing variable restriction receives information based on similar groups with

incomplete cases (cf. Enders, 2010, Demirtas and Schafer, 2003).

Alternatively, joint modeling has been used to deal with this issue. This implies estimating

concurrently both the substantive model and the patterns of missing data (cf. Tsiatis and

Davidian, 2004, Wu et al., 2011).

Like the selection model, the pattern-mixture approach is dependent on untestable as-

sumptions. Furthermore, specifying the wrong values for the inestimable ones can lead

to bias even under MAR. On the other hand it is argued that it is a valuable tool as it

makes it’s assumptions explicit and the possibility of employing different approaches for

the inestimable parameters can be implemented easily in sensitivity analyses (cf. Enders,
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2010).

6.2.5.3 Multiple Imputation Under MNAR

Work has been carried out also to extend the multiple imputation to the MNAR case.

Carpenter et al. (2007) proposed using a reweighting approach of the multiple imputa-

tion procedure in order to test for different MNAR scenarios. The approach implies using

the variables of interest y in a regression model together with a selection measure δ. The

coefficient can be given different values depending on the researcher’s expectation regard-

ing the missing mechanism not included in the MAR. This proves to be a flexible and

easy way to implement sensitivity analyses. The approach is also ”robust to the possible

mis-specification of the dependence of the missingness mechanism on the observed data”

(Carpenter, et al., 2007, p. 273) and can be seen as a semi-parametric alternative to the

local sensitivity analyses. One limitation is that the method works well with a large num-

ber of imputations, they recommend more than 50 (in the paper they used 1000). Using

fewer can lead to extreme weight values. Additionally, the approach might underestimate

standard errors as confidence in the value of δ is overstated.

6.3 Compensating for Missing Data in Longitudinal Survey Data

Attrition in longitudinal studies is seen as a serious problem because the loss of individuals

over time results in a sample size significantly smaller than the initial sample size after a few

occasions. In this instance, using only complete-case data will result in a loss of efficiency.

Furthermore, missingness may not occur at random so that the remaining sample may

be biased with respect to the variables being analysed. In longitudinal studies, at any

given occasion the characteristics of subsequent losses will be known and these can be

compared with those who are followed up. If biases are detected then suitable weights can

be introduced to compensate for this or a general model-based approach can be employed

to deal with attrition. One common approach is to carry forward values from previous

waves to replace missing cases. This assumes that scores do not change and can lead to

exaggerated group differences and distorted parameter estimates even under MCAR.

6.3.1 Multilevel Multiple Imputation for Missing Data

Since the introduction of multiple imputation (MI), it has become increasingly estab-

lished as the leading practical approach to modelling partially observed data, under the

assumption that the data are MAR. Carpenter et al. (2011) suggest that if the partially

observed data are multilevel/hierarchical, this structure should be reflected not only in
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the model of interest, but also in the imputation model. In particular, the imputation

model should reflect the differences between level 1 variables and level 2 variables (which

are constant across level 1 units). Multilevel data arise when observations are clustered in

some way. In longitudinal or repeated measures data, subjects are followed up over time

and measured repeatedly over time. Each subject therefore contributes one or more obser-

vations to the dataset with these repeated observations clustered within individuals. Such

clustering generally induces dependence in the observed data, e.g. repeated observations

from the same subject are usually correlated with each other. This dependence should be

accounted for in the analysis. If missingness only occurs in the response variable(s) in the

model of interest, and we can assume that such data are MAR given the predictors and

other observed data, then direct likelihood methods (such as random effects models) are

usually preferred to MI methods as they are generally computationally faster. Moreover,

provided the modelling assumptions hold, likelihood based methods make optimal use of

the available data for estimation and inference. However, direct likelihood methods are

less well suited in situations where missingness occurs in the predictors in the model of

interest. In such instances, MI methods are often more attractive. Furthermore, MI can

be used to handle missing data in multilevel/longitudinal datasets. This is very useful par-

ticularly when the model of interest is a multilevel or hierarchical model, with the cluster

modelled as a random effect as the most appropriate imputation model is correspondingly

a multilevel random effects model. This can be achieved by the multivariate/joint mod-

elling approach to imputation. In this approach, a multilevel model is specified for the

partially observed variables given the fully observed variables. This multilevel model is

fitted to the observed data, following which multiple imputations of the missing data are

generated, typically using Markov Chain Monte Carlo (MCMC) methods.

In summary, MI will produce more valid results when:

• Predictors of missingness are included in the imputation model to increase plausi-

bility of MAR;

• The distributional assumptions made by the imputation model are reasonable;

• The imputation model respects the structure of the subsequent MOI;

• The imputed values appear plausible in light of the external contextual knowledge

and the observed data.

Ordinarily, any assumptions made about the missing data mechanism cannot be empiri-
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cally verified definitively using the observed data. Therefore, it is usually wise to consider

performing sensitivity analyses to assess the robustness of the results generated by dif-

ferent (but plausible) missingness mechanism assumptions. It is also possible to conduct

sensitivity analyses comparing different multiple imputation methods. Simple tabular and

graphical analyses will often be sufficient but one could also perform a repeated measures

ANCOVA analysis on the response variable(s) of interest with the imputation method

treated as a factor by subsetting the data beforehand. Alternatively, one could do pair-

wise ’global’ comparisons between imputation methods (cf. Chambers, 2001). Specifically

addressing longitudinal data with non-monotonic missingness, modern methods/software

packages can now tackle this problem in wide and long data formats.

6.3.2 Multiple imputation using the fully conditional specification algo-

rithm (MICE)

A popular MI approach is fully conditional specification (FCS), which specifies separate

univariate imputation models for each variable with missing data conditional on all other

variables (cf. Van Buuren et al., 1999). Therefore, we can choose a model appropriate

to the variable type (that is, continuous, count, ordered categorical, unordered categori-

cal). Welch et al. (2014) report that this method is easier computationally than directly

specifying a multivariate distribution for a mixture of continuous and categorical variables

with missing data, as required in parametric MIs original form.

In longitudinal studies where individuals’ characteristics are measured at fixed times, we

can treat measurements at each ’time’ as distinct variables and impute using FCS multiple

imputation chained equations (MICE). An imputation model for a response variable at

a particular time point includes the predictor variables at the same time point and the

response variable measurements at all other time points as explanatory variables. How-

ever, as the number of variables and time points increase, the imputation model has many

explanatory variables, potentially causing numerical problems because of overfitting. To

overcome this, Nevalainen et al. (2009) recently proposed a modification of the FCS

approach to MI, the two-fold FCS algorithm. Missing values at a given time point are

imputed from a model that only uses information from that time point and immediately

adjacent time points. The rationale is that measurements at time points before or after the

time point with imputed measurements are more unlikely to provide substantial additional

information than measurements at immediately adjacent time points. This simplifies the

imputation models thereby decreasing the computational intensity and reduces problems
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due to overfitting and collinearity. However, this simplification may induce bias in param-

eter estimates if the measurements excluded from imputation models have independent

effects.

Each univariate imputation step in the standard FCS is as follows: the postulated impu-

tation model is fit to individuals with the variable observed, conditioning on the observed

and current imputations of the imputation models explanatory variables; then a draw of

the imputation models parameters is taken from their posterior distribution (assuming

standard non-informative priors); and lastly, the missing values are imputed using these

newly drawn parameter values.

When measurements are intended to be taken from subjects according to a particular

schedule, measurements would be available at the same time points for all subjects. In

such situations, one possible approach is to impute the data using single-level MI software,

treating the repeated observations as distinct variables as outlined by the FCS method

above. This can be achieved by putting the data into wide form, where a separate vari-

able/column is used for each measurement time point. FCS MICE can be executed in both

Stata and R. The potential drawback of this approach is that structural assumptions, such

as random intercepts and/or slopes that one might wish to make, cannot be incorporated.

6.3.3 REALCOM-IMPUTE Software for Multilevel Multiple Imputa-

tion with Mixed Response Types

Carpenter et al. (2011) developed the REALCOM-IMPUTE software which can perform

multilevel multiple imputation, and can handle ordinal and unordered categorical data ap-

propriately. The software may be used either as a standalone package, or in conjunction

with the multilevel software MLwiN or Stata. The full conditional specification approach

does not explicitly model the joint distribution but forms univariate models for each in-

complete variable in turn conditional on all the others. There is no guarantee in general

that these correspond to a proper joint model. However, using a multivariate latent nor-

mal model allows for the proper handling of a two-level structure whereby level 2 variables

are constant over the observations at level 1. Having a multilevel imputation model avoids

biasing the parameter estimates in the multilevel model of interest thereby reducing the

likelihood of producing potentially invalid estimates of precision. A multilevel imputation

model is also appropriate if the data are unbalanced. The REALCOM-IMPUTE software

fits multivariate response models to 2-level data, allowing for both level 1 and level 2 vari-

ables, and through this allows proper imputation of missing data. Continuous data are
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modelled using the multivariate normal distribution. The default is to have all the vari-

ables as responses, although fully observed variables can be included as covariates; in this

way interactions with fully observed variables may be handled. For each level 1 response

a mean and level 2 random intercept is fitted, together with a level 1 residual. For level

2 variables, only a mean and level 2 residual is fitted. Level 1 and level 2 residuals are

assumed independent, with mean zero, with separate covariance matrices. If all variables

are normal these are unstructured; otherwise these have appropriate structures for the

latent normal model for discrete data (cf. Goldstein et al., 2009).

