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Both local geometry and collective, extended excitations drive the moves of a particle in the cage of its neigh-
bours in dense liquids. The strength of their influence is investigated by Molecular Dynamics simulations of a
supercooled liquid of fully-flexible trimers with semirigid or rigid bonds. The rattling in the cage is investigated
on different length scales. First, the rattling anisotropy due to local order is characterized by two order param-
eters sensing the monomers succeeding or failing to escape from the cage. Then, the collective response of
the surroundings excited by the monomer-monomer collisions is considered. The collective response is initially
restricted to the nearest neighbours of the colliding particle by a Voronoi analysis revealing elastic contributions.
Then, the long-range excitation of the farthest neighbours is scrutinised by searching spatially-extended corre-
lations between the simultaneous fast displacements of the caged particle and the surroundings. It is found that
the longitudinal component has stronger spatial modulation than the transverse one with wavelength of about
one particle diameter, in close resemblance with experimental findings on colloids. It is concluded that the cage
rattling is largely affected by solid-like extended modes.
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I. INTRODUCTION

The relation between the structure and the dynamics is a
key problem in liquid-state [1–4] and polymer [5, 6] physics.
Here, we address the case of dense supercooled liquids where
each particle is temporarily trapped by the cage formed by
the first neighbours. The lifetime of the cage is set by the
structural relaxation and quantified by the structural relaxation
time τα which exceeds the rattling times of the particle in the
cage of several orders of magnitude on approaching the glass
transition from above.

Which are the key aspects driving the moves of the trapped
particle in the cage ? At very short times, fractions of pi-
coseconds, the local geometry plays the leading role. This
inspired the free-volume model [7] which has been recently
re-examined [8–11]. The role of the local structure is seen by
e.g. considering the short-time expansion of the mean square
displacement (MSD):

〈r2(t)〉 = 3 υ2t2 − 1

4
υ2 Ω2

0 t
4 + · · · (1)

where υ =
√
kBT/m is the thermal velocity [12]. Initially,

MSD is ballistic but early collisions with the first neighbours
slow down the particle. Ω0 is an effective collision frequency.
More precisely, Ω0 is the frequency at which the tagged par-
ticle would vibrate if it were undergoing small oscillations
in the potential well produced by the surrounding monomers
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when kept fixed at their mean equilibrium positions [12]. Col-
lisions lead also to correlation loss of the velocity and the re-
lated correlation function starts to decay as

Cvv(t) = 3υ2

(
1− Ω2

0

2
t2 + · · ·

)
(2)

After a few collisions, velocity correlations reveal oscillatory
components due to sound waves that, owing to the low com-
pressibility of liquids, reach wavelengths of a few particle di-
ameters [1, 13]. This means that the particle displacement
is also affected by collective, elastic modes. Later, the parti-
cle completes the exploration of the cage in a time t∗, a few
picoseconds, and, in the absence of escape processes, MSD
would levels off at 〈r2(t∗)〉 ≡ 〈u2〉, the mean square ampli-
tude of the cage rattling (related to the Debye-Waller factor).
In actual cases, early breakouts cause MSD to increase for
t > t∗ and an inflection point appears at t∗ in the log-log plot
of 〈r2(t)〉 [2, 9, 14].

We aim at clarifying by extensive molecular-dynamics
(MD) numerical simulations of a supercooled molecular liq-
uid if the single-particle fast dynamics up to ∼ t∗ is more
contributed by the local geometry of the cage or the solid-
like extended modes. To be more precise, the influence of the
local geometry will be examined by considering how the po-
sitions of the particles forming the cage at a given initial time
affect the direction of the subsequent displacement of the par-
ticle in the cage. Instead, the influence of extended collective
modes will be studied by the correlations between the direc-
tion of the displacement of the particle in the cage with the
simultaneous displacements of the surrounding particles. The
present study contributes to our continuing effort to under-
stand the microscopic origin of the universal correlation be-
tween the fast dynamics, by using 〈u2〉 as metric, and the re-
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laxation and transport, found in simulations of polymers [15–
17], supercooled binary atomic mixtures [16, 18], colloidal
gels [19] and antiplasticized polymers [10, 20], and supported
by the experimental data concerning several glassformers in
a wide fragility range (20 ≤ m ≤ 191) [15, 18, 21–23]. On
a wider perspective, our investigations on the correlation be-
tween 〈u2〉 and the relaxation are part of the intense ongoing
research on the relation between the vibrational dynamics and
the relaxation in glassfoming systems. As a matter of fact, de-
spite the huge range of time scales older [24] and recent theo-
retical [10, 25–31] studies addressed the rattling process in the
cage to understand the structural relaxation, gaining support
from numerical [9, 10, 14–23, 32–45] and experimental works
on glassforming liquids [10, 46, 47] and glasses [28, 48–53].

The coupling between the rattling process and extended,
fast modes has been indicated [14, 31, 37, 38]. Recent support
to the collective character of the cage rattling is the evidence
of spatially extended correlations (up to about the fourth shell)
between the simultaneous fast displacements of the caged par-
ticle and the surrounding ones [44, 45]. They revealed a rather
promising feature, i.e. states with identical spatial correla-
tions exhibit equal mean square amplitude of the cage rattling
〈u2〉 and structural relaxation time τα [44, 45]. The role of
extended modes in the cage rattling and the relaxation pro-
cess is also suggested by the so-called elastic models, see refs.
[54, 55] for excellent reviews and refs. [20, 43, 52, 56–66] for
recent related papers. Recent improvements include the find-
ing of the universal correlation between the cage rattling and
the linear elasticity drawn by simulation [43] and supported
by comparison with the experiments [64].

The influence of local order on the rattling motion in the
cage has been recently considered. The local structure was
found to correlate poorly with the cage rattling and then struc-
tural relaxation in liquids of linear trimers [67, 68] and atomic
mixtures [67]. In particular, it was find that:

• physical states with equal mean square amplitude of the
cage rattling 〈u2〉 and structural relaxation time τα have
different distributions of the cage geometries [67, 68];

• for a given state of a liquid of linear chains (trimers or
decamers), the end and the central monomers, which
have different distributions of the cage geometries, have
equal 〈u2〉 and structural relaxation time τα [68].

