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Abstract In the last years, rule-based systems have been widely employed
in several different application domains. The performance of these systems is
strongly affected by the process of information granulation, which defines in
terms of specific information granules such as sets, fuzzy sets and rough sets,
the labels used in the rules. Generally, information granules are either provided
by an expert, when possible, or extracted from the available data. In the frame-
work of rule-based classifiers, we investigate the importance of determining an
effective information granulation from data, preserving the comprehensibility
of the granules. We show how the accuracies of rule-based classifiers can be
increased by learning number and parameters of the granules, which partition
the involved variables. To perform this analysis, we exploit a multi-objective
evolutionary approach to the classifier generation we have recently proposed.
We discuss different levels of information granulation optimization employing
both the learning of the number of granules per variable and the tuning of
each granule during the evolutionary process. We show and discuss the results
obtained on several classification benchmark datasets by using fuzzy sets and
intervals as types of information granules.
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1 Introduction

In all activities involving knowledge representation, reasoning and decision-
making, people typically express themselves by resorting to some generic and
conceptually meaningful entities, which are called information granules [1, 2].
The meaning and purpose of information granulation depend on the specific
application domain. For example, granulation may simply refer to variable
quantization. On the other hand, granules may correspond to data clusters,
or to modules of a software design, etc. Granules may, in turn, consist of finer
granules based, e.g., on similarity and functionality criteria.

Various formalisms and processing platforms for information granulation
exist, including sets (in particular, intervals [3]), rough sets [4], fuzzy sets [5],
shadowed sets [6], etc. The choice of a suitable formalism is basically problem-
dependent. Further, granules can be directly specified by a human expert or
derived automatically from data.

The term Granular Computing (GC) is often used to refer to a common
conceptual and algorithmic platform for granular information processing. GC
can be seen as a general framework embracing all methodologies and tech-
niques that make use of information granules in problem solving [7, 8].

In this paper, we will consider granular rule-based classifiers (GRBCs),
i.e., rule-based systems aimed at performing classification and consisting of
rules whose antecedent part includes information granules. In particular, we
are interested in granules that form a partition of the universe of the variables
involved in the rules. To this aim, we take into account two formalisms for
representing information granules: sets (in particular, numeric intervals [3])
and fuzzy sets [1]. While a set (interval) realizes an information granule by
allowing each element of the universe of discourse either to belong or not
to belong to that granule, fuzzy sets generalize this notion by allowing any
number in the real unit interval to represent the membership degree of an
element to the information granule.

A granular rule-based system basically includes a rule base (RB), a database
(DB) containing the definition of the granules used in the RB, and an inference
engine. RB and DB comprise the knowledge base of the rule-based system. Of
course, the input-output mapping performed by the granular rule-based sys-
tem relies on the specific formal frameworks in which the various types of
information granules are defined and processed.

The rules can be generated either by encoding an expert’s knowledge or
automatically from data, typically exploiting a set of training samples consist-
ing of input-target pairs. Once you choose the granulation type, the automatic
generation of rules should be guided by a suitable trade-off between accuracy
and rule interpretability so as to avoid, e.g., a too high number of rules and
hardly comprehensible partitions of the involved variables. To this aim, multi-
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objective evolutionary algorithms can be profitably exploited. In particular,
when fuzzy sets are used as information granules, the systems resulting from
multi-objective evolutionary optimization are typically referred to as multi-
objective evolutionary fuzzy systems (MOEFSs) in the literature [9, 10].

Several papers, mainly related to MOEFSs, adopt multi-objective evolu-
tionary algorithms for rule selection [11] (e.g., from an initial RB heuristically
generated) or rule learning [12], DB tuning [13], rule learning/selection to-
gether with DB learning (in particular, partition granularity and membership
function parameters)[14, 15, 16].

In this paper, within the framework of GRBCs, we will show how gran-
ulation tuning (i.e., tuning of the partitions) and granulation learning (i.e.,
learning of the most suitable number of information granules), used either
separately or jointly, can sensibly influence performance.

More precisely, we will start from uniform partitions of the involved vari-
ables. Each of these partitions consists of equally sized information granules,
whose number is chosen based on heuristic considerations. In particular, in
case of intervals and fuzzy sets, we adopt, respectively, partitions consisting of
consecutive, non-intersecting intervals, and overlapping triangular fuzzy sets.

In this context we will exploit rule learning from data. We will use the
performance obtained by the developed rule-based systems on classification
benchmark datasets as a quantity of reference against which we will assess the
improved results achieved by equipping the rule-based systems with granula-
tion tuning and/or granulation learning.

To this aim, on the one hand, starting from fixed uniform initial partitions
of the variables, we will perform, besides rule learning, partition tuning. The
meaning of partition tuning depends, of course, on the specific granulation tool
adopted. E.g., in the case of intervals, partition tuning consists in suitably
moving the endpoints, whereas, in the case of fuzzy sets, partition tuning
concerns the determination of the position of fuzzy sets by identifying the
values of the parameters of the corresponding membership functions.

On the other hand, when dealing with uniform partitions, we may be in-
terested in determining the suitable number of elements of each partition:
thus, we will learn, besides the rules, the number of elements of the partitions
(without performing any tuning). Finally, we will perform concurrently rule
learning, learning of the number of elements making the partitions, and tuning
of the partitions.

We will show that the introduction of tuning and learning of information
granulation helps to improve performance in all the considered cases.

From an operation point of view we will approach the generation of the
GRBCs, including the number and the position of the granules, from data
through a multi-objective evolutionary process, considering accuracy and in-
terpretability as the objectives to be optimized. At the end of the optimization
process, the decision maker will just have to choose the system representing the
best trade-off between the considered objectives for the particular application.

Finally, we present and discuss the results obtained by applying the gen-
erated GRBCs to twenty-four well-known classification benchmark datasets.
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In particular, we show how granulation tuning and learning affect the accu-
racy and the interpretability of the solutions generated by the multi-objective
evolutionary optimization process.

The paper is organized as follows. Section 2 introduces the GRBCs and
discusses their interpretability. Section 3 describes the main features of multi-
objective evolutionary granular rule-based classifiers, which are simply called
multi-objective granular classifiers (MOGCs) from now on, such as chromo-
some coding, mating operators, objective functions and multi-objective evolu-
tionary algorithm. In Section 4, we discuss experimental results obtained by
applying MOGCs to classification problems. Finally, Section 5 draws conclu-
sions.

