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Abstract

Magnetorheological fluids (MRFs) are smart materials responsive to magnetic field, widely applied

in dampers and shock absorbers but also in clutches and brakes. The MRF gap shape is a very

important topic in the design of clutches, since it directly influences the transmissible torque and

the power loss.

In this paper an approach to MRF clutch design based on optimization is proposed and tested

on four different layouts. Starting from a given available volume, two MRF gap shapes, namely

single cylinder and multi-disc, and two coils positions, i.e. internal or external, were considered.

A lumped parameter model was developed to analytically compute the magnetic flux along the

clutch magnetic circuit and to calculate the transmissible torque of the clutch.

The optimal geometry of the clutch for maximum transmissible torque, in terms of number and

dimensions of the coil sectors, was determined for each shape and coil configuration and the results

were validated by finite element models.
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1 Introduction

Magnetorheological fluids (MRFs) are smart materials having several applications in research and

industry. The main peculiarity is the capability to change their apparent viscosity and to exhibit

a variable yield shear stress if subject to magnetic field. If the magnetic field is not applied, MRFs

behave like Newtonian fluids, while under the effect of magnetic field they exhibit a visco-plastic

characteristic which is usually modeled either by the Bingham-plastic [1] or the Herschel-Bulkley [2]

models. MRFs are made of a carrier fluid, which is usually oil, having micrometric ferromagnetic

particles dispersed right inside. In the absence of magnetic field, the ferromagnetic particles are

randomly dispersed, while if the fluid is crossed by magnetic field, the ferromagnetic particles

align themselves along the magnetic field and confer to the MRF a higher shear strength. As

stated by suppliers [3], the time needed to change the particles orientation upon the application,

or the removal, of the magnetic field is less than five milliseconds, as confirmed also in [4], while

some studies regarding real MRF devices assess the response time is strongly variable in the range

0.01–1.2 s [5]– [6].

Even though the first MRFs applications date back to the late 1940s – early 1950s, when the

first magnetorheological clutches operated by coils were designed and patented by Rabinow [7, 8],

the research activity grew up recently [9–11] thanks to the availability of commercial MRFs and

to the spread of Finite Element (FE) software, which can accurately compute the magnetic field

distribution in complex geometries.

A widely diffused application of MRFs is related to damping, mainly in vehicle shock absorbers

[12–15] but also in civil constructions [16]. An alternative application is related to clutches and

brakes [17, 18], usually composed by two parts, both rotating in the case of clutches or one fixed

and one rotating in the case of brakes; the gap between the two parts is filled with MRF.

The MRF gap shape is a very important topic in the design of the clutch, since it directly

influences the magnetic field distribution, the transmissible torque and the power loss. Usually

clutches and brakes have planar (disc) or cylindrical shape gaps [19] and the magnetic field is

generated by coils, even if the use of permanent magnets is sometimes considered [20–22]. In

particular, the authors faced with the development of magnetorheological clutches conceived in

order to transmit high torque in engaged configuration under strict size constraints [23,24]. They

developed several clutch models [25] where the MRF gap and the whole clutch geometry was

obtained in an iterative way.
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In the literature the MRF gap geometry is also studied by means of optimization algorithms. In

Karakoc [26] the optimization study aimed at maximizing the transmissible torque of a multidisc

MRF brake excited by coils, having the number of discs and the coil position (external) fixed and

the external diameter subject to constraint. More recently, Nguyen and Choi published several

papers on MRF clutch and brake optimization [27–31] using both FEM and lumped parameters

approaches. In particular, they optimized the transmissible torque considering single disc, multi-

disc and T-shaped fluid gaps arrangements under the constraints of size, mass and temperature

due to friction in the case of no magnetic field.

In this paper an alternative approach to MRF clutch design based on optimization is proposed.