The authors note that the imputation model is equivalent to a conditional model for each

variable in which it is linearly regressed on all the other variables. Once specified, the

REALCOM-IMPUTE software fits the model using Markov Chain Monte Carlo. The au-

thors use a Gibbs sampling approach, updating each set of parameters in turn, conditional

on the others. Where possible, the method samples direct from the appropriate conditional

distribution. Otherwise the Metropolis steps or rejection sampling method is used.

6.3.4 Further Comments on Imputing Longitudinal Data

When dealing with a non-trivial multilevel setting, multiple imputation (MI) puts the onus

on the researcher to devise an appropriate imputation model. The process is therefore

thought-intensive as well as computer-intensive. In terms of computing intensity, the

FCS algorithm is quicker in completing its MI process. The speed of the Matlab code

is a limitation for the REALCOM-IMPUTE software. However, more recent multilevel

software has been developed by the Centre for Multilevel Modelling at the University

of Bristol which can more quickly complete multilevel MI. This software is called Stat-

JR and it uses a C++ compiler (MinGW) rather than a Matlab realtime installer to

compute the multiply imputated datasets. A possibly preferable alternative approach

to a single large-scale MI is to generate separate imputed datasets for each outcome of

interest, with imputation models specified to ensure they are compatible with a given

outcome and model of interest. Consideration must also be given to impute compatibly

using standard imputation models when substantive models contain interactions and/or

nonlinear covariate effects (cf. Bartlett et al., 2015). Goldstein et al. (2009) state

that if we make no distinction between the types of non-response (e.g. refusal, non-

contact etc.), then we assume that the relationship (as expressed in the parameters of

the imputation/prediction model) is the same for different types. If this is not plausible

given the data then we can allow for this in the imputation model by including auxiliary
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variables associated with different types of non-response. Where we cannot assume MAR

and attrition is informative (i.e. missing not at random (MNAR)) it may be possible

to adopt a fully model based procedure. In this case we need to write down an explicit

(selection) model for the probability of attrition and link this to the model of interest

that we wish to fit. The essence of selection models is that the residual terms for the

substantive model and the model for response are correlated. For such a bivariate model,

often a normal probit model, to be identified and hence for a valid correction term to

be able to be included in the substantive model, the model for predicting response must

include variables that are unrelated to the outcome of interest. Such variables, often

referred to as instruments, can be difficult to find but it is plausible to suppose that the

variables that are linked to the data collection process, could be a valuable source of valid

instruments. Consequently, Hawkes and Plewis (2006) found that the probability of a

response is predicted by variables like the proportion of questions that were answered at

a previous sweep and the number of addresses that were attempted at the current sweep

could be used to identify a selection model.

Some additional multilevel methods briefly mentioned here:

• Mixed-Effects Pattern-Mixture Models for Incomplete Longitudinal Data:

Mixed-effects pattern-mixture models maybe more useful by adding a missing-data

pattern as a between-subjects factor which assesses the degree to which ’missingness’

influences (available) outcomes as well as the degree to which ’missingness’ interacts

with model terms. This method does not invent data but maximizes information

obtained from available data. Kenward et al. (2003) present pattern mixture mod-

elling for incomplete longitudinal data.

• Multilevel selection models: Models for handling sample selection or informative

missingness have been developed for both cross-sectional and longitudinal or panel

data. For cross-sectional data as discussed above, Heckman (1979) suggested a joint

model for the response and sample selection processes where the disturbances of the

processes are correlated. For longitudinal data, (cf. Diggle and Kenward, 1994)

developed a model in which the continuous response (observed or unobserved), and

possibly the lagged response, is a predictor of attrition or dropout. They combine

growth curve models with another model for wave specific response probabilities.

Another approach is the random coefficient selection model which uses directly the

intercept and slope latent variables to predict the probability of response. Foll-

mann and Wu (1995) proposed to use the shared parameter models to model
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jointly event time data and serial data. This is done by assuming that the joint

distribution of the repeated measurements and event times are conditionally inde-

pendent given a shared random effect. Vonesh et al. (2006) extend this model by

using generalized linear and non-linear mixed-effects models. The Heckman model

can be estimated using the heckman command in Stata and the Diggle-Kenward

model is available in the Oswald package running in S-PLUS. Both models can also

be estimated using gllamm with the advantage that the following three generaliza-

tions are possible. First, the models can be extended to multilevel settings where

there may be unobserved heterogeneity between the clusters at the different levels

in both the substantive and selection processes and where selection may operate at

several levels. Second, the Heckman model can be modified for non-normal response

processes. Third, both the Heckman and Diggle-Kenward models can be extended to

situations where the substantive response is a latent variable measured by a number

of indicators.

6.4 Simulation and Comparison Studies

Faris et al. (2002) compared three imputation methods (norm, MICE and Transcan)

with the use of administrative records to predict mortality in a clinical trials. They have

found that imputations with MICE is slightly better but overall the estimates were similar.

Additionally, they have found that adding administrative data to the MICE imputation

did not improve the prediction model. Nevertheless there are examples of situations in

which linking data with administrative information can improve models for missing data

significantly (cf. Cornish et al., 2015).

In a small simulation study, Kristman et al. (2005) showed how estimates can be biased

under different attrition situations (10%, 25%, 45% & MCAR, MAR and MNAR). They

find that under MAR and MCAR imputation and weighting give unbiased results but this

is not true under MNAR.

Bartlett et al. (2014) discuss complete case analysis (CCA), multiple imputation (MI),

and inverse probability weighting (IPW) in the context of MNAR data and show that

in some settings CCA may be more valid under MNAR where missingness in a covariate

depends on the value of that covariate, but is conditionally independent of the outcome

variable. The other methods assume MAR. They propose an augmented CCA approach

which makes the same conditional independence assumption for missingness as CCA, but

which improves efficiency through specification of an additional model for the probability
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of missingness, given the fully observed variables.

Holman and Glas (2005) propose a procedure based on item response theory modelling

using the partial credit and generalized partial credit models which aims to reduce the

bias caused by ignoring the missing-data mechanism.

In another study, Engels and Diehr (2003) compare different procedures of implementing

multiple imputation in dealing with attrition in a longitudinal study. They find that using

individual longitudinal data (both before and after the missing point) are superior. They

also found that all methods are biased towards making people appear healthier than they

are due to the non-ignorable nature of the missing.
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7 A multidimensional approach to measure children’s living

conditions

Caterina Giusti

Department of Economics and Management

University of Pisa

7.1 Methodology

This study aims to gain insights into children’s living conditions and to generate knowledge

relevant to broaden the discussion on the crucial topic on children’s well-being, adding some

interesting points to the current literature, by using EU-SILC data. The idea of the study

was born upon the TNA visit of Dr Antoanneta Potsi at the Department of Economics

and Management of the University of Pisa. Part of this study has already been published

in the paper by Potsi et al. (2016), while some other part will be objective of future

publications, such as a book chapter in the book “Human development in times of crisis”

to be published soon by Palgrave MacMillan. From a methodological point of view we

present an approach based on the fuzzy methodology introduced by Cheli and Lemmi

(1995) and then updated by Betti et al. (2006). This methodology, developed for the

study of poverty on a multidimensional perspective, is able to preserve the richness of the

data available from the EU-SILC survey. To define the dimension of children’s well-being

we decided to engage with the Capability Approach (CA) as an alternative normative

framework for the evaluation of human development, well-being and freedom by thinking

in terms of human functionings and capabilities. Functionings are features of the state of

an existence of a person (cf. Hawthorn, 1987) while capabilities represent what people

are able to do or to be (cf. Sen, 1999). According to Dean (2009), capabilities represent

the essential fulcrum between material resources (commodities) and human achievements.

The use of fuzzy methodologies under the capability approach has already been explored

by some authors in a theoretical and applied perspective (cf. Chiappero-Martinetti,

2006, Addabbo and Facchinetti, 2013), but none of these works presented a framework

for the study of children living conditions.