2 Rule-Based Classifiers

Let X = {Xy,...,XF} be the set of input variables and Xp,1 be the output
variable. Let Uy, with f = 1,..., F', be the universe of the " input variable
Xy Let Pr={Ay1,..., A1, } be a partition of variable X consisting of T’
information granules. In classification problems, the output variable Xp; is
a categorical variable assuming values in the set I' of K possible classes I' =

{C1,...,Cr}.Let {(x1,2F41,1),---, (XN, Trt+1,n)} be atraining set composed
of N input-output pairs, with x; = [z;1..., 2, 0] € RF, t = 1,...,N and
Tr41,t € I.

With the aim of determining the class of a given input vector, we adopt
an RB composed of M rules expressed as:

R, :IF X,is Ay ;, , AND...AND X, is A;; , AND...
...AND XF is AF,jm,F THEN XF+1 is ijUJZ'th RWm (1)

where Cj,, is the class label associated with the m!* rule, and RW,, is the
rule weight, i.e., a certainty degree of the classification in the class Cj, for a
pattern belonging to the subspace delimited by the antecedent of the rule R,,.

In this paper, we consider only sets (intervals) and fuzzy sets as informa-
tion granule types. A set A defined on a universe of discourse U is typically
described by a characteristic function A(z) : U — {0,1}: the value 1 (respec-
tively, 0) means that the element belongs (does not belong) to the information
granule represented by the set. The characteristic function is also used to define
the three fundamental set operations, namely, union, intersection and comple-
ment. A particular type of sets are intervals, for which both set-theoretic and
algebraic operations are defined [17, 3].

The classical notion of set (or crisp set) can be extended by introducing
fuzzy sets. A fuzzy set A defined on a universe of discourse U is characterized
by a membership function A(z) : U — [0, 1] which associates with each element
Z of U a number A(%) in the interval [0,1]: A(Z) represents the membership
degree of & in A [18]. The support and the core of A are the crisp subsets
of A with, respectively, nonzero membership degrees and membership degrees
equal to 1.
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Though different types of membership functions, such as Gaussian, trian-
gular and trapezoidal, can be used for characterizing fuzzy sets, for the sake
of simplicity, we will consider triangular fuzzy sets, which are identified by the
tuples (a, b, ¢), where a and ¢ correspond to the left and right extremes of the
support, and b to the core. Formally, a triangular membership function can be
defined as follows:

b—a
Alz) =4 &F b<z<c (2)
0 otherwise.

A variable whose values are linguistic terms is called linguistic variable
[18]. A linguistic variable L is characterized by a term set T'(L), with each
term labelling an information granule defined on universe U. The set of terms
P ={A1,..., Ajpp)}, where | - | is the cardinality, constitutes a partition of
the universe U.

Usually, a purposely-defined granule Ao (f = 1,...,F) is considered for
all the F' input variables. This granule, which represents the “don’t care”
condition, is defined by a characteristic/membership function equal to 1 on
the overall universe. The term Ao allows generating rules that contain only
a subset of the input variables [19].

Given an input pattern * € R, the strength of activation (matching degree
of the rule with the input) of the rule R,, is computed as:

wn (%) = [ Aty (@p), (3)
f=1

where Ay ;. (Xy) is the characteristic/membership function associated with
the granule Ay ; .. For the sake of simplicity, in the formula, we have only
considered the product as t-norm for implementing the logical conjunction.

The estimated output class C is obtained by first calculating the associa-
tion degree h,,(%X) with class C;, for each rule R,,, and then by applying a
reasoning method so as to take into account all the rules that constitute the
classifier.

The association degree h,,(X) is computed as:

i (X) = Wy (X) - RW,,. (4)

In this paper, we adopt as rule weight the certainty factor C'F;, defined as
[20, 19]:

Extecjm wm(Xt)

CF,, =
Sy Win ()

(5)
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The reasoning method uses the information from the RB to determine the
class label for a given input pattern. We adopt the mazimum matching as
reasoning method: an input pattern is classified into the class corresponding
to the rule with the maximum association degree calculated for the pattern.
In case of tie, the pattern is classified into the class associated with the most
specific rule.

3 Multi-objective Evolutionary Granular Rule-based Systems

The adequate granulation of the input variables affects the accuracy of the
rule-based system, but also its interpretability. Accuracy is typically expressed
in terms of classification rate. As regards interpretability, it is quite difficult
to find a universally accepted index for interpretability assessment since it
is a rather subjective and application-dependent concept. Thus, researchers
have focused their attention on some factors, which influence interpretability,
and on some constraints that have to be satisfied for these factors (see, e.g.,
[21, 22]). Various semantic and syntactic interpretability issues regarding both
the RB and the DB have been taken into account mainly in the framework of
fuzzy rule-based systems (see, e.g. [23, 24, 25]).

Recently, the most relevant measures and strategies exploited to design
interpretable fuzzy rule-based systems have been reviewed in [26]. Here, a
taxonomy of the interpretability measures has been proposed by considering
two different dimensions, namely semantics and complexity, at RB and DB
levels. In particular, complexity at RB level is expressed in terms of number
of rules, total rule length (TRL) and average rule length, while complexity
at DB level is determined by the number of attributes and the number of
granules. On the other hand, the semantic dimension, when considered at the
RB level, concerns aspects like consistency of rules, number of rules fired at
the same time, and transparency of the structure, while, at DB level, concepts
like coverage of the universes, normalization of the functions characterizing
the granules, distinguishability and order of granules are taken into account.
In this paper, we have used just a measure of RB complexity, namely TRL.

Accuracy and interpretability are objectives in competition with each other:
an increase in the former corresponds typically to a decrease in the latter. The
best trade-off between the two objectives generally depends on the application
context and cannot be fixed a-priori. Thus, the generation of GRBCs from
data taking both the objectives into consideration is a typical multi-objective
optimization problem, which can be tackled by using multi-objective evolu-
tionary algorithms (MOEAs). The output of the MOEA is a set of rule-based
systems with different trade-offs between accuracy and interpretability: the
user can decide for the best solution on the basis of the specific application
context.