Notice that the coincidence of 〈u2〉 and τα of two states mir-
ror the coincidence of the self-part of the van Hove function
Gs(r, t

∗) and Gs(r, τα), respectively [17, 18]. These find-
ings are fully consistent with Berthier and Jack who con-
cluded that the influence of structure on dynamics is weak on
short length scale and becomes much stronger on long length
scale [69]. Several approaches suggest that structural aspects
matter in the dynamics of glassforming systems. This in-
cludes the Adam-Gibbs derivation of the structural relaxation
[41, 70] - built on the thermodynamic notion of the configu-
rational entropy [71] -, the mode- coupling theory [2] and ex-
tensions [72], the random first-order transition theory [73], the
frustration-based approach [74], as well as the so-called elas-
tic models [9, 20, 43, 52, 54–59, 62–66] in that the modulus is

set by the arrangement of the particles in mechanical equilib-
rium and their mutual interactions [43, 54]. It was concluded
that the proper inclusion of many-body static correlations in
theories of the glass transition appears crucial for the descrip-
tion of the dynamics of fragile glass formers [75]. The search
of a link between structural ordering and slow dynamics mo-
tivated several studies in liquids [76–80] colloids [81–83] and
polymeric systems [81, 84–89].

To discriminate between the roles of the local geometry
and the collective extended modes in the single-particle vi-
brational dynamics, the cage rattling will be examined on dif-
ferent length scales. First, we characterize the rattling process
by local anisotropies, namely order parameters which are pro-
jections of the direction of the displacement of the central par-
ticle onto a fixed local axis. We are inspired by a seminal work
by Rahman in an atomic liquid [90], studying the directional
correlations between the particle displacement of the trapped
particle in the cage and the position of the centroid C of the
vertices of the associated Voronoi polyhedron (VP). The inter-
est relies on the fact that the VP vertices are located close to
the voids between the particles and thus mark the weak spots
of the cage. It has been shown in simulations of atomic liquids
[90] and experiments on granular matter [11] that the particle
initially moves towards the centroid, so that cage rattling and
VP geometry are correlated at very short times. We extend
such studies to later times to reveal the sharp crossover to a
regime where the anisotropic rattling excites the collective re-
sponse of the surroundings. The collective response is initially
restricted to the nearest neighbours of the colliding particle by
investigating statics and fluctuations of the VP surface, vol-
ume and asphericity [91]. Then, the long-range excitation of
the farthest neighbours is evidenced as spatially-extended cor-
relations between the simultaneous fast displacements of the
caged particle and the surroundings.

The paper is organized as follows. In Sec. II the molecu-
lar models and the MD algorithms are presented. The results
are discussed in Sec. III. In particular, Sec.III A presents the
general aspects of the transport and relaxation of interest. The
cage rattling process is examined on the local, intermediate
and large length scales in Sec.III B, Sec.III C, and Sec.III D,
respectively. Finally, the main conclusions are summarized in
Sec. IV.

II. METHODS

A coarse-grained model of a melt of Nc linear fully-flexible
molecules with three monomers per chain is considered. Full
flexibility is ensured by the absence of both torsional or bend-
ing potentials hindering the bond orientations. The total
number of particles is N = 2001. Non-bonded monomers
at a distance r interact via a truncated Lennard-Jones (LJ)
potential ULJ(r) = ε

[
(σ∗/r)12 − 2 (σ∗/r)6

]
+ Ucut for

r < rc = 2.5 σ and zero otherwise, where σ∗ = 6
√
2 σ is

the position of the potential minimum with depth ε. The value
of the constant Ucut is chosen to ensure that ULJ(r) is con-
tinuous at r = rc. In the case of semirigid bonds, the bonded
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monomers interact by a potential which is the sum of the LJ
potential and the FENE (finitely extended nonlinear elastic)
potential UFENE(r) = −1/2 kR2

0 ln
(
1− r2/R2

0

)
where k

measures the magnitude of the interaction and R0 is the max-
imum elongation distance [6, 68]. The parameters k and R0

have been set to 30 ε/σ2 and 1.5 σ respectively [92]. The re-
sulting bond length is b = 0.97σ within a few percent. All
quantities are in reduced units: length in units of σ, temper-
ature in units of ε/kB (with kB the Boltzmann constant) and
time τMD in units of σ

√
m/ε where m is the monomer mass.

We set m = kB = 1. One time unit corresponds to a few
picoseconds [66] . We investigate states with number den-
sity ρ = 1.086 and temperature T = 0.6, 0.63, 0.7, 0.8, 0.9, 1.
States with rigid bonds having bond length brigid = 0.97 are
also studied with the same density and T = 0.6, 0.9. We
also considered a crystalline state, with the same density of
the other states, obtained by spontaneous crystallization of
an equilibrated liquid made of trimers with rigid bonds at
T = 0.7. Apart from the crystalline state, the average pres-
sure of the other states ranges between P = 6.0 at T = 0.6
and P = 10.2 at T = 1 for the semirigid system and very
similar results for rigid bonds ( T = 0.6, P = 6.5). This
corresponds to a compressibility factor Z = P/ρT ∼ 10,
comparable to other studies, e.g. Kremer and Grest found
4.84 ≤ P ≤ 5.55 with density ρ = 0.85 and T = 1, cor-
responding to Z ∼ 6.1 [93]. Periodic boundary conditions
are used. NV T ensemble (constant number of particles, vol-
ume and temperature) has been used for equilibration runs
with Nosé-Hoover thermostat (damping parameter 0.3), while
NV E ensemble (constant number of particles, volume and
energy) has been used for production runs for a given state
point [94]. The simulations of systems with semirigid bonds
are carried out by using LAMMPS molecular dynamics soft-
ware (http://lammps.sandia.gov) [95]. The equations of mo-
tion of the system with rigid bonds are integrated by using a
dedicated software developed in-house [96, 97] with a Ver-
let algorithm in velocity form and RATTLE algorithm [94].
Both LAMMPS and the in-house software set the time step at
3 · 10−3, yielding an energy drift of about 1 % in NVE runs.
For each state we averaged over at least sixteen different runs
( twenty-four runs at T = 0.6 due to increasing dynamical
heterogeneity [4]). This effort was needed to reach apprecia-
ble statistical accuracy in the evaluation of several collective
quantities, including the extremely time-consuming evalua-
tion of the tiny anisotropies of the monomer random walk, see
Sec.III B, and the VP volume and surface correlation func-
tions, see Sec.III C 2. The equilibration procedure involves
runs with time lengths ∆teq exceeding at least three times the
average reorientation time of the end-end vector [98]. The
procedure ensures that the slowest correlation functions of in-
terest drop at ∆teq to a few percent of their maximum value.
In order to test the equilibration procedure, we checked if
the states under study comply with the universal correlation
between the mean square amplitude of the cage rattling and
the relaxation in metastable liquids, see Sec.III A and refs.
[10, 15–23]. Since the correlation is highly sensitive to non-
equilibrium effects, the observed perfect agreement, see Fig.2
(bottom), provides confidence about the equilibration proce-
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FIG. 1: Velocity correlation function of the monomers at selected
temperatures. The left dashed line marks the minimum of the corre-
lation function at time tm = 0.175. The position of the right dashed
line is the time t∗ = 1.023 defined in Fig.2 and marks the end of the
exploration of the cage by the trapped particle. During the selected
time window (tm � t � t∗) the coupling with the solid-like col-
lective motion of the surroundings develops, see Sec.III D. The fast
oscillations superimposed to the slower decay are largely due to the
bond vibrations and are mostly suppressed by replacing the semirigid
bond with a rigid one (see inset). The residual oscillations observed
after the minimum in the presence of rigid bonds are ascribed to col-
lective density waves in analogy with atomic liquids like rubidium
[1].

dure. It must be pointed out that the present work is inter-
ested only in the time window where the structural relaxation
is completed. From this respect, given the considerable effort
to reach significant accuracy, the production runs at the lowest
temperatures were extended only up to ∼ 10 τα.

