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Abstract

We discuss different notions of continuous solutions to the balance law

∂t u+ ∂x (f(u)) = g g bounded, f ∈ C2

extending previous works relative to the flux f(u) = u2. We establish the equivalence among dis-
tributional solutions and a suitable notion of Lagrangian solutions for general smooth fluxes. We
eventually find that continuous solutions are Kruzkov iso-entropy solutions, which yields uniqueness
for the Cauchy problem. We also reduce the ODE on any characteristics under the sharp assump-
tion that the set of inflection points of the flux f is negligible. The correspondence of the source
terms in the two settings is matter of the companion work [2], where we include counterexamples
when the negligibility on inflection points fails.
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1. Introduction

Single balance laws in one space dimension mostly present smooth fluxes, although the case
of piecewise smooth fluxes is of interest both for the mathematics and for applications. Source
terms instead are naturally rough, and singularities of different nature have a physical and geomet-
rical meaning. As well, they might indeed make a difference among the Eulerian and Lagrangian
description of the phenomenon which is being modeled, for the mathematics.

We are concerned in this paper with different notions of continuous solutions of the PDE

∂t u(t, x) + ∂x (f(u(t, x))) = g(t, x) f ∈ C2(R) (1.1)

for a bounded source term g. An essential feature of conservation laws is that solutions to the
Cauchy problem do develop shocks in finite time. Nevertheless, the source might act as a control
device for preventing this shock formation: exploiting the geometric interplay and correspondence
with intrinsic Lipschitz surfaces in the Heisenberg group, [10, 5] show, for the quadratic flux, that
the Cauchy problem admits continuous solutions for any Hölder continuous initial datum, if one
chooses accordingly a bounded source term. This framework of continuous solutions, with more
regularity assumptions on the source term, was already considered in [4] as the natural class of
solutions to certain interesting dispersive partial differential equations that can be recast as balance
laws. We believe that our study is relevant also in order to point out that, even in the analysis
of a single equation in one space dimension, the mathematical difficulties do not only arise by the
presence of shocks: also the study of continuous solutions has important delicate points which are
not technicalities. This fails the expectation that the study of continuous solutions should be easy,
and equation (1.1) is a toy-model for more complex situations.

One can adopt the Eulerian viewpoint or the Lagrangian/Broad viewpoint: roughly, the first
interprets the equation in a distributional sense while the second consists in an infinite dimensional
system of ODEs along characteristics. We compare here the equivalence among the formulations
when u is assumed to be continuous, but no more. We remark that even with the quadratic flux

f(z) = z2/2

in general u is not more than Hölder continuous, see [13], so that a finer analysis is needed. Con-
tinuous solutions are regularized to locally Lipschitz on the open set {f ′(u)f ′′(u) 6= 0}, exploiting
the results of this paper, for time-dependent solutions when the source term g is autonomous [1],
but not in general. Examples of stationary solutions which are neither absolutely continuous
nor of bounded variation are trivially given by continuous functions u(x) for which f(u(x)) has
bounded derivative. Correspondences among different formulations are already done at different
levels in [4, 19, 6, 5, 16] for the special, but relevant, case of the quadratic flux. We extend the
analysis with new tools. The issue is delicate because g in this setting lacks even of continuity in
the x variable, and characteristic curves need not be unique because u lacks of smoothness. As a
consequence, the source terms for the two descriptions lie in different spaces:

2



• In the Eulerian point of view g is identified only as a distribution in the (t, x)-space.

• In the Lagrangian/Broad viewpoint it is the restriction of g on any characteristic curve which
must identify uniquely a distribution in the t-space—or for a weaker notion only on a chosen
family of characteristics that we call Lagrangian parameterization.

The aim of this paper is to consider and to discuss when Eulerian, Broad and Lagrangian
solution of (1.1) that we just mentioned are equivalent notions, without addressing what is the
correspondence among the suitable source terms—if any. The correspondence of the source terms,
source terms which belong to different functional spaces, is the subject of the companion paper [2],
including counterexamples which show that the formulations are not always equivalent.

We conclude mentioning that Broad solutions were introduced in [17] as generalizations of clas-
sical solutions alternative to the distributional (Eulerian) ones, and presented e.g. also in [7]. They
were successfully studied and applied in different situations where characteristic curves are unique;
the analysis in situations when characteristics do merge and split however was only associated to
the presence of shocks, and a different analysis related to multivalued solutions was performed.
They were then considered for the quadratic flux by F. Bigolin and F. Serra Cassano for their
interest related to intrinsic regular and intrinsic Lipschitz surfaces in the Heisenberg group. Our
notions of Lagrangian and Broad solutions collapse and substantially coincide with the ones in the
literature when the settings overlap. They are otherwise a nontrivial extension of those concepts,
and most of the issues in the analysis arise because of our different setting.

1.1. Definitions and Setting

As we are in a non-standard setting, we explain extensively the different notions of solutions and
we specify the notation we adopt. Even if this is an heavy block, detailed definitions improve the
later analysis. They will be also collected in the Nomenclature at the end for an easy consultation.

Notation 1. We can assume below that u ∈ Cc(R+ × R), because our considerations are local in
space-time. We adopt the short notation λ(t, x) = f ′(u(t, x)) for the charactersitic speed.

Notation 2. Given a function of two variables ϕ(t, x), one denotes the restrictions to coordinate
sections as

ϕe1
x (t) : t 7→ ϕ(t, x) ϕe2

t (x) : x 7→ ϕ(t, x).

Notation 3. Given a function of locally bounded variation ϕ(t, x), one denotes by

Dt ϕ(dt, dx) Dx ϕ(dt, dx)

the measures of its partial derivatives. When it is not known if they are measures, we rather denote
the distributional partial derivatives by

∂t ϕ(t, x), ∂x ϕ(t, x).

Classical partial derivatives are often denoted by

∂ϕ(t, x)

∂t
,

∂ϕ(t, x)

∂x
.
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Definition 4 (Characteristic Curves). Characteristic curves of u are absolutely continuous func-
tions γ : R+ → R, or equivalently the corresponding curves iγ := (I, γ), defined on a connected
open subset of R and satisfying the ordinary differential equation

γ̇(s) = λ(s, γ(s)) = λ(iγ(s)).

The continuity of u implies that γ is continuously differentiable.

Notice that iγ is an integral curve of the vector field (1, λ).

Figure 1: Curves satisfying γ̇(s) = 1 almost everywhere might fail to be Lipschitz continuous: characteristic curves
are indeed required to be absolutely continuous. Absolute continuity automatically improves to C1-regularity, due
to the continuity of the field. They are then stable under uniform convergence.

Definition 5 (Lagrangian Parameterization). We call Lagrangian parameterization associated
with u a surjective continuous function χ : R+×R→ R, or equivalently χ : R→ C(R+), such that1

- for each y ∈ R, the curve χ(y) defined by t 7→ χ(t, y) = χe1
y (t) is a characteristic curve:

χ̇e1
y (t) = ∂t χ(t, y) = f ′(u(t, χ(t, y))) = λ(t, χ(t, y)) = λ(iχ(y)(t));

- for each t ∈ R+, y 7→ χ(t, y) = χe2
t (y) is nondecreasing.

Definition 6. We call a Lagrangian parameterization χ absolutely continuous if (i−1
χ )]L2 � L2.

Equivalently, L2-positive measure sets can not be negligible along the characteristics of the param-
eterization χ: χ maps negligible sets into negligible sets.

1There is no reason for asking the following condition only for L1-a.e. y: if it holds for L1-a.e. y then it holds
naturally for every y. As well, it would be odd requiring the second condition only L1-a.e. t.
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Remark 7. Even if χ generally is not injective, (i−1
χ )]L2 is as well a well defined Borel measure

meaning that for all compact subsets K ⊂ R+ × R one defines (i−1
χ )]L2 := L2(iχ(K)). Of course(

(i−1
χ )]L2

)
(∅) = 0 but one has also that if A and B are disjoint compact subsets of the plane then

for all t the intersection of χ (A ∩ {t}) and χ (B ∩ {t}) is at most countable, due to the monotonicity
of χe2

t :

L1
(
χ (A ∩ {t})

⋂
χ (B ∩ {t})

)
= 0 ∀t ⇒ L2 (iχ(A) ∩ iχ(B)) = 0

In particular

L2 (iχ(A)) + L2 (iχ(B)) = L2 (iχ(A) ∪ iχ(B)) = L2 (iχ(A ∪B)) .

This implies that (i−1
χ )]L2 is countably-additive, and thus a measure. This justifies our notation.

Notation 8. We fix the following nomenclature, that we extend at the end of the paper.

X, k Usually: X a subset R+ × R, k ∈ N ∪ {∞}
Ω Open subset of R+ × R. Usually it can also supposed to be bounded.
C(X) Continuous functions on X
Cb(X) Bounded continuous functions on X
C1/α(X) 1/α-Hölder continuous functions on X, where 0 < 1/α ≤ 1
Ck(c)(Ω) k-times continuously differentiable (compactly supported) functions on Ω

Ck,1/α(Ω) k-times continuously differentiable (compactly supported) functions on Ω with
k-th derivative which is 1/α-Hölder continuous in Ω, where 0 < 1/α ≤ 1

L∞(X) Borel bounded functions g on X
L∞B (X) Equivalence classes gB made of those bounded Borel functions which coincide

L1-a.e. when restricted to any characteristic curve of u
L∞L (X) Equivalence classes gL made of those bounded Borel functions which coincide

L1-a.e. when restricted to {iχ(y)(t)}t>0, for every y ∈ R and for a fixed

Lagrangian parameterization χ
L∞(X) Equivalence classes gE of Borel bounded functions which coincide L2-a.e.
D(Ω) Distributions on Ω
M(X) Radon measures on X

Notation 9. Notice there are the following natural correspondences

L∞(X)
[·]λ−−→ L∞B (X)

[·]χ−−→ L∞L (X)

g 7→ gB = [g]λ 7→ gL = [gB]χ = [g]χ.

and moreover

L∞(X)
[·]−→ L∞(X)

g 7→ gE = [g].

The same brackets denote also correspondences from any of the bigger spaces: brackets identify
the target spaces. The correspondences among L∞L (X),L∞B (X) and L∞(X) do not exist in general.
Trivially, sets which are L2-negligible generally are not L1-negligible along any characteristic curve
γ of (1.1). Moreover, there exists a subset of the plane which has positive Lebesgue measure but
which intersects each characteristic curve of a Lagrangian parameterization in a single point. See
[2, § 4.1-2]. A correspondence exists with absolute continuity.
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Lemma 10. If a Lagrangian parameterization χ is absolutely continuous, for every Borel functions
g1, g2 ∈ L∞(X) such that [g1]χ = [g2]χ one has that [g1] = [g2] ∈ L∞(X).

Proof. It is an algebraic application of the definitions of the spaces in Notation 8.

Definition 11. Let gE ∈ L∞(Ω). If u ∈ C(Ω) satisfies

∀ϕ ∈ C∞c (Ω)

∫∫
Ω
{ϕt u+ ϕx f(u)} =

∫∫
Ω
ϕgE

we say that u is a continuous distributional (or Eulerian) solution of (1.1).

Definition 12 (Lagrangian solution). A function u ∈ C(Ω) is called continuos Lagrangian solution
of (1.1) with Lagrangian parameterization χ, associated with u, and Lagrangian source term gL ∈
L∞L (Ω) if

for all y ∈ R
d

dt
u(t, χ(t, y)) = gL(t, χ(t, y)) in D

(
i−1
χ(y)(Ω)

)
.

Definition 13 (Broad solution). Let u ∈ C(Ω) and gB ∈ L∞B (Ω). The function u is called
continuous broad solution of (1.1) if it satisfies

for all characteristic curves γ of u
d

dt
u(t, γ(t)) = gB(t, γ(t)) in D

(
i−1
γ (Ω)

)
.