The aim of the activity was to found the optimal clutch layout and the optimal clutch dimen-

sions in order to maximize the transmissible torque in engaged condition without clutch slip, given

the available cylindrical volume. For this reason two MRF gap shapes, namely single cylinder

and multi-disc, and two different coil positions, namely internal and external, were considered. A

lumped parameter model was developed to analytically simulate the magnetic flux density along the

magnetic circuit and, consequently, the transmissible torque of the clutch. The optimal geometry

of the clutch was determined for each shape and coil configuration and the results were validated by

FEM models. The resulting optimal clutch could be used for several applications where the engage-

ment and disengagement of mechanical devices, e.g. auxiliaries in internal combustion engines [],

is required.

2 MRF clutches layout

Four clutch layouts were considered in this analysis, as shown in Fig. 1. In particular, Fig. 1a and

Fig. 1b represent the cross section of two clutches having cylindrical gap, while Fig. 1c and Fig. 1d

represent the transversal section of two clutches having a multidisc gap. Each layout is made up

of two rotor parts, while the coil sectors are nestled in internal or external stators, in order to

avoid the use of brush contacts. The rotors can be made up of ferromagnetic or non-ferromagnetic

materials; in the case of a rotor composed of both ferromagnetic and non-ferromagnetic materials,

these can be joined by welding even if the clutch complexity increases. The ferromagnetic and

non-ferromagnetic sectors were determined in order to guarantee suitable ferromagnetic circuits

(see Section 3), while the number and dimensions of the coil sectors were left to be determined by

the optimization algorithm. The geometries shown in Fig. 1 have to be considered as schematic
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(a) Layout A (b) Layout B

(c) Layout C (d) Layout D

Figure 1: MRF clutch layouts: a) single cylinder with external coils, b) single cylinder with internal
coils, c) multidisc with external coils, d) multidisc with internal coils

simplified representations since, beyond the sectors dimensions, even the number of coil sectors in

the cylindrical layout and the number of discs in the multidisc layout cannot be known a-priori.

The first layout (Fig. 1a) presents an internal rotor element, fully ferromagnetic, and an external

rotor element made up of alternating ferromagnetic and non-ferromagnetic materials. The rotors

are separated by MRF and the coils are placed externally. The second layout (Fig. 1b) presents

an external fully ferromagnetic rotor element and an internal rotor element made up of alternating

ferromagnetic and non-ferromagnetic materials; the coils are placed internally.

The third and fourth layouts (Fig. 1c-1d) both present an internal rotor element composed by

a non-ferromagnetic shaft having a series of ferromagnetic plates fixed on it. The external rotor

element is made up of juxtaposed ferromagnetic plates and non-ferromagnetic hollow cylinder.

The only difference is related to the coils position, which are external in Layout C and internal in

Layout D.

The size constraints considered for each layout are listed in Tab. 1. The external diameter

and the length were defined in order to compare the results with a MRF clutch prototype already
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External diameter 74 mm
Length 50 mm

MRF gap thickness 1 mm
Minimum metal plate thickness 1 mm

Table 1: Size and technological constraints

developed by the authors [24], which was equipped with a permanent magnet. The MRF gap

thickness and the minimum metal place thickness were fixed to 1 mm due to technological issues.

Also the minimum thickness of non-ferromagnetic hollow cylinder and shaft (e.g. internal rotor

shaft in Layout C) were chosen on the basis of mechanical structural consideration based on the

stress of the parts involved in the torque transmission. It is worth noting that such geometric pa-

rameters could not be determined by the optimization procedure since these are non ferromagnetic

and consequently they do not directly affect the magnetic circuit.

3 Lumped parameter model of the clutch

The magnetic circuits were defined considering the following assumptions:

1. all the magnetic field lines form closed loops, flowing around each coil sector, which pass

through ferromagnetic parts and magnetorheological fluids;

2. the reluctance of the circuit elements are considered as lumped parameters and are deter-

mined considering the relative permeability, defined as µR = B
Hµ0

, of the MRF (µMR
R , Lord

Corporation MRF 140 CG) and of the iron parts (µFeR , AISI1018) starting from the B-H

curves shown in Fig. 2;

3. the non-ferromagnetic parts are assumed to have µR = 1;

4. each coil sector generates the magnetomotive force F = N I, where N is the number of coils

belonging to each sector and I is the current flowing in each coil wire;

5. on the basis of the Hopkinson’s law, F = Φ R, where Φ is the magnetic flux and R is the

reluctance of the circuit.