Since the model with rigid bonds exhibits weak crystalliza-
tion resistance, we have paid particular attention to detect any
crystallization signature. The detailed discussion is deferred
to Appendix B. We summarize the results: i) no crystalline
fraction is revealed in all the systems with semirigid bonds,
and the system with rigid bonds at T = 0.9; ii) the possible
crystalline fraction of the system with rigid bonds at T = 0.6,
if present, is so small as to play no role.

III. RESULTS AND DISCUSSION

We now present and discuss the results about our trimeric
liquid. The states represent a significant set spanning a wide
range of relaxation times. Below, it will be shown that they ex-
hibit key features of the supercooled liquids, e.g. the stretch-
ing of the relaxation [4, 15, 99], the presence of dynamical
heterogeneity [4, 15, 99, 100], and all comply with the uni-
versal scaling between the cage rattling and the structural re-
laxation found in several glass-forming systems [10, 15–23].
From this respect, we believe that the conclusions to be drawn
by their analysis are representative of supercooled molecular
liquids broadly.
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FIG. 2: Monomer dynamics in the molecular liquid. As reference, a
crystal state having the same density of the other states, obtained by
spontaneous crystallization of an equilibrated liquid made of trimers
with rigid bonds at T = 0.7 is also plotted (maroon line). Top:
MSD. The knee at about tm = 0.175 corresponds to the minimum
of the velocity correlation function, see Fig.1. Middle: correspond-
ing ISF curves. The long-time decay is stretched with stretching pa-
rameter β ∼ 0.6. Bottom: scaling of the non-crystalline states on
the universal master curve log τα vs 〈u2〉−1 (dot-dashed line) ex-
pressing the universal correlation between the fast vibrational dy-
namics and the slow relaxation [15]. 〈u2〉 is the MSD evaluated
at the time t∗ = 1.023 where log MSD vs. log t has the inflec-
tion point, see top panel. t∗ marks the end of the exploration of
the cage by the trapped particle. The expression of the dot-dashed
master curve is log τα = α + β < u2 >−1 +γ < u2 >−2 with
α = −0.424(1), β = 2.7(1) · 10−2, γ = 3.41(3) · 10−3 [15].

A. Transport and relaxation: general aspects

The cage effect is well evidenced by the velocity self-
correlation function Cvv(t) [1], which is shown in Fig.1. Ini-
tially, the decay is well accounted for by Eq.2. Later, a nega-
tive region develops due to backscattering from the cage wall
leading, on average, to the reversal of the velocity of the par-
ticle. A minimum is seen at t ∼ tm = 0.175. Superimposed
to the slower decay faster oscillations are seen. By replacing
the semirigid bond with a rigid one, they largely disappear,
see Fig.1 (inset), so that they are ascribed to bond vibrations.
Nonetheless, some oscillatory components are still present af-
ter the minimum. In atomic liquids, e.g. rubidium, similar
components are due to sound waves that, owing to the low
compressibility, reach wavelengths of a few particle diame-
ters [1].

We define the monomer displacement in a time t as:

∆ri(t) = ri(t)− ri(0) (3)

where ri(t) is the vector position of the i-th monomer at time
t. The mean square displacement (MSD) 〈r2(t)〉 is expressed
as:

〈r2(t)〉 =
〈

1

N

N∑
i=1

‖∆ri(t)‖2
〉

(4)

where brackets denote the ensemble average. In addition to
MSD the incoherent, self part of the intermediate scattering
function (ISF) is also considered:

Fs(q, t) =

〈
1

N

N∑
j=1

eiq·∆rj(t)

〉
(5)

ISF was evaluated at q = qmax, the maximum of the static
structure factor ( 7.29 ≤ qmax ≤ 7.35 ).

Fig.2 shows MSD of the molecular monomers (top) and
ISF (middle) curves of the states of interest. At very short
times (ballistic regime) MSD increases according to 〈r2(t)〉 ∼=
(3kBT/m)t2 and ISF starts to decay. The repeated collisions
slow the displacement of the tagged monomer, as evinced by
the knee of MSD at t ∼ tm = 0.175, i.e. very close to the
minimum of the velocity correlation function, see Fig.1. At
later times a quasi-plateau region, also found in ISF, occurs
when the temperature is lowered. This signals the increased
caging of the particle. Trapping is permanent in the crystalline
state so that neither MSD nor ISF decay. In the other states, an
inflection point is seen at t∗ = 1.023 in the log-log MSD plot,
see Fig.2 (top). t∗ is state-independent in the present model
[15]. The inflection point signals the end of the exploration
of the cage by the trapped particle and the subsequent early
escapes. The average escape time yields the structural relax-
ation time τα, defined by the relation Fs(qmax, τα) = e−1.
For t > τα MSD increases more steeply and finally ends up in
the diffusive regime, whereas ISF decays to zero as a stretched
exponential with stretching parameter β ∼ 0.6.

Fig.2 (bottom) shows that all the states under study (apart
from the crystalline state) comply with the universal scaling
between the fast vibrational dynamics and the slow relax-
ation in glass-forming systems, as expressed by the master
curve between the mean square amplitude of the cage rattling
〈u2〉 ≡ 〈r2(t∗)〉 and the structural relaxation time τα [10, 15–
23].

It is known [15, 100] that the mean square amplitude of
the cage rattling 〈u2〉 scales also the non-gaussian parameter
α2, a measure of the non-gaussian character of the dynam-
ics, and then of its heterogeneous character (α2 vanishes for
gaussian, homogeneous dynamics) [99]. Scaling means that
the maximum of the non-gaussian parameter αmax

2 is a uni-
versal function of the structural relaxation time [15, 100]. On
this basis, given the structural relaxation time τα of the states
under study, we see that they range from states with virtually
no dynamical heterogeneity, αmax

2 ∼ 0.2, up to states with
significant heterogeneity, αmax

2 ∼ 3.4.
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FIG. 3: Quantities of interest to characterize the correlation between
the displacement of the particle (green dot) and the cage shape. The
magenta dot is the centroid of the vertices of the associated Voronoi
polyhedron (VP) at the initial time, Eq.7. The highlighted regions
are limited by planes perpendicular to Ci and passing through either
the initial position of the particle or the centroid.