The CA focuses on measuring the well-being of adults whose freedom to choose a life they

have reason to value is central to the notion of capabilities. Biggeri et al. (2006) argue

that children are subjects of capabilities and that the capability approach can be very use-

ful as a framework of thought and as a normative tool, in analysing children’s well-being,
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poverty and deprivation and in individuating social policies for children human develop-

ment. It is argued that deficiencies in important capabilities during childhood not only

reduce the well-being of those suffering from the deficiencies, but may also have larger

societal implications (cf. Klasen, 2001, Biggeri, 2007). Nussbaum (2006) developed an

open-ended and extendable list of domains or basic central capabilities for human flour-

ishing as a minimum account of social justice that has proven to be a valuable framework

for the operationalization of the approach and inspired this study.

The methodological approach used in this work (henceforth Integrated Fuzzy and Rela-

tive – IFR) was born on the assumption that poverty is a multidimensional phenomenon

and a vague predicate that manifests itself in different shades and degrees (fuzzy concept)

rather than an attribute that is simply present or absent for individuals in the population,

as the traditional poverty approach assumes. The fuzzy set vision of poverty is partic-

ularly adequate for studying children’s living conditions and deprivation mainly for two

reasons. Firstly, it includes a non fixed value of poverty risk and deprivation, through the

introduction of a membership functions (m.f.), i.e. a quantitative specification of individ-

uals/households degrees of poverty and deprivation depending on the other individuals or

households included in the analysis. A membership function’s value of 0 is always asso-

ciated with the lowest risk of poverty and deprivation, whereas a value of 1 is associated

with the highest risk. Secondly, the multidimensional framework of the IFR approach

proposed by Betti et al. (2006) works up on several non-monetary indicators, assumed

to be the manifest representation of a restricted number of underlying domains of de-

privation, besides a monetary indicator based on the equivalent disposable income. The

multidimensional analysis of poverty seems to be one reasonably grounded way to combine

the CA and secondary quantitative data, because it includes monetary and non-monetary

dimensions going beyond the traditional approach based only on the economic or financial

situation.

As concerns the monetary dimension, the Fuzzy Monetary Indicator (FM) is computed

for each individual i by using the following equation:

FMi = (1− Fi)α−1(1− L(Fi)) =

(∑
γ wγ |yγ > yi∑
γ wγ |yγ > y1

)α−1(∑
γ wγyγ |yγ > yi∑
γ wγyγ |yγ > y1

)
(7.1)

where yγ is the equivalised income, Fi is the income distribution function, wγ is the

sample weight of individual of rank γ (γ = 1, . . . , n) in the ascending income distribution,

Li represents the value of the Lorenz curve of income for individual i. Therefore, the
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FM indicator takes into account both the share of individuals less poor and the share of

the total equivalised income received by all individuals less poor than individual i. The

parameter α is chosen so that the mean of the membership function FM is equal to the

Head Count of Ratio (HCR), the indicator measuring the number of poor people, i.e. the

number of people with income below the poverty line:

E(FM) = HCR. (7.2)

In this manner the scale parameter α allows the comparison of the fuzzy monetary measure

with one of the more traditional poverty measures, the HCR. In this study it is assumed

the HCR to be equal to the EU standard definition of people at-risk of poverty calculated

on the sub-population of household with children. The computation of the deprivation

indicators of the IFR approach involves a long process. In details, the IFR method follows

seven main steps: 1) identification of the relevant survey items; 2) transformation of the

items into the [0,1] interval, 3) exploratory and/or confirmatory factor analysis to define

the latent dimensions; 4) computation of the weights within each dimension; 5) calculation

of the scores for each dimension; 6) calculation of an overall score and the α parameter

as for the FM measure; 7) calculation of the deprivation indices. The identification of the

EU-SILC 2009 items referring to children’s deprivation relevant under the CA covered the

first step of the above process. Then, in step 2, the items chosen in step 1 were transformed

into the [0, 1] interval by using the following equation:

sj,i = 1− 1− F (cj,i)

1− F (1)
=
F (cj,i)− F (1)

1− F (1)
(7.3)

for j = 1, 2, . . . , k and i = 1, 2, . . . , n. Here c(j,i) is the value of the category of the j − th

item for the i − th individual and F (c(j,i)) is the value of the j − th item cumulation

function for the i − th individual. When the j − th item is a dichotomous variable we

have s(j,i) = 0 for deprivation and 1 otherwise when the item is instead polychotomous

we assign to each unit a value corresponding to the percentage of units that are better off

than that unit instead of the real value of the category. In step 3, an exploratory factor

analysis was performed in order to confirm the latent structure of the domains previously

defined. Then the weights within each domain were computed, covering step 4. Using the

scores and the weights previously computed, the next step (step 5) was the computation

of a single, aggregate score for each domain h and individual i as the weighted mean taken
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over the j items:

shi =
∑

whj · shj,j/whj . (7.4)

Here whj is the weight of the j − th deprivation variable in the h− th dimension. In step

6 the overall score for the i − th individual is calculated as the unweighted mean of the

individual-specific scores:

si =

∑m
h=1 shi
m

. (7.5)

Following the same process used for the FM indicator, a Fuzzy Supplementary (henceforth,

FS) measure can then be computed as:

FSi = (1− F(S),i)
α−1(1− L(S),i) (7.6)

where the parameter α is determined again equal to the value that allows the overall FS

measure rate to be numerically identical to the HCR. Finally, in step 7 we separately

computed the membership function FShi for each dimension of the deprivation by:

FShi = (1− F(S),hi)
α−1(1− L(S),hi) =(∑n

γ=i+1whγ |shγ > shi∑n
γ=2whγ |shγ > sh1

)α−1

·

(∑n
γ=i+1whγshγ |shγ > shi∑n
γ=2whγshγ |shγ > sh1

)
(7.7)

where F(S),hi is the distribution function of s evaluated for individual i dimension h;

1− F(S),hi is for the i− th individual the proportion of individuals who are less deprived,

in the h − th dimension, than the individual concerned; whγ is the sample weight of the

i − th individual of rank γ in the ascending score distribution in the h − th dimension;

L(S),hi is the value of the Lorenz curve of s for individual i in dimension h; 1 − L(S),hi

is the share of the total lack of deprivation score assigned to all individuals less deprived

than the person concerned.

7.2 Application to Italian EU-SILC data

The data of this study are derived from the European Survey on Income and Living

Conditions (EU-SILC). We use in particular the cross-sectional EU-SILC 2009 data for

Italy. In 2009 the questionnaire of the survey was enlarged by adding a specific module

on material deprivation to the standard core survey (cf. European Commission, 2009a).

This list of target secondary variables relating to material deprivation allows a better

understanding of childhood and capability deprivation in Italy. EU-SILC 2009 data were
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selected as adequate to reveal aspects of the multidimensional deprivation of children,

though the available data can only be considered as potential proxies for capabilities.

However, the use of EU-SILC 2009 data has many advantages: an example is the European

comparative study of Neubourg de et al. (2012) that used EU-SILC 2009 data to define

14 domains of deprivation for children living in 32 European countries, including financial

items. In addition, other empirical studies, even though based on different databases,

defined capabilities using similar observed indicators - see, for instance, Maccagnan

(2011) or Addabbo et al. (2014).

The data selected focused on children aged 0-14. Although significant works in the field

consider children as those aged 0 to 17 years inclusive, in line with the United Nations

Convention on the Rights of Children (1989) the age boundaries 0-14 were chosen for

this study. This age group may be subject to higher vulnerability and intergenerational

dependence. Moreover, until the age of 14 Italian children attend the same compulsory

schools – elementary plus secondary lower school – while in the following years they can

differentiate their educational path, e.g. choosing between schools more addressed to

University studies or to the labour market. Thus, the age of 14 corresponds to decisive

breaking point in Italian children’s life. The final data set used in the empirical analysis

covers 19,128 individuals from 5,030 households with at least one child aged less than 15

(see Table 7.1).

Table 7.1: Households with children: number and percentage of households, number and
percentage of individuals (with respect to the overall population).

# households
% of total
households

# individuals
% of total
individuals

5030 23 19128 37

Table 7.2: Head Count Ratio of households with children, by some households’ character-
istics.

Macro regions Single parent Educational level

North Centre South Yes No Low Medium High

11% 16% 41% 31% 23% 36% 17% 7%

The traditional view of poverty (HCR) depicts, as expected, a country where the risk of
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poverty among children is much higher than among the whole population (24% vs 18%).

Although this national trend characterises several Member States, the estimated six per-

centage points gap in Italy is higher than the European average, equal to approximately

three percentage points (European Commission, 2010). Moreover, the risk of poverty

among children varies considerably across Italian macro-regions (see Table 7.2). The dis-

parity between Northern and Southern regions is conspicuous, as the HCR ranges from

11% to 41%. Central regions play frequently a mediator effect between two very differ-

ent economies: the north where an attitude towards entrepreneurship has found a fertile

ground, while in the south it did not happened. The gap between single parent households

(with HCR equal to 31%) and other household compositions (HCR 23%) is also evident.