The reluctance of the circuit was then determined considering the above mentioned hypotheses

and the geometrical properties of each layout.
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Figure 2: Ferromagnetic iron and MRF B-H curves.

3.1 Layout A

Considering the planar model shown in Fig. 1a (dimensions given in Fig. 3a and length L = 50

mm), it is possible to find the minimum reluctance path of the magnetic field around each coil,

which is schematically represented by the green lines in Fig. 3b. If the reluctance of the air and

MRF areas crossed by the magnetic field are considered as lumped parameters and the reluctance

of the ferromagnetic iron is mainly due to the external hollow cylinder of the clutch, it is possible

to describe the magnetic circuit associated to the clutch with the scheme proposed in Fig. 3c.

The magnetomotive force FA is computed on the basis the number of coils NA and the current

I flowing in each coil. The number of coils is given by the ratio between the coil sector area AAC

and the coil wire radius rw = 1 mm multiplied by wire packaging factor fp= 0.75 and

FA = NAI =
AAC
πr2w

fpI =
π [(r

A
3 )

2
−
(
rA2 + s

)2
] (2π−n

AαA)
2πnA

πr2w
fpI (1)

where rA2 , rA3 and αA are shown in Fig. 3a, s = 1 mm is the MRF and air gap thickness and nA is

the number of coil sectors. It is worth noting that the magnetomotive force generated by a single

coil is split along two opposite paths; for this reason the equivalent reluctance of the circuit is

RAeq =
[
2
(
RAAir +RAMR +RAFe

)]
/2, (2)

where RAAir = s
(rA2 +s/2)αAL

, RAMR = s
µMRR (rA1 +s/2)αAL

and RAFe ≈
( 2π

nA
−αA)(rA3 +rA4 )

4µFeR (rA4 −rA3 )L
.
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(a) Dimensions (b) Magnetic flux lines drawing
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Figure 3: Layout A characteristics.

The magnetic flux ΦA is then computed as

ΦA =
NA I

RAeq
(3)

and consequently the magnetic fields BAFe and BAMR are computed as follows

BAFe =
ΦA

2(rA4 − rA3 )L
(4)

BAMR =
ΦA

(rA1 − s
2 )αAL

(5)

The magnetic field HA
Fe and HA

MR are finally computed as

HA
Fe =

BAFe
µFeR µ0

(6)

HA
MR =

BAMR

µMR
R µ0

(7)

It is worth noting that the relative permeabilities µFeR and µMR
R are functions of the magnetic field

HA
Fe and HA

MR respectively and they are computed starting from the materials B-H curves. Since

the magnetic field is the output of the analysis and the relative permeabilities are used to compute

it, the problem is implicit. For this reason a numerical algorithm which computes the magnetic

field iteratively was implemented. Similarly in [29, 31] the relative permeability of the materials

was computed during the optimization process by the FEM sofware.
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3.2 Layout B

Similarly to the analysis carried out for the Layout A, the magnetic circuit related to Layout B,

the dimensions of which are shown in Fig. 4a, is derived as shown in Fig. 4b-4c.

The magnetomotive force FB is given by

FB = NBI =
ABC
πr2w

fpI =
π [(r

B
2 )

2
−

(
rB1

)2
] (2π−n

BαB)
2πnB

πr2w
fpI (8)

and the equivalent reluctance is formally the same way as in Layout A, since the equivalent magnetic

circuit is composed by the same lumped elements. The only difference is related to the position

of air reluctance and MRF which have reverse order. However, the different order does not affect

the equivalent reluctance because air and MRF reluctance are in series. Therefore

RBeq =
[
2
(
RBAir +RBMR +RBFe

)]
/2, (9)

where RBAir = s
(rB2 +s/2)αBL

, RBMR = s
µMRR (rB3 +s/2)αBL

and RBFe ≈
( 2π

nB
−αB)(rB3 +rB4 )

4µFeR (rB4 −rB3 )L
.