B. Inside the cage

We now turn our attention on how the cage rattling is af-
fected by the cage shape. We correlate the direction of the
monomer displacement ûi(t) with the direction of the elonga-
tion of the VP surrounding the i-th particle at the initial time
t = 0. Fig.3 visualises the quantities of interest. The direction
of the elongation is defined as [90]:

ûC
i =

Ci

|Ci| (6)

Ci is the position of the centroid, the center of mass of the VP
vertices, with respect to the position of the i-th particle:

Ci =
1

Nv, i

Nv, i∑
j=1

vj
i (7)

where Nv, i and vj
i are the number of vertices and the position

of the VP j-th vertex with respect to the position of the i-th
particle, respectively.

In order to investigate the correlation between the displace-
ment of the trapped particle and the shape of the cage, we
consider the time evolution of two distinct order parameters,
namely the anisotropy of the particle displacement relative to
the centroid with respect to the initial direction of the centroid,
see Fig.3:

〈cos θc(t)〉 =
〈

1

N

N∑
i=1

[
∆ri(t)−Ci

]∣∣∆ri(t)−Ci

∣∣ · [− ûC
i

]〉
(8)

and the anisotropy of the particle displacement with respect to
the initial direction of the centroid [90], see Fig.3:

〈cos θp(t)〉 =
〈

1

N

N∑
i=1

ûi(t) · ûC
i

〉
(9)

Complete isotropy yields 〈cos θi〉 = 0 (i = p, c). Perfect
alignment of ûi(t) with respect to ûC

i yields 〈cos θp〉 = 1
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FIG. 4: Local anisotropies of the cage rattling. Top: 〈cos θc(t)〉,
Eq.8, at different temperatures. The unlabeled inset shows the com-
plete decay. Bottom: 〈cos θp(t)〉, Eq.9. The dots mark the structural
relaxation time τα. The left dashed line marks the minimum of the
velocity correlation function at t = tm, see Fig.1. The right dashed
line marks the time needed by the trapped particle to explore the
cage t∗, see Fig.2. Up to t ∼ 0.65 〈cos θp(t)〉 is nearly temperature-
independent. The maximum of 〈cos θp(t)〉 signals that the particle,
as in atomic systems [90], tends initially to move to the centroid.
The insets labelled as ”Rigid” plot the anisotropies for T = 0.6, 0.9
having replaced the semirigid bond with a rigid one and leaving any
other parameter unchanged. They evidence that the oscillations in
the time window tm � t � t∗ of the main panels are due to the finite
stiffness of the bond.

whereas perfect alignment of
[
∆ri(t) − Ci

]
with respect to

−ûC
i yields 〈cos θc〉 = 1. Furthermore, if the monomer dis-

placement is large with respect to |Ci|, θp(t) � π− θc(t) and
〈cos θp(t)〉 ≈ −〈cos θc(t)〉. The order parameters defined by
Eq.8 and Eq.9 provide complementary information. By re-
ferring to Fig.3, positive values of 〈cos θc(t)〉 signal that the
particle is preferentially located in regions I and II, whereas
positive values of 〈cos θp(t)〉 denote preferential location of
the particle in regions II and III.

Fig.4 (top) shows detailed plots of 〈cos θc(t)〉, Eq.8.
At very short times the displacement ∆ri(t) is small and
〈cos θc(t)〉 ∼ 1. Then, the anisotropy drops in a temperature-
independent way up to tm, the time needed by most particles
to reverse their initial velocity, see Fig.1. At later times the de-
cay slows down and becomes temperature-dependent. The de-
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FIG. 5: Correlation plot of the asphericity and the volume of VPs of
the melt of trimers at T = 1 . No correlation is apparent.

cay stops at about the structural relaxation time τα. At t > τα
a mild increase of 〈cos θc(t)〉 is observed to be followed by a
later decay. The description of the non-monotonous relaxation
of the order parameter in this viscoelastic regime goes beyond
the purposes of the present paper and will be presented else-
where.

Fig.4 (bottom) plots 〈cos θp(t)〉, Eq.9, at different tempera-
tures. At very short times the direction of the particle displace-
ment ûi(t) is almost isotropic and 〈cos θp(t)〉 is small. Later,
the particle approaches the initial position of the centroid of
the VP vertices, 〈cos θp(t)〉 increases and reaches the maxi-
mum at tm, when Cvv(t) is at the minimum. The initial ten-
dency of the trapped particle to move to the centroid has been
reported [11, 90] and is clear indication that initially there is
growing correlation between the local structure and the parti-
cle displacement. However, at later times the correlation de-
creases, up to t ∼ 0.65 in an almost temperature-independent
way. For t � 0.65 the decrease of 〈cos θp(t)〉 is slowed down
and becomes strongly temperature-dependent. The declining
anisotropy 〈cos θp(t)〉, is consistent with our previous finding
that the influence of both the size and the shape of the cage on
the mean square displacement is lost within t∗ ∼ 1 [67, 68].
For times longer than the structural relaxation time the escape
from the cage reduces the order parameter further, and a neg-
ative tail is observed. The tail follows by the approximate re-
lation 〈cos θp(t)〉 ≈ −〈cos θc(t)〉, which holds at long times,
and the positiveness of 〈cos θc(t)〉.

It seems proper to compare the decrease of the two order
parameters in the range tm � t � t∗ where structural relax-
ation is virtually missing [15, 16, 43]. First, by replacing the
semirigid bond with a rigid one, one clarifies that the small os-
cillations which are superimposed to their decay in this time
window are due to the finite stiffness of the bonds, see Fig.4
(insets). One also notices that, differently from 〈cos θc(t)〉,
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FIG. 6: Correlation plot of the surface and the volume of VPs of the
melt of trimers at T = 1 (Pearson correlation coefficient r = 0.973).
The lines are Eq.11 with the indicated values of the asphericity. The
best-fit value of the asphericity (a = 0.404) compares well with the
average asphericity of the VPs (〈a〉 = 0.405).

〈cos θp(t)〉 is largely temperature-independent if t � 0.65,
see Fig.4. This is due to the different character of the two or-
der parameters. The time-dependence of 〈cos θp(t)〉 around
its maximum at tm tracks the bounce of the particle with the
cage wall. This process is nearly temperature-independent,
see Fig.1. Instead, the anisotropy 〈cos θc(t)〉 decreases if the
population of particles, initially located in regions I and II of
Fig.3, displaces appreciably to region III. The same process
affects 〈cos θp(t)〉 less because region III may be reached
from region II also with no change of θp. To reach the region
III the particle initially approaches the centroid of the VP ver-
tices, located close to the voids between the particles marking
the weak spots of the cage. The approach to the centroid, and
then the decay of 〈cos θc(t)〉, is limited by the softness of the
cage [9, 43, 54, 64], which is temperature-dependent. The
elastic response by the cage will be dealt with in Sec.III C 2.