During the evolutionary process we focus on learning data and rule bases.
We generalize to generic information granules the approaches we proposed in
[15, 16] for fuzzy sets and regression problems. As regards data base learn-
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ing, we aim to learn both the number and the parameters of the information
granules. According to psychologists, to preserve interpretability, the number
of granules, expressed as linguistic terms, per variable should be 7 + 2 due to
a limit of human information processing capability [27]. Thus, we can fix an
upper bound T,4; for the number of granules. T;,,. is a user-defined param-
eter which, for specific application domains, might be lower, but should never
be higher than 9 for preserving interpretability.

For each variable Xy, we define initial partitions with the maximum possi-
ble number T,,,, of granules. These partitions can be provided by an expert,
when possible, or can be generated uniformly. These partitions are denoted
as virtual partitions in the following [15, 16]. During the evolutionary process,
rule generation and granule parameter tuning are performed on these virtual
partitions. The actual granularity is used only in the computation of the objec-
tives. In practice, we generate RBs, denoted as wirtual RBs, and tune granule
parameters by using virtual partitions, but assess their quality using each time
different “lens” depending on the actual number of granules used to partition
the single variables. Thus, we do not worry about the actual number of gran-
ules in applying crossover and mutation operators. Obviously, to compute the
fitness we have to transform the virtual GRBC into the actual GRBC and this
process requires to define appropriate mapping strategies, both for the RB and
for the granule parameters.

3.1 RB mapping strategy

To map the virtual RB defined on variables partitioned with T,,, granules
into a concrete RB defined on variables partitioned with Ty granules, we adopt
the following simple mapping strategy proposed in [15, 16]. Let Xy is A F.ho
h € [1,Taz), be a generic proposition defined in a rule of the virtual RB.
Then, the proposition will be mapped to Xy is Af s, with s € [1 Ty], where
A t,s is the granule most similar to A #,n among the Ty granules A #,n defined
on Xy. The definition of similarity depends on the specific type of granules
considered in the rule-based system.

In the case of fuzzy sets, we can trivially consider as similarity measure the
distance between the centers of the cores of the two fuzzy sets. If there are two
fuzzy sets in the partition with centers of the cores at the same distance from
the center of the core of Ay}, we choose randomly one of the two fuzzy sets.
In the case of intervals, similarly to the fuzzy case, we consider as similarity
measure the distance between the centers of the two intervals. Since during
the evolutionary process endpoints are constrained to vary within a pre-fixed
range, this measure, although quite coarse, can be considered adequate.

Note that different rules of the virtual RB can be mapped to equal rules
in the concrete RB. This occurs because distinct granules defined on the par-
titions used in the virtual RB can be mapped to the same granule defined on
the partitions used in the concrete RB. In the case of equal rules, only one of
these rules is considered in the concrete RB. The original different rules are,
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however, maintained in the virtual RB. Indeed, when the virtual RB will be
interpreted by using different “lens”, all these rules can again be meaningful
and contribute to increase the accuracy of the granular rule-based system.
Thus, the concept of virtual RB allows us to explore the search space and
concurrently exploit the optimal solutions achieved during the evolutionary
process.

3.2 Granule parameter mapping strategy

As regards the granule parameter tuning, we approach the problem by using a
piecewise linear transformation [28, 29, 15]. We start from an initial partition
of the input variables and tune the parameters of the granules, which compose

the partition, by applying this transformation. Let 13f = {A:lf,l, .. .,gﬁTf}
and Py = {Af)l, .. .,AﬁTf} be the initial and the transformed partitions,

respectively. In the following, we assume that the universes U + and Uy of the
two partitions are identical. Further, we consider each variable normalized in
[0, 1].

Let t(zy) : Uy — ﬁf be the piecewise linear transformation. We have that
Agj(xp) = Ag;(t(zs)) = As; (F5), where A;; and Aj; are two generic
granules from the initial and transformed partitions, respectively. As observed
in [29], the transformation must be non-decreasing. We define the piecewise
linear transformation by considering one representative for each granule. In
the case of fuzzy sets, we assume that the representative coincides with the
center of the core. In the case of intervals, it corresponds to the center of
the interval. The representatives determine the change of slopes of the piece-
wise linear transformation ¢(zy) for each variable Xy. Let bf1,...,bs 7, and

by, .--,by 1, be the representatives of nyl, ceey Ef;pf and Ay 1,...,Ar1;, re-
spectively. Transformation ¢(z ) is defined as:

t(xy) = W (xp —byj-1) + by 1 (6)
1id fi—1
with bf7j_1 S Xf S bﬁj.

Once defined transformation ¢(xy), all the parameters which define the
granules are transformed using t(zs). As an example, we consider triangular
fuzzy sets as granules. Further, we assume that the initial partition is a uniform
partition (see Fig. 1). Thus, by, and by r, coincide with the extremes of the
universe Uy of Xy. It follows that t(xs) depends on Ty — 2 parameters, that
is, t ((xf; byoy...s bf,Tf,l)) [15]. Once fixed by, ...,bs 7,1, the partition Py
can be obtained simply by transforming the three points (ay , by ;, &f.;), which
describe the generic fuzzy set A\,f’j’ into (ay,;,bf,cs;) applying t=1(Z¢). In
those regions where ¢(xf) has a high value of the derivative (high slope of the
lines), the fuzzy sets are narrower; otherwise, the fuzzy sets Ay ; are wider. We
define the piecewise linear transformation on the maximum granularity T,q, -
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A/.! Ay Aps A/A Ass Ass A

Fig. 1 An example of piecewise linear transformation

In the case of intervals, we adopt a similar strategy. Each interval Ay ;
is defined by its endpoints [af ;,cy ;]. For similarity to the fuzzy case, we
assume that by 1 and by 7, coincide with the extremes of the universe Uy of X .
The partition Py can be obtained by simply transforming the two endpoints
(@y,5,¢5;), which describe the generic interval ZM, into (ay j,cyr ;) applying
tH(Zy).

When we reduce the granularity, in order to maintain the original shape
of the granules, we apply ¢t~ !(Zy) for j = 2,...,Ty — 1, where Ty > 3 is
the actual granularity, only to the parameters which describe the granule. In
the case of fuzzy sets, we apply the transformation only to the three points
(@y,j,bs;,¢s5), which describe the generic fuzzy set Ay ;. Fig. 2 shows an
example of this transformation for granularity 7y = 5 by using the piecewise
linear transformation in Fig. 1, defined with granularity T},., = 7. In the case
of intervals, we apply the transformation only to the two endpoints (ay,;, ¢y,;),
which describe the generic interval A £

3.3 Chromosome coding

As shown in Fig. 3, each solution is codified by a chromosome C' composed of
three parts (Cgr, Cg, Cr), which define the rule base, the number of granules,
and the positions of the representatives of the granules in the transformed
space, respectively.