Moreover, the differences in the HCR observed classifying the households according to

three alternative educational levels attained by the reference person in the household were

investigated (see again Table 7.2). Education is a basic capability that affects the devel-

opment and expansion of other capabilities. Household educational level can be used as

proxy of the household social class. The study showed that the risk of poverty is very high

for children living in households characterised by low educational level (HCR 36%). In

contrast, high household educational levels guard their children from poverty (HCR 7%).

Using the above mentioned data, each capability was assumed to be a latent variable that

is measured by multiple indicators. Such indicators are manifestation of the latent factor,

thus a variation in the capability determines a variation in all functioning measures. A

selection of the items, from the large set of EU-SILC variables, substantively meaningful

and useful for the construction of fuzzy monetary (FM) and supplementary indicators (FS)

was made. This was a crucial step, since the choice of the capabilities to include in the

evaluation was not straightforward. Dimensions were selected based on the restrictions of

the existing data. An attempt was made to include a comprehensive list of basic capa-

bilities considering all the available items for children. The items selected were classified

into seven components that represent a respective latent capability (see Table 7.3): the

ability to play (PLAY), to be well nourished and clothed (NUTRITION & CLOTHING),

to have an adequate financial budget at household level (FINANCIAL), to have a social

life (AFFILIATION & SOCIAL LIFE), to live in an adequate housing (SHELTER) and in

a good environment (SAFETY) and to be bodily healthy (BODILY HEALTH). They are

not referred just to children but they consider a broader complex system in which children

spent their life.

The list of deprivation items is arranged into seven domains of children’s functionings. The
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internal reliability (i.e. the degree to which the items in the scale are representative of

each latent construct) has been estimated by the Cronbach’s alpha index. The reliability

of each scale-items ranges from 0.52 to 0.78 (Table 7.3, third column). Since not all of the

alpha coefficients exceeded the 0.70 cut-off recommended by Nunnally and Bernstein

(1994), Exploratory Factor Analysis (EFA) was used to give a framework of the domains

regardless the theoretical assumptions. The exploratory factor analysis mostly supports

our null hypothesis. Indeed, seven domains were identified reflecting the arrangement

presented in Table 7.3 unless two items that loaded respectively in the third and the first

dimension as regards EFA. We proceed to rearrange these two items in the assumed domain

in order to create more meaningful groups and according to the experience acquired in

this framework.

We used Confirmatory Factor Analysis (CFA) for determining whether the hypothesized

factor structure provided a good fit to the data. In other words, we tested if the relation-

ship between the observed variables (functionings) and their underlying latent constructs

(capabilities) exists (see Table 7.4). CFA outcomes provide information on each indicator’s

significance. When running CFA, many different fit statistics can be used to help deter-

mine whether the model provides adequate fit for the data. To assess the fit of the latent

structural model, Chi-square computation was omitted since its value is considered to be

highly dependent on sample size. Instead, the Adjusted for Degrees of Freedom (AGFI),

the Root Square Mean Error of Approximations (RMSEA) and the Non-Normed Fixed

Index (NFI) were calculated. The AGFI accounted for 0.91, where achieving a value close

to 1 indicates a good fit. The RMSEA, expressing the unexplained or residual variance of

the factor structure, accounted for 0.05: values of the statistic ranging between 0.05 and

0.08 indicate reasonable errors of approximation in the population. NNFI, equal to 0.86,

met the criteria for acceptable fit (0.80 or greater).

Table 7.4: Robustness analysis of the hypothesized structure: CFA.

Index Value

Adjusted for Degrees of Freedom (AGFI) 0.91

Root Square Mean Error of Approximations (RMSEA) 0.05

Bentler&Bonett’s (1980) Non-Normed Fixed Index NNFI 0.86

Number of dimensions 7
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Table 7.5 illustrates the fuzzy and multidimensional poverty measures overall and accord-

ing to some households’ characteristics. Besides the already mentioned higher poverty

for households with children, children are also deprived with respect to non-monetary do-

mains with different degree of severity. At national level (see the first column of Table 7.5)

the BODILY HEALTH domain has the lowest value (0.043): this means that deprivation

in this domain compared to the other dimensions is negligible. It should be noted that

“bodily health” focuses on the access to health care and in particular on the need for a

specialist doctor, which implies a previous identification of the need, which is not measured

here. For PLAY and NUTRITION & CLOTHING domains similar results (both 0.068)

are obtained. Italian children basic needs are satisfied in terms of food and clothing, and

they are not deprived from medical and specialist care. They have also a good equipment

of leisure activities and games. Surely, these are not direct measures of how – and if -

children use their equipment, but these results show that they have the possibility to do

it. In contrast, the SAFETY and AFFILIATION & SOCIAL LIFE domains obtained the

highest values, 0.194 and 0.170, respectively. It means that these dimensions have a larger

impact respect to others included in the analysis on children deprivation. Italian children

appear more vulnerable with respect to life outside the family. It could be represented

as duality: internal to own family and external to it. Aspects which are more related to

familial or internal dimensions are more amenable to alternative non-monetary resourcing,

such as food and health, while such solutions are less available for aspects of social life and

the quality of environment. The negative evaluation of quality of environment signals the

lack of safety threatened by crime, violence, vandalism, pollution, noise or by damaged

public amenities in the neighbourhood. Lastly for SHELTER and FINANCIAL domains,

median results were obtained, that is the third and fourth highest values respectively.

It is interesting to observe the ranking of the non-monetary domains per three macro re-

gions. The analysis confirms that a north/south dualism in Italy has a primary component

in the financial and economic status also for households with children. The FM domain

plays a crucial role for determining children’s deprivation in central and southern regions,

while in northern regions SHELTER and SAFETY conditions seem to be more important

than monetary condition. The lowest value is observed on the BODILY HEALTH domain

in the three macro-regions, while the lowest level of children’s deprivation in this domain

appears to be in central regions. Among the macro regions, the value of the capability of

PLAY is more than double in the South in comparison with the other two macro-regions:

0.104 versus 0.047 in the North and 0.046 in the Centre. The same gap is observed also
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for other dimensions, confirming a better evaluation for “inside” dimensions and a worst

one for environment quality and community life. These findings suggest a sort of “dual

duality” in Italian children’s quality of life: near to the traditional north/south, the new

internal/external life comes from the fuzzy approach. As the first dualism has been stud-

ied for a long time, addressing the new one could be the way also to reduce the distance

between the north and south of Italy on children’s quality of life.

We also investigated the influence of the household-types (single and non-single parent) to

the economic situation of the family and of children’s capabilities (see Table 7.5). Single

parent households are almost exclusively composed by woman and children (83.7%) and

they are more vulnerable than the other type of households: the absolute poverty increased

from 5% to 8% in 2011 – 2012 and from 5.8% to 9.1% in the case of single parent households.

The analysis confirms the vulnerability of single parent household: the values obtained for

the FM and for the FS indicators are all higher for households with a single parent, with the

only exception of the NUTRITION & CLOTHING domain, where the results are equal.

These last domains are part of care work, which remains a task mainly burdening women

both on single and in two-parent families. Women and children mainly compose single

parent households and this gender composition may imply a low disadvantage on good

meals and adequate clothing in such households. The BODILY HEALTH dimension is the

one where the highest gap between the two groups of households is observed: in this case

the value of households with a single parent is the double with respect to the value obtained

for all the other households. As said before, the access to a specialist involves economic

expenditure and the single parent are financial weaker. This could be the reason of the huge

gap between the two household types. Literature (cf. Bradshaw et al., 2012, Krueger

and Lindahl, 2001) and empirical evidence (cf. Tarki Social Research Institute,

2010) show that the level of education of the household members influences the child’s

survival and development chances as well as their risk of poverty. The consideration of

three separated groups of households - those where the head of the household has low,

medium or high educational level1 - led to interesting results (see again Table 7.5). In the

first two groups, the analysis shows that safety domain is the most relevant, implying a

central role for children’s capabilities enhancement. Further, the lowest gap between low

and high-educated families for this dimension is observed. Yet, the analysis conducted by

1 Families are classified based on the major income earner (the person with the highest income in the
household). The household educational level has been defined through the International Standard
Classification of Education (ISCED). Individuals whose attained educational level is lower than the
ISCED level 3 are classified as low-educated while individuals whose ISCED level is greater than 3
are classified as high-educated.
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educational status enhances the distance for the PLAY dimension, which is eleven times

higher for households with low education level with respect to households with high one.

For NUTRITION & CLOTHING, BODILY HEALTH, AFFILIATION & SOCIAL LIFE

and FINANCIAL the gap is very pronounced – the values of the low educated households

are at least three times higher in comparison with high educated ones. It is worth noting

that by considering the last two disaggregation criteria, the ranking of domains remain

the same, with minor changes. This confirms the hypothesis of internal/external factors

concurring to determine children’s well-being following the CA approach.