(a) Dimensions (b) Magnetic flux lines drawing
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Figure 4: Layout B characteristics.

The magnetic flux ΦB is then computed as

ΦB =
NB I

RBeq
(10)

and consequently the magnetic fields BBFe andB A
MR are computed as follows

BBFe =
ΦB

2(rB4 − rB3 )L
(11)
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BBMR =
ΦB

(rB3 − s
2 )αBL

(12)

The magnetic field HB
Fe and HB

MR are finally computed as

HB
Fe =

BBFe
µFeR µ0

(13)

HB
MR =

BBMR

µMR
R µ0

(14)

where the relative permeability values were chosen as for Layout A clutch.

3.3 Layout C

Also for Layout C, the magnetic circuit was drawn as shown in Fig. 5a-5c.

(a) Dimensions
(b) Magnetic flux lines drawing
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RFe
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(c) Magnetic circuit

Figure 5: Layout C characteristics.

The magnetomotive force FC is given by

FC = NCI =
ACC
πr2w

fpI =
[rC4 − (rC3 + s)](lC − 2dC)

πr2w
fpI (15)

and the equivalent reluctance is given by the series of the reluctance of the air gaps RCAir,1and

RCAir,2 and the reluctance of MRF RCMRF . In this case, the reluctance of the MRF was split in

three parts, since three different parallel reluctance paths, shown in Fig. 5b-5c, can be identified

even in a lumped parameters analysis. For this reason RCMRF is obtained as

(RCMR)
−1

= (RCMR,1)
−1

+ (RCMR,2)
−1

+ (RCMR,3)
−1

(16)
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with

RCMR,1 =
3s nC

πµMR
R (

(
rC2 + s

)2 − (
rC2

)2
)

(17)

RCMR,2 =
2s nC

πµMR
R (

(
rC2

)2 − (
rC1 + s

)2
)

(18)

RCMR,3 =
3s nC

πµMR
R (

(
rC1 + s

)2 − (
rC1

)2
)

(19)

where nC is the number of disc plates and the dimensions are identified in Fig. 5b. The equivalent

magnetic circuit reluctance is then

RCeq = RCMR +RCAir,1 +RCAir,2 +RCFe (20)

where RCAir,1 = s

π((rC2 +s)
2−(rC1 )

2
)
, RCAir,2 = s

2π(rC3 +s/2)dC
and RBFe ≈ lC−2dC

πµFeR ((rC5 )
2−(rC4 )

2)
.

The magnetic flux ΦC is then computed as

ΦC =
NC I

RCeq
(21)

and consequently the magnetic fields BCFe andB C
MR are computed as follows

BCFe =
ΦC

π
(

(r
C
5 )

2
− (r

C
4 )

2
) (22)

BCMR =
ΦC

π
(

(r
C
2 )

2
− (r

C
1 + s)

2
) RCMR,1R

C
MR,3(

RCMR,1R
C
MR,2+RCMR,1R

C
MR,3 +RCMR,2R

C
MR,3

) (23)

where the magnetic flux density in the MRF BCMR was computed considering only the magnetic

flux along the central path of the parallel circuit portion shown in Fig. 5c. This is due to the

fact that the transmitted torque is related to the magnetic field in the MRF between facing discs,

which corresponds to the central part of the magnetic field path.

The magnetic field HC
Fe and HC

MR are finally computed as

HC
Fe =

BCFe
µFeR µ0

(24)

HC
MR =

BCMR

µMR
R µ0

(25)
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where the relative permeabilities where numerically found as previously described.

3.4 Layout D

Finally Layout D clutch was defined as shown in Fig. 6a-6c and the magnetic circuit was drawn as

shown in Figure 6c.

(a) Dimensions
(b) Magnetic flux lines drawing
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Figure 6: Layout D characteristics.