In particular, Cr contains, for each rule R,,, the index jy, ¢ of the an-
tecedent, for each input variable X, and the consequent class C;, . Thus, Cg
is composed by M - (F + 1) natural numbers where M is the number of rules
currently present in the virtual RB. The RB (defined as concrete RB) used to
compute the fitness is obtained by means of the RB mapping strategy using



10 Michela Antonelli, Pietro Ducange, Beatrice Lazzerini, Francesco Marcelloni

X,
A! 5
A &a
Ars bys
IR
A

Ara by s Cra X
A A A A A

Fig. 2 An example of piecewise linear transformation with granularity Ty = 5 different
from Trae =7

R Ru X Xr
| | I |

f Vo ) [ L |
|f‘_.‘_ | |fl,F |f1.F-1 | | Jma | |J"M.F |fM.Fu_ L5} | | Te | b1 | | b1 Toar1 | | be2 | | BF, o1 |

Ce Co Cr

Fig. 3 Chromosome coding

the actual granularities fixed by Cg. We assume that at most M,,,, rules can
be contained in the RB.

Cg is a vector containing F' natural numbers: the f** element of the vector
contains the number Ty € [2, Tjpq,| of granules, which partition variable X.
Tinae is fixed by the user and is the same for all the variables.

C'r is a vector containing F vectors of Ty, —2 real numbers: the f** vector
contains [bfo,...,bs 1, .. —1] points, which define where the granule represen-
tatives are moved and consequently the piecewise linear transformation.

To preclude that the piecewise linear transformation can become decreas-

ing, we force by ; to vary in [Zm - %,gﬂj + %} V7 €12, Tas — 1].

3.4 Mating Operators

In order to generate the offspring populations, we exploit both crossover and
mutation. We apply separately the one-point crossover to Cr and Cg and
the BLX-a-crossover, with @ = 0.5, to Cr. Let s; and sy be two selected
parent chromosomes. The common gene for Cg is extracted randomly in [1, F].
The common gene for Cpr is selected by extracting randomly a number in
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[1, pmin — 1], where ppipn is the minimum number of rules in $; and sa. The
crossover point is always chosen between two rules and not within a rule. When
we apply the one-point crossover to Cr, we can generate GRBC with one or
more pairs of equal rules. In this case, we simply eliminate one of the rules
from each pair. This allows us to reduce the total number of rules.

As regards mutation, we apply two mutation operators for C'r. The first
operator adds 7 rules to the virtual RB, where v is randomly chosen in
[1, Ymaz]- The upper bound Yime, is fixed by the user. If v + M > M44,
then v = M4, — M. For each rule R,,, added to the chromosome, we generate
a random number v € [1, F], which indicates the number of input variables
used in the antecedent of the rule. Then, we generate v natural random num-
bers between 1 and F' to determine the input variables which compose the
antecedent part of the rule. Finally, for each selected input variable f, we gen-
erate a random natural number j,, s between 0 and 75,45, which determines
the granule Ay ;. to be used in the antecedent of rule R, in the virtual RB.
To select the consequent, a random number between 1 and the number K of
classes is generated.

The second mutation operator randomly changes § propositions of the vir-
tual RB. The number ¢ is randomly generated in [1, d;,42]. The upper bound
Omae 1s fixed by the user. For each element to be modified, a number is ran-
domly generated in [0, Tynaz]-

The mutation applied to Cg randomly chooses a gene f € [1,F] and
changes the value of this gene by randomly adding or subtracting 1. If the
new value is lower than 2 or larger than T},,., then the mutation is not ap-
plied.

The mutation applied to Cr first chooses randomly a variable X, then
extracts a random value j € [2,Tjq, — 1] and changes the value of by ; to a
random value in the allowed interval. We experimentally verified that these
mating operators ensure a good balancing between exploration and exploita-
tion, thus allowing the MOEA described in the next subsection to create good
approximations of the Pareto fronts.

3.5 Multi-objective evolutionary algorithm

As MOEA we use the (2+2)M-PAES that has been successfully employed in
our previous works [30, 31, 32]. Each chromosome is associated with a bi-
dimensional objective vector. The first element of the vector measures the
complexity of the granular rule-based system as TRL, that is the number of
propositions used in the antecedents of the rules contained in the concrete RB
(the number of rules may be different between the virtual and concrete RBs).
The second element assesses the accuracy in terms of classification rate.
(24-2)M-PAES, which is a modified version of the well-known (2+2)PAES
introduced in [33], is a steady state multi-objective evolutionary algorithm
which uses two current solutions s; and s9 and stores the non dominated so-
lutions in an archive. Unlike the classical (24-2)PAES, which maintains the
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current solutions until they are not replaced by solutions with particular char-
acteristics, we randomly extract, at each iteration, the current solutions. If
the archive contains a unique solution, s; and ss correspond to this unique
solution.

At the beginning, the archive is initialized as an empty structure and two
initial current solutions s; and so are randomly generated. At each iteration,
the application of crossover and mutation operators produces two new candi-
date solutions, 01 and 09, from the current solutions s; and so. These candidate
solutions are added to the archive only if they are dominated by no solution
contained in the archive; possible solutions in the archive dominated by the
candidate solutions are removed. Typically, the size of the archive is fixed at
the beginning of the execution of the (24+2)M-PAES. In this case, when the
archive is full and a new solution o;, where i = 1,2, has to be added to the
archive, if it dominates no solution in the archive, then we insert o; into the
archive and remove the solution (possibly o; itself) that belongs to the re-
gion with the highest crowding degree. The crowding degree is calculated by
using an adaptive grid defined on the objective space. If the region contains
more than one solution, then the solution to be removed is randomly chosen.
(242)M-PAES terminates after a given number Z of iterations. The candi-
date solution acceptance strategy generates an archive which contains only
non-dominated solutions. On (24+2)M-PAES termination, the archive includes
the set of solutions which are an approximation of the Pareto front.