Definition 14. A continuous function u is both a distributional/Lagrangian/broad solution of (1.1)
when the source terms are compatible: if there exists a Borel function g such that

gE = [g], gL = [g]χ, gB = [g]λ.

Definition 15. We define z∗ ∈ R inflection point of a function f ∈ C2(R) if f ′′(z∗) = 0 but it is
neither a local maximum nor a local minimum for f(z)− f ′(z∗)(z− z∗). We denote by Infl(f) the
set of inflection points of f , clos(Infl(f)) is its closure.

In principle, u could be a distributional solution of (1.1) with source gE and a Lagrangian
solution with source gL with gE and gL which do not correspond to a same function g ∈ L∞(R+×R):
in this case, we would not say that u is both a distributional and Lagrangian solution to the same
equation, because source terms are different. We discuss the issue in [2], where we prove that if the
inflection points of f are negligible then whenever a same function is a Lagrangian solution and it
is a distributional solution then the source terms must be compatible.

1.2. Overview of the results

Now that definitions are clear, we describe our results:

§ 1.2.1: we collect observations on Lagrangian parameterization and Lagrangian/Broad solution;

§ 1.2.2: we summarize relations among the different notions of solutions of (1.1).

Notice first that both the definitions above and the statements below are local in space-time, as
well as the compatibility of the sources that will be discussed in [2]. This motivates the assumption
that u is compactly supported, that we fixed in Notation 1.
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1.2.1. Auxiliary observations

We begin collecting elementary observations on the basic concept of Lagrangian parameteriza-
tion and Lagrangian/Broad solution, mostly for consistency.

Lemma 16. There exists a Lagrangian parameterization χ associated with any u ∈ Cb(Ω). In
particular, one has the implication

continuous broad solution ⇒ continuous Lagrangian solution, with gL = [gB]χ.

The converse implication holds under a condition on the inflection points of f , not in general.

Proof. An explicit construction of a Lagrangian parameterization χ is part of § Appendix A.1. It
relies on Peano’s existence theorem for ODEs with continuous coefficients. If gB ∈ L∞B (Ω) is the
Broad source, then [gB]χ is immediately the Lagrangian source. The converse implication does not
always hold, see [2, § 4.3] .

Lemma 17. Let u ∈ C(clos Ω) and G > 0. Assume that through every point of a dense subset of
Ω there exists a characteristic curve along which u is G-Lipschitz continuous. Then there exists a
Lagrangian parameterization χ along whose characteristics u is G-Lipschitz continuous.

Proof. The proof is given in § Appendix A.1.

Lemma 18. Let u ∈ C(clos(Ω)) and G > 0. A sufficient condition for u being a Lagrangian
solution of (1.1) is the existence of a Lagrangian parameterization χ such that

for all y the distribution
d

dt
u(t, χ(t, y)) is uniformly bounded in D

(
i−1
χ(y)(Ω)

)
.

Proof. The proof is given in § Appendix A.2.

1.2.2. Main results

In the present paper we do not discuss existence of continuous solutions of (1.1), but we assume
that we are given a continuous function u: due to the lack of regularity, the focus of this paper is
in which sense it can be a solution of the PDE (1.1).

We first state one of the important conditions: we denote by (H) the assumption

The set of inflection points clos(Infl(f)) of Definition 15 is L1-negligible. (H)

We roughly summarize our results with the following implications:

Broad
=⇒ always, Th. 16

⇐= if (H) holds, § 3
Lagrangian § 4 ⇐⇒ § 2 distributional

The distinction among Lagrangian and distributional continuous solutions is motivated by the
fact that the two formulations are different, and it is not that trivial proving their equivalence.
Moreover, Lagrangian and distributional source terms do not correspond automatically, as we
discuss in [2]. In particular, if we do not assume the negligibility of inflection points we are not yet
able to say that the Lagrangian and distributional source terms must be compatible. If the flux
function is for example analytic, then our work gives instead a full analysis.

We collect also in the table below interesting properties of the solution. The properties depend
on general assumptions on the smooth flux function f :
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1. whether f satisfies a convexity assumption named in [2] α-convexity, α > 1, which for α = 2
is the classical uniform convexity;

2. whether the closure of inflection points of f is negligible, as defined in (H) above.

α-convexity Negligible inflections General case

absolutely continuous Lagran-
gian parameterization

7 [2, § 4.1] 7 7

u Hölder continuous 3 [2, § 2.1] 7 [2, § 4.2] 7

u L2-a.e. differentiable along
characteristic curves

3[2, § 2.2] 7 [2, § 4.2] 7

u Lipschitz continuous along
characteristic curves

3 3 Theorem 30 7 [2, § 4.3]

entropy equality 3 3 3Lemma 42

compatibility of sources 3 3 [2, § 2.2] 3 [2, § 3]

We show in Corollary 21 that if the continuous solution u has bounded total variation then one
can as well select a Lagrangian parameterization which is absolutely continuous, for f ∈ C2.

2. Lagrangian solutions are distributional solutions

Consider a continuous Lagrangian solution u(t, x) of (1.1) in the sense of Definition 12. Let χ
be a Lagrangian parameterization, gL ∈ L∞L (Ω) be its source term and set G = ‖gL‖∞. We want
to show that there exists gE ∈ L∞(Ω) such that u(t, x) is a distributional solution of

∂t u(t, x) + ∂x (f(u(t, x))) = gE(t, x) f ∈ C2(R), |gE(t, x)| ≤ G . (1.1)

We do not discuss at this stage the compatibility of the source terms gL and gE .

Notation 19. We already observed in the introduction that we are considering local statements.
We directly assume therefore

• Ω = R+ × R,

• u compactly supported.

We set Λ = maxλ = max f ′(u). We recall that we set G = ‖gL‖∞.

2.1. The case of BV-regularity

In the present section we assume that u is not only continuous but also that it has bounded
variation. Under this simplifying assumption, we prove in Lemma 22 below that u is a distributional
solution to (1.1), with the natural candidate for gE . The proof is based on explicit computations.
Computations of this section exploit Vol’pert chain rule and the possibility to produce a change
of variables which is absolutely continuous, as we state in Corollary 21 below. It follows by the
following more general lemma.

Lemma 20. Consider a function w : R+ × R→ R such that

• the restriction we1
y belongs to C1,1(R+) for all y ∈ R and
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• the second mixed derivative ∂tyw is a Radon measure.

Then, up to reparameterizing the y-variable, there exists 0 ≤ H ∈ L∞loc(R
+ × R) such that

Dy w = HL2, Dt H = Dy

(
∂w

∂t

)
∈M(R+ × R).

We rather prefer to prove the following corollary, which is more related to the notation we adopt:
the proof of Lemma 20 is entirely analogous. The irrelevant disadvantage is that the commutation
of the t- and y- distributional derivatives is less evident than in the above lemma.

Corollary 21. Let u be a continuous Lagrangian solution of (1.1) such that ∂xu(t, x) is a Radon
measure. Then one can choose a Lagrangian parameterization χ which is absolutely continuous
(see Definition 6): this additional regularity allows the injection

L∞L (Ω)
[·]−→ L∞(Ω)

gL = [g]χ 7→ gE = [g] = [gL].

Moreover, for every test function Φ(t, y) ∈ C1
c (R+ × R) and for L1-a.e. t one has

d

dt

∫
Φ(t, y)H(t, y)dy =

∫
Φ(t, y) D f ′(U e1

t (dy)) +

∫
∂Φ(t, y)

∂t
H(t, y)dy (2.1)

Lemma 22. Under the assumptions of Corollary 21, u has locally bounded variation. Moreover,
denoting by gL = [g]χ a Lagrangian source, then one has

Dt u(dt, dx) + Dx f(u(dt, dx)) = g(t, x)dtdx.

Note that Lemma 21 does not follow from the theory of ODEs with rough coefficients because
the notion of Lagrangian parameterization is more specific than a solution of a system of ODEs.
In this paper, where the focus is on the PDE (1.1), we rather prefer to prove the lemma in the
form of Corollary 21. We stress once more that computations below, switching notations, prove
indeed Lemma 20, proof which could be slightly shortened in a more abstract setting.

Remark 23. Let U(t, y) := u(t, χ(t, y)) for some Lagrangian parameterization χ. We notice that
one can equivalently assume that either ∂x u or ∂y U(t, y) is a Radon measure. This is a direct con-
sequence of the slicing theory of BV functions, because χe2

t (y) is monotone and the total variation
of ue2

t (x) is equal to the total variation of U e2
t (y).

Proof of Lemma 21. Let χ be a Lagrangian parameterization corresponding to u. By assumption
and by Remark 23, for L1-a.e. t also the function

y 7→ u(iχ(y)(t)) =: U e1
t (y)

has locally bounded variation. Moreover, for every y by definition of Lagrangian solution

t 7→ u(iχ(y)(t)) =: U e2
y (t)

is Lipschitz continuous. We deduce by the slicing theory of BV-functions [3, Th. 3.103] that also
the function (t, y) 7→ U(t, y) has locally bounded variation. We show now that the Lagrangian
parameterization χ can be here assumed to be absolutely continuous.
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1: Renormalization of y for absolutely continuity of χ. Consider the two coordinate disinte-
grations of the measure on the plane given by Dy U(t, y): by the classical disintegration theorem [3,
Th. 2.28] there exists a nonnegative Borel measure m∈M+(R) and a measurable measure-valued
map y 7→ νy ∈M+(R) such that

Dy U(dt, dy) =

∫
DU e1

t (dy)dt =

∫
νy(dt)m(dy). (2.2)

The first equality is just the slicing theory for BV functions [3, Th. 3.107].

Claim 24. Consider the Lagrangian parameterization χ̄(t, y) := χ(t, h−1(y)) with h defined by

h(y) := y +m((−∞, y]) + Dχe2
0 ((−∞, y]).

Then one has that h]m� L1 and h] Dχe2
0 � L1 with densities bounded by 1.

Proof of Claim 24. Fix any a ≤ b. We first observe that

h(b)− h(a) = b− a+m((a, b]) + Dχe2
0 ((a, b])

≥ max{b− a,m((a, b]),Dχe2
0 ((a, b])} ≥ 0.

This shows that Dh ≥ L1, Dh ≥ m and Dh ≥ Dχe2
0 . Since U and χ are continuous functions,

then Dy U and Dχe2
0 are continuous measures and therefore h is a continuous function. Fix any

a < b and suppose h(a′) = a, h(b′) = b. Then one verifies that

h]m([a, b])

b− a
≤ m([a′, b′])

h(b′)− h(a′)

≤ m([a′, b′])

b′ − a′ +m((a′, b′]) + Dχe2
0 ((a′, b′])

< 1.

This concludes the proof for h]m, and h] Dχe2
0 is entirely similar.

Claim 24 assures that one can reparameterize the y-variable so that both m(dy) and Dχe2
0 (y)

are absolutely continuous with bounded densities. Let ϑ(y) and β(y) be their Radon-Nicodym
derivatives w.r.t. L1 after, eventually, the reparameterization of y:

m(dy) =: ϑ(y)dy, Dχe2
0 (y) =: β(y)dy ϑ, β ∈ L∞. (2.3)

2: Formula for Dy χ. In this step we prove Claim 25 below, which implies that both the
distributional partial derivatives of χ are absolutely continuous measures. The claim below yields
then that χ is an absolutely continuous Lagrangian parameterization. As χ(t, y) maps negligible
sets into negligible sets, then one has the inclusion stated in Lemma 10:

L∞L (R+ × R) ↪→ L∞(R+ × R).