The magnetomotive force FDis given by

FD = NDI =
ADC
πr2w

fpI =
(rD2 − rD1 )(lD − 2dD)

πr2w
fpI (26)

and, as similarly to layout C, the equivalent reluctance is given by the series of the reluctance of

the air gaps RDAir,1, RDAir,2 and RDAir,3 and the reluctance of MRF RDMR. Also in this case, the

reluctance of the MRF was split in three parts and RDMR can be obtained as

(RDMR)
−1

= (RDMR,1)
−1

+ (RDMR,2)
−1

+ (RDMR,3)
−1

(27)

with

RDMR,1 =
3s nD

πµMR
R (

(
rD4

)2 − (
rD4 − s

)2
)

(28)

RDMR,2 =
2s nD

πµMR
R (

(
rD4 − s

)2 − (
rD3 + s

)2
)

(29)

RDMR,3 =
3s nD

πµMR
R (

(
rD3 + s

)2 − (
rD3

)2
)

(30)

where nD is the number of disc plates and the dimensions are identified in Figure 5c. The
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equivalent magnetic circuit reluctance is then

RDeq = RDMR +RDAir,1 +RDAir,2+ RDAir,3 +RDFe (31)

where RDAir,1 = RDAir,3 = s
2π(rD2 +s)dD

, RCAir,2 = s
2π(rD3 +s)dD

and RBFe ≈ lD−2dD

πµFeR (rD1 )
2 .

The magnetic flux ΦD is then computed as

ΦD =
ND I

RDeq
(32)

and consequently the magnetic fields BDFe andB D
MR are computed as follows

BDFe =
ΦD

π
(
rD1

)2 (33)

BDMR =
ΦD

π(
(
rD4 − s

)2 − (
rD3 + s

)2
)

RDMR,1R
C
MR,3(

RDMR,1R
C
MR,2+RDMR,1R

D
MR,3 +RDMR,2R

D
MR,3

) (34)

where, analogously to Layout c) clutch, the magnetic flux density in the MRF BDMR was computed

considering only the magnetic flux along the central path of the parallel circuit portion shown in

Fig. 6b. The magnetic field HD
Fe and HD

MR are finally computed as

HD
Fe =

BDFe
µFeR µ0

(35)

HD
MR =

BDMR

µMR
R µ0

(36)

where the relative permeabilities where numerically found as previously described.

4 Torque computation

The transmissible torque of each clutch layout was computed starting from the knowledge of the

magnetic field along the MRF gap. Since the focus was on the transmissible torque without clutch

slip, only the contribution of the yield shear stress, the profile of which is given in Fig. 7 as a

function of the magnetic field intensity H, was considered, neglecting the viscous term. The yield

stress curve refers to room temperature but it is known [32] that the temperature influences the

yield shear stress of the MRF. In particular higher temperature values negatively affects the yield
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Figure 7: Yield stress versus magnetic field intensity - Lord Corporation MRF 140CG

stress capability of the MRF. For this reason the absence of clutch slip is desired in engaged con-

dition since no heat is generated due to MRF work. However also the current flowing in the coils

contributes to the heat generation in engaged condition and this contribution was neglected in this

analysis. The correctness of this assumption was verified a posteriori, computing, for each optimal

clutch geometry, the heat generated by the current which resulted lower than 20 W.

In Layout A and Layout B, since the magnetic field HA and HB was assumed constant in the

portions of the MRF gap crossed by magnetic flux, having angular dimension αA and αB (see

Fig. 3 and Fig. 4), and zero elsewhere, the yield shear stress was consequently assumed constant

and equal to τ0(H) in the portions of the MRF gap crossed by the magnetic flux and zero in the

portions of the MRF gap which are not subjected to the magnetic flux.

In Layout C and Layout D, the annular area of the discs which contributes to the torque

transmission was identified considering the zones where the primary and secondary discs face one

against the other, i.e. between rC1 + s and rC2 in Layout C and between rD3 + s and rD4 − s in

Layout D (see Fig. 5 and Fig. 6).