4 Experimental results

In this Section, we aim to show how learning number and/or parameters of
information granules affects the accuracy and interpretability of GRBCs. We
will discuss the two types of granules investigated in this paper separately.
The analysis has been carried out by executing (2+2)M-PAES in four different
modalities. First, we have executed (24+2)M-PAES for learning only the rules
by using a uniform partition with Ty = 5, f = 1..F, granules for each input
variable. This value has proved to be the most effective in our previous works
[15, 16]. We have denoted this modality as PAES-R. In practice, we have used
only the C'g part of chromosome C' during the evolutionary process. Second, we
have executed (2+2)M-PAES for learning the rules and the parameters of the
granules, using an initial uniform partition with 7y =5, f = 1..F, granules for
each input variable. We have denoted this modality as PAES-RT. In practice,
we have used the Cr and Cp parts of chromosome C' during the evolutionary
process. Third, we have executed (2+2)M-PAES for learning the rules and
the number of granules, using a uniform partition with T, = 7, f = 1..F,
granules for each input variable. This value has been suggested in [27]. We
have denoted this modality as PAES-RG. In practice, we have used the Cr and
Cq parts of chromosome C' during the evolutionary process. Fourth, we have
executed (2+2)M-PAES for learning the rules, the number of granules and the
parameters of the granules, using virtual uniform partitions with T4, = 7,
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f = 1..F, granules for each input variable. We have denoted this modality as
PAES-RGT. In this last case, we have used the overall chromosome C' during
the evolutionary process. We decided to adopt these different modalities for
evaluating the impact on accuracy and interpretability of each different level
of granulation.

We aim to compare the different solutions on the Pareto fronts in the four
different modalities, to evaluate how the different levels of granulation can af-
fect the accuracy and the interpretability of the GRBCs. We executed the four
modalities of (2+2)M-PAES on twenty-four classification datasets extracted
from the KEEL repository!. As shown in Table 1, the datasets are charac-
terized by different numbers of input variables (from 3 to 19), input/output
instances (from 80 to 19020) and classes (from 2 to 8). For the datasets CLE,
HEP, MAM, and WIS, we removed the instances with missing values. The
number of instances in the table refers to the datasets after the removing pro-
cess. For each dataset, we performed a ten-fold cross-validation and executed
three trials for each fold with different seeds for the random function generator
(30 trials in total). All the results presented in this section are obtained by
using the same folds for all the algorithms. Table 2 shows the parameters of
(24-2)M-PAES used in the experiments.

Since several solutions can lie on the Pareto front approximations, typi-
cally only some representative solutions are considered in the comparison. In
our previous papers [35, 31] and also in [11], for each fold and each trial, the
Pareto front approximations of each algorithm are computed and the solu-
tions are sorted in each approximation according to decreasing accuracies on
the training set. Then, for each approximation, we select the first (the most
accurate), the median and the last (the least accurate) solutions. We denote
these solutions as FIRST, MEDIAN and LAST, respectively. Finally, for the
three solutions, we compute the average values over all the folds and trials of
the accuracy on both the training and the test sets, and of the TRL. On the
one side, the three solutions allow us to graphically show the average trend of
the Pareto front approximations obtained in the executions performed on the
different folds. On the other side, we can analyze how these solutions are able
to generalize when applied to the test set.

In the following, we discuss the results obtained by applying the four modal-
ities of the (24+2)M-PAES execution on fuzzy sets and on intervals.

4.1 Fuzzy Sets

Figures 4 and 5 show the FIRST, MEDIAN and LAST solutions obtained
by the execution of PAES-R, PAES-RT, PAES-RG and PAES-RGT. In the
figures, the x and y axes indicate the complexity calculated as TRL and the
accuracy expressed in terms of classification rate. We can realize how the
three solutions allow us to visualize the trend of the average Pareto front

1 available at http://sci2s.ugr.es/keel/datasets.php)[34]
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Table 1 Datasets used in the experiments

Dataset # Instances # Variables # Classes
Appendicitis (APP) 106 7 2
Australian (AUS) 690 14 2
Bands (BAN) 365 19 2
Bupa (BUP) 345 6 2
Cleveland (CLE) 297 13 5
Ecoli (ECO) 336 7 8
Glass(GLA) 214 9 6
Haberman (HAB) 306 3 2
Hayes-roth (HAY) 160 3 3
Heart (HEA) 270 13 2
Hepatitis (HEP) 80 19 2
Iris (IRI) 150 4 3
Magic (MAG) 19020 10 2
Mammographic (MAM) 830 5 2
Monk-2 (MON) 432 6 2
Newthyroid (NEW) 215 5 3
Page-blocks (PAG) 5472 10 5
Phoneme (PHO) 5404 5 2
Pima (PIM) 768 8 2
Saheart (SAH) 462 9 2
Tae (TAE) 151 5 3
Vehicle (VEH) 846 18 4
Wine (WIN) 178 13 3
Wisconsin (WIS) 683 9 2

Table 2 Values of the parameters used in the experiments for (2+2)M-PAES

AS (24+2)M-PAES archive size 64
Mmazx Maximum number of rules in an RB 50
Pccey Probability of applying the crossover operator to Cr 0.6
Pocg Probability of applying the crossover operator to Cx 0.5
Poey Probability of applying the crossover operator to Cp 0.5
PJ]WCR Probability of applying the first mutation operator to C'r 0.55
Ymaz Upper bound of the added rules in the first mutation operator for Cr 2
PI%JCR Probability of applying the second mutation operator to Cr 0.45
Smazx Upper bound of the changed propositions in the second mutation operator for Cr 2
Prreg Probability of applying the mutation operator to Cg 0.2
Purreg Probability of applying the mutation operator to Cr 0.9

Z Number of iterations of (24+2)M-PAES 50000

approximations. Further, by comparing the accuracies of the three solutions
on the training and test sets, we can verify whether these solutions, especially
the FIRST solution, suffer from overtraining. Indeed, the FIRST solution is in
general the most prone to overtraining since it achieves the highest accuracy
on the training set. We can observe from the plots that there exists some
difference for all the three solutions between the classification rates obtained
on the training set and the ones achieved on the test set. Thus, we can conclude
that the decrease of performance between training and test sets does not occur
only for the FIRST solution. In general, we observe that the fronts generated
by PAES-R and PAES-RT are small and concentrated in an area of low TRL
values. The fronts generated by PAES-RG and PAES-RGT are on average
wider than the ones generated by PAES-R and PAES-RT and concentrated
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in an area with higher TRL values. This different distribution of the fronts
is mainly due to the value of T},,, used for learning the number of granules
during the evolutionary process. Indeed, we adopt T},., = 7 for each input
variable for PAES-RG and PAES-RGT, while we adopt Ty = 5 for each input
variable for PAES-R and PAES-RT. A higher possible number of fuzzy sets
in the partitions induces a higher number of rules. Indeed, since the rules can
adopt more precise fuzzy sets at least for the most difficult attributes, they
tend to be more specialized. Thus, a higher number of rules is needed to cover
the dataset instances. On the other hand, this allows us to achieve in general
higher accuracies. Anyway, this specialization occurs only for a limited number
of attributes, which adopt a high value of granularity. The other attributes
are characterized by a low value of granularity, thus highlighting the good
characteristics of our granulation learning approach.