Claim 25. The measure Dy χ(dt, dy) is given by the following formula:

Dy χ(dt, dy) = H(t, y)dtdy, L∞loc

(
i−1
χ (Ω)

)
3 H(t, y) ≥ 0 (2.4a)

H(t, y) = ϑ(y)

∫ t

0
f ′′(U(s, y))νy(ds) + β(y). (2.4b)

10



Proof of Claim 25. Being
χ̇e1
y (t) = f ′(U(t, y)) (2.5)

by Vol’pert chain rule [3, Th. 3.96] and (2.2) one has the following disintegration

Dy f
′(U(dt, dy)) = f ′′(U(t, y)) Dy U(dt, dy) =

∫ {
f ′′(U(t, y))νy(dt)

}
m(dy). (2.6)

One can compute Dy χ in the following way: write χ as a primitive and differentiate under the
integral. For every test function Φ(t, y)

−
∫∫

Φ(t, y) Dy χ(dt, dy) =

∫∫
∂Φ(t, y)

∂y
χ(t, y)dydt

=

∫∫
∂Φ(t, y)

∂y

{∫ t

0
χ̇e1
y (s)ds+ χ(0, y)

}
dydt

=

∫∫∫ t

0

∂Φ(t, y)

∂y

[
χ̇e1
y (s) + χe2

0 (y)/t
]
dsdydt

(2.5)
=

∫ {∫∫ t

0

∂Φ(t, y)

∂y

[
f ′(U(s, y)) + χe2

0 (y)/t
]
dsdy

}
dt

= −
∫ {∫∫ t

0
Φ(t, y)

[
Dy f

′(U(ds, dy)) + Dχe2
0 (y)/t

]}
dt

The last step was allowed because U ∈ BV. Owing to (2.6), (2.3) we can now proceed with

=−
∫ {∫∫ t

0
Φ(t, y)f ′′(U(s, y))νy(ds)ϑ(y)dy

}
dt−

∫ {∫∫ t

0
[β(y)/t] dsdy

}
dt

= −
∫∫ {

Φ(t, y)

[
β(y) + ϑ(y)

∫ t

0
f ′′(U(s, y))νy(ds)

]}
dydt.

Note that H is the function within the inner square brackets, thus we proved the claim.

3: Time derivative of H. Definition (2.4b) of H does not directly allow to differentiate H
in the t variable, because the measure νy may not be absolutely continuous. Nevertheless, this is
possible from (2.4a), obtaining that Dt H is a Radon measure.

Claim 26. For every test function Φ(t, y) ∈ C1
c (R+ × R) and for L1-a.e. t one has (2.1)

d

dt

∫
Φ(t, y)H(t, y)dy =

∫
Φ(t, y) D f ′(U e1

t (dy)) +

∫
∂Φ(t, y)

∂t
H(t, y)dy (2.7)

Proof of Claim 2.1. Consider the limit of the incremental ratios. Integrate by parts in y before the
limit, take then the limit in h and integrate by parts again in y. By the weak continuity of

t 7→ D f ′(U e1
t (dy))

one has ∫
Φ(t, y) D f ′(U e1

t (dy)) = lim
h↓0

1

h

{∫ ∫ t+h

t
Φ(t, y) Dy f

′(U(ds, dy))

}
. (2.8a)

11



Remembering (2.3), (2.6) and then the definition (2.4b) of H one has∫ ∫ t+h

t
Φ(t, y) Dy f

′(U(ds, dy)) =

∫
Φ(t, y)

[∫ t+h

t
f ′′(U(s, y))νy(ds)ϑ(y)

]
dy (2.8b)

=

∫
Φ(t, y) [H(t+ h, y)−H(t, y)] dy. (2.8c)

Owing to (2.8) one can deduce that for L1-a.e. t equation (2.1) holds:

d

dt

∫
Φ(t, y)H(t, y)dy = lim

h→0

1

h

{∫
Φ(t+ h, y)H(t+ h, y)dy −

∫
Φ(t, y)H(t, y)dy

}
= lim

h→0

1

h

{∫
Φ(t, y) [H(t+ h, y)−H(t, y)] dy

}
+

∫
lim
h→0

Φ(t+ h, y)− Φ(t, y)

h
H(t+ h, y)dy

(2.8)
=

∫
Φ(t, y) D f ′(U e1

t (dy)) +

∫
∂Φ(t, y)

∂t
H(t, y)dy.

The proof of the absolute continuity of suitable Lagrangian parameterizations is ended.

Proof of Lemma 22. We now prove that the PDE (1.1) holds in distributional sense. When ∂x u
is a Radon measure, this implies by Vol’pert chain rule that u has locally bounded variation. For
every test function ϕ ∈ C∞c (Ω), one can apply in the integral

〈∂t u+ ∂x f(u), ϕ〉 = −
∫∫

Ω

{
∂ϕ(t, x)

∂t
u(t, x) +

∂ϕ(t, x)

∂x
f(u(t, x))

}
dtdx

the following change of variables, that one can assume absolutely continuous by Corollary 21:

Ψ :

(
t
y

)
7→
(
t
x

)
:=

(
t

χ(t, y)

)
. (2.9)

Denote Φ(t, y) = ϕ(iχ(y)(t)) and U(t, y) = u(iχ(y)(t)). Remembering (2.5) one obtains

〈∂t u+ ∂x f(u), ϕ〉 =−
∫∫

∂Φ(t, y)

∂t
U(t, y) Dy χ(dt, dy)

+

∫∫
f ′(u(iχ(y)(t)))

∂Φ(t, y)

∂y
U(t, y)dtdy −

∫∫
∂Φ(t, y)

∂y
f(U(t, y))dtdy.

(2.10)

1: y-derivatives. The last two addends in (2.10), integrating by parts, are just∫∫
Φ(t, y) Dy

[
f(U)− f ′(U)U

]
(dt, dy). (2.11)

Notice that f ′(U)U is still a function with locally bounded variation, and that its derivative can
be computed by Vol’pert chain rule: it is equal to

Dy

[
Uf ′(U)

]
=
[
f ′(U) + Uf ′′(U)

]
Dy U = Dy f(U) + U Dy f

′(U).
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After simplifying the first term in (2.11), therefore, we find that the last two addends in (2.10) are

−
∫∫

Φ(t, y)U(t, y) Dy f
′(U(dt, dy)). (2.12)

2: t-derivative. The first addend in (2.10) is more complex and requires the properties of
H in (2.4), (2.1). Notice that Φ(t, y)U(t, y) is absolutely continuous in time. By the additional
regularly in (2.1) of H one has the integration by parts

−
∫∫

∂Φ(t, y)

∂t
U(t, y) Dy χ(dt, dy) = −

∫∫
∂Φ(t, y)

∂t
U(t, y)H(t, y)dtdy =∫∫

Φ(t, y)
∂U(t, y)

∂t
Dy χ(dt, dy) +

∫∫
Φ(t, y)U(t, y) Dy f

′(U(dt, dy))

(2.13)

Thanks to the absolute continuity of χ that one can assume by Corollary 21, the term ∂U(t,y)
∂t in

the first integral in the RHS of (2.13) is just the Lagrangian source term gL = [g]χ evaluated at
iχ(y)(t). The first addend in the RHS of (2.13) can be thus rewritten just as∫∫

ϕ(t, x)g(t, x)dtdx.

The remining addend in the RHS of (2.13) instead cancels the two remaining terms in (2.10), by
their equivalent form (2.12). After the cancellation we find that (2.10) is just∫∫

ϕ(t, x) [Dt u+ Dx f(u)] (dt, dx) =

∫∫
ϕ(t, x)gL(t, x)dtdx.

2.2. The case of continuous solutions: BV approximations

We provide in this section the proof that continuous Lagrangian solutions of the balance
law (1.1) are also distributional solutions, without assuming BV-regualrity. In order to prove it,
we construct a sequence of approximations having bounded variation, so that we take advantage
of § 2.1. We omit here the correspondence of the source terms, discussed separately in [2].

Lemma 27. Let u be a continuous Lagrangian solution of (1.1) with source term bounded by G.
Then there exists a sequence of continuous functions uk(t, x), k ∈ N, which are both

• functions of bounded variation;

• Lagrangian and Eulerian solutions of (1.1) with source terms bounded by G;

• converging uniformly to u as k ↑ ∞.

Corollary 28. Let u be a continuous Lagrangian solution of (1.1). Then it is a continuous
distributional solution of (1.1) and it does not dissipate entropy.

The above corollary states in particular that u is the unique Kruzkov entropy solution to
the Cauchy problem (when its distributional source term is assigned). We mention that in the
case of the quadratic flux this statement can be derived by [16]: the authors provide a smooth
approximation for which also the source term is converging in L1(R2), refining a construction
in [11] which extends to the Heisenberg group a technique originally introduced for the Euclidean
setting by [8]. The construction we adopt here is more direct but rougher: sources do not converge.
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Proof of Corollary 28. We exploit the approximation {uk(t, x)}k∈N given in Lemma 27. Consider
any entropy-entropy flux pair η, q ∈ C1(R), that is q′(z) = η′(z)f ′(z). As each uk is a function of
bounded variation, by Vol’pert chain rule

Dt η(uk) + Dx (q(uk)) = η′(uk) (Dt uk + Dx f(uk)) = η′(uk)gEk ,

where we set gEk = Dt uk + Dx f(uk). Owing to Lemma 22, each gEk is given by a function
which is bounded by the constant G in the assumption of the present corollary. Since uk converges
uniformly to u, one has

η′(uk)gEk = ∂t η(uk) + ∂x (q(uk)) → ∂t η(u) + ∂x (q(u)) in D′(Ω).

Being the sequence {gEk}k∈N uniformly bounded, Banach-Alaoglu theorem implies that there there
exists a subsequence w∗-converging to some function gE ∈ L∞(Ω), ‖gE‖L∞(Ω) ≤ G: then necessarily

∂t η(u) + ∂x (q(u)) = η′(u)gE .

The Eulerian source gE and the Lagrangian source gL can be identified also in the limit under
uniform convexity assumptions on the flux, see [2, § 2.2]. Under the negligibility assumption on
the inflection points of f (H), they are just compatible: see [2, § 3 and § 4.2] .

Proof of Lemma 27. We construct an approximation of u by a patching procedure. One needs first
to construct the approximation on a patch, which is a strip delimited by two characteristics. In it,
we require that at each fixed time the approximating function is monotone in x, and it coincides
with u on the boundary of the strip. This allows to work with continuous functions having bounded
variation. Repeating the construction in adjacent strips, when they get thinner the approximating
functions converge to u uniformly.

We recall that u can be assumed compactly supported, see Notation 19.
We expose first the limiting procedure for constructing a monotone approximation within each

strip, and then a second limiting procedure for converging to u when strips become thinner. In the
first step we describe the second limiting procedure, which is simpler, while from the second step
on we describe how to provide the monotone approximations.

1: Patches decomposition. Fix two characteristics χe1
y1

(t), χe1
y2

(t) and define the strip

Sy1y2 =
{

(t, x) ∈ R+ × R : χ(t, y1) ≤ x ≤ χ(t, y2)
}

where y1 ≤ y2. (2.14)

If one choses for example yi = iδ for i ∈ Z and some δ > 0, then one has the decomposition

R+ × R = ∪i∈ZSyiyi+1 .

Let |yi+1 − yi| ≤ δ. We construct in the next steps continuous functions uδ which are

1. Lagrangian solutions, with a new Lagrangian source still bounded by G;

2. equal to u on the curves χe1
yi (t), i ∈ Z;

3. nondecresing in the x-variable in each open t-section of the set

{(t, x) : χe1
yi (t) < x < χe1

yi+1
(t), u(iχ(yi)(t)) ≤ u(iχ(yi+1)(t))};
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4. nonincreasing in the x-variable in each open t-section of the set

{(t, x) : χe1
yi (t) < x < χe1

yi+1
(t), u(iχ(yi)(t)) ≥ u(iχ(yi+1)(t))};

5. ‖uδ − u‖L∞ ≤ ω(δ), where ω(δ) is a δ-modulus of uniform continuity of

U(t, y) = u(iχe1
y

(t)).