The above discussion suggests that 〈cos θp(t)〉 tracks the
monomers being backscattered by the cage wall, whereas
〈cos θc(t)〉 is more sensitive to the monomers escaping from
the cage. This picture is reinforced by observing the changes
of the two anisotropies around t∗. We remind that at t∗ early
breakouts from the cage start to take place, see Fig.2 and
Sec.III A [15, 16]. 〈cos θp(t)〉 has an inflection point at t∗

which develops in 〈cos θc(t)〉 only at the lowest temperature,
see Fig.4. The accelerated decay of 〈cos θc(t)〉 around t∗

suggests that 〈cos θc(t)〉 is more affected by the monomers
leaving the cage, since they lose correlation with the cage ge-
ometry, whereas 〈cos θp(t)〉 is more sensitive to the trapped
particles which keep on being affected by the cage geome-
try. At low temperature, being the escapes quite rare, the two
anisotropies are more similar.
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C. Cage border

Sec.III B discussed how the cage rattling of the trapped
monomers is affected by the neighbours. Here, we reverse
the point of view and investigate how the neighbours are af-
fected by the collisions of the trapped monomer. To this aim,
we consider the geometry of the cage in terms of the volume
Vi, the surface Si and the asphericity ai of the i-th VP. The
asphericity is defined as:

ai =
S3
i

36πV 2
i

− 1 (10)

It is non-negative and vanishes for a sphere. For the system
under study a ∼ 0.35 − 0.45, namely the VPs are moder-
ately non-spherical (the asphericities of the dodecahedron and
the octahedron are 0.325 and 0.654, respectively ) [67, 68].
Since each VP includes one particle only, the VP volume is a
measure of the local density.

1. Statics: volume-surface correlations

There are no correlations between the asphericity and the
volume. Fig.5 shows a representative example. No correla-
tions are also found between the asphericity and the surface
of the VPs (not shown). Instead, Fig.6 evidences the strong
correlation between the surface and the volume of VPs. It
follows from the good packing and the subsequent relatively
narrow width of the distribution of the asphericity [67, 68]. To
show that we recast Eq.10 as

S =
[
36 π (a+ 1)

]1/3
V 2/3 (11)

Then, we neglect the fluctuations of the asphericity a and treat
it as an adjustable parameter to best-fit Eq. 11 to the correla-
tion plot. The result is superimposed to the numerical data
in Fig.6. It provides a nice fit with best-fit asphericity rather
close to the average asphericity of the VPs of the state un-
der consideration. The plot also shows that the cloud of data
is bounded within the approximate range of the asphericity,
a ∼ 0.35− 0.45, see Fig.5.

2. Dynamics: elastic response

Volume, surface and asphericity of the i-th VP fluctuate
around their average values due to the rearrangement of both
the tagged i-th particle and the surroundings.

To give clear impression of the surface-volume correlations
we plot in Fig.7 a selected time-frame of the fluctuations of
volume, surface and asphericity of the VP surrounding two
specific central and end monomers. The strong correlation of
the volume and the surface is quite apparent. Differently, the
fluctuations of the asphericity has poor resemblance with the
ones of the volume and surface.

To characterize in a quantitative way the fluctuations we
define the correlation function:

Cx(t) =

〈 N∑
i=1

[
xi(t)− 〈〈x〉〉

][
xi(0)− 〈〈x〉〉

]
− δx

N∑
i=1

[
xi(0)− 〈〈x〉〉

]2
− δx

〉

(12)
with x = V, S, a. 〈〈x〉〉 denotes the average of x over all the
N monomers. Eq.12 yields Cx(0) = 1. To ensure that Cx(t)
vanishes at long times we set

δx =
NcNe

N

[
〈〈x〉〉c − 〈〈x〉〉e

]2
(13)

where 〈〈x〉〉c and 〈〈x〉〉e are the average of x restricted to the
Nc central and the Ne end monomers, respectively (Nc +
Ne = N ). Eq.13 is derived in Appendix A.

Fig.8 shows Cx(t) with x = V (top panel), S (middle
panel) and a (bottom panel) at different temperatures. As an-
ticipated, there is strong similarity between CV (t) and CS(t).
Within the time tm needed by most particles to reverse their
initial velocity, a large part of the correlations of the cage ge-
ometry is lost. For t � tm = 0.175, the decay becomes
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elastic response of the local structure.

extremely slow and strongly dependent on the temperature.
This parallels the time dependence of the order parameter
〈cos θc(t)〉, see Fig.4 (top). At long times, the structural re-
laxation erases the residual correlations of the cage geometry
and Cx(τα) � 0.1, x = V, S, a.

We now address the fluctuation correlation in the time win-
dow tm � t � t∗ where both the velocity correlations, Fig.1,
and the order parameters, Fig.4, hint at the elastic response of
the cage to the colliding trapped particle. The insets of Fig.8
focus on this time interval. Correlation oscillations in VP size,
but not in shape, are apparent. The oscillations are still present
if one replaces the semirigid bonds by rigid bonds (see insets
labelled as ”Rigid” in Fig.8), proving that they are not due to
bond vibrations. We interpret the minimum of CV (t) and
CS(t) as due to the deformation of the local structure follow-
ing the disordering collision of the central particle with the
cage, whereas the successive maximum and the later smaller
oscillations reflect the elastic response to recover the origi-
nal arrangement. This sort of collective ”cage ringing” is not
tracked by the asphericity, see Fig.8 (bottom), confirming the

poor correlation between the size and the shape of the cage. It
is worth noting that the elastic effects seen via the VP volume
and surface are small, in that the fluctuations of the VP size
and shape are quite limited in size, as seen by Fig.5 and Fig.6.

D. Beyond the cage border

Sec.III B and Sec.III C investigated the cage rattling and the
effects on the closest neighbours, respectively. Here, we com-
plete the analysis and extend the range of the neighbours. It
will be now shown that in a time about tm = 0.175, needed
by most particles to bounce back from the cage wall (Fig.1),
extended modes involving particles beyond the first shell ap-
pear. The modes have solid-like character since τα 
 1
[15, 16, 43], i.e. they are distinct in nature from the hydrody-
namic modes developed by the drag force of a moving particle
[101]. We divide the discussion in two parts by first describ-
ing the onset of extended displacement correlations for t ≤ t∗,
when the trapped particle completes the cage exploration, and
then their persistence and decay for t > t∗. In particular, in
Sec. III D 1 we will compare the influence of the extended
modes on the moves of the trapped particle in a time t∗ with
the one of the local geometry. Sec.III B noted that the influ-
ence of the cage shape at t∗ is smaller than at tm.

