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Abstract

Consider an arrangement A of homogeneous hyperplanes in Cn, with complement
M(A). The (co)homology of M(A) with twisted coefficients is strictly related to the
cohomology of the Milnor fibre associated to the natural fibration onto C∗, endowed
with the geometric monodromy. It is still an open problem to understand in general the
cohomology of the Milnor fibre, even for dimension 1. In the first part we show that
all questions about the first homology group are detected by a precise group, which is
a quotient ot the commutator subgroup of π1(M(A)) by the commutator of its length
zero subgroup, which didn’t appear in the literature before.

In the second part we state a conjecture of a-monodromicity for the first homology,
which is of a different nature with respect to the known results. Let Γ be the graph of
double points of A : we conjecture that if Γ is connected then the geometric monodromy
acts trivially on the first homology of the Milnor fiber (so the first Betti number is com-
binatorially determined in this case). This conjecture depends only on the combinatorics
of A. We show the truth of the conjecture under some stronger hypotheses.
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1. Introduction

Let A := {`1, . . . , `n} be an arrangement of affine lines in C2, with complement

M(A). By ”coning” A one obtains a three-dimensional central arrangement Ã in

C3, with complement fibering over C∗. The Milnor fiber F of such fibration is a sur-

face of degree n+ 1, endowed with a natural geometric monodromy automorphism

of order n+1. It is well known that the trivial (co)homology of F with coefficients in

a commutative ring A, as a module over the monodromy action, is obtained by the

(co)homology of M(A) with coefficients in R := A[t±1], where here the structure

of R as a π1(M(A))-module is given by taking good generators (given by ele-

mentary loops around each hyperplane) into t-multiplication, and the monodromy

action corresponds to t−multiplication. For reflection arrangements, relative to a

Coxeter group W, many computations were done, especially for the orbit space

MW(A) := M(A)/W, which has an associated Milnor fiber FW := F/W : in

this case we know a complete answer for R = Q[t±1], for all groups of finite type

1
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(see [20,12,13]), and for some groups of affine type ([7,8,9]) (based on the tech-

niques developed in [29,14]). For R = Z[t±1] a complete answer is known in case

An (see [6]). Some results are known for (non quotiented) reflection arrangements

(see [30], [25]). (For related work on characteristic and resonance varieties see for

ex. [32,10,17,24,18,11]).

It is still an open problem to understand the (co)-homology of the Milnor fiber

F ; e.g. it is not known if H∗(F ;Z) is combinatorially determined (as it is well-

known to be the cohomology of the complement [26]). Even the first Betti number

is not well-understood, so here we focus onto the first homology group of F. One

sees that b1(F ) ≥ |A|, with equality holding iff the action of the monodromy is

trivial (corollary 2.3). So, it is important to understand when there is some mon-

odromy: we call an arrangement with trivial monodromy (in the first homology

group) a-monodromic. Many of the known examples of arrangements with non-

trivial monodromy are based on the theory of nets and multinets (see [21]): there

are relatively few arrangements with non trivial monodromy and some conjecture

claims very strict restrictions for line arrangements (see [34]).

We introduce a group which measures exactly the non-monodromicity of the

arrangement. Let G = π1(M(A)) and let K be the kernel of the length map G→ Z;

let us consider the group G′ := [G,G]
[K,K] . The main result of part 3 is that H1(F ) is an

extension of a free abelian group by the group G′ (thm. 1). So, any question about

the first homology of F is actually a question on G′. We can give an extimate for

the first Betti number of F, as well as we deduce that if G is quasi-perfect then A
is a-monodromic.

It seems that this group G′ was not considered before in this context.

In part 4 we consider a vanishing conjecture of a very different nature with

respect to the known results, which is of combinatorial nature. Let Γ be the graph

with vertex set A and edge set which is given by taking an edge (`i, `j) iff `i ∩ `j is

a double point. Then our conjecture is as follows:

Conjecture : Assume that Γ is connected; then A is a-monodromic. (1.1)

This conjecture is supported by several computations which we made and all non-

trivial monodromy examples which we know have disconnected graph Γ (in part 4

we also mention how one can make a more technical and general conjecture). As a

“canonical” example, the arrangement having equation xy(x− 1)(y− 1)(x− y) = 0

has non-trivial monodromy and graph Γ having three connected components.