Another contextual variable we investigated is the social class of the household2 (see Table

7.6). The values reported in Table 7.6 are the ratios of the estimates obtained for social

class 2 (blue collar class) and 3 (working class) with respect to the estimates for social

class 1 (white collar), chosen as the baseline. Actually social class 1 represents the best

benchmark insofar as it includes very high-skilled workers. Therefore, as expected, almost

all the ratios are major than one, indicating a higher deprivation for social classes 2 and 3

with respect to social class 1. The main exception regards the SAFETY dimension, with

values of the ratios equal to 0,85 and 0,95 for class 2 and class 3 respectively. Even if the

reasons behind this result cannot be easily understood without further information, we

can suppose that some of the items included in such dimension, as for example pollution

and noise, are certainly more important issues in big cities where it is also higher the

concentration of households belonging to social class 1. Therefore, this result can hide a

geographic rather than a social class effect. Also for the SHELTER dimension the gap is not

so pronounced, especially the one between social class 2 and social class 1. At the opposite

side, we can observe a pronounced gap for the FS measures PLAY and NUTRITION

& CLOTHING. To sum up, these results suggest the existing social class differentials in

children’s well-being, which may affect the future capabilities and opportunities of children

and can have consequences on the total welfare.

2 The household’s social class has been based on the definition used by the ESEC, the European Socio-
economic Classification (cf. Whelan and Maitre, 2008). We use the current job for those employed
at the moment of the EU-SILC 2009 interview, while we use the information related to the last
job for those that are not currently employed but were employed in the past. The ESEC criteria
define nine classes. For simplicity we have aggregated them in three classes: class 1- (white collar)
comprising employers, higher grade professional, administrative and managerial occupations, higher
grade white-collar workers and lower supervisory and lower technician occupations; class 2 (blue
collar class) - comprising small employer and self-employed occupations (not included in the first
class), class 3 - (working class) comprising lower services, sales and clerical occupations and lower
technical occupations, routine occupations. Households in which the head of the household never
worked are not included in the analysis, since it is a “residual” class and it has been classified with
missing values.
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We finally present the results characterising the households depending on the age3 and the

gender of the children (last three columns of Table 7.6). The results referring to the mean

age of children are computed as ratios comparing the first and the third class of mean age

values over the second class, chosen as the baseline. We can notice that the deprivation

of households with children aged less than 3 years and more than 9 years is always minor

with respect to that of households with children aged 3 to 9 years. This may depend on the

lower needs or lower relevance of younger children in terms of the functionings considered

in the present study (see Table 7.3).

Lastly, as concerns the gender of the children, to control for the effect of the number of

children in the household, we decided to consider only households with one female child

and those with one male child. For these households the ratio is computed considering the

category one male as the baseline. The results suggest that the deprivation for households

with one female is higher under all the dimensions.

In future developments the methodology used in the present study will be applied to other

European Countries using again EU-SILC 2009 data. This will allow the comparison of

children well-being and capability deprivation on a geographical basis. Moreover, since the

ad-hoc module on children has been repeated in the EU-SILC 2014 wave, the application to

these data will allow the comparison of the results on a temporal perspective, investigating

the effect of the financial crisis on children’s living conditions.

3 The households where classified into three classes according to their children’s mean age: less the 3
years (class 1), between 3 and 9 years (class 2), more than 9 years (class 3)
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8 Using Big Data sources for small area estimation of

poverty and living condition estimates

Caterina Giusti Stefano Marchetti Monica Pratesi Nicola Salvati

Department of Economics and Management

University of Pisa

8.1 Introduction

The timely, accurate monitoring of social indicators, such as poverty or inequality, on a

fine-grained spatial and temporal scale is a crucial tool for understanding social phenomena

and policymaking, but poses a great challenge to official statistics. The idea of this work

is to propose an interdisciplinary approach which is able to combine the body of statistical

research in small area estimation with the body of research on the huge amounts of digital

information about human activities produced by a wide range of high-throughput tools

and technologies - often referred to as ‘Big Data’. The main part of the work has been

already published in the Journal of Official Statistics as Marchetti et al. (2015).

Generally statistical data are collected by means of sample surveys or censuses. Admin-

istrative data and registers can also be exploited to produce statistical data. Censuses

are complex and expensive to carry out, so sample surveys represent a common way of

collecting data. In order to draw inferences on the target population, surveys should be

representative of the whole population. However, to measure social complexity with a

focus on the identification and quantification of social exclusion and deprivation, there is

a demand for local-level estimates of the most relevant poverty and well-being indicators.

Generally the local level (local administrative area, zone of local governance) constitutes

a so-called unplanned domain of estimation in sample surveys. Oversampling to increase

the sample size in the domains of interest could be a feasible solution for assessing poverty

and deprivation at a local level, say at Local Administrative Units levels 1 and 2 (LAU 1

and LAU 2 levels in the Nomenclature of Territorial Units for Statistics used by Eurostat),

as is often required by policymakers. However, the high cost in terms of time and financial

resources makes this approach impractical for obtaining accurate estimates. Big Data can

represent an alternative source of data for the same areas, usually reaching a very high

level of geographical detail.

We identify three possible approaches to the use of Big Data in the small area estimation

framework.
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The first opportunity is to use Big Data sources to create local indicators and compare

them to those obtained with small area estimation methods. The idea is to reconcile data

from the two independent sources - Big Data and sample surveys - to use available local

measures extrapolated from Big Data to compare and benchmark measures on related

aspects of the phenomenon under study (e.g. poverty and social exclusion) obtained from

survey data and vice versa. Measures from Big Data sources are usually obtained very

quickly; however, they can be affected by a serious self-selection bias. Conversely, small

area estimates are methodologically sound, but they require timely survey and population

data that can be difficult to obtain. Comparing the two alternative sets of measures

referring to the same areas can provide useful insights on the potential of Big Data to

benchmark small area estimates. If there is accordance between Big Data and survey data

in a given small domain/area with respect to the recorded level of deprivation and poverty,

then analysts and policy makers may rely on a strong evidence. Otherwise, if there is a

discrepancy between the results obtained from the two sources of data, then there is a

need for further investigation of those domains/areas.

The second possibility is to use Big Data sources to generate new covariates for small area

models. However, the extension of the covariates to include variables such as social media

search loads or remote-sensing images (e.g. in crop-yield surveys, and also in social surveys)

or tracking of human mobility opens up difficulties and challenges. Due to technical

problems and legal restrictions, it is unfeasible at this stage to have unit-level data that

can be linked with administrative archives, census or survey data. To overcome this

problem we can use the so-called area-level models, such as the Fay-Herriot model (cf.

Fay and Herriot, 1979). However, attention should be paid to the fact that under the

Fay-Herriot model it is assumed that the auxiliary variables are measured without error,

that is, that they are available for all the areas and they come from census or archives

covering the entire population of interest. When auxiliary variables come from surveys,

they suffer from sampling errors and may also suffer from nonsampling errors, and thus

we consider them as measured with error. Generally, auxiliary variables coming from Big

Data are not measured on all (or on a big proportion) of the units of the target population,

nor are they collected using a random sample. For these reasons we consider that Big Data

are subject to measurement error.

The last opportunity is to use survey data to check and remove the self-selection bias of the

values of the indicators obtained using Big Data. The idea is that Big Data could be used

directly to measure poverty and social exclusion, appropriately taking into account the
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self-selection problem. We envision that survey data could be used to check and remove

this bias, provided that unit-level information from Big Data sources will be available.

8.2 Big data on individuals’ mobility

We used a large dataset of private vehicles in Central Italy, tracked with a GPS device.

The dataset is comprised of information on approximately ten million different car jour-

neys made by 150000 vehicles tracked during May 2011. Focusing on Tuscany, the dataset

refers to 37326 vehicles, which correspond to the 1.5 percent of the total vehicles regis-

tered in Tuscany in 2011. The GPS traces were collected by OCTO Telematics S.p.a., a

company that provides a data collection service for insurance companies. The GPS device

is automatically turned on when the car is started, and the global trajectory of a vehicle

is formed by the sequence of GPS points that the device transmits every 30 seconds to the

server. When the vehicle stops no points are logged or sent. We exploited these stops to

split the global trajectory into several sub-trajectories, which corresponded to the single

journeys undertaken by a vehicle. Vehicle traces were then mapped on the road network

and their position during the stops was associated with the census sectors, provided by

the Italian National Institute of Statistics (ISTAT). In this way, each car journey was de-

scribed by a tuple composed of the timestamp and a pair of coordinates corresponding to

the origin and destination of the journey. We then considered several alternative measures

to characterized individuals’ mobility.