1. Onset of the displacement correlations (t ≤ t∗)

To reveal the modes, we characterize the degree of corre-
lation between the direction of the displacements performed
simultaneously in the same lapse of time t by two particles ini-
tially spaced by rij via the space correlation function [44, 45]:

Cu(r, t) =

〈
1

N

N∑
i=1

ûi(t) ·Ui(r, t)

〉
(14)

with:

Ui(r, t) =
1

N(r)

N∑
j=1
i�=j

ûj(t)δ(r − rij) (15)

where ûi(t) and N(r) are the direction of ∆ri(t), Eq.3, and
the average number of particles initially spaced by r, respec-
tively. If the displacements are perfectly correlated in direc-
tion, one finds Cu(r, t) = 1. Cu(r, t) has some formal sim-
ilarity with 〈cos θp(t)〉, Eq.9, but the two quantities are quite
different:

• 〈cos θp(t)〉 is a measure of the directional correlation
of the displacement performed in a time t by the tagged
particle and the axis ûC

i set by the initial cage geometry.

• Cu(r, t) is a measure of the average directional correla-
tion of the simultaneous displacements performed in a
time t between the tagged particle and each of the sur-
rounding particles at distance r.
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Fig.9 (top) plots the spatial distribution of the correlations
for different times t. It is seen that if the time is shorter than
tm = 0.175, the time needed by most particles to reverse their
initial velocity due to backscattering, the correlations are lim-
ited to the bonded particles at r = rb = b and, weakly, the first
shell (Fig.9, lower panels). For longer times, the correlation
grows in both magnitude and spatial extension with charac-
teristic peaks corresponding to the different neighbour shells
[44, 45]. These spatial directional correlations have been also
observed in simulations on hard spheres and hard disks [102]
and experiments on colloids [103]. Fig.9 (lower panels) shows
that the onset of the correlations of both the third and the
fourth shells is delayed of about 0.4 time units due to the
finite propagation speed of the perturbation. It is also seen
that the growth of the correlation levels off at times ∼ t∗ and
is temperature-independent, whereas their magnitude weakly
decreases with the temperature. The limited influence of the
temperature mirrors the one of the velocity correlation loss in
the intermediate range tm � t � t∗.

Comparing 〈cos θp(t)〉, Fig.4, and Cu(r, t), Fig.9, leads to
a clearer picture of how the particle in the cage progresses
between tm and t∗. Before tm the cage geometry has in-
creasing, even if weak, influence, see Fig.4. After tm, the
displacement-displacement correlations increase and extend
in space, Fig.9, with parallel decrease of the influence of the
cage geometry, Fig.4. At the completion of the cage explo-
ration at t∗, the anisotropy of the particle displacement due to
local order is small and declining, whereas the displacement-
displacement correlations reach their maximum. The pic-
ture provides an interpretation of the puzzling finding that
for a given state of a liquid of linear chains (trimers or de-
camers), the end and the central monomers, which have dif-
ferent distributions of the cage size and shape, have equal
〈r2(t∗)〉 ≡ 〈u2〉 [68]. On one hand, that finding exposes the
minor role of the cage geometry. On the other hand, it is well
explained by the extended displacement-displacement corre-
lations evidenced in Fig.9, overriding the different local order
of the end and the central monomers. The leading role of
the extended displacement-displacement correlations in set-
ting the monomer moves on the time scale t∗ is proven by
the fact that physical states with identical spatial distributions
of the displacement-displacement correlations exhibit equal
mean square amplitude of the cage rattling 〈r2(t∗)〉 ≡ 〈u2〉
[44, 45]. The coupling between the rattling process and ex-
tended modes has been indicated [14, 31, 37, 38].

Displacement correlations have been evidenced in an exper-
imental study of a dense colloidal suspension [103]. Contact
with our simulations is allowed by splitting the displacement
direction in the transverse and the longitudinal components
with respect to the direction of the separation vector:

uL
m = ûm · r̂ij (16)

uT
m = ûm − uL

mr̂ij (17)

where m = i, j and r̂ij ≡ (rj − ri)/rij refers to the initial
configuration before the displacement occurs. Let us define
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the related correlation functions as:

CL(r, t) =

〈
1

N N(r)

N∑
i,j=1
i�=j

uL
i (t) · uL

j (t)δ(r − rij)

〉
(18)

CT (r, t) =

〈
1

N N(r)

N∑
i,j=1
i�=j

uT
i (t) · uT

j (t)δ(r − rij)

〉
(19)

The longitudinal and the transverse components are related to
the total correlation function by:

Cu(r, t) = CL(r, t) + CT (r, t). (20)

Fig.10 plots CL(r, t) (top) and CT (r, t) (middle). The lon-
gitudinal correlations increase faster than the transverse ones
with increasing time t. This is seen in Fig.10 (bottom) plotting
for selected positions the growth function:

C̃X(r, t) =
CX(r, t)− CX(r, 0.1)

CX(r, t∗)
, X ∈ {L, T } (21)
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The longitudinal correlations have different spatial distribu-
tion with respect to the transverse ones. Fig.10 proves that the
bonded particles ( r = 0.97) are correlated mostly via their
longitudinal displacements. Fig.10 also shows that the oscilla-
tory character of the total displacement correlation function is
largely due to the longitudinal component, whereas the trans-
verse component is much less sensitive to the radial density
distribution. Other salient features are the negative minimum
of CL(r, t) at r � 1.4, corresponding to the first minimum
of g(r), and the pronounced maximum of CT (r, t) close to
the same position. All these hallmarks have been observed in
an experimental study of a dense colloidal suspension [103].
This suggests that the key features of the displacement corre-
lations are not strictly affected by the molecular connectivity.

Even if the full interpretation of the spatial pattern of
CL(r, t) and CT (r, t) is deferred to future work, some prelim-
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verse (bottom), Eq.19, components of the displacements of the cen-
tral particle and the surrounding particles at distance r for different
times t ≥ t∗ = 1.023 and T = 1. At the selected temperature
τα = 3 and the average molecular reorientation time τee = 126
[16].

inary remarks may be offered. The negative dip of CL(r, t)
at r � 1.4 close to the maximum of CT (r, t) is consistent
with particles approaching , or receding from, each other in a
compression/dilation motion while transversely displacing the
same way. The role of quasi-linear arrangements of particles
was suggested in regard to the oscillatory behaviour of the lon-
gitudinal correlation of the displacements [103]. From this re-
spect, evidence of bond-bond alignment, i.e. three monomers
in a row, is reported for the molecular liquid under study
[91]. Moreover, in densely packed colloids it is known that
straight paths of �SP particles are exponentially distributed
as ∼ exp[−�SP /�̄SP ] with �̄SP ∼ 0.73, 0.87 depending on
the sample preparation [104]. Interestingly, the height of the
peaks of Cu(r, t), due to the longitudinal component, decay
exponentially with distance as ∼ exp[−r/ξ] with 0.7 ≤ ξ ≤ 1
[44, 45], suggesting a connection with the distribution of the
length of aligned particles.