We introduce some extra conditions for which we can prove the conjecture,

giving examples in part 5. Some more details will appear elsewhere. The main tool

for our calculations is an algebraic complex computing the twisted cohomology of
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M(A) introduced in [22], as a simplification of a more general one introduced in

[31] in connection with the minimal cell structure of the complement.

2. Basic properties.

Let A = {H1, . . . ,Hn} be an arrangement of affine hyperplanes in Cn, having co-

ordinates z1, . . . , zn. Let αi = 0 be a linear defining equation for the hyperplane

Hi, i = 1, . . . , n. The associated conified arrangement is the homogeneous arrange-

ment cA = {H̃0, H̃1, . . . , H̃n} in Cn+1, with coordinates z0, . . . , zn, where H̃0 is the

coordinate hyperplane z0 = 0 and H̃i is the zero locus of the homogenization of αi
with respect to z0, 1 ≤ i ≤ n.

Conversely, let Ã = {H̃0, . . . , H̃n} be a central arrangement in Cn+1, with co-

ordinates z0, . . . , zn, such that H̃0 = {z0 = 0} and for every 1 ≤ i ≤ n, let

α̃i(z0, . . . , zn) = 0 be a defining equation for H̃i. Then the deconing of Ã is the

arrangement dÃ = {H1, . . . ,Hn} in Cn where Hi is the zero locus of αi, with

αi(z1, . . . , zn) = α̃i(1, z1, . . . , zn), 1 ≤ i ≤ n (see [26]).

We are interested to the topology of the complements of the arrangements,

which we denote by M(A), M(Ã), etc. One easily checks the relation:

M(cA) =M(A)× C∗ (iff M(Ã) =M(dÃ)× C∗).

Let Q : Cn+1 → C be a homogeneous polynomial (of degree n + 1) which

defines the arrangement Ã (the product of the linear forms α̃i’s). Then Q gives a

fibration

Q|M(Ã) : M(Ã)→ C∗ (2.1)

with Milnor fibre

F = Q−1(1)

and geometric monodromy

π1(C∗, 1)→ Aut(F )

induced by the map x→ e
2πi
n+1 · x.

The fundamental group π1(M(Ã))) is generated by elementary loops βi, i =

0, . . . , n, going around the hyperplanes, well defined up to conjugacy; in the decom-

position π1(M(Ã)) ' π1(M(dA)) × Z the generator of Z = π1(C∗) corresponds

to a loop going around all the hyperplanes (the generators can be ordered so that

such a loop is represented by the product β0 . . . βn).

Recall also that H1(M(Ã);Z) ∼= Zn+1, generated by the classes of the βi’s. The

following representation is therefore well-defined.

Let A be any unitary commutative ring and let

R := A[t, t−1]
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be the ring of Laurent polynomials with coefficients in A. Consider the abelian

representation

π1(M(Ã))→ H1(M(Ã);Z)→ Aut(R) : βj → t·

taking a generator βj into t-multiplication. We denote by Rt the ring R endowed

with this π1(M(Ã))−module structure. Then it is well-known:

Proposition 2.1. One has an R-module isomorphism

H∗(M(Ã), Rt) ∼= H∗(F,A)

where t−multiplication on the left corresponds to the monodromy action on the

right. �

We are interested in particular in the case A = Z or A = Q. For R = Q[t, t−1],

which is a PID, one has

H∗(M(Ã), Rt) ∼= H∗(F,Q).

Since the monodromy operator has clearly order dividing n + 1, one finds that

H∗(M(Ã);Rt) decomposes into cyclic modules either isomorphic to R or to R
(ϕd)

,

where ϕd is the dth-cyclotomic polynomial, for some d|n+1 . It is an open problem

to find a (possibly combinatorial) formula for the Betti numbers of F.