We define the mobility for a given vehicle ν by:

Mν = −
L∑

l1=1

L∑
l2=1

pν(l1, l2)log(pν(l1, l2)), (8.1)

a measure of entropy where (l1, l2) represents a pair of locations, pν(l1, l2) is the probability

of observing a movement of vehicle ν between the locations l1 and l2, and L is the total

number of locations. The probability pν(l1, l2) is given by the ratio between the number

of trips of ν between l1 and l2 and the total number of trips of ν. When l1 is equal to l2,

pν(l1, l2) is set to 0. Then, we define the mobility of an area d, d = 1, . . . , D as:

Md =
1

Vd

∑
ν∈d

Mν (8.2)

where Vd is the number of vehicles resident in area d. A vehicle is considered resident

in the area where it most frequently stops during the night. The mobility value tends to
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zero when the vehicle ν visits few distinct locations, showing low mobility diversity. On

the other hand, when the mobility measure equation (8.1) increases, it means that the

vehicle ν makes journeys with several locations as destinations. We calculate the standard

deviation of the mobility Md for each area. For a given area d we measure the standard

deviation of the mobility by:

sMd
=

[∑
ν∈d(Mν −Md)

2

Vd − 1

]1/2

(8.3)

where Mν and Md are defined by equation (8.1) and equation (8.2).

Another measure of mobility we computed is based on the radius of gyration (RG), which

for each vehicle measures how spread out its visited locations are from its centre of mass.

The centre of mass lcm,ν of a vehicle ν is defined as a two-dimensional vector representing

the weighted mean point of the locations visited by that vehicle. We can measure the mass

associated with a location with its visitation frequency, obtaining the following definition:

lcm,ν =
1∑

i∈L δi,ν

∑
i∈L

δi,νli (8.4)

where L is the set of all the visited locations, li is a two-dimensional vector describing the

geographic coordinates of location i and δi,ν is its visitation frequency by vehicle ν. Then,

the RG of a vehicle ν is defined as:

Rgν =

[
1∑

i∈L δi,ν

∑
i∈L

δi,ν(li − lcm,ν)T (li − lcm,ν)

]1/2

. (8.5)

We can then define the radius of gyration in area d as:

RGd =
1

Vd

∑
ν∈d

RGν . (8.6)

The radius of gyration provides a measure of the volume of mobility, indicating the typical

distance travelled by a vehicle and provides an estimation of its tendency to move. Figure

8.1 (reported from Pappalardo et al. (2013) and referring to the Big Data mentioned

above) shows that vehicles having small radius of gyration (red points) tend to concentrate

their center of mass in the main urban centers of central Italy: Carrara, Pisa, Livorno,

Pistoia, Empoli, Siena, Grosseto, Arezzo and the pool of towns composing the conurbation

of Florence (Firenze, Prato, Sesto Fiorentino, Scandicci). Conversely, vehicles character-
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ized by high radius of gyration (green points) are distributed in the contryside and on the

coast.

Figure 8.1: Spatial distribution of car users’ center of mass on the map of central Italy.
Source: Pappalardo et al. (2013).

8.3 Application: comparing Big Data with small area estimates

Figure 8.2 shows the map of the sMd
and of the Head Count Ratio estimates for the ten

provinces of the Tuscany region, Italy. The HCR estimates were obtained by applying

the M-quantile estimators proposed by Tzavidis et al. (2010b) and Marchetti et al.

(2012b) to data from EU-SILC 2008 and the Population Census 2001. M-quantile models

(cf. Chambers and Tzavidis, 2006) relax the parametric assumptions of random effects
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models traditionally used for small area estimation (cf. Rao, 2003), which can represent an

advantage in many real data applications (cf. Giusti et al., 2012, Fabrizi et al., 2014). The

household-level covariates included in the model for the mean of the household equivalised

income - common to the EU-SILC survey and to the population census - are the house-

ownership status, the age of the head of the household, the employment status of the head

of the household, the gender of the head of the household, the years of education of the

head of the household and the household size. For the two maps we can see that higher

levels of HCR correspond to lower levels of heterogeneity of the mobility Md.

To better represent this relationship, Figure 8.3 shows the scatterplot of the HCR values

plotted against the sMd
values. Their linear correlation coefficient, used as a mere descrip-

tive index, is equal to -0.74. Again, this result suggests that higher levels of heterogeneity

of mobility (Md), expressed by the standard deviation sMd
, are in the provinces where

there are lower levels of poverty. In other words, the diversification of mobility within an

area with respect to its mean value can be a proxy of the level of poverty. Conversely, the

mean level of the mobility it is not able to discriminate across areas because the values

are all very similar and not correlated with the HCRs.

Figure 8.2: Map of the Head Count Ratio (left) and its standard error (in parenthesis) and
of the standard deviation of the mobility (right) for the the provinces of the
Tuscany region, Italy.
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Figure 8.3: Scatterplot of the standard deviation of the mobility vs. estimates of the HCR
at province level in Tuscany
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8.4 Application: using Big Data as covariates in small area models

As a second approach to the joint use of Big Data and small area estimation models, we

carried out an application where an extension of the Fay-Herriot model - an area-level

small area model - is used to produce estimates of the HCR and of the mean household

equivalised income for the LLSs of the Tuscany region using area-level data from the EU-

SILC survey 2011 and, as covariate information, data from the EU-SILC survey itself and

from Big Data on mobility. To use these data as covariate information, we propose to use

the modified version of the Fay-Herriot model proposed by Ybarra and Lohr (2008) to

allow for measurement error in the auxiliary variables.

Ybarra and Lohr (2008) assume that for a direct estimator yd of the target variable Yd in

area d, under the sampling design, E[yd] = Yd, and that the auxiliary data source provides

an estimator X̂d of a p-vector Xd of population characteristics, where the estimator X̂d has

mean squared error MSE(X̂d) = Cd under the sample design. They show that when the

auxiliary variables are measured with error, the traditional Fay-Herriot estimator can be

worse than the direct estimator in terms of precision and in addition the estimated mean

squared error gives a misleading notion of precision. Suppose that Xd is the true value of

the auxiliary variable in small area d available for small area estimation. Since Xd may be

measured with error, we substitute an estimator X̂d for Xd and use the following model:

yd = X̂T
d β + rd(X̂,Xd) + ed (8.7)

where rd(X̂,Xd) = ud + (Xd − X̂d)
Tβ, with ud ∼ N(0, σ2

u) and the random error ed ∼

N(0, ψ2
d) , with known ψd. Here, ud is independent from both ed and X̂d, and random

variables in different small areas are independent. They also assume that X̂d and yd are

independent for each area, as when Xd and Yd are estimated using different data sources.

In our application this is the case for Big Data auxiliary variables, while for auxiliary

variables from the EU-SILC survey this hypothesis is violated. However, this problem

can be solved changing the model according to Ybarra (2003). The resulting EBLUP

(Empirical Best Linear Unbiased Predictor) is:

ŶdME = γ̂dyd + (1− γ̂d)X̂T
d β̂ (8.8)

where γ̂d = (σ̂2
u+ β̂TCdβ̂)/(σ̂2

u+ β̂TCdβ̂+ψ2
d) and the regression vector β and the variance

component σ2
u are estimated according to an iterative procedure for the modified least
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squares as in Cheng and Van Ness (1999). Ybarra and Lohr (2008) prove the consis-

tency of equation (8.8) and propose an analytic and a jackknife estimator of MSE(ŶdME).

In our application we are interested in producing mean estimates of the household equiv-

alised income equivalised according to the OECD (Organisation for Economic Co-

operation and Development) modified scale (cf. Hagenaars et al., 1994) and estimates

of the HCR for the 57 LLSs in Tuscany. Note that 24 out of the 57 LLSs are“out-of-sample

areas” with a zero sample size in the EU-SILC 2011. To compute the direct estimates of

the mean household incomes and of the HCRs we used data from the 2011 census wave

of EU-SILC, available at LLS level. Data from the same survey was also considered as

covariate information.

As covariate information available for all 57 LLSs we also used Big Data on individuals’

mobility, under the hypothesis that mobility data could be predictive of well-being mea-

sures. We used two different models to estimate the small area income means and HCRs.

To estimate the mean incomes (Yd) using estimator ŶdME , let X̂d be the vector of the aux-

iliary variables of area d: it contains a constant term, the direct estimate of the proportion

of male as the head of the household, the direct estimate of the mean of the squared

metres of the house (both from the EU-SILC 2011 survey) and, finally, the values of the

RGd (from Big Data sources). Let Cd be the corresponding variance-covariance matrix

of the auxiliary variables, with the covariances set to zero. Let yd be the direct estimate

in area d of the mean of the household equivalised income and ψd its standard deviation.

In the model for the HCR the auxiliary variables vector X̂d contains a constant term, the

direct estimate of the mean of the age of the head of household (from EU-SILC 2011) and

the mobility index Md (from Big Data on mobility). Here yd is the direct estimate of the

HCR in area d.