From the monotonicity properties (3)-(4), if we apply the slicing theory for BV-functions we notice
that the functions uδ have locally bounded variation. Owing to Lemma 22 they are also Eulerian
solutions with source terms which are uniformly bounded by G, the uniform bound for the La-
grangian sources owing to (1). By the uniform estimates (5) and the constrain (2) on the boundary
of the strips, they converge uniformly to u as δ ↓ 0, proving the thesis.

2: Monotone modification within a patch. We start the iterative procedure for constructing
the approximations uδ having bounded variation, that we describe within a fixed strip

Sy1y2 = {(t, x) : χ(t, y1) < x < χ(t, y2)} . (2.15)

We modify in Sy1y2 the given Lagrangian continuous solution in order to get a new continuous
function which is still a Lagrangian solution, for a different source which is still bounded by G.
The additional property that we are trying to get, piecewise, is a monotonicity in the x variable
when t is fixed: we fix the values on the boundary curves χe1

y1
(t), χe1

y2
(t); inside the stripe Sy1y2

we aim at substituting at each time ue1
t (x) with a function ũe1

t (x) i) which is monotone in the
x variable with values from u(iχ(y1)

(t)) to u(iχ(y2)(t)) and ii) which is still a Lagrangian solution
with source term bounded by G. This new function ũ is now defined inside the stripe Sy1y2 with
a limiting procedure pictured in Figure 2 below.

Figure 2: First steps of the iterative procedure: the bold line is the approximating function obtained by successive
cuttings reaching monotonicity properties

Let {(tj , xj)}j∈N be a dense sequence of points within the strip {Sy1y2}. The function ũ is
defined within the strip {Sy1y2} as a uniform limit of functions ũj , for j ∈ N, which we assign now
recursively. We first state the basic operation that we will perform.
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Claim 29 (Basic cut). Suppose u is a Lagrangian solution of (1.1) with source term bounded by
G and fix a characteristic curve γ̄ = χ(t, ȳ), where χ is a Lagrangian parameterization of u. Then
the two truncated functions, respectively from above and from below,

uM (t, x) := u(t, x) ∧ u(iγ̄(t)), um(t, x) := u(iγ̄(t)) ∨ u(t, x)

are still Lagrangian solutions of (1.1) with source term bounded by G.

We postpone the proof of Claim 29 to Page 17. The basic cut allows the iterative procedure:

• Set m(t) := min{u(iχ(y1)
(t)), u(iχ(y2)

(t))} and M(t) := max{u(iχ(y1)
(t)), u(iχ(y2)

(t))}.

• Set ũ0(t, x) := u(t, x) for (t, x) ∈ Sy1y2 and fix γ̄0(t) := χ(t, y1(t)).

• Let j ∈ N. Set vj(t) = u(iγ̄j−1(t)) and define the truncated function

ũj(t, x) :=


vj(t) ∨ ũj−1(t, x) ∧M(t) if u(iχ(y1)

(t)) = M(t) and χ(t, y1) ≤ x ≤ γ̄j−1(t),

m(t) ∨ ũj−1(t, x) ∧ vj(t) if u(iχ(y1)
(t)) = m(t) and χ(t, y1) ≤ x ≤ γ̄j−1(t),

vj(t) ∨ ũj−1(t, x) ∧M(t) if u(iχ(y2)
(t)) = M(t) and γ̄j−1(t) ≤ x ≤ χ(t, y2),

m(t) ∨ ũj−1(t, x) ∧ vj(t) if u(iχ(y1)
(t)) = m(t) and γ̄j−1(t) ≤ x ≤ χ(t, y2).

Basically, the strip Sy1y2 is divided by γ̄j−1 into two sub-strips and in each sub-strip ũj−1 is
truncated from above and from below by the two boundary values on the sub-strips. Owing
to Claim 29 the function ũj is a Lagrangian solution of (1.1) with source term bounded by
G. By the definition of Lagrangian solution one can fix γ̄j as

– a characteristic curve of ũj

– through the point (tj , xj)

– along which ũj is G-Lipschitz continuous and

– which does not cross the previously chosen characteristics χ(·, y1), γ̄1(t),. . . , γ̄j−1(t),
χ(·, y2); this means that any two characteristics of this set lie always on the same side
of the pane with respect to each other, when they differ.

Note before proceeding that ũj is monotone at each fixed time on the j + 2 points

iχ(y1)
(t),

{
iγ̄i(t)

}
i=1,...,j

, iχ(y2)
(t). (2.16)

Because of this monotonicity, at later steps of the iteration the values of the function ũj on
the points (2.16) are not changed.

We obtained with the iterative procedure that

1. each continuous function ũj is a Lagrangian solution and G still bounds its source, thanks to
Claim 29;

2. the (whole) sequence {ũj}j∈N converges uniformly on Sy1y2 to a function ũ, because u is
uniformly continuous and the cutting procedure preserves the modulus of continuity: similarly
to the next item, for h > j one has the estimate

‖ũj − ũh‖L∞(Sy1y2 ) ≤ ω
(

diam
(
Sy1y2 \ Im

{
iχ(y1)

, {iγ̄i}i=1,...,j , iχ(y2)

}))
and the curves (2.16) become dense in Sy1y2 by construction, so the RHS goes to 0.
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3. ‖u− ũ‖L∞(Sy1y2 ) ≤ ω(y2−y1), where ω is a modulus of uniform continuity of U(t, y), because
by construction we have

‖u− ũ‖L∞(Sy1y2 ) ≤ sup
(t,x)∈Sy1y2

{
|u(t, x)− u(iχ(y1)(t))|, |u(t, x)− u(iχ(y2)(t))|

}
≤ ω(y2 − y1) ≤ ω(δ);

(2.17)

4. ũ is still a Lagrangian solution and that G still bounds its source by Corollary 47;

5. ũ is monotone in the x-variable at each t fixed because each ũj is monotone on the points (2.16),
which become dense in the interval [χ(t, y1), χ(t, y1)].

We are finally left with the proof of Claim 29.

Proof of Claim 29. Owing to Lemma 17, um(t, x) := u(iγ̄(t)) ∨ u(t, x) is a Lagrangian solution
provided that we exhibit a characteristic curve, along which um is G-Lipschitz continuous, through
any point (t, x). For simplifying the exposition suppose that the set {f ′(um) < f ′(u)} is empty, if
not this region is treated similarly to below as a second step. Set

λm(t, x) := f ′(um(t, x)) ≥ λ(t, x) := f ′(u(t, x)).

Consider the set of C1-curves through a point (t̄, x̄) defined by

Γ = clos





γ ∈ C1(R+)
∣∣∣ γ(t̄) = x̄, ∃j, ∃I1, . . . , Ij ,

∃J0, . . . , Jj : J0 ∪ I1 ∪ J1 ∪ . . . Jj = R+

and ∃c1, . . . , cj , z0, . . . , zj such that{
γ(t) = χ(t, γ̄(t)) + ci, λm(iγ(t)) > λ(iγ(t)) if t ∈ Ii, i = 1, . . . , j

γ(t) = χ(t, zi) if t ∈ Ji, i = 0, . . . , j





C1

for suitable intervals I1, . . . , Ij , J0, . . . , Jj and values c1, . . . , cj , z0, . . . , zj depending on the γ. The
set of curves is not empty, for example because the curves of the Lagrangian parameterization
χ through (t, x) belongs to it. Moreover, the function um is G-Lipschitz continuous on each γ
described within the brackets: indeed, where λm > λ necessarily um 6= u and hence by definition
of um

um(γ(t)) =

{
u(iγ̄(t)) if t ∈ I1 ∪ · · · ∪ Ij
u(iχ(zi)(t)) if t ∈ Ji, i = 0, . . . , j

and each function u(iγ̄(t)), u(iχ(z0)(t)), . . . , u(iχ(zj)(t)) is G-Lipschitz continuous by assumption.
As a consequence, um is G-Lipschitz continuous on each element of the closure Γ. The curves

γ+
m(t) := max

γ∈Γ
γ(t) for t ≥ t̄, γ−m(t) := min

γ∈Γ
γ(t) for t < t̄

still belongs to Γ, if suitably prolonged. In particular, um is G-Lipschitz continuous along γm. This
concludes the proof observing that γ+

m is necessarily a forward characteristic curve of um, and γ−m
a backward one, through (t̄, x̄). Indeed, each γ in the definition of Γ is a C1 curve whose slope
satisfies

γ̇ ∈ {λ ◦ iγ , λm ◦ iγ} ⇒ γ̇+
m, γ̇

−
m ∈ {λ ◦ iγ , λm ◦ iγ}.
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If by absurd we had γ̇+
m(t′) = λ◦ iγ+

m
(t′) < λm ◦ iγ+

m
(t′) at some time t′ > t̄ then we would contradict

the extremity in the definition of γ+
m: considering s′ = t̄ ∨max{s < t′ : γ̇+

m(s) = λm ◦ iγ+
m

(s))},
one can verify that there is an element of Γ which satisfies

γ̃+
m(t) =

{
γ+
m(t) for t̄ ≤ t ≤ s′

γ̄τ (t) := γ̄(t)− [γ̄(s′)− γ+
m(s′)] for s′ < t ≤ s′′,

where s′′ := t′ ∧min{s > s′ : λm ◦ iγ̄τ (s)) 6= λ ◦ iγ̄τ (s))}. Notice that γ̃+
m is bigger than γm at time

s′′ because ˙̃γ+
m(s′) = γ+

m(s′) and by construction

˙̃γ+
m = λm ◦ iγ̄ = λm ◦ iγ+

m
(s) > λ ◦ iγ+

m
= γ̇+

m for s′ < t < s′′.

The other possibilities contradict analogously the definition of γm.

3. Distributional solutions are broad solutions, if inflections are negligible

We provide in this section regularity results holding under the assumption that f has negligible
inflection points: we prove that u is Lipschitz continuous along every characteristic curve and there
exists a universal source which is fine for every Lagrangian parameterization one chooses.

Without assumptions on inflection points, later § 4 shows that distributional solutions of

∂t u(t, x) + ∂x (f(u(t, x))) = gE(t, x) f ∈ C2(R), |gE(t, x)| ≤ G (1.1)

are also Lagrangian solutions. Being a Lagrangian solution allows to study u with tools from ODEs,
but it is not completely satisfactory by itself because one should be a priory careful in choosing
the right Lagrangian parameterization, and the correct source related to the parameterization: the
results of the present section are richer because here any Lagrangian parameterization is allowed.

Being local arguments, we simplify the setting posing Ω = R+ × R, u compactly supported.

3.1. Lipschitz regularity along characteristics

In the present section we point out that u is Lipschitz continuous along characteristic curves if
inflection points of f are negligible:

L1(clos(Infl(f))) = 0. (H)

See Example [2, § 4.2] for a counterexample when (H) fails.

Theorem 30. Assume that the non-vanishing condition (H) holds. Then any continuous distri-
butional solution u of (1.1) is G-Lipschitz continuous along any characteristic curve of u.

Proof. It takes a while to realize that the following is a partition of the real line into the regions

D+ := r. i.
({
z
∣∣ ∃h̄ > 0 : ∀h ∈ [−h̄, h̄] f(z + h)− f(z) ≥ f ′(z)h

})
,

D− := r. i.
({
z
∣∣ ∃h̄ > 0 : ∀h ∈ [−h̄, h̄] f(z + h)− f(z) ≤ f ′(z)h

})
,

N := R \
(
D+

⋃
D−
)
≡ clos(Infl(f)).

By assumption N is Lebesgue negligible.
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Figure 3: Balances on characteristic regions

Consider any characteristic curve iγ(t) = (t, γ(t)), where γ̇(t) = f ′(u(t, γ(t))), t ∈ R+. We first
follow a similar computation in [4] which shows that u(t, γ(t)) is ‖g‖∞-Lipschitz continuous on the
connected components of the open set (u ◦ iγ)−1(D+), as in [5].