We briefly discuss the weak negative tail observed in
CT (r, t) at large r, Fig.10 (middle), affecting Cu(r, t), Fig.9.
The tail disappears by increasing the size of the system (not
shown) and is due to the momentum conservation requiring
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that, with fixed center of mass of the system, a displacement
of one particle induces correlated counter-displacements on
the other ones. The size effect does not affect the longitudinal
displacements when averaged over the sphere with radius r,
see Fig.10 (top). This may be understood by reminding that
the direction of the displacement of the central particle sets
the sphere axis. Then, the larger size effect on the transverse
displacement follows from the larger weight of the equato-
rial belt in the average with respect to the polar zones, so that
the induced counter-displacements contribute negative terms
to CT (r, t) and negligibly to the average of CL(r, t).

2. Persistence and decay of the displacement correlations (t > t∗)

What happens at the displacement correlations for longer
sampling times t > t∗ = 1.023 ? We already know that small
changes are observed up to t = τα even for sluggish states,
thus creating a plateau region on increasing t [44, 45]. In
this range the presence of quasi-static collective elastic fluc-
tuations [43] set the magnitude of the direction correlations.
A view of the displacement correlations in space for t > t∗

is given in Fig.11. The complete view of the growth, up to
t ∼ t∗, the plateau region up to t ∼ τα, and the following de-
cay is presented in Fig.12. Note that, since the decay is quite
slow, in order to visualise all the time range, a state with short
structural relaxation (τα = 3) is considered, thus limiting the
persistence of the maximum longitudinal and transverse cor-
relations. Fig.11 shows that the spatial modulation of both the
longitudinal and the transverse correlations are averaged for
t > τα. At longer sampling times the magnitude of the cor-
relations decreases further. From this respect, an important
time scale is the average molecular reorientation time τee, de-
fined as Cee(τee) = 1/e where Cee(t) is the end-to-end time

correlation function [16]. The correlations vanish for r � 2
and t 
 τee. Nonetheless, some permanent correlations are
left at shorter distances. In particular, residual correlations
due to the intrachain connectivity are present for 1 � r � 2,
together with large correlations between bonded monomers at
r � 0.97. Thus, we see that the connectivity of the trimer does
not affect the correlation of the displacements of monomers
spaced of more than two diameters.

IV. CONCLUSIONS

The present paper investigates by MD simulations of a
dense molecular liquid the key aspects driving the moves of
the monomers in the cage of the surrounding ones. The aim is
clarifying if the displacements are driven by the local geome-
try of the cage or the solid-like extended modes excited by the
monomer-monomer collisions. The main motivations reside
in both contributing to the intense ongoing research on the re-
lation between the vibrational dynamics and the relaxation in
glassfoming systems, and improving our microscopic under-
standing of the universal correlation between the relaxation
and the mean-square amplitude of the rattling in the cage,
〈u2〉, a quantity related to the Debye-Waller factor.

To discriminate between the roles of the local geometry
and the collective extended modes in the single-particle vi-
brational dynamics, the cage rattling is examined on differ-
ent length scales. First, the anisotropy of the rattling process
due to local order, i.e. the arrangement of the first shell, is
characterized by two order parameters sensing the monomers
succeeding or failing to escape from the cage. Then, the col-
lective response of the surroundings excited by the monomer-
monomer collisions is considered. The collective response is
initially restricted to the nearest neighbours of the colliding
particle by investigating statics and fluctuations of the VP sur-
face, volume and asphericity. Then, the long-range excitation
of the farthest neighbours is scrutinised by searching spatially-
extended correlations between the simultaneous fast displace-
ments of the caged particle and the surroundings.

Two characteristic times are found: tm = 0.175 and t∗ ∼ 1.
The former is the time when the velocity correlation function
reaches the minimum. The latter is the time needed by the
trapped particle to explore the cage with mean square rattling
amplitude 〈u2〉. One finds that the anisotropy of the random
walk driven by the local order develops up tm, then decreases
and becomes small at t∗ ∼ 1. On the other hand, between tm
and t∗ the monomer-monomer collisions excite both the elas-
tic response of the cage and the long-range collective modes
of the surroundings in parallel to the decreasing role of the
local anisotropies. The longitudinal component of the long-
range collective modes has stronger spatial modulation than
the transverse one with wavelength of about the particle di-
ameter, in close resemblance with experimental findings on
colloids.

All in all, we conclude that the monomer dynamics at t∗,
and then 〈u2〉, is largely affected by solid-like extended modes
and not the local geometry, in harmony with previous findings
[43–45, 64, 67, 68], in particular reporting strong, universal
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correlations with the elasticity [43, 64], and poor correlation
with the size and the shape of the cage [67, 68]. On a more
general ground, our study suggests, in close contact with oth-
ers [14, 31, 37, 38], that the link between the fast dynamics
and the slow relaxation is rooted in the presence of modes ex-
tending farther than the first shell.
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Appendix A: Derivation of δx, Eq.13

Let us define the auxiliary quantity:

X(t) =

N∑
i=1

[
xi(t)− 〈〈x〉〉

][
xi(0)− 〈〈x〉〉

]
(A1)

=

Nc∑
j=1

[(
xj(t)− 〈〈x〉〉)(xj(0)− 〈〈x〉〉)] (A2)

+

Ne∑
h=1

[(
xh(t)− 〈〈x〉〉)(xh(0)− 〈〈x〉〉)]

〈〈x〉〉 denotes the average of x over all the N monomers. Let
us define 〈〈x〉〉c and 〈〈x〉〉e as the averages of x restricted to
the Nc central and the Ne end monomers, respectively (Nc +
Ne = N ). The average 〈〈x〉〉 is related to 〈〈x〉〉c and 〈〈x〉〉e
by the equation:

〈〈x〉〉 = Nc

N
〈〈x〉〉c + Ne

N
〈〈x〉〉e (A3)

In Eq.A2 we add and subtract 〈〈x〉〉c to xj(t), and do the same
to xj(0). Also, we add and subtract 〈〈x〉〉e to xh(t) and do
the same to xh(0). If t → ∞ the fluctuations of (xj(t) −
〈〈x〉〉c) and the fluctuations of (xj(0)−〈〈x〉〉c) have both zero
average and are uncorrelated. Analogously for the fluctuations
of (xh(t) − 〈〈x〉〉e) and the fluctuations of (xh(0)− 〈〈x〉〉e).
Then, we yield

δx ≡ lim
t→∞X(t) (A4)

= Nc

[
〈〈x〉〉c − 〈〈x〉〉

]2
+Ne

[
〈〈x〉〉e − 〈〈x〉〉

]2
(A5)

Plugging Eq.A3 into Eq.A5 yields :

δx = Nc

[
Ne

N
〈〈x〉〉c − Ne

N
〈〈x〉〉e

]2
+

+ Ne

[
Nc

N
〈〈x〉〉c − Nc

N
〈〈x〉〉e

]2
=

NcNe

N

[
〈〈x〉〉c − 〈〈x〉〉e

]2
(A6)

Eq.A6 coincides with Eq.13.