An important problem in small area estimation is the synthetic prediction for out-of-

sample areas: that is, areas where there are no sampled units, even if there are population

units with the characteristics of interest in those areas. The conventional approach for

estimating a small area characteristic, say the mean, is the synthetic estimation (cf. Rao,

2003): Ŷd,OUT = XT
d,OUT β̂, where Xd,OUT is the auxiliary information for the out-of-

sample area d and β̂ is the vector of estimated coefficients under a small area model. In

the application presented here the problem is serious, since there are 24 out-of-sample areas

(42 percent of the total number of small areas). Moreover, the predictor Ŷd,OUT = X̂T
d,OUT β̂

according to equation (8.8) cannot be applied because the EU-SILC auxiliary variables

selected in our models are not available for the out-of-sample areas. In contrast, Big
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Data auxiliary variables are available for all the areas. One possible synthetic predictor is

Ŷd,OUT = ˆ̄XT β̂ + X̂d,BDβ̂BD, where ˆ̄X is the matrix of the direct estimators of the EU-

SILC auxiliary variables at a regional level, X̂d,BD is the value of the Big Data auxiliary

information for area d and finally β̂ and β̂BD are the estimated regression coefficients

(see Giusti et al., 2012 for an example). Accordingly, using Big Data it is possible to

obtain area-specific synthetic estimates for the out-of-sample areas, taking into account

the variability between areas that cannot be specified by only basing predictions on the

values of ˆ̄X. This represents one of the major advantages in the use of Big Data sources

in small area estimation.

Finally, to estimate the mean squared error of equation (8.8) for both sampled and out-

of-sample areas we use a parametric bootstrap approach, since the jackknife approach

described in Ybarra and Lohr (2008) was too unstable with our data, often produc-

ing negative estimates of the mean squared error. In the parametric bootstrap we first

estimated β and σ2
u, then we parametrically generated the errors u∗d ∼ N(0, σ̂2

u) and

e∗d ∼ N(0, ψ2
d). Using these random errors and the matrix of auxiliary variables, we

generated the bootstrap true values Y ∗d = X̂T
d β̂ + u∗d and the bootstrap direct estimates

y∗d = Y ∗d +e∗d. In the next step, we generated a bootstrap matrix of auxiliary variables with

errors X̂∗d = X̂d + εd, where εd ∼ Np(0, Cd) with Np a multivariate normal of dimension

p. Using equation (8.8) with X̂∗d and y∗d we obtained a bootstrap estimate Ŷ ∗dME of Y ∗d .

Repeating this process B times to obtain B values of Ŷ ∗bdME and Y ∗bd , b = 1, . . . , B, the

bootstrap mean squared error estimator of ŶdME was

mse(ŶdME) = B−1
B∑
b=1

(Ŷ ∗bd − Y ∗b)2. (8.9)

In the application of this article we have used B = 500.

We checked the performance of this bootstrap mean squared error estimator with a small

simulation following the setting used in Ybarra and Lohr (2008) in their simulation

study. The bootstrap scheme seemed to work properly, showing an expected slight under-

estimation of the real (i.e. Monte Carlo) mean squared error.

As an alternative to the bootstrap, for the out-of-sample areas we predicted the ψd values

using a linear model based on the same variables used in the estimation process (cf.

Wolter, 2007). This method is feasible given that data coming from Big Data sources

are available for all the small areas.

Results for the means of both the equivalised income and for the HCR are mapped in
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Figure 2. These estimates referring to the LLSs show intraregional differences that would

be lost if the scope of the analysis was limited to the regional level.

Figure 8.4: Estimates of the mean equivalised income in Euros (right) and of the HCR
(left) for the Local Labour Systems of Tuscany region. Small area estimates
based on EU-SILC 2011 and Mobility Data 2011. Out-of-sample areas are
estimated using a synthetic estimator

What is even more important is that for both the target parameters we achieved a re-

markable gain in terms of precision with respect to the direct estimates. Even if this gain

is marginally overestimated because the bootstrap mean squared error of ŶdME underes-

timates the real mean squared error, the gain in precision is evident. Figure 8.5 shows a

comparison of the bootstrap mean squared error estimates of ŶdME and the mean squared

error estimates of the direct estimates yd for both the mean equivalised income (right) and

the HCR (left). Since the mean squared errors for the direct estimators are only available

for the sampled areas, we only report these ratios for the 33 sampled areas. A gain in

precision is observed for all the areas. In most of the areas the gain in precision is about

5% – 20% for the mean and 10% – 40% for the HCR. In some areas the gain is more

than 50%. However, the mean squared error estimator of the small area estimator ŶdME

should be treated with caution due to its observed underestimation. Nonetheless, these

first promising results encourage further research on this topic.
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Figure 8.5: The plot on the right shows the mean squared error estimates of the small
areas, obtained using equation (8.9) with B=500 bootstrap replications, vs.
the direct estimates of the mean of the equivalised income; the plot on the left
shows the same for the HCR estimates. Results are reported for the 33 Local
Labour Systems (LLSs) sampled in the EU-SILC 2011 survey for Tuscany.
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9 PCA and Complex Survey Designs
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9.1 Introduction

Principal components analysis (PCA) is an important statistical technique that allows an-

alysts to explore high dimensional data. PCA finds an optimal way of combining variables

into a smaller number of subsets through an orthogonal transformation to convert a set

of observations of correlated variables into a set of linearly uncorrelated variables called

principle components. When carrying out PCA on sample data, a covariance (correla-

tion) matrix and a vector of means are estimated from the data, and these are used to

generate the PCA. Standard estimation methods for these components are based on the

sample data being representative of the population (generally, a simple random sample).

Complex survey designs do not generate simple random samples from a population. The

population might be partitioned into strata and the primary sampling unit might contain

a cluster of elements with further sub-sampling of elements within the cluster. In partic-

ular, elements might not be selected with equal probability, and sampling may be with or

without replacement. The research question addressed here is how PCA can be performed

with data arising from complex survey designs? We do not consider specific solutions for

specific types of design. Rather, we consider whether there exists a general, pragmatic

approach that can be used in a wide variety of settings.

9.2 Principal Component Analysis

PCA transforms a set of observations on p (possibly correlated) variables into a set of ob-

servations on k, k < p linearly uncorrelated variables. The transformation can be thought

of as a translation to mean centre the data, followed by a rotation of the axes (correspond-

ing to the original variables). Mutual orthogonality of the axes is maintained. The rotation

is such that the first principal component (axis) explains as much of the total variance in

the data as possible, the second principal component explains as much of the remaining

variance in the data as possible (subject to the orthogonality constraint), and so on. PCA

is performed on the p by p covariance or correlation matrix for the data. The aim is to be

able to summarize the data and reduce the dimensionality, losing as little information as

possible. More details are available in text books. Many statistical packages will perform
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PCA. The output is a set of eigenvectors which can be used to transform data to the new

coordinate system. These can be used to generate the corresponding eigenvalues (loadings)

which are the variances in the data explained by the corresponding principle components.

Factor Analysis is similar to PCA with respect to reducing the dimensionality of the data

and typically the data is first centred and standardized and hence the eigenvectors are

calculated based on the correlation matrix.

9.3 Covariance Matrices

The entry in the covariance matrix with index (i, j) is the (estimated) covariance of the i

th and j th variables. For i = j the covariance is simply the variance.

Cov(x, y) = E(xy)− E(x)E(y) (9.1)

or equivalently,

Cov(x, y) = E(x− E(x))× E(y − E(y)). (9.2)

The former can be more convenient mathematically, whilst the latter can be more conve-

nient for calculations. The covariance can be estimated from a simple random sample of

data via

Ĉov(x, y) =

∑n
i=1 xiyi
n

− x̄ȳ (9.3)

or via the above equation multiplied by a factor n/(an−1) to correct for the bias introduced

by the use of estimated means.

9.4 PCA with data arising from complex survey designs

The question is how best to perform PCA with data that are not simple random samples.

For any complex survey design we can generate inclusion probabilities for the sampled

data. These can also reflect response rates, as well as the design itself. An intuitive ap-

proach is to simply include the inclusion probabilities in the estimation of the covariance

(correlation) matrix and means. Estimation of population totals using inclusion probabil-

itie πi is generally performed using Horvitz-Thompson estimation

T̂ =
n∑
i=1

π−1
i xi (9.4)
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The estimate for the population mean is thus.