Focus on the domain bounded by the curves iγ(t), iγ+ε(t) between times σ < τ . The equality∫ γ(τ)+ε

γ(τ)
u(τ, x)dx−

∫ γ(σ)+ε

γ(σ)
u(σ, x)dx−

∫ τ

σ

∫ γ(t)+ε

γ(t)
g(t, x)dxdt

= −
∫ τ

σ

{
[f(u(iγ+ε(t)))− f(u(iγ(t))]− f ′(u(iγ(t))) [u(iγ+ε(t))− u(iγ(t))]

}
dt

= −
∫ τ

σ

{
f ′′(ξ)

[u(iγ+ε(t))− u(iγ(t))]2

2

}
dt ξ(t) ∈ [u(iγ(t))− u(iγ+ε(t))]

(3.1a)

can be obtained integrating suitable test functions converging to the indicator of the region (Fig-
ure 3.1). If either u(σ, γ(σ)) or u(τ, γ(τ)) belong to D+, by definition of D+ for τ − σ sufficiently
small the RHS is nonpositive: we obtain thus the inequality∫ γ(τ)+ε

γ(τ)
u(τ, x)dx−

∫ γ(σ)+ε

γ(σ)
u(σ, x)dx ≤

∫ τ

σ

∫ γ(t)+ε

γ(t)
g(t, x)dxdt ≤ ε‖g‖∞|τ − σ|. (3.1b)

Dividing by ε, by the continuity assumptions on u in the limit as ε ↓ 0 this yields

u(τ, γ(τ))− u(σ, γ(σ)) ≤ ‖g‖∞|τ − σ|.

The converse inequality is obtained by considering the similar region between iγ−ε(t), iγ(t): indeed
this lead to an equation analogous to (3.1), but with RHS having opposite sign.

We conclude from the above analysis that u(iγ(t)) is ‖g‖∞-Lipschitz continuous in a neighbor-
hood of any point belonging to the inverseimage of D+. The same holds in an analogous way for
D−. This local Lipschitz continuity can be equivalently stated by the inequality

L1
(
u(iγ(B))

)
≤ GL1 (B) (3.2)
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for all Borel subsets B of the open set O = (u ◦ iγ)−1 (D+ ∪D−).
The thesis finally follows by the negligibility of N : for every t1 ≤ t2

|u(iγ(t2))− u(iγ(t1))| ≤ L1
(
u(iγ([t1, t2]))

)
= L1

(
u(iγ ([t1, t2] ∩O))

)
+ L1(N)

(3.2)

≤ GL1 ([t1, t2] ∩O) + 0

≤ G(t2 − t1).

Remark 31. If u is 1/2-Hölder continuous, we see from (3.1a) that u is Lipschitz along characteristics
independently of any assumptions on inflection points of f .

3.2. Construction of a universal source

We now assume the negligibility of inflection points (H). Under this assumption, we general-
ize [5, § 6] and we construct for general fluxes satisfying (H) a source term for the broad formulation,
without discussing its compatibility with the distributional source. Namely, we show that

∃g ∈ L∞(Ω) :
d

dt
u(iγ(t)) = g(iγ(t)) in D(i−1

γ (Ω)) ∀characteristic curve γ. (3.3a)

The compatibility of the sources will be instead matter of [2, § 3], where we prove that when
inflection points are negligible there is a choice of such g so that moreover

∂t u(t, x) + ∂x (f(u(t, x))) = g(t, x) in D(Ω). (3.3b)

We deal here in § 3.2 only with the ODE property (3.3a). We call such gB = [g]λ universal source
term, and (3.3a) shows that u is a broad solution of (1.1). We mention nevertheless that if f is
not α-convex, α > 1, then (3.3a) does not identify in general a distribution, because there can be
an L2-positive measure set of points where u is not differentiable along characteristics: in this set
the proper definition of the source will come from (3.3b).

Two remarks before starting. Owing to § 3.1, under the sharp vanishing condition (H) on
inflection points of f one gains G-Lipschitz continuity along characteristic curves for any continuous
distributional solution u to the balance law

∂t u(t, x) + ∂x (f(u(t, x))) = gE(t, x) f ∈ C2(R), |gE(t, x)| ≤ G. (1.1)

It is not of course possible to require that the reduction of the balance law on characteristics
is satisfied for every g ∈ L∞(R+ × R) such that gE = [g], because altering g(t, x) on a curve
provides the same distribution [g]: this is why we need to select a good representative. Without
the negligibility (H) the source term of a Lagrangian parameterization might not work with a
different Lagrangian parameterization and there may exist no broad solution, see [2, § 4.3].

We assume therefore the negligibility of inflection points (H) and we proceed as follows:

§ 3.2.1: We construct a Souslin function g, which intuitively must satisfy (3.3a).

§ 3.2.2: We construct an analogous Borel function ĝ, which is stronger but more technical.

§ 3.2.3: We prove that the functions g and ĝ do satisfy (3.3a).

The construction for the compatibility condition (3.3b) comes in [2, § 3].
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3.2.1. Souslin selection

This is the first idea: to define pointwise, but in a measurable way, a function ĝ(t, x) such that
t is a Lebesgue point for the derivative of the composition t 7→ u(t, γ(t)), with γ a characteristic
function through (t, x), whenever there exists one satisfying this differentiability property. As
we just consider the derivative of this composition at t fixed, we focus on the curve only in a
neighborhood of t and, for notational convenience, we translate its domain to a neighborhood of
the origin. Therefore, fixed some δ > 0, one applies a selection theorem to the subset G of

[δ,+∞)× R× C1([−δ, δ]; R)× [−G,G] ⊃ G 3 (t, x, γ, ζ) (3.4a)

defined by the intersection among the set

• C of time-translated characteristics through (t, x), in (3.4b),

• D in (3.4c) where one imposes the pointwise differentiability at time t:

G =C ∩ D

=

{
(t, x, γ, ζ) : γ(0) = x, γ̇(s) = λ(t+ s, γ(s))

}
(3.4b)⋂{

(t, x, γ, ζ) : ζ = lim
σ↓0

u(t± σ, γ(±σ))− u(t, x)

±σ

}
. (3.4c)

We first need a technical but important lemma about G. The selection theorem will follow.

Lemma 32. G is Borel.

Proof. Focus first on the components (t, x, γ). The set C is closed thanks to the continuity of λ.
We discretize the limit in the variable ζ, so that D is described as a Fσδ-set.

Claim 33. Existence and the values of the following two limits are the same:

lim
h↓0

u(t+ h, γ(h))− u(t, x)

h
(3.5)

lim
n→∞

u(t+ hn, γ(hn))− u(t, x)

hn
, hn+1 = hn − h2

n, h1 = 1/2. (3.6)

One can similarly have the full limit for h→ 0 instead of h ↓ 0, that we study for simplicity.

Proof of Claim 33. By Theorem 30 u is ‖g‖∞-Lipschitz continuous on characteristic curves. Setting
(t, x) = (0, 0) for notational convince, then for every h ∈ (hn+1, hn]∣∣∣∣u(h, γ(h))− u(0, 0)

h
− u(hn, γ(hn))− u(0, 0)

hn

∣∣∣∣
=

∣∣∣∣ (1

h
− 1

hn

)[
u(h, γ(h))− u(0, 0)

]
− 1

hn

[
u(hn, γ(hn))− u(h, γ(h))

]∣∣∣∣
≤ 2G

hn − h
hn

.

By construction however
|hn − h| ≤ |hn − hn+1| = h2

n,

yielding that the existence of the limit along {hn}n implies the existence of the limit for any
h ↓ 0.
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Notice that the claim would not hold choosing a generic h̃n ↓ 0 instead of {hn}n. After observing
that the limit is discrete, the classical differentiability constraint in (3.4c) is

∀k ∃n ∀n̄ ≥ n :

∣∣∣∣ζ − u(t± hn̄, γ(hn̄))− u(t, x)

±hn̄

∣∣∣∣ ≤ 2−k.

Therefore, D is equivalently defined as the Fσδ set

D =
⋂
k∈N

⋃
n∈N

⋂
n̄≥n

{
(t, x, γ, ζ) :

∣∣∣∣ζ − u(t± hn̄, γ(hn̄))− u(t, x)

±hn̄

∣∣∣∣ ≤ 2−k
}
.

Since the set within brackets is closed, G = C ∩ D is Borel.

Let E be the projection of G on the first two components R+×R. The set E is the set of points
where there exists an absolutely continuous (time-transalted) characteristic curve having 0 as a
density point for the derivative of u(t+ s, γ(t,x)(s)). The selection theorem below assigns to every
point (t, x) where possible, which is to every point in E, an absolutely continuous integral curve
γ(t,x)(s) for the ODE γ̇(t,x)(s) = λ(t+ s, γ(t,x)(s)) together with the Souslin function

(t, x) 7→ g(t, x) ≡ d

ds
u(t+ s, γ(t,x)(s))

∣∣∣
s=0

. (3.7)

Remark 34. We comment on what information on E comes from hypothesis on f :

1. If f is α-convex, we will observe in [2, § 3.2] that the projection E of G on R+ × R has full
measure. This follows for the case of quadratic flux by a Rademacher theorem in the context
of the Heisenberg group [10, 5].

2. If f is even strictly but not uniformly convex [2, § 4.2] shows that E may fail to have full
measure. If (the closure of) inflection points of f are negligible, however, the Lipschitz
continuity of u along characteristics of Theorem 30 implies that

H1(iγ(R) \ E) = 0

for every characteristic curve γ(t).

3. For general fluxes not only E may not have full L2-measure, but also iγ(R) \E may not have
full H1-measure for some characteristic curve γ along which u is not Lipschitz-continuous,
see [2, § 4.3].

The set E is considered also in [2, § 3] for the compatibility of the source terms.

Corollary 35 (Selection theorem). For every δ > 0, there exists a function

[δ,+∞)× R ⊃ E 3 (t, x) 7→ (γ(t,x)(s), g(t, x)) ∈ C1([−δ, δ]; R)× [−G,G]

which is measurable for the σ-algebra generated by analytic sets and which satisfies by definition

(t, x, γ(t,x)(s), g(t, x)) ∈ G.

Proof. The Borel measurability of G proved in Lemma 32 allows to apply to G Von Neumann
selection theorem [18, Theorem 5.5.2], from [12], which provides the thesis.
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Definition 36. We define as a Souslin universal source the function

g(t, x) = gt,x =


0 (t, x) /∈ E
0 u(t, x) ∈ N
gt,x (t, x) ∈ E, u(t, x) /∈ N.

The importance of the above selection theorem is due to the following relation.

Theorem 37. Assume that L1(clos(Infl(f))) = 0. Then for every absolutely continuous integral
curve γ of the ODE γ̇ = λ(iγ), one has that g(iγ) is well defined L1-a.e. and it satisfies

u(iγ(s))− u(iγ(r)) =

∫ s

r
g(iγ(t))dt ∀0 ≤ r ≤ s.

Theorem 37 is fairly not trivial because in (3.7) the universal source g(t, x) is defined as the
derivative of u along a chosen curve γ(t,x) which changes changing the point (t, x), and it is not
even defined on a full measure set! What is relevant for the theorem is that the set where g is not
defined, or not uniquely defined, is negligible along any characteristic curve, which is that

gB = [g]λ

is well defined independently of the selection we have made. Different selections may change g, but
not gB. We postpone the proof of the theorem and of this fact to § 3.2.3, after showing that it is
possible to define a Borel selection ĝ. Theorem 37 implies that g and ĝ give the same gB.

3.2.2. Borel selection

Before proving Theorem 37, for the sake of completeness we show that one can define as well a
Borel function, that we denote by ĝ(t, x) = ĝt,x, for which Theorem 37 still holds. This requires a
bit more work than the previous argument: we do not associate immediately to each point (where
it is possible) an eligible curve and the derivative of u along it, but something which must be close
to it. We find then with the proof of Theorem 37 that we end up with the same class gB = [ĝ]λ.