In this paper we are interested in the first homology group of the Milnor fibre.

From the spectral sequence associated to the bundle (2.1) we easily deduce

Lemma 2.2.

n+ 1 = dim(H1(M(Ã);Q)) = 1 + dim
H1(F ;Q)

(µ− 1)

where on the right one has the coinvariants with respect to the monodromy action.

�

It follows

Corollary 2.3.

b1(F ) ≥ n;

and

b1(F ) = n ⇔ µ = id.

�
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Definition 2.4. An arrangement Ã with trivial monodromy (in the first homology

group of F with rational coefficients) will be briefly called a-monodromic.

One can extend definition 2.4 to arrangements which are a-monodromic over A,

meaning that the monodromy over H1(F ;A) is trivial.

Remark 2.5. By (2.3) the arrangement Ã is a-monodromic iff

H1(F ;Q) ∼= Qn (equivalently: H1(M(Ã);Rt) ∼=
(

R
(t−1)

)n
).

We can introduce a similar concept for affine arrangements.

Definition 2.6. Say that the affine arrangement A is a-monodromic if

H1(M(A);Rt) ∼=
(

R

(t− 1)

)n−1
.

Let A = dÃ be the affine part. Notice that in the above decompositionM(Ã) =

M(dÃ) × C∗ the generator of the fundamental group of the C∗ factor correponds

inside M(Ã) to a loop turning around all the n+ 1 hyperplanes. Then one has an

algebraic complex computing the twisted homology which factorizes as

C∗(M(Ã), Rt) = C∗(M(dÃ), Rt) ⊗R C∗(C∗, Rt)

where the action of t on the right factor of the second member is multiplication by

tn+1. Therefore one easily obtains (with A = Z or Q)

H1(M(Ã);Rt) ∼= H1(M(A);Rt)⊗
R

(tn+1 − 1)
⊕ R

(t− 1)
. (2.2)

As an easy example in dimension 1, when Ã is the central arrangement of three

lines in C2 (with fundamental group π1(M(Ã)) the pure braid group P3) then dÃ is

the affine two-points arrangement in C1. One easily sees that H1(M(A), Rt) = R;

moreover, H1(M(Ã), Rt) = R
(t−1)⊕

R
(t3−1) (see [22]) which agrees with formula (2.2).

It follows that if A has trivial monodromy (over A = Z or Q) then Ã does. The

converse is not true in general (see fig 8).

3. Intrinsic characterizations

We give here a more intrinsic picture.

Recall that the fundamental group

G = π1(M(Ã)) (= π1(M(A))× Z)

is generated by elementary loops β0, . . . , βn around the hyperplanes.

Let

F = Fn+1[β0, . . . , βn]
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be the free group with basis the βi’s and let N be the normal subgroup generated by

the relations. It is well-known that G is a commutator-relator group, i.e. N ⊂ [F,F]

(see for ex. [28]).

One has a presentation

1 −→ N −→ F
π−→ G −→ 1

The length map ϕ : F→< t >∼= Z is defined as

ϕ(w) = t|w|.

Here if w = βε1i1 . . . β
εk
ik

is a reduced expression for w ∈ F, we set |w| =
∑

1≤j≤k εij ∈
Z. Of course, ϕ factors through the abelianization

ϕ : F
ab−→ F

[F,F]
∼= Zn+1 λ−→ Z

where λ(a1, . . . , an+1) =
∑
i ai. Since all relations in G have zero length, ϕ factors

by π through a map

ψ : G
ab−→ G

[G,G]
∼= Zn+1 µ−→ Z.

Let

H := kerϕ; K = kerψ,

so we have

1 −→ K −→ G
ψ−→ Z −→ 1 (3.1)

Lemma 3.1. One has

ker(λ) =
H

[F,F]
, ker(µ) =

K

[G,G]

so

H

[F,F]
∼=

K

[G,G]
∼= Zn

Proof. First part derives from [F,F] ⊂ ker(ϕ) and [G,G] ⊂ K.