Considering the equations given in [23], the transmissible torque for each layout is

TA(HA) = nAαAL(r
A
1 )

2
τ0(HA) (37)

TB(HB) = nBαBL(r
B
3 )

2
τ0(HB) (38)

TC
(
HC

)
= 4πnCτ0(HC)

(rC2 )
3 − (rC1 + s)

3

3
(39)

TD
(
HD

)
= 4πnDτ0(HD)

(rD4 − s)
3 − (rD3 + s)

3

3
(40)

13



5 Optimization

In order to find the geometrical parameters and the number of coil sectors (or the number of discs)

that maximize the transmissible torque, an optimization procedure is due. It is worth noting that

the effect of many parameters is not easily predictable, since they affect in a complex way the

magnetomotive force, the circuit reluctance and the torque tranmission. For example, considering

Layout A and Layout B, if the angular sector of the MRF crossed by magnetic flux (αA and αB)

is increased, the mangetomotive force decreases (the coil sectors area is reduced) as well as the

reluctance of the air and MRF decreases too; in addition the zone of the MRF which contributes

to the torque transmission is wider. For this reason it is not easily predictable how to find the

optimal value without using optimization algorithms.

5.1 Algorithm description

The optimum clutch geometry was computed following the conceptual scheme presented in Fig. 8.

For the sake of conciseness the scheme refers only to Layout A clutch but can be easily transposed

to the other clutch layouts.

The first step of the procedure consists in manually guessing the initial values of the optimization

parameters, which are, in the considered example, rA1 , r
A
2 , rA3 , αA. Then a for loop is initiated

where the number of coils sectors nA is the index variable.

The external dimensions values are also considered and the magnetic fields in the MRF and

in the iron parts is computed on the basis of the model presented in Section 3.1. Then a series

of constraint checks is performed considering both the saturation of the ferromagnetic iron parts

(HFe,sat = 1.4 T) and the geometrical consistency (e.g. rA3 > rA2 > rA1 ). If the constraints are

satisfied, the transmissible torque is computed, otherwise a new set of geometry parameters is

guessed.

The Nelder-Mead algorithm [33] is used to generate the new set of parameters at each step,

until the convergence at the optimal solution is reached and the accuracy of the solution meets the

minimum criteria.

Once the optimal solution is found for a given number of coils sectors nA (or the optimal

number of disc plates for layouts C and D), the optimal torque value T
A

n is stored and the for loop

iterates changing the number of coils sectors (or the number of discs for Layout C and D). Finally,

the maximum value of the transmissible torque T
A

, related to the optimal number of coils sectors

14



Figure 8: Optimization conceputal scheme
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Layout A Layout B Layout C Layout D

T
A

(Nm) 0.91 T
B

(Nm) 1.87 T
C

(Nm) 2.11 T
D

(Nm) 5.49

nA (-) 2 nB (-) 2 nC (-) 10 nD (-) 10

rA1 (mm) 15.1 rB1 (mm) 7.2 rC1 (mm) 5 rD1 (mm) 6.7

rA2 (mm) 21.1 rB2 (mm) 23.2 rC2 (mm) 16.8 rD2 (mm) 20.7

rA3 (mm) 31.2 rB3 (mm) 29.2 rC3 (mm) 22.8 rD3 26.7

αA (deg) 70.3 αB (deg) 75.9 rC4 (mm) 36 rD4 (mm) 32

d
C

(mm) 5.5 d
D

(mm) 5.5

H
A

MR (kA/m) 63.3 H
B

MR (kA/m) 38.8 H
C

MR (kA/m) 18.9 H
D

MR (kA/m) 27.4

B
A

MR (T) 0.56 B
B

MR (T) 0.34 B
C

MR (T) 0.26 B
D

MR (T) 0.31

N
A

308 N
B

293 N
C

314 N
D

362

Table 2: Optimal parameters.

nA and to the optimal geometry parameters rA1 , rA2 , rA3 ,αA, is chosen among the maximum values

obtained at each loop.