Lemma 38. The (t, x)-projection E of G is Borel. For every ε > 0 there exists a Borel function

S 3 (t, x) 7→ (γε,t,x, gε,t,x) ∈ C1([−δ, δ])× [−G− ε,G+ ε]

such that (t, x, γε,t,x, gε,t,x) ∈ C of (3.4b) and such that for |h| sufficiently small∣∣∣∣gε,t,x − u(t± h, γε,t,x(±h))− u(t, x)

±h

∣∣∣∣ < ε.

Definition 39. We define as a Borel universal source the function

ĝ(t, x) = ĝt,x =


0 (t, x) /∈ E
0 u(t, x) ∈ N
lim infε↓0 gε,t,x (t, x) ∈ E, u(t, x) /∈ N,

where gε,t,x is fixed in Lemma 38.

Proof of Lemma 38. We remind the following selection theorem [18, Th. 5.12.1].
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Theorem 40. (Arsenin-Kunugui) Let B ⊂ X × Y be a Borel set, X,Y Polish, such that Bx is
σ-compact for every x. Then the projection on X of B is Borel, and B admits a Borel function
s : PXB → Y such that (x, s(x)) ∈ B for all x in the projection PXB.

We verify the hypothesis of and we apply the above selection theorem to the set⋃
n∈N

⋂
m>n

{
(t, x, γ, ζ) ∈ C :

∣∣∣∣ζ − u(t± hm, γ(±hm))− u(t, x)

±hm

∣∣∣∣ ≤ ε

2

}
, (3.8)

where C was defined in (3.4b) and {hn}n∈N immediately below that in (3.6). The section

C(t̄,x̄) = {(t̄, x̄, γ, ζ) : γ(0) = x̄, γ̇(s) = λ(t+ s, γ(s))}

is locally compact as a consequence of Ascoli-Arzelà theorem, because by the boundedness of λ
the curves are equi-bounded and equi-Lipschitz continuous, and by the continuity of λ when they
converge uniformly they also converge in C1([−δ, δ]). For t, h fixed the set{

(γ, ζ) :

∣∣∣∣ζ − u(t± h, γ(±h))− u(t, x)

±h

∣∣∣∣ ≤ ε

2

}
is closed, therefore its intersection with C(t̄,x̄) is compact: this proves that each (t, x)-section of (3.8)
is σ-compact. The hypothesis of the theorem are satisfied: it provides that the projection E of (3.8)
on the first factor R+×R 3 (t, x) is Borel and that there exists a Borel subset of (3.8) which is the
graph of a function s defined on E. Since the projection from that graph to the first components
R+ × R is one-to-one and continuous, the function s is a Borel section of (3.8), concluding our
statement.

3.2.3. Proof of Theorem 37

We provide here the proof of Theorem 37 with gt,x either the Borel or the Souslin one. Let us
introduce the notation. We consider:

• γ̄(s) a characteristic curve for the balance law through a point (t, x) = (t, γ̄(t)).

• ζ̄(s) = d
ds u(s, γ̄(s)) the derivative of u along γ̄, where it exists.

• Either γε̃,t,x(s) or γt,x(s): the characteristic curve of u through (t, x) given either by Lemma 38
or by Corollary 35. Fix for example γε̃,t,x(s), which is more complex.

• ζε̃(t + s) = d
ds u(t + s, γε̃,t,x(s)) the derivative of u along γε̃,t,x, where it exists. Where the

derivative does not exists, set for example the function equal to 0.

• Either ĝ(t, x) of Definition 39 or g(t, x) of Corollary 35. Fix ĝ(t, x), as we are showing the
proof with the Borel selection of § 3.2.2.

We indeed know from Theorem 30 that u(iγ̄(s)) and u(iγε̃,t,x(s)) are G-Lipschitz continuous. We
prove first that for almost every t the derivative of u(iγ̄(t)) is precisely ĝ(iγ̄(t)) if u(iγ̄(t)) is not an
inflection point of f . After that, we exploit again the negligibility assumption L1(clos(Infl(f))) = 0
on the inflection points of f and we conclude

u(iγ(s))− u(iγ(r)) =

∫ s

r
ĝ(iγ(t))dt ∀0 ≤ r ≤ s.
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1: Countable decomposition. We give a countable covering of the set of Lebesgue points t
where the derivative ζ̄(t) of u(iγ̄(t)) exists but it differs from ĝiγ̄(t). The set can be described as

⋃
ε↓0

{
t : ∃ζ̄(t) = lim

σ→0

u(iγ̄(t+ σ))− u(iγ̄(t))

σ
,
∣∣ĝiγ̄(t) − ζ̄(t)

∣∣ ≥ ε} .
In particular, dropping the condition that the derivative ζ̄(t) of u(iγ̄(t)) exists at t we notice that
this set is contained in⋃

ε↓0

⋃
n∈N

{
t : ∀σ ∈ (0, 2−n)

∣∣∣∣ĝiγ̄(t) −
1

σ

∫ t+σ

t
ζ̄

∣∣∣∣ ≥ ε, ∣∣∣∣ĝiγ̄(t) −
1

σ

∫ t

t−σ
ζ̄

∣∣∣∣ ≥ ε}
The proof now needs a further index because we are working with the Borel selection. If we
remember the Definition 39 of ĝt,x, and we observe that along the characteristic curve γε̃,t,γ̄(t)

u(iγε̃,t,x(t± σ))− u(iγε̃,t,x(t)) =

∫ t±σ

t
ζε̃,

then one can add a condition which is always satisfied and the last union can be rewritten as⋃
ε̃<ε↓0

⋃
n∈N

{
t : ∀σ ∈ (0, 2−n)

∣∣∣∣ĝiγ̄(t) −
1

±σ

∫ t±σ

t
ζ̄

∣∣∣∣ ≥ 3ε,

∣∣∣∣gε̃,iγ̄(t)
− 1

±σ

∫ t±σ

t
ζε̃

∣∣∣∣ < ε

}
.

The union can as well be done on any sequences ε̃k < εk ↓ 0: if |ĝt,x − gε̃k,t,x| ≤ εk/3 then one has
the equivalent expression⋃

ε̃k<εk↓0

⋃
n∈N

{
t : ∀σ ∈ (0, 2−n)

∣∣∣∣ĝiγ̄(t) −
1

±σ

∫ t±σ

t
ζ̄

∣∣∣∣ ≥ 3εk,

∣∣∣∣ĝiγ̄(t) −
1

±σ

∫ t±σ

t
ζε̃k

∣∣∣∣ < εk

}
.

We arrived to the countable covering that we wanted to prove in this step.
If one is considering the Souslin selection clearly γε̃,t,x = γt,x and gε̃,t,γ̄(t) = gt,γ̄(t) = ζε̃k(t).

2: Reduction argument. We prove that the set{
t : ∀σ ∈ (0, 2−n) ĝ(iγ̄(t)) >

1

±σ

∫ t±σ

t
ζ̄ + 3ε,

∣∣∣∣ĝ(iγ̄(t))− 1

±σ

∫ t±σ

t
ζε̃

∣∣∣∣ < ε

}
(3.9)

cannot contain two points t1, t2 with |t1 − t2| ≤ 2−n. The case

ĝ(iγ̄(t)) <
1

±σ

∫ t±σ

t
ζ̄ − 3ε

is similar, backwards in time. Then the thesis will follow: by the previous step, the set of times
where the derivative of u(iγ̄(t)) exists and it is different from ĝiγ̄(t) will be at most countable.
Therefore the derivative of u(iγ̄(t)) will be almost everywhere precisely ĝiγ̄(t).

3: Analysis of the single sets. By contradiction, assume that (3.9) contains two such points,
for example t1 = 0, t2 = ρ. Then, essentially two cases may occur.

3.1: Concavity/convexity region. We first consider the open region where f ′′(u) ≥ 0. The
open region f ′′(u) ≤ 0 is entirely similar. The restriction to the open set is allowed because the
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argument is local: we consider later also the region of inflection points. In particular, in this step
we consider f ′(u) monotone in u, in particular nondecreasing.

Compare γ̄ with the two curves given by the selection theorem through two fixed points

(0, γ̄(0)) = (0, 0), (ρ, γ̄(ρ)) = (ρ, 0)

The x component is set 0 just for simplifying notations. We rename the characteristic curves as

γ0(t) := γε̃,0,γ̄(0)(t), ζ0(t) :=
d

dt
u(iγ0(t)),

γρ(t) := γε̃,ρ,γ̄(ρ)(t− ρ), ζρ(t) :=
d

dt
u(iγρ(t)).

Notice that γ0(t), γρ(t) are tangent to γ̄ respectively at times 0, ρ because they are characteristics.
By (3.9), at respectively t = 0, t = ρ, one finds for t ∈ [0, ρ]

1

±σ

∫ t±σ

t
ζ0 ≥ ĝ(iγ̄(t))− ε ≥ 1

±σ

∫ t±σ

t
ζ̄ + 2ε

1

±σ

∫ t±σ

t
ζρ ≥ ĝ(iγ̄(t))− ε ≥ 1

±σ

∫ t±σ

t
ζ̄ + 2ε

which means that the derivative ζ̄ of u along γ̄ is lower than the ones ζ0, ζρ along γ0, γρ:

u(iγ0(t))− u(0, 0) =

∫ t

0
ζ0

(3.9)

≥
∫ t

0
ζ̄ = u(iγ̄(t))− u(0, 0)

u(ρ, 0)− u(iγρ(t)) =

∫ ρ

t
ζρ

(3.9)

≥
∫ ρ

t
ζ̄ = u(ρ, 0)− u(iγ̄(t)).

This means that for t in (0, ρ) one has

u(t, γ0(t)) ≥ u(t, γ̄(t)), u(t, γ̄(t)) ≥ u(t, γρ(t)).

Being f ′(u) nonincreasing in turn

f ′(u(t, γρ(t))) ≤ f ′(u(t, γ̄(t))) ≤ f ′(u(t, γ0(t))).

Being characteristics, the functions above are just the slopes of the curves γρ, γ̄, γ0: integrating

• γ̄, γ0 between 0, where they coincide, and t

• γρ, γ̄ between ρ, where they coincide, and t

one obtains
γ̄(t) ≤ γ0(t), γ̄(t) ≤ γρ(t).

As a consequence of this and of the finite speed of propagation, γ0 and γρ must intersect in the
time interval [0, ρ], say at time ρ′. We can compute the value of u at

(ρ′, γ0(ρ′)) = iγ0(ρ′) = iγρ(ρ
′) = (ρ′, γρ(ρ

′))
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by the differential relation both on γ0, starting from 0, and on γρ, starting from ρ: we have then

u(0, γ(0)) +

∫ ρ′

0
ζ0 = u(ρ′, γ0(ρ′)) = u(ρ′, γρ(ρ

′)) = u(ρ, γρ(ρ))−
∫ ρ

ρ′
ζρ.

Comparing the LHS and the RHS, one deduces

u(ρ, γρ(ρ))− u(0, γ(0)) =

∫ ρ′

0
ζ0 +

∫ ρ

ρ′
ζρ.

However, the times 0, ρ belong by construction to the set (3.9): therefore∫ ρ′

0
ζ0 +

∫ ρ

ρ′
ζρ > ρ′ ĝ(iγ̄(0)) + (ρ− ρ′) ĝ(iγ̄(ρ))− 2ε >

∫ ρ

0
ζ̄ + ε.

Since the RHS is just u(ρ, γρ(ρ))− u(0, γ(0)) + ε, we reach a contradiction.