For the sake of fairness, we have executed the four algorithms using the
same number of iterations. On the other hand, we have to consider that the
granularity learning increases the search space and therefore would need a
higher number of iterations. This is true, in particular, for PAES-RGT which
has to cope with the highest search space.

Table 3 shows the numerical values for the FIRST solutions obtained by
PAES-R, PAES-RT, PAES-RG and PAES-RGT. For the sake of brevity, we
do not show the values of the MEDIAN and LAST solutions.

To statistically validate the results, we apply a non-parametric statistical
test for multiple comparisons by using all the datasets. First, we generate a
distribution consisting of the mean values of the accuracies of the three solu-
tions calculated on the test set. Then, we apply the Friedman test in order to
compute a ranking among the distributions [36], and the Iman and Davenport
test [37] to evaluate whether there exists a statistical difference among the
distributions. If the Iman and Davenport p-value is lower than the level of
significance « (in the experiments a = 0.05), we can reject the null hypothesis
and affirm that there exist statistical differences among the multiple distribu-
tions associated with each approach. Otherwise, no statistical difference exists.
If there exists a statistical difference, we apply a post-hoc procedure, namely
the Holm test [38]. This test allows detecting effective statistical differences
between the control approach, i.e. the one with the lowest Friedman rank, and
the remaining approaches.

Table 4 shows the results of the statistical tests for the fuzzy set granules
on the classification rate computed on the test set. We observe that for the
FIRST solution the null hypothesis is rejected. The Holm post-hoc procedure,
executed using PAES-RGT as control algorithm, states that only PAES-RG
is statistically equivalent to PAES-RGT. We can conclude that the learning
of the number of granules allows generating solutions with higher accuracy.
From Table 3 we can realize, however, that these solutions are obtained at the
expense of a higher complexity. For the MEDIAN and LAST solutions, the
null hypothesis is not rejected, thus stating that these solutions are statistically
equivalent in terms of accuracy. However, the solutions generated by PAES-R
and PAES-RT are typically characterized by a lower complexity, as we can
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derive from Figures 4 and 5. Concluding, we can observe that the different
levels of granulation actually affect the performance of the classifiers. When we
learn the number of granules for each attribute and we learn the membership
parameters together with the rules, we obtain the best performance in terms

of accuracy, although with a higher complexity.

Table 3 Average accuracy on the training (AccTr) and test (AccTs) sets, TRL and number
of rules (R) for the FIRST solutions generated by PAES-R, PAES-RT, PAES-RG and PAES-

RGT, employing fuzzy sets as information granules

PAES-R PAES-RT PAES-RG PAES-RGT
AccTr | AccTs | TRL | R AccTr | AccTs | TRL | R AccTr | AccTs | TRL | R AccTr | AccTs  TRL | R
APP 94.64 84.44 11.8 9.9 94.85 83.64 11.8 9.9 94.24 84.64 31.8 | 17.5 94.54 86.09 34.3 | 18.7
AUS 88.99 84.66 21.3 | 15.6 88.96 84.11 21.8 | 17.1 89.26 85.27 31.1 | 20.7 89.66 85.85 39.4 | 23.6
BAN 79.14 63.77 90.2 | 41.3 79.47 63.65 93.9 | 41.6 76.83 66 | 173.3 | 47.8 78.26 62.77 | 162.9 | 46.9
BUP 79.1 67.65 23.1 | 13.6 79.45 64.84 28.9 | 15.1 76.21 68.48 38.4 18 77.27 64.24 35.7 | 17.7
CLE 68.41 55.38 37.2 | 28.8 68.04 56.37 354 | 27.2 67.88 54.82 55.8 | 32.8 68.25 54.89 59.7 | 34.4
ECO 83.14 74.83 29.9 | 22.8 83.34 74.26 37.3 25 80.9 74.55 41.8 | 26.8 81.84 74.85 35.6 | 25.3
GLA 74.36 61.06 36 | 25.1 74.36 61.06 36 | 25.1 72.4 61.15 44 | 28.3 72.97 61.11 48.8 | 31.3
HAB 81.84 72.52 16.8 | 10.9 81.53 73.15 15.3 | 10.1 79.58 73.93 25.6 | 13.9 80.15 74.26 33.4 17
HAY 90.25 79.58 14.4 11 89.88 81.88 15 | 11.2 89.44 78.96 30 | 18.2 89.95 80.42 25.5 | 15.9
HEA 89.44 76.54 24.9 | 18.3 89.4 76.42 25.7 | 18.2 89.85 79.26 37.5 | 22.3 89.89 77.53 50.1 | 26.3
HEP 93.68 88.31 63 | 39.5 93.68 88.31 63 | 39.5 97.6 82.59 54.3 | 31.7 97.95 83.25 99.4 | 385
IRI 99.16 94.85 8.4 6.6 99.16 93.64 8.1 6.5 98.2 95.36 349 | 17.3 98.65 95.07 41.3 | 19.9
MAG 84.01 83.59 28.7 16 83.93 83.52 26.5 | 14.4 83.16 82.93 50.9 | 21.2 83.43 83.07 75.2 29
MAM 86.76 82.47 24.6 | 14.3 86.73 82.37 24.9 14 85.94 82.96 58.5 | 24.3 86 82.59 51.6 | 20.9
MON 98.15 98.51 6.1 5.7 98.08 98.12 5.9 5.6 99.67 99.24 20.9 | 135 100 100 24.2 | 13.7
NEW 99.02 93.1 13.2 9.1 98.72 95.22 13.9 9.8 97.24 93.06 36.2 | 18.3 98.19 94.26 36.8 | 18.5
PAG 94.68 94.32 26.8 | 19.7 94.84 94.41 26.5 | 19.8 95.52 95.24 404 | 24.4 95.42 94.95 43.1 | 26.6
PHO 84.18 82.8 41.2 | 184 84.36 82.23 45 | 19.5 81.3 80.46 54 | 224 81.78 80.61 78.7 | 284
PIM 82.34 75.05 29.5 | 17.5 82.3 73.96 26.2 | 16.7 80.59 75.14 39.9 | 19.1 80.9 75.44 29.3 | 16.8
SAH 79.91 68.69 28 | 17.7 79.64 68.7 31.9 | 18.6 79.01 69.99 62.1 | 26.8 79.02 68.83 53.8 | 24.5
TAE 73.17 58.81 234 | 15.9 73.66 59.03 24.8 | 15.7 69.17 53.75 47.4 | 23.2 69.88 56.18 46 | 22.5
VEH 70.53 61.2 83 | 40.5 70.35 60.91 87.6 | 41.5 66.13 61.38 | 193.1 | 49.6 67.36 61.39 | 182.6 48
WIN 99.51 88.55 244 | 19.5 99.51 88.55 24.4 | 19.5 99.27 92.44 36.4 | 25.1 99.76 91.53 44.7 | 271
WIS 98.58 95.98 18.4 | 15.2 98.56 95.78 18.9 15 98.54 96.31 26.1 | 17.2 98.58 96.51 34.6 | 19.9