Second part follows from F
[F,F]

∼= G
[G,G]

∼= Zn+1.

�

Recall (see proposition 2.1) the Z[t±1]−module isomorphism:

H1(G;Z[t±1]) ∼= H1(F ;Z) (3.2)
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where F is the Milnor fibre. By Shapiro Lemma (see [5]) one has

H1(F ;Z) ∼= H1(K;Z) =
K

[K,K]
(3.3)

Therefore we have:

Theorem 1. There is a (split) exact sequence

1 −→ [G,G]

[K,K]
−→ K

[K,K]
−→ K

[G,G]
∼= Zn −→ 1 (3.4)

�

From the definition it follows

Lemma 3.2. The arrangement Ã is a-monodromic over Z iff

H1(F ;Z) ∼= Zn

Therefore

Theorem 2. The arrangement Ã is a-monodromic over Z iff

[G,G]

[K,K]
= 0 (3.5)

Proof. It follows from sequence (3.4) and from the property that a surjective

endomorphism of a finitely generated free abelian group is an isomorphism.

�

Since K ⊃ [G,G] it follows immediately

Corollary 3.3. Assume

G(1) = [G,G] = G(2) = [[G,G], [G,G]]

Then the arrangement Ã is a-monodromic over Z.
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A group G such that G(1) = G(2) is called quasi-perfect.

Another consequence, easily deduced from theorem 2 is:

Corollary 3.4. Let G have a central element of length 1. Then the arrangement

Ã is a-monodromic over Z.

Proof. Let γ ∈ G be a central element of length 1. From sequence (3.1) the group

splits as a direct product

G ∼= K× Z

where Z =< γ > . Therefore clearly [G,G] = [K,K].

�

An example of corollary (3.4) is when one of the generators βj commutes with all

the others; this happens if one of the hyperplanes is transversal to all the others.

So we re-find in this way a well-known fact.

Consider again the exact sequence (3.4). Recall that the arrangement Ã is a-

monodromic (over Q) iff H1(F ;Q) ∼= Qn. By tensoring sequence (3.4) by Q we

obtain

Theorem 3.

(1) The arrangement Ã is a-monodromic (over Q) iff

[G,G]

[K,K]
⊗Q = 0.

(2) tors(H1(F )) = tors( [G,G]
[K,K] ).

(3) b1(F ) = n + rk
(

[G,G]
[K,K]

)

(There are no examples where F has torsion in the H1. There are only complicated

examples with torsion in higher homology, see [15]).

By using that [G,G] ⊂ K we immediately get the estimate:

Corollary 3.5. One has

n ≤ b1(F ) ≤ n + rk

(
G(1)

G(2)

)

Remark 3.6. The preceding results apply as well to any commutator-relator group

G. Here we say that the group G is a − monodromic iff the action of Z onto K

(see sequence (3.1)) induces the identity on the homology group H1(K).
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Now we consider again the affine arrangement A. Denoting by G′ := π1(M(A)),

we have

G ∼= G′ × Z

where the factor Z is generated by a loop around all the hyperplanes in Ã. The

a-monodromicity of A (over Z) is equivalent to

H1(M(A);Rt) ∼=
(

R

(t− 1)

)n−1
(3.6)

(R = Z[q±1]). By considering a sequence as in (3.1)

1 −→ K′ −→ G′
ψ−→ Z −→ 1 (3.7)

we can repeat the above arguments: in particular condition (3.6) is equivalent to

H1(K′;Z) =
K′

[K′,K′]
= Zn−1

and we get an exact sequence like in (3.4) for K′ and G′. So we obtain

Theorem 4. The arrangement A is a-monodromic over Z (resp. over Q) iff

[G′,G′]

[K′,K′]
= 0 (resp. [G′,G′]

[K′,K′] ⊗Q = 0).