3.2: Inflection points. The previous point proves the statement in the connected components
of u−1(R \N), where N = clos(Infl(f)). The assumption L1(N) = 0 allows to show that inflection
points do not matter. Indeeed, by Theorem 30 the composition U = u◦iγ is G-Lipschitz continuous:
Lemma 41 below assures therefore that u(iγ) is differentiable with 0 derivative L1-a.e. on (u ◦
iγ)−1(N). For every r < s, by the previous half point

u(iγ(s))− u(iγ(r)) =

∫ s

r
ζ(t)dt

=

∫
[r,s]∩(u◦iγ)−1(N)

ζ(t)dt+

∫
[r,s]\(u◦iγ)−1(N)

ζ(t)dt

=

∫
[r,s]∩(u◦iγ)−1(N)

0dt+

∫
[r,s]\(u◦iγ)−1(N)

ĝ(iγ(t))dt

Remember that ĝ = 0 on u−1(N) by definition. This yields the thesis of Theorem 37:

u(iγ(s))− u(iγ(r)) =

∫ s

r
ĝ(iγ(t))dt ∀0 ≤ r ≤ s.

Lemma 41. Consider a Lipschitz continuous function U : R → R and a Lebesgue negligible set
N ⊂ R. Then the derivative of U vanishes L1-a.e. on U−1(N).

Proof. Let TN be the set of Lebesgue points of U−1(N):

TN =

t̄ : lim
h↓0

H1
(

[t̄− h, t̄+ h]× {ȳ} \ U−1(N)
)

h
= 0

 .

If U is G-Lipschitz continuous, then for t̄ ∈ TN one has

|U(t̄+ h)− U(t̄)|
h

≤L
1(U([t̄, t̄+ h]) ∩N)

h
+
L1(U([t̄, t̄+ h]) \N)

h

≤0 +
L1(U([t̄, t̄+ h]) \N)

h

≤GL
1([t̄, t̄+ h]× {ȳ} \ U−1(N))

h
.
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The RHS converges to 0 as h → 0 because t ∈ TN . This shows that u ◦ iγ(t) is differentiable at
every t̄ ∈ TN with 0 derivative: this concludes the proof of the lemma because L1-a.e. point of any
Lebesgue measurable subset of R is a Lebesgue point of the set.

4. Distributional solutions are Lagrangian solutions

Consider a continuous distributional solution of

∂t u(t, x) + ∂x (f(u(t, x))) = gE(t, x) f ∈ C2(R), |gE(t, x)| ≤ G (1.1)

When inflection points of f are negligible, u is Lipschitz continuous along any characteristic curve
γ of u (Theorem 30). If not, then we have cases when u is not Lipschitz continuous along some
characteristics [2, § 4.3]), and the points where u may not be differentiable along any characteristic
curve might have positive L2-measure.

Here we work without the assumption on inflection points. We show first that continuous
distributional solutions do not dissipate entropy (Lemma 42). By approximation of the entropy,
this reduces to the case of negligible inflection points, where the solution is broad and therefore
Lagrangian, and it exploits the consequent BV-approximation of § 2.

We show then in Lemma 45 that, given an entropy continuous distributional solution u, one
can find through each point a characteristic curve γ̄(t) along which u is Lipschitz continuous. As
a consequence, by § Appendix A.1 one can construct a Lagrangian parameterization and deduce
that u is a Lagrangian solution.

Lemma 42. Continuous distributional solutions of (1.1) do not dissipate entropy.

Proof. If the closure N of the inflection points of f is negligible, then by Theorem 37 a continuous
distributional solution u is a broad solution, and by Lemma 16 it is in particular a Lagrangian
solution. By Corollary 28, derived from the monotone approximations of Lagrangian continuous
solutions, one has then that u satisfies the entropy equality.

If the inflection points of f are not negligible, one can derive the thesis by an approximation
procedure. Fist notice that for every entropy-entropy flux pair—which means for every function
η ∈ C1,1(R) and every q ∈ C1,1(R) satisfying q′(z) = η′(z)f ′(z)—one has the entropy equality

∂t η(u) + ∂x (q(u)) = η′(u)gE in D(R+ × R \ u−1(N))

by the previous step; indeed, in the open set R+×R\u−1(N), where we are claiming that the PDE
holds in the sense of distribution, u is valued where f does not have inflection points and therefore
one can apply Corollary 28.

Consider finally a decreasing family of open sets Ok = ∪j(akj , bkj ) ⊂ R such that

• N = clos(Infl(f)) ⊂ Ok for k ∈ N;

• |Ok \N | < 1/k.

One can approximate η in C1(R) with entropies ηk ∈ C1,1(R) which are linear in Ok, for k ∈ N.
For every interval (akj , b

k
j ) ⊂ Ok where ηk(u) = cku for some ck ∈ R, for all k ∈ N one has

∂t ηk(u) + ∂x (qk(u)) = ck [∂t u+ ∂x f(u)] = ckgE = η′k(u)gE in D(u−1((akj , b
k
j )))

∂t ηk(u) + ∂x (qk(u)) = η′k(u)gE in D(R+ × R \ u−1(N))

This shows that the entropy equality holds for the entropies {ηk}k∈N. When ηk(u), qk(u), η′k(u)
converge uniformly to η(u), q(u), η′(u), then the entropy equality holds also for η.
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Corollary 43. If u is a continuous distributional solution of (1.1), then f ′(u) is a continuous
distributional solution of Burgers’ balance law with source term f ′′(u)gE.

While Lemma 42 above relies on the previous results of this paper, Lemma 45 below is instead
self-contained. It is however based on maximum principle, that we recall now.

Lemma 44. Suppose u, v are entropy solutions of the PDE

∂t u(t, x) + ∂x (f(u(t, x))) = gEu(t, x)

∂t v(t, x) + ∂x (f(v(t, x))) = gEv(t, x)

and that for some G ∈ R

u(t = 0, x) ≤ v(t = 0, x) −G ≤ gEu(t, x) ≤ gEv(t, x) ≤ G.

Then u(t, x) ≤ v(t, x).

Proof. See the proof of Theorem 3, Page 229, [14]. Alternative approaches are the vanishing
viscosity or the operator splitting, still exploiting the uniqueness of the entropy solution.

Lemma 45. Suppose u is a continuous entropy solution of the PDE

∂t u(t, x) + ∂x (f(u(t, x))) = gE(t, x) f ∈ C2(R), |gE(t, x)| ≤ G (1.1)

Then at each point (t, x) there exists a characteristic along which u is Lipschitz continuous.

Proof. The proof is made constructing a piecewise affine approximation of the desired characteristic
curve. On the two consecutive edges of the linearized curve, the Lipschitz regularity holds by the
maximum principle, being an entropy solution.

1: Notation. We simplify the notation changing coordinates so that we are looking for a
characteristics curve throughout the point (0, 0), and defined between the times t = −1, t = 1.

As the construction is local, we directly fix a square

Q = [−1, 1]2.

Let G = ‖gE‖L∞(Q). Set L = ‖f ′(u)‖L∞(Q) and M = ‖f ′′(u)‖L∞(Q). Notice that L is an upper
bound for the characteristic speed λ = f ′(u) in Q. Assume e.g. L < 1.

2: Modulus of continuity for u and λ. As u is continuous, in the compact region Q it is
uniformly continuous. Let ω(δ) denote the following modulus of continuity of u in Q:

max
Q

{
|t′ − t|, |x

′ − x|
L

}
≤ δ ⇒ |u(t, x)− u(t′, x′)| ≤ ω (δ) .

An analogous modulus of continuity for λ = f ′(u) is clearly given by Mω(δ):

|λ(t, x)− λ(t′, x′)| = |f ′(u(t, x))− f ′(u(t′, x′))| ≤M |u(t, x)− u(t′, x′)| ≤Mω(δ).

3: Dependency regions. Let δ > 0 and (t̄, x̄) ∈ [−1+δ, 1−δ]2. One draws a backward triangle
of dependency for an interval of time δ, delimited from below by the segment t̄− δ:

T (t̄, x̄) = {(t, x) : t̄− δ ≤ t ≤ t̄, x̄− L(t̄− t) ≤ x ≤ x̄+ L(t̄− t)} .
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Noticing that the speed of propagation λ in the rectangle{
(t, x) : max

{
|t̄− t|, |x̄− x|

L

}
≤ δ
}

is, by definition of the modulus of continuity ω, bounded by λ(t̄, x̄)±Mω(δ), a smaller backward
triangle of dependency is given by

Tδ(t̄, x̄) = {(t, x) : t̄− δ ≤ t ≤ t̄, [λ(t̄, x̄)−Mω(δ)](t̄− t) ≤ x− x̄ ≤ [λ(t̄, x̄) +Mω(δ)](t̄− t)}

The basis of Tδ has length 2Mδω(δ), which is superlinear in δ.

4: Comparison of u on adjacent nodes. Let ε > 0. The linear functions

u+(t, x) = u(t̄, x̄) +G(t− t̄)− ε, u−(t, x) = u(t̄, x̄)−G(t− t̄) + ε

satisfy both
u+(t̄, x̄) < u(t̄, x̄) < u−(t̄, x̄)

and the equations

∂t u−(t, x) + ∂x (f(u−(t, x))) = −G, ∂t u
+(t, x) + ∂x (f(u+(t, x))) = G.

If we had either u−(t, x) < u(t, x) or u+(t, x) > u(t, x) for all x belonging to a ε-neighborhood
of the basis of the small backward triangle of dependency Tδ, we would contradict the maximum
principle in Lemma 44. Therefore there exists a point xε belonging to(

x̄− [λ(t̄, x̄) +Mω(δ)]δ − ε, x̄+ [λ(t̄, x̄) +Mω(δ)]δ + ε
)
,

which is a ε-neighborhood of the basis of Tδ, where u(t, xε) is between u+ and u−:

u(t̄, x̄) +Gδ + ε = u−(t̄− δ, xε) ≤ u(t̄− δ, xε) ≤ u+(t̄− δ, xε) = u(t̄, x̄)−Gδ − ε.

As ε ↓ 0, a subsequence of {xε}ε↓0 must converge to a point x̂ belonging to the basis of Tδ:

∃x̂ ∈ [x̄+ (λ(t̄, x̄)−Mω(δ))δ, x̄+ (λ(t̄, x̄)−Mω(δ))δ] :

|u(t̄− δ, x̂)− u(t̄, x̄)| ≤ Gδ.
(4.1)

5: Piecewise approximation. We construct here a piecewise affine approximation of a backward
characteristic through (0, 0), specifying the nodes: for k ∈ N set

(tk, xk) = (0, 0), and let (ti, xi) :=

(
−k − i

k
, xi

)
i = 0, . . . , k − 1

be a point on the basis of T (ti+1, xi+1) which satisfies (4.1) where (t̄, x̄) = (ti+1, xi+1). Thus

|u(ti, xi)− u(ti−1, xi−1)| ≤ G(ti − ti−1) i = 1, . . . , k. (4.2)

By the choice of xi−1, for every k the slope

λi,k = k(xi − xi−1)
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of each segment joining (ti−1, xi−1), (ti, xi) satisfies

λ(ti, xi)−Mω
(
k−1

)
≤ λi,k ≤ λ(ti, xi) +Mω

(
k−1

)
, (4.3)

It is in particular uniformly bounded by L + Mω(1). By Ascoli-Arzelà theorem the piecewise
affine curve γk with edges {(ti, xi)}ki=0 converge uniformly as k ↑ ∞, up to subsequence, to a
continuous curve γ. As λ is continuous, Equation (4.3) implies that the limit curve γ is also
Lipschitz continuous with slope

γ̇(t) = λ(t, γ(t)).

This just means that we approximated a backward characteristic curve.

6: Lipschitz continuity of u along the curve. For each k ∈ N set

uk(ti) := u(ti, xi) i = 0, . . . , k

and define a function uk(t) linear in each interval (ti−1, ti), i = 1, . . . , k. Equation (4.2) implies
that uk(t) is G-Lipschitz continuous. By the continuity of u and by the uniform convergence to γ
of the piecewise affine paths γk with edges {(ti, xi)}ki=0, the function uk(t) converges uniformly to
u(iγ(t)): one has therefore that u(iγ(t)) is itself G-Lipschitz continuous.