Ê(x) = N−1
n∑
i=1

π−1
i xi (9.5)

If the population total, N , is unknown it can be estimated

N̂ =
n∑
i=1

π−1
i (9.6)

The estimated covariance matrix is

Ĉov(x, y) =

∑n
i=1 π

−1
i xiyi∑n

i=1 π
−1
i

−
∑n

i=1 π
−1
i xi∑n

i=1 π
−1
i

∑n
i=1 π

−1
i yi∑n

i=1 π
−1
i

(9.7)

For simple random sampling, the weights are all equal to n/N and the estimator be-

comes equation (9.3). In fact, this is true for any design that generates equal inclusion

probabilities regardless of their value.

If we have a population that consists of strata with distinct covariances and means, then

it can be shown that the population covariance is given by

Cov(x, y) =

(
H∑
h=1

pj

∣∣∣Covh(x, y) + Eh(x)Eh(y)
∣∣∣)− E(x)E(y) (9.8)

where the pj are the marginal probabilities for the strata indexed h = 1, ...,H and

E(x) =
H∑
h=1

pjEh(x), E(y) =
H∑
h=1

pjEh(y) (9.9)

For disproportionate stratification we can simply pool all the data and the estimator of the

population covariance would be equivalent to equation (9.7) where we take into account

the design via the inclusion probabilities.

Kriegel et al. (2008) proposes an essentially identical weighting scheme to increase the

robustness of PCA in the presence of outliers. The issues there are how to identify outliers

so that they can be down-weighted, and deciding upon the appropriate degree of down-

weighting. Here we can derive appropriate weights from the sampling design, although it is

clear that they might be adjusted to accommodate non-response and the issues considered

by Kriegel et al.. Nathan and Holt (1980) consider exactly the approach presented

here - ’An obvious way to utilize the sample design information is to base the estimators on

weighted sample means, variances and covariances, where the weights are the inverses of

the sample inclusion probabilities’. Skinner et al. (1986) also considered the inclusion of
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the design weights in the estimation of the covariance matrices and showed that estimators

are biased for non self-weighted sample designs.

9.5 Intracluster Correlation

The intracluster correlation coefficient (ICC) describes how strongly observations within

clusters resemble each other. Here we use the ANOVA framework definition,

ICC =
SST − SSW

SST
(9.10)

where SST is the sum of squared deviations from the global means and SSW is the sum of

squared deviations from the relevant cluster means. If the cluster means were equal, then

the ICC would equal 0. If there was no variance within cluster (as in the degenerate case of

a single observation in each cluster), then the ICC would be 1. In complex sample designs

the records within a given cluster (primary sampling unit) will often tend to be more

similar than records selected across clusters. We examine the impact of the intracluster

correlation in cluster sample designs in the estimation of population covariance/correlation

matrices for PCA in the simulation studies described in the next section.

9.6 Simulation Study

Clustering may impact on the estimation of the population covariance matrices but may

have less influence on correlation matrices which standardize the covariance matrices so

they are measurement invariant. In the simulation study, we propose to implement a

bootstrap bias correction to adjust for potential bias arising from the clustering.

The simulation study has the following set up:

• Generate a population of 3 strata, each strata having 100 clusters of size 20, N =

6000.

• Generate a vector composed of 3 variables: X = (x, y, z) as follows:

1. Generate Σε where for strata 1: σ2
ε = 1, for strata 2: σ2

ε = 4 and for strata 3:

σ2
ε = 9 for all X and the covariance matrix is defined with a correlation of 0.5

for each pair of variables.

2. From Σε generate εhij from a MVN(0,Σε) for h = 1, . . . , 3 strata, i = 1, . . . , 100

clusters and j = 1, . . . , 20 units.

3. We consider intracluster correlation coefficients (ICC) of varying magnitudes:

0.2, 0.5 and 0.8 and generate µhi from a MVN(0,Σµ) where σ2
µ = ICC/(1 −
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ICC)σ2
ε .

4. Generate Xhij = βφhij + µhi + εhij , β = 1 and φhij is MVN(0,1).

• Draw 500 samples under varying designs: simple random sample of 1:20, simple

random samples drawn in each strata with differential weights: strata 1 has a sample

fraction of 1 : 60, strata 2 has a sample fraction of 1 : 30 and strata 3 has a sample

fraction of 1 : 10; 15 clusters drawn with equal probability and all units in the

selected cluster are kept in the sample; disproportionate stratification of clusters

selected using the same sample fractions as above and all units in the selected cluster

are kept in the sample.

• For each of the cluster designs, we carry out a bootstrap bias correction based on

100 samples drawn with replacement from each of the original 500 samples.

Figure 9.1: First Eigenvalue ICC=0.2

Figures 9.1 to 9.4 contain the first and second eigenvalues and the first and second factors

when the ICC is equal to 0.2, Figures 9.5 to 9.8 contain the first and second eigenvalues

and the first and second factors when the ICC is equal to 0.5 and finally Figures 9.9 to

9.12 contain the first and second eigenvalues and the first and second factors when the

ICC is equal to 0.8. The horizontal line in each of the figures represents the true value in

the population. Each of the designs in the figures have the following notation: SRS for the

simple random sampling; Disp for the disproportionate stratification of units where noW
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Figure 9.2: Second Eigenvalue ICC=0.2

Figure 9.3: First Factor ICC=0.2

139



Figure 9.4: Second Factor ICC=0.2

Figure 9.5: First Eigenvalue ICC=0.5
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Figure 9.6: Second Eigenvalue ICC=0.5
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Figure 9.7: First Factor ICC=0.5
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Figure 9.8: Second Factor ICC=0.5

Figure 9.9: First Eigenvalue ICC=0.8
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Figure 9.10: Second Eigenvalue ICC=0.8

Figure 9.11: First Factor ICC=0.8
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Figure 9.12: Second Factor ICC=0.8

denotes the unweighted covariance matrix in the PCA and W denotes the weighted covari-

ance matrix in the PCA; Clust for the equal probability cluster design where B denotes

the bootstrapped bias corrected estimate; DispCl for the disproportionate cluster design

where noW denotes the unweighted covariance matrix in the PCA, W denotes the weighted

covariance matrix in the PCA and where specified, W B denotes the bootstrapped bias

corrected estimate.

9.7 Discussion

Given the high correlation between the variables in X, the first eigenvalue describes most

of the variance but we examine the first two eigenvalues as well as the first two factors

from the PCA. Under ICC=0.2, the first eigenvalue and first factor under simple random

sampling gives unbiased estimates. The simple random sampling with varying sample

fractions in each strata provides biased estimates if the sample weights are not taken

into account in the estimation of the population covariance matrix for the PCA. If the

sample weights are used, we obtain unbiased estimates. Given the low ICC of 0.2, the

equal probability cluster design provides similar results to the bootstrap bias corrected

estimates showing a slight improvement for the first factor. Under the cluster design

where the clusters are sampled within strata under varying sample fractions, the weighted

covariance matrix provides unbiased results but it is clear that the bootstrap bias corrected

estimates over-compensated for the first eigenvalue and first factor. Looking at the second

eigenvalue there is an upward bias even under simple random sampling with the bootstrap
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bias corrected estimate for the cluster designs showing an improvement. However, the

second factor is unbiased under simple random sampling and when taking into account

the weighted covariance matrices under the differential sample designs. We also see that

the bootstrap bias corrected estimates are over-compensating for the bias.

Under ICC=0.5, we note that the bootstrap bias corrected estimates for the dispropor-

tionate cluster sampling within strata was not carried out since there was little evidence

of a clustering effect at this ICC as well. We see similar patterns as described for the case

of ICC=0.2.

For ICC=0.8 representing an extreme value of an ICC, the bootstrap bias corrected esti-

mate for the first eigenvalue and first factor is having little effect on correcting the bias

which in any case remains small. However, it does seem to increase the variation. Again

we see similar patterns of a bias in the second eigenvalue with the bootstrap bias corrected

estimator improving the bias, but for both factors there is little evidence of bias arising

from the cluster designs.

From the simulation study, there does not seem to be any indication that the clustering,

even for the high intracluster correlation, is having much impact on the estimation of the

PCA. It is clear that sampling weights are necessary to correct for bias arising from the

survey design.
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Kriegel, H.-P., Kröger, P., Schubert, E. and Zimek, A. (2008): A general frame-

work for increasing the robustness of PCA-based correlation clustering algorithms. In:

Scientific and Statistical Database Management, pp. 418–435, Springer.
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Growth Research Infrastructure Diffusion – are to integrate and to innovate existing, but distributed 
European social sciences research infrastructures on ‘Poverty and Living Conditions’ and ‘Working 
Conditions and Vulnerability’ by providing transnational data access, organising mutual knowledge 
exchange activities and improving methods and tools for comparative research. This integration will 
provide the related European scientific community with new and better opportunities to fulfil its key 
role in the development of evidence-based European policies for Inclusive Growth. In this regard 
specific attention is paid to a better measurement of related state policies, to high-performance 
statistical quality management, and to dissemination/outreach activities with the broader stakeholder 
community-of-interest, including European politics, civil society and statistical system. 
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