By considering a presentation for G′

1 −→ N′ −→ F′
π−→ G′ −→ 1

where F′ is the group freely generated by β1, . . . , βn, we obtain

Theorem 5. There is an isomorphism:

[G′,G′]

[K′,K′]
∼=

[F′,F′]

N′[kerϕ, kerϕ]

so A is a-monodromic over Z (resp. over Q) iff

[F′,F′]

N′[kerϕ, kerϕ]
= 0 (resp. [F′,F′]

N′[kerϕ,kerϕ] ⊗Q = 0)

Proof. From

N′ ⊂ [F′,F′] ⊂ kerϕ

it follows:

[G′,G′]

[K′,K′]
∼=

π−1[G′,G′]

π−1[K′,K′]
∼=

[F′,F′]

N′[kerϕ, kerϕ]
�
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4. Strategies for the conjecture

First we mention how our conjecture can be generalized in a more technical set-

ting. We refer to [18],[32] for the main definitions and constructions related to the

characteristic varieties and resonance varieties of an arrangement.

It is easy to see that Γ connected implies there are no essential components

in the first resonance variety of Ã. Then Ã is a-monodromic unless there is a

translated component in the characteristic variety of Ã. Therefore a natural stronger

conjecture is:

- assume that Γ is connected: then there are no translated components in the

(first) characteristic variety of the arrangement.

Our computations support also this stronger conjecture.

From now on we assume the arrangement is 2−dimensional and affine. The main

tool to make explicit computations is here an algebraic complex which was obtained

in [22], as a 2−dimensional refinement of that in [31], where the authors used the

explicit construction of a minimal cell complex which models the complement. Such

complexes are defined in case of real defined arrangements: so we restrict ourself to

this condition.

The complex depends on a fixed and generic system of ”polar coordinates”. In

the present situation, this just means to take an oriented affine real line ` which is

transverse to the arrangement. We also assume that ` is ”far away” fromA, meaning

that it does not intersect the closure of the bounded facets of the arrangement. This

is clearly possible because the union of bounded chambers is a compact set (the

arrangement is finite). The choice of ` induces a labelling on the lines {`1, . . . , `n} in

A, where the indices of the lines agree with the ordering of the intersection points

with `, induced by the orientation of `.

Let us choose a basepoint O ∈ `, coming before all the intersection points of `

with A (with respect to the just introduced ordering). We recall the construction

in [22] in the case of the abelian local system defined before.

Let Sing(A) be the set of singular points of the arrangement. For any point

P ∈ Sing(A), let S(P ) := {` ∈ A : P ∈ `}; so m(P ) = |S(P )| is the multiplicity

of P.

Let iP , i
P be the minimum and maximum index of the lines in S(P ) (so iP <

iP ). We denote by C(P ) the subset of lines in A whose indices belong to the closed

interval [iP , i
P ]. We also denote by

U(P ) := {` ∈ A : ` does not separate P from the basepoint O}

Let (C∗, ∂∗) be the 2−dimensional algebraic complex of free R−modules

having one 0−dimensional basis element e0, n 1−dimensional basis elements

e1j , j = 1, . . . , n, (e1j corresponding to the line `j) and ν2 =
∑
P∈Sing(A)m(P )−1

2−dimensional basis elements: to the singular point P of multiplicity m(P ) we as-
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sociate generators e2P,h, h = 1, . . . ,m(P )−1 . The lines through P will be indicized

as `jP,1 , . . . , `jP,m(P )
(with growing indices).

From [22], we obtain after specialization:

Theorem 6. The local system homology H∗(M(A);R) is computed by the complex

(C∗, ∂∗) above, where

∂1(e1j ) = (t− 1) e0

and

∂2(e2P,h) =
∑

`j ∈ S(P )

j ≥ jP,h+1

t#{`i∈U(P ): i<j}+#{`i∈S(P ): jP,h+1≤i<j}
(

1 − t#{`i∈S(P ): i≤jP,h}
)
e1j +

+
∑

`j ∈ S(P )

j ≤ jP,h

t#{`i∈U(P ): i<j}+#{`i∈S(P ): i<j}
(
t#{`i∈S(P ): jP,h+1≤i} − 1

)
e1j +

+
∑

`j ∈ C(P ) ∩ U(P )

t#{`i∈U(P ): i<j}+#{`i∈S(P ): i≥jP,h+1, i<j}
(

1 − t#{`i∈S(P ): i≤jP,h, i<j}
)
·

·
(

1 − t#{`i∈S(P ): i≥jP,h+1, i≥j}
)
e1j

(4.1)