7: Forward characteristic. We give two explanations for this step. First, Lemma 42 ensures
that there is no entropy dissipation: one can thus reverse the time. Applying the above procedure
for the reversed time one finds a forward characteristic curve. If one does not want to apply that
strong lemma, it is enough being able to construct through each point (t, x) ∈ (0, 1) × (−1, 1) a
backward characteristic γ(t,x)(s) along which u is G-Lipschitz continuous. Having that, the function

γ(t) := inf
{
x : γ(t,x)(0) ≥ 0

}
, t ∈ (0, 1)

can be verified to be a characteristic curve passing through the origin. Moreover, it is the uniform
limit of characteristics along which u is G-Lipschitz continuous; in particular, by the continuity, u
is therefore G-Lipschitz continuous along γ itself.

Corollary 46. Suppose u is a continuous distributional solution of the PDE

∂t u(t, x) + ∂x (f(u(t, x))) = gE(t, x), ‖gE‖L∞ ≤ G.

Then u is also a Lagrangian solution, with a Lagrangian source gL bounded by G.

Proof. Lemma 42 yields that u is entropic. One can then apply Lemma 45, providing through any
point a characteristic along which u is G-Lipschitz continuous. Lemmas 17, 18 finally show that u
is a Lagrangian solution.

Appendix A. Three sufficient conditions for the Lagrangian formulation

Given a continuous function u, we consider here some sufficient conditions for satisfying the
Lagrangian formulation. The section extends constructions in [5, § Appendix].
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Appendix A.1. A dense set of characteristics

Fix a continuous function u. For having a Lagrangian parameterization along which u is G-
Lipschitz continuous, one clearly needs through each point of the domain a characteristic curve
along which u is G-Lipschitz continuous. We prove here that this is sufficient. This is Lemma 17
in the introduction.

Proof of Lemma 17. Simplify the domain to u ∈ Cc(R+ × R), as it is a local argument, and let
G > 0. We assume that there exists a curve γ(t,x)(s) through each point (t, x) of a dense subset
of R+ × R such that s 7→ u(iγ(t,x)

(s)) is G-Lipschitz continuous. We are going to modify these
characteristics in order to provide a Lagrangian parameterization.

Consider an enumeration {(xrk , yrk)}k∈N of a countable set of points, dense in the upper plane
R+ × R, where the characteristic curves are given by hypothesis. We associate recursively to each
point of this set a characteristic curve γk(s) and we define a linear order among those:

• Let γ1(s) = γ(tr1 ,xr1 )(s). We define, for k ∈ N,

rk � r1 if xrk ≤ γ1(trk), r1 � rk if xrk ≥ γ1(trk).

• Let h ∈ N. We define the new characteristic curve γh+1(s) through (trh+1
, xrh+1

) in order to
preserve the order relation that we are establishing:

γh+1(s) = min
rh�rk,k≤h

{
γk(s), max

r`�rh,`≤h

{
γ`(s), γ(trh+1

,xrh+1
)(s)

}}
.

As γk(s), for k ≤ h, and γ(trh+1
,xrh+1

)(s) are characteristic curves along which u is G-Lipschitz

continuous by hypothesis, then also γh+1(s) is a characteristic curve along which u is G-
Lipschitz continuous. We set then, for k ∈ N,

rk � rh+1 if xrk ≤ γh+1(trk), rh+1 � rk if xrk ≥ γh+1(trk).

By construction it extends the relation defined at the previous steps.

The set of uniformly Lipschitz continuous curves

C = {γk(s)}k∈N

is totally ordered and the images of these curves are dense in R+ × R. We can complete this
set in the uniform topology: the curves that we introduce with the closure are still characteristic
curves because of the continuity of f ′(u); as well, u is G-Lipschitz continuous along them and they
preserve the order, in the sense that any two curves do not cross each other but always lie on a
fixed side, when they differ. If {qk}k∈N is an enumeration of the rational numbers, the map

θ : clos(C)→ R

γ 7→
∞∑
k=0

γ(qk)

2−k

is continuous and strictly order preserving. In particular, it is invertible with continuous inverse.
One can then verify that a Lagrangian parameterization is provided by

χ(s, y) = [θ−1(y)](s) for s ∈ θ (clos(C)).

By construction t 7→ U(t, y) = u(t, χ(t, y)) is G-Lipschitz continuous for each y fixed: the thesis
thus follows by Lemma 18.
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Appendix A.2. Lipschitz continuity along characteristics

Fix a continuous function u. For having that u is a Lagrangian solution, one clearly needs
that t 7→ u(t, χ(t, y)) is Lipschitz continuous, uniformly in the y parameter, for some Lagrangian
parameterization χ. We prove here that this is sufficient. This is Lemma 18 in the introduction.

We are not concerned here with the compatibility of the source terms.

Proof of Lemma 18. Simplify the domain to u ∈ Cc(R+ × R), as it is a local argument, and let
G > 0. We want to show that if there exists a Lagrangian parameterization χ such that

for all y ∈ R −G ≤ ∃ d

dt
u(t, χ(t, y)) ≤ G in D(i−1

χ(y)(Ω))

then one can find a function gL ∈ L∞L (Ω) such that

for all y ∈ R
d

dt
u(t, χ(t, y)) = gL(t, χ(t, y)) in D(i−1

χ(y)(Ω)).

Set U(t, y) = u(t, χ(t, y)) and consider G ∈ L∞(R+ × R) such that, in the (t, y)-half plane,

G(t, y) = ∂t U(t, y) in D(i−1
χ(y)(Ω)) for each y ∈ R.

We want to show that it can be chosen of the form G(t, y) = gL(t, χ(t, y)) for some gL, which means
that it is essentially single valued on the level sets of χ. Fixed y, we show the following: the set of
times t where u has a Lebesgue point of classical differentiability i) both along the characteristic
curve γ(t) = χ(t, y) ii) and also along another characteristic curve γ̄(t), lying on a fixed side of
γ(t), iii) with two different values of the derivative, are at most countable. This is enough since
characteristics of a same Lagrangian parameterization are by definition ordered.

Let ε, σ > 0. By a reduction argument it suffices to show the following claim: the set S(y) ={
t :

∣∣∣∣U(t+ h, y)− U(t, y)

h
−G(t, y)

∣∣∣∣ < ε, ∃γ(s) characteristic with γ(t) = χ(t, y),

γ(t+ h) ≤ χ(t+ h, y) and
u(t+ h, γ(t+ h))− u(t, γ(t))

h
−G(t, y) > ε, ∀|h| ≤ σ

}
.

(A.1)

does not contain two points t1, t2 closer than σ. Indeed, if we are comparing the value of the
derivative of u along different characteristics of the parameterization χ, then an order condition is
satisfied among characteristics. Moreover, as we consider Lebesgue points of differentiability, with
different values for the derivative of u along χe1

y (s) and γ(s), up to a countable covering we are
dealing with sets like (A.1).

We prove the claim by contradiction: let

t1, t2 ∈ S(y), 0 < t2 − t1 < σ.

The definition (A.1) of S(y) provides curves γ1, γ2 which intersect at times respectively t1, t2

γ0(s) := χ(s, y)

and which for t1 ≤ s ≤ t2 satisfy the additional properties

γ1(s) ≤ γ0(s), u(s, γ1(s))− u(t1, γ1(t1)) > (G(t, y) + ε) (s− t1),

γ2(s) ≤ γ0(s), u(t2, γ2(t2))− u(s, γ2(s)) > (G(t, y) + ε) (t2 − s).

33



By the ordering imposed in (A.1) and by the uniform Lipschitz continuity implied by the fact that
they are characteristics, the curves γ1(s), γ2(s) necessarily meet at some time t̄ ∈ [t1, t2]. One can
then compute the difference U(t2, y)− U(t1, y) in two ways:

• applying the incremental relation in (A.1) relative to χ, which gives

U(t2, y)− U(t1, y) = U(t2, y)− U(t̄, y) + U(t̄, y)− U(t1, y)

< G(t2, y)(t2 − t̄) + G(t1, y)(t̄− t1) + 2ε;

• applying the incremental relation in (A.1) relative to γ1, γ2: denoting by x̄ the value γ1(t̄) =
γ2(t̄) when γ1 and γ2 intersect one has

U(t2, y)− U(t1, y) = u(t2, γ2(t2))− u(t̄, x̄) + u(t̄, x̄)− u(t1, γ1(t1))

> G(t2, y)(t2 − t̄) + G(t1, y)(t̄− t1) + 2ε.

The estimates that we obtain in the two ways are not compatible: we reach a contradiction.

Appendix A.3. Stability of the Lagrangian formulation for uniform convergence of u

We state for completeness that Lagrangian solutions are closed w.r.t. uniform convergence,
provided the sources are uniformly bounded. We include this for completeness but it follows easily
by the previous analysis of the section.

Corollary 47. Let G > 0 and uk(t, x) be a sequence of continuous Lagrangian solutions of

∂t uk(t, x) + ∂x (f(uk(t, x))) = gEk(t, x) f ∈ C2(R), |gEk(t, x)| ≤ G. (1.1)

If uk converges uniformly to u, then u is a Lagrangian solution with source term bounded by G.

Proof. We verify that through every point (t, x) ∈ R+ × R there exists a characteristic curve γ(s)
such that u(iγ(s)) is G-Lipschitz continuous: Lemma 17 then provides a Lagrangian parameteri-
zation along which u is G-Lipschitz continuous, and Lemma 18 gives the thesis.

As {uk}k∈N are Lagrangian solutions of (1.1) with sources uniformly bounded by G, one can
find for each k ∈ N a characteristic curve γk(s) of uk through (t, x) satisfying

|uk(iγk(r))− uk(iγk(s))| ≤ G|r − s|. (A.2)

The family {γk(s)}k∈N is locally equi-Lipschitz continuous and equi-bounded, as γk(t) = x. By
Ascoli-Arzelà theorem this family has a subfamily uniformly convergent to a function γ(s). From
the uniform convergence of the continuous functions uk and γk, the relation

γk(r)− γk(s) =

∫ s

r
uk(iγk(q))dq

goes tot he limit and it implies that γ is characteristic curve for u. Moreover, also (A.2) goes to
the limit and it yields that u is G-Lipschitz continuous along γ.
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Nomenclature

[·]λ, [·]χ, [·] Projections on, L∞B (X), L∞L (X), L∞(X) respectively, Notation 9

χ Lagrangian parameterization for a continuous solution u to (1.1), Defintion 5

clos(·) Closure of a set

D(Ω) Distributions on Ω, Notation 8

L∞(X) Bounded functions on X identified L2-a.e., Notation 8

Dt ,Dx Partial derivatives of a function of bounded variation, Notation 3

γ, iγ Characteristic curve, Definition 4

g, gB, gL Functions beloning to L∞(X), L∞B (X), L∞L (X) respectively, Notation 8

g, gE Distributional, bounded source term for the balance law (1.1)

Infl(f) Inflection points of f , Definition 15

λ The composite function f ′ ◦ u, Notation 1

L1, L2 1- or 2-dimensional Lebesgue measure

M(X) Radon measures on X, Notation 8

Ω Open subset of R+ × R, if needed connected

∂
∂t ,

∂
∂x Classical partial derivatives, Notation 3

∂t , ∂x Distributional partial derivatives, Notation 3

L∞(X) Functions defined pointwise on X, Notation 8

L∞B (X) Functions coinciding L1-a.e. on characteristics of u, Notation 8

L∞L (X) Functions coinciding L1-a.e. on the Lagrangian parameterization χ, Notation 8

ϕe2
t (x) Restriction of a function ϕ(t, x) to the second coordinate, Notation 2

ϕe1
x (t) Restriction of a function ϕ(t, x) to the first coordinate, Notation 2

C(Ω) Continuous functions on Ω, see also Cb, C
k, Ckc , C

k,1/α in Notation 8

f Flux function for the balance law (1.1)

u Continuous solution, Noation 1

X Subset of R+ × R, usually Borel.
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