5.2 Optimization results

The results listed in Tab. 2 were obtained considering the maximum current I = 3 A.

Either for the cylindrical and for the multidisc layouts, the most promising geometry, in terms

of transmissible torque, are those having coils in the internal zone of the clutch and the MRF

gap externally. This result could be reasonably expected since the torque rises in a more than

proportional way with the MRF gap radius. In particular, the Layout D clutch is able to transmit

the higher torque, the value of which is 5.49 Nm. In addition, for cylindrical gap layouts, the

optimal number of coil sectors, i.e. nA and nB , is 2, while for multidisc layouts, the optimal

number of disc plates is 10 in both cases.

Beyond the optimal value, a sensitive analysis to the number of coil sectors in Layout A and

to the number of disc plates for Layout C was also performed. Concerning Layout A, the torque

monotonically decreases as the number of coil sectors rises. On the contrary, Layout D presented a

maximum torque value for 10 disc plates and the torque was found to decrease either if the number

of the plates was increased or decreased. This is probably due to the fact that, among many others,

two important opposite effects contribute to the torque computation as the number of disc plates

changes. Indeed, if nC is increased, the number of active surfaces able to transmit the torque rises

(see Eq. 39), but also the reluctance of the MRF rises (see Eq. 16) and, consequently, the magnetic

flux density in the fluid is lower and the yield shear stress of the fluid decreases too.
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6 FEM validation

For each optimal layout, a magnetic finite element model was developed using FEMM software [34]

in order to validate the results found in the optimization procedure. The software is considered a

reliable freeware intrument to perform planar and axis-symmetric analyses and it is widely used

in the literature and in the industry, as discussed in [35]. In particular, the aim of the model was

to verify that, for each optimal clutch geometry, the results found using the simplified lumped

parameters model were similar to the more accurate ones found using a finite element model. In

particular, the comparison was made in terms of magnetic flux density within the MRF area.

The FEM model made use of the non-linear B-H curve shown in Fig. 2, both for MRF and for

ferromagnetic AISI1018, while for air and non ferromagnetic parts the relative permeability was

set to 1. The coils were modeled using copper characteristics and the number of turns was set,

for each model, in accordance to Tab. 2. Concerning Layout A and Layout B a planar model was

developed, while for Layout C and Layout D an axisymmetric model was used.

The results of the FEM analysis are shown in Fig. 9.

In Layout A and Layout B models the magnetic flux lines follows the magnetic circuit guessed

in Fig. 3b and Fig. 4b and they do not cross the external air area. The average magnetic field

density in the fluid crossed by magnetic field lines is 0.51 T and 0.29 T for Layout A and Layout

B respectively. Concerning Layout C and, especially, Layout D, some magnetic flux lines come out

from the magnetic field circuit guessed in Fig. 6b and flow in the air. The average magnetic field

density in the MRF is 0.31 T and 0.17 T for Layout C and Layout D respectively.

Table 3 shows the comparison between the results obtained with the lumped parameter model

used for the optimization and the results obtained by the FEM analysis. Concerning Layout A

and Layout B the lumped parameter model overestimates the magnetic field in the fluid, and

consequently the transmitted torque of about 10%. On the contrary in Layout C the magnetic

field density is underestimated of about 10%. Due to simplifications introduced by the lumped

model, these results are considered satisfactory. Indeed, the optimization model allows the designer

to recognize the magnetic field circuit and to choose the optimal geometrical solution in very short

time, taking into account many opposite and differently weighted effects.

The results obtained for Layout D) using the lumped parameters and the FEM model are

strongly different. This is due to the fact that the actual magnetic circuit found with the FEM

model is significantly different from the one guessed to develop the lumped parameter model.
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(a) Layout A (b) Layout B

(c) Layout C (d) Layout D

Figure 9: Magnetic flux density FEM model results.