Table 4 Results of the non-parametric statistical tests on the accuracy computed on the
test set for the FIRST, MEDIAN and LAST solutions generated by PAES-R, PAES-RT,

PAES-RG and PAES-RGT, employing fuzzy sets as information granules

FIRST
Algorithm Friedman rank  Iman and Davenport p-value Hypothesis
PAES-R 2.979
PAES-RT 2.792
PAES-RG 2.250 0.0042 Rejected
PAES-RGT 2.041
Holm post-hoc procedure
4 Algorithm z-value p-value alpha/i Hypothesis
3 PAES-R 2.515576 0.011884 0.016 Rejected
2 PAES-RT 1.844756 0.065073 0.025 Rejected
1 PAES-RG 0.559017 0.57615 0.05 Not Rejected
MEDIAN
Algorithm Friedman rank  Iman and Davenport p-value Hypothesis
PAES-R 2.833
PAES-RT 2.416
PAES-RG 2.333 0.540 Not Rejected
PAES-RGT 2.416
LAST
Algorithm Friedman rank  Iman and Davenport p-value Hypothesis
PAES-R 2.6042
PAES-RT 2.5625
PAES-RG 2.5 0.897 Not Rejected
PAES-RGT 2.3333
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4.2 Intervals

Figures 6 and 7 show the FIRST, MEDIAN and LAST solutions obtained
by the execution of PAES-R, PAES-RT, PAES-RG and PAES-RGT using
intervals as granules.

As we have already observed with the fuzzy sets, the fronts generated by
PAES-R and PAES-RT are small and concentrated in an area of low TRL
values. The fronts generated by PAES-RG and PAES-RGT are on average
wider than the ones generated by PAES-R and PAES-RT, and concentrated
in an area with higher TRL values. This different distribution of the fronts
can be explained using the same motivations advanced for the case of fuzzy
sets.

Table 5 shows the numerical values for the FIRST solutions obtained by
PAES-R, PAES-RT, PAES-RG and PAES-RGT. For the sake of brevity, we
do not show the values of the MEDIAN and LAST solutions.

To statistically validate the results, we apply a non-parametric statistical
test for multiple comparisons by using all the datasets. Table 6 shows the re-
sults of the statistical tests for the interval granules on the classification rate
computed on the test set. We observe that for the FIRST solution the null
hypothesis is rejected. The Holm post-hoc procedure, executed using PAES-
RGT as control algorithm, states that PAES-RG is statistically equivalent to
PAES-RGT. We can conclude that the learning of the number of granules
allows generating solutions with higher accuracy. Also for the MEDIAN and
LAST solutions, we have the same situation: The Holm post-hoc procedure,
executed using PAES-RGT as control algorithm, states that PAES-RG is sta-
tistically equivalent to PAES-RGT. The solutions generated by PAES-R and
PAES-RT are however characterized by a lower complexity, as we can derive
from Figures 6 and 7. Concluding, we can again observe that by learning the
number of granules for each attribute and the interval parameters together
with the rules, we obtain the best performance in terms of accuracy, although
with a higher complexity.

5 Conclusions

In this paper we have dealt with the problem of developing accurate and eas-
ily comprehensible granular rule-based classifiers (GRBCs). The classification
rules are learnt from data and describe the involved variables in terms of in-
formation granules, i.e., abstract entities that represent essential aspects of
knowledge and system modeling. The considered GRBCs have been gener-
ated through a multi-objective evolutionary process, considering accuracy and
interpretability as the objectives to be optimized. Information granules have
been formalized in terms of sets (in particular, intervals) and fuzzy sets. With
reference to well-known classification benchmark datasets, we have shown how
granulation tuning (i.e., partition adaptation) and/or granulation learning
(i.e., learning of the number of partition components) can effectively influ-
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Fig. 6 Pareto front approximations visualized by using the three representative points for
PAES-R, PAES-RT, PAES-RG and PAES-RGT, employing intervals as information granules
(first group of datasets)
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Fig. 7 Pareto front approximations visualized by using the three representative points for
PAES-R, PAES-RT, PAES-RG and PAES-RGT, employing intervals as information granules

(second group of datasets)
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Table 5 Average accuracy on the training (AccTr) and test (AccTs) sets, TRL and number
of rules (R) for the FIRST solutions generated by PAES-R, PAES-RT, PAES-RG and PAES-
RGT, employing intervals as information granules