Appendix B: On the presence of a crystalline fraction

Since the model with rigid bonds exhibits weak crystalliza-
tion resistance, we have paid particular attention to detect any
crystallization signature. From this respect, we have moni-
tored some key quantities under equilibration and production
of both the rigid and semirigid systems. We summarize the
results:

i) the radial distribution function compares rather well with
the one of atomic liquids, apart from the extra-peak due to the
bonded monomers.

ii) the pressure and the configurational energy exhibit nei-
ther drops nor even slow decreases within 1 %, during the
runs.

iii) no global order and even microcrystalline domains are
seen by visual inspection of the samples. Note that, if the
sample crystallizes, ordering is strikingly visible, e.g. see Fig.
10 of ref.[91].

iv) no order revealed by Steinhard global order parameters
[91].

v) the mean square displacement always increases steadily
with time. In a crystalline sample it levels off, see Fig.2 (top).

vi) full decorrelation of the incoherent part of the interme-
diate scattering function in both equilibration and production
runs in all cases except the production runs of the system with
rigid bonds at T = 0.6. In the presence of a solid-like frac-
tion the incoherent part of the intermediate scattering function
decays to a finite plateau at long times, see Fig.2 (middle).

It is worth noting that the crystalline state obtained by
spontaneous crystallization of an equilibrated liquid made of
trimers with rigid bonds at T = 0.7 considered in Fig.2 does
not pass any of the above tests.

The tests iv), v) and vi) are now discussed in detail.

a. Test iv): absence of long-range order

To characterize the degree of global positional ordering of
our samples we resort to the metric Ql,global [91, 105]. To this
aim, one considers in a given coordinate system the polar and
azimuthal angles θ(rij) and φ(rij) of the vector rij joining
the i-th central monomer with the j-th one belonging to the
neighbors within a preset cutoff distance r∗ = 1.2 σ∗ � 1.35
[105]. The vector rij is usually referred to as a ”bond” and
has not to be confused with the actual chemical bonds of the
polymeric chain!

To define a global measure of the order in the system, one
calculates the quantity [105]:

Q̄global
lm =

1

Nb

N∑
i=1

nb(i)∑
j=1

Ylm

[
θ(rij), φ(rij)

]
(B1)

where nb(i) is the number of bonds of i-th particle, N is the
total number of particles in the system, Ylm denotes a spheri-
cal harmonic and Nb is the total number of bonds i.e:

Nb =

N∑
i=1

nb(i) (B2)
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FIG. 13: Global order parameters Q6,global and Q4,global. The crys-
tal state is the same considered in Fig.2 and is the only state exhibit-
ing global order.

The global orientational order parameter Ql,global is defined
by the rotationally invariant combination:

Ql,global =

〈[
4π

(2l + 1)

l∑
m=−l

|Q̄global
lm |2

]1/2〉
(B3)

In the absence of global ordering Ql,global = 0 in systems
with infinite size. In the presence of long-range crystalline
order Ql,global �= 0 , e.g. Q6,global ∼ 0.5 [91, 105], with exact
values depending on the kind of order. Fig.13 shows Q6,global

vs. Q4,global for all the states under investigation. They are
compared with one typical crystalline state of the system with
rigid bonds. Other crystalline states yield Q4,global-Q6,global

pairs within the size of the diamond. The non-ideal values of
the order parameters of the crystalline state indicate imperfect
long-range ordering [91, 105]. We were unable to crystallize
the system with semirigid bonds which, however, having b =
brigid, is anticipated to have order parameters similar to the
rigid bond case. Fig.13 shows that only the crystalline state
has global, long-range order.

b. Tests v) and vi): absence of cristalline fractions

Fig.2 shows that if the sample crystallizes the changes of
both MSD and ISF stop. In principle, the MSD increase in

time may be also seen if supercooled liquids and crystalline
fraction coexist [39]. In this heterogeneous case the overall
MSD is largely contributed by the mobile phase, since the
MSD of the arrested phase levels off rapidly. However, ISF
would reach a plateau at long times due to the frozen phase
unable to lose the position correlation tracked by ISF. Fig.2
shows that ISF vanishes at long times in all states, except one
to be discussed below, ruling out the presence of polycrys-
tallinity at the end of the production runs, i.e. no crystalline
regions formed during the equilibration and the subsequent
production runs. The ISF of the system with rigid bonds at
T = 0.6 is still non-zero at the end of the production runs (due
to our decision to stop the simulation soon after τα). To get a
rough estimate of the maximum crystalline fraction φmax

c , we
identify φmax

c with the ratio of the residual ISF height, ISFr,
with the ISF plateau of the crystal state, ISFc, (weakly de-
pendent on T). We get φc ≤ φmax

c = ISFr/ISFc � 0.09.
We offer arguments to conclude that the possible crystalline
fraction of the system with rigid bonds at T = 0.6, if present,
is much less than the upper limit φmax

c , and, in any case, plays
negligible role. In fact:
1) the system with rigid bonds at T = 0.6 passes the tests i),
ii), iii), iv), v);
2) the same system at T = 0.9, where no crystalline fraction
is present, provides quite close, or even coincident, results to
the ones gathered at T = 0.6, see the insets of Fig.1, Fig.4,
Fig.8. Note also that the results of the systems with rigid and
non-rigid bonds are also quite close, see Fig.1 and Fig.8;
3) the cage rattling amplitude and the structural relaxation of
the system with rigid bonds at T = 0.6 fulfill the universal
scaling between the fast vibrational dynamics and the slow
relaxation in glass-forming systems, see Fig.2 (bottom) and
Sec.III A [10, 15–23]. The universal scaling is anticipated to
fail in semicrystalline materials where the frozen component
has finite rattling amplitude but no relaxation.
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