Layout Lumped parameters model(T) FEM model (T)
a) 0.56 0.51
b) 0.34 0.30
c) 0.26 0.30
d) 0.31 0.17

Table 3: Magnetic flux density comparison.
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N  ID

RAir,3
D

RMR,3
D

RMR,2
D

RMR,1
D

RFe
D

RAir,2
D

RAir,1
D

RCoil
D

RAir, ext
D

Figure 10: Magnetic circuit modification - Layout D

Indeed, many flux lines disperse in the external air and also in the coil volume, causing a significant

reduction of the magnetic flux through the fluid.

7 Lumped parameters model improvement

For this reason, an improved magnetic circuit model is proposed in Fig. 4, which takes into account

also the reluctance of the coils volume RDcoils and of the external air RDair,ext, defined as follows,

RDcoils =
l − 2dD

πµ0((rD2 )2 − (rD1 )2)
(41)

RDair,ext = k
l − 2dD

πµ0((rD5 )2 − (rD4 )2)
(42)

was implemented. Since no precise dimension can be associated to the area of the external air tube

of flux, the dimension of the external ferromagnetic hollow cylinder was considered and multiplied

by k which is a tunable parameter and was set to 0.1 after some iterations, where the results

obtianed by the lumped parameter model varying k were compared to those given by the FEM

model.

The optimal parameters found using this new model are listed in Tab. 4 and these are compared

with the ones related to the original model. It is worth noting that no geometrical parameter varies

in a significative way, while the magnetic field and the magnetic flux density in the fluid strongly

decreases. This is due to the fact that the MR fluid is crossed only by a part of the magnetic flux,

while a residual part disperses in the air. However, since the geometrical parameters are almost

unchanged even if a further optimization was performed using the new model, the original model

can be considered satisfactory to find the optimal geometrical parameters, even if the magnetic
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Parameter New model Original model

T
D

(Nm) 2.79 5.49
nD (-) 10 10
rD1 (mm) 7.53 6.7
rD2 (mm) 19.9 20.7

rD3 25.9 26.7
rD4 (mm) 32 32

d
D

(mm) 5.5 5.5

H
D

MR (kA/m) 19.4 27.4

B
D

MR (T) 0.19 0.31

N
D

321 362

Table 4: Comparison of the optimal parameters found used the original (Fig. 6c) and the new
magnetic circuit model (Fig. 4) - Layout D

Layout New lumped parameters model(T) FEM model (T)
d) 0.19 0.18

Table 5: Magnetic flux density comparison.

field computation and, consequently, the torque computation is not exact.

Figure 11 shows the results of the FEM model validation of the geometry found using the

new model and Tab. 5 show the comparison between the new lumped parameter model and the

FEM model: the error is strongly reduced, confirming that the new model correctly reproduces

the actual magnetic circuit.

Figure 11: Magnetic flux density FEM model results - Layout D, New model
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8 Conclusions

The magnetic optimization of a magnetorheological clutch has been discussed in the paper. The

optimization was based on a simplified representation, i.e. described by a lumped parameters

model, of the clutch, considering four different layouts. The optimization was conceived in order

to find the optimal geometry (maximum torque) under size, topological consistency and magnetic

saturation of the iron constraints.

As discussed in the paper, the simplified representation can be easily implemented and, being

time-saving, resulted particularly advantageous for the optimization process. Critical parameters

for the lumped parameters model are the relative reluctances of the different materials and the

clear existence of preferred low reluctance paths for the magnetic flux. It has been discussed that

the transmitted torque determined by the lumped parameter model gave satisfactory agreement

with a more accurate representation of the clutch, given by a 2D FEM model, with error within

10%, in three of the examined cases where the magnetic flux is confined in the ferromagnetic

material and do not disperse in air or in the coils. For one of the considered geometries, the setup

of a more accurate model was necessary, due to the dispersion of a portion of the magnetic flux

passing through the air and coils.

In all cases the optimization procedure based on the simplified lumped parameter model re-

vealed capable of giving a correct estimate of the dimensions of the main components of the clutch,

even if the torque could be overestimated in case of magnetic flux dispersion in air or coils.
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