PAES-R PAES-RT PAES-RG PAES-RGT
AccTr | AccTs | TRL | R AccTr | AccTs | TRL | R AccTr | AccTs | TRL | R AccTr | AccTs TRL | R
APP 94.97 84.70 17.1 | 14.3 95.28 78.85 15.5 | 13.9 95.21 83.18 24.9 | 155 95.74 85.77 26.9 | 17.3
AUS 88.78 85.36 244 | 183 88.49 84.49 22.6 | 16.9 88.87 85.46 35.9 | 25.9 89.68 85.50 34.6 | 25.1
BAN 74.63 62.41 79.6 | 40.4 77.31 65.40 58.3 | 36.5 76.49 64.43 | 144.4 | 47.6 77.67 62.88 | 132.3 | 46.6
BUP 72.88 58.06 32.0 | 19.9 74.92 57.64 26.3 | 17.4 73.79 61.35 35.9 | 19.8 74.66 62.20 35.1 | 19.2
CLE 67.65 56.10 36.8 | 28.9 68.56 53.80 34.5 | 28.6 68.30 55.67 42.6 | 31.4 67.70 53.85 474 | 344
ECO 77.88 7171 312 | 27.0 81.77 73.87 30.0 | 26.4 82.47 77.89 41.1 | 30.1 83.81 77.50 36.2 | 27.8
GLA 70.64 59.20 31.0 | 25.8 76.92 64.03 29.3 | 24.9 72.26 62.74 38.8 | 28.9 74.02 64.15 37.1 | 28.6
HAB 83.05 72.64 33.9 | 20.0 84.43 71.08 32.4 | 20.0 78.90 70.67 38.4 | 19.6 79.43 74.51 35.3 | 18.0
HAY 90.88 82.71 17.0 | 13.1 91.16 82.71 17.1 | 13.2 87.15 76.46 40.8 | 22.0 88.77 78.54 40.2 | 21.3
HEA 89.12 77.16 24.7 | 18.1 90.00 76.42 26.1 | 19.7 90.82 80.25 38.5 | 24.4 90.96 76.42 40.4 | 25.5
HEP 95.95 50.00 66.0 | 42.0 90.54 | 100.00 | 146.0 | 50.0 96.85 7778 | 115.3 | 44.7 95.19 78.79 | 103.5 | 41.5
IR 95.95 90.00 14.7 | 13.2 98.81 92.89 11.3 9.6 96.61 92.82 39.0 | 19.9 98.21 95.83 41.0 | 20.0
MAG 79.33 79.16 242 | 17.0 81.67 81.20 21.9 | 16.0 81.67 81.63 24.1 | 15.8 82.68 82.34 28.2 | 18.2
MAM 86.19 82.51 24.3 | 15.8 86.39 82.06 20.6 | 13.9 85.81 82.96 40.1 | 19.2 85.94 82.80 38.6 | 18.2
MON | 100.00 | 100.00 7.9 6.9 99.91 99.85 8.0 7.0 | 100.00 | 100.00 19.1 | 11.9 | 100.00 | 100.00 21.9 | 13.1
NEW 96.76 93.82 16.6 | 13.5 97.74 90.76 14.1 | 11.7 96.35 92.72 28.6 | 18.0 97.11 91.62 25.6 | 15.8
PAG 92.10 91.82 25.9 | 21.3 92.14 91.75 25.7 | 21.7 92.89 92.68 36.0 | 27.3 93.06 92.70 36.2 | 28.6
PHO 81.12 79.74 48.0 | 24.9 82.48 80.47 33.2 | 194 79.42 78.95 47.0 | 21.9 80.75 79.64 45.4 | 20.6
PIM 78.94 71.92 28.1 | 18.5 80.78 73.75 234 | 174 79.47 73.28 36.9 | 20.5 80.68 73.41 34.0 | 19.8
SAH 78.30 66.43 26.3 | 17.7 79.73 67.24 25.5 | 18.6 79.35 68.18 44.7 | 23.9 80.29 69.55 46.3 | 23.5
TAE 74.03 52.06 30.5 | 19.5 74.10 53.56 26.1 | 18.4 70.45 53.93 51.3 | 23.7 71.48 56.38 51.0 | 23.9
VEH 62.45 56.30 93.1 | 45.1 66.42 57.94 94.6 | 46.1 65.24 59.07 | 104.3 | 44.0 68.38 63.62 | 100.7 | 43.2
WIN 98.44 90.25 26.2 | 23.4 99.30 90.33 23.5 | 21.6 98.90 90.83 34.7 | 27.2 99.45 92.27 33.7 | 26.4
WIS 98.39 95.81 22.4 | 19.5 98.68 95.48 22.8 | 19.7 98.62 95.62 36.9 | 21.2 98.70 96.13 36.1 | 21.7

Table 6 Results of the

non-parametric statistical tests on the accuracy computed on the
test set for the FIRST, MEDIAN and LAST solutions generated by PAES-R, PAES-RT,
PAES-RG and PAES-RGT, employing intervals as information granules

FIRST
Algorithm Friedman rank  Iman and Davenport p-value Hypothesis
PAES-R 3.2917
PAES-RT 2.875
PAES-RG 2.0833 0.000016 Rejected
PAES-RGT 1.75
Holm post-hoc procedure
7 Algorithm z-value p-value alpha/i Hypothesis
3 PAES-R 4.136726 0.000035 0.016 Rejected
2 PAES-RT 3.018692 0.002539 0.025 Rejected
1 PAES-RG 0.894427 0.371093 0.05 Not Rejected
MEDIAN
Algorithm Friedman rank  Iman and Davenport p-value Hypothesis
PAES-R 2.9167
PAES-RT 3.00
PAES-RG 2.1667 0.005587 Rejected
PAES-RGT 1.9167
Holm post-hoc procedure
7 Algorithm z-value p-value alpha/i Hypothesis
3 PAES-T 2.906888 0.00365 0.016 Rejected
2 PAES-RT 2.683282 0.00729 0.025 Rejected
1 PAES-RG 0.67082 0.502335 0.05 Not Rejected
LAST
Algorithm Friedman rank  Iman and Davenport p-value Hypothesis
PAES-R 3.5417
PAES-RT 2.8333
PAES-RG 2.0417 0.000000005 Rejected
PAES-RGT 1.5833
Holm post-hoc procedure
7 Algorithm z-value p-value alpha/i Hypothesis
3 PAES-R 5.25476 0 0.016 Rejected
2 PAES-RT 3.354102 0.000796 0.025 Rejected
1 PAES-RG 1.229837 0.218758 0.05 Not Rejected
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ence the classification performance and the interpretability of the GRBCs. In
particular, we have observed that the best results in terms of accuracy are
obtained when granulation tuning and learning are used simultaneously. On
the other hand, the GRBCs so generated are characterized by a higher com-
plexity in terms of total rule length and number of rules. This is basically due
to the use of a maximum number of granules for each variable higher than the
number of granules used when only granulation tuning is used.
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