�

When P is a double point, then h takes only the value 1, and jP,1, jP,2 are the

indices of the two lines passing through P. So formula (4.1) becomes

∂2(e2P,1) = t#{`i∈U(P ): i<jP,2} (1 − t) e1jP,2 + t#{`i∈U(P ): i<jP,1} (t− 1) e1jP,1 +

+
∑

`j ∈ C(P ) ∩ U(P )

t#{`i∈U(P ): i<j} (t− 1)2 e1j

(4.2)

Since ∂2 is divisible by 1− t we can rewrite (4.2) as

∂2(e2P,1) = (1 − t) ∂̃2(e2P,1) (4.3)

where

∂̃2(e2P,1) = t#{`i∈U(P ): i<jP,2} e1jP,2 − t#{`i∈U(P ): i<jP,1} e1jP,1 +

+
∑

`j ∈ C(P ) ∩ U(P )

t#{`i∈U(P ): i<j} (1 − t) e1j
(4.4)
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We now give a proof of conjecture 1 under stronger hypotheses.

Definition 4.1. We say that a subset Σ of the set of singular points Sing(A) of

the arrangement A is conjugate-free (with respect to a given admissible coordinate

system) if ∀P ∈ Σ the set U(P ) ∩ C(P ) is empty.

An arrangement A will be called conjugate-free if Γ is connected and contains

a spanning tree T such that the set of points in Sing(A) that correspond to the

edges ET of T is conjugate-free (see fig 5).

Let Σ be conjugate-free: it follows from formula (4.1) that the boundary of all

generators e2P,h, P ∈ Σ, can have non-vanishing components only along the lines

which contain P.

Theorem 7. Assume that A is conjugate-free. Then A is a-monodromic.

Proof. The submatrix of ∂̃2 which corresponds to the double points ET is the

incidence matrix of the tree T. Such matrix is the boundary matrix of the complex

which computes the Z-homology of T : it is a unimodular rank-(n − 1) integral

matrix (see for example [3]). From this the result follows straightforward.

�

We will also consider different situations: the proofs in these cases will appear

elsewhere.

Definition 4.2. For T an arbitrary spanning tree of Γ, we say that the induced

labelling on V T = V Γ is very good (with respect to the given coordinate system)

if the sequence n, . . . , 1 is a collapsing ordering on T. In other words, the graph

obtained from T by removing all vertices with label ≥ i and all edges having both

vertices with label ≥ i, is a tree, for all i = n, . . . , 1.

We say that the spanning tree T is very good if there exists an admissible

coordinate system such that the induced labelling on V T is very good (see fig 1).

Remark 4.3.

(1) A labelling over a spanning tree T gives a collapsing ordering iff for each ver-

tex v, the number of adjacent vertices with lower label is ≤ 1. In this case,

only the vertex labelled with 1 has no lower labelled adjacent vertices (by the

connectness of T ).

(2) Given a collapsing ordering over T, for each vertex v with label iv > 1, let `(v)

be the edge which connects v with the unique adjacent vertex with lower label;

by giving to `(v) the label iv + 1
2 , we obtain a discrete Morse function on the

graph T (see [19]) with unique critical cell given by the vertex with label 1.

The set of all pairs (v, `(v)) is the acyclic matching which is associated to this

Morse function.
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Let us indicate by Γ0 the linear tree with n vertices: we think as Γ0 as a CW -

decomposition of the real segment [1, n], with vertices {j}, j = 1, . . . , n, and edges

the segments [j, j + 1], j = 1, . . . , n− 1.

Definition 4.4. We say that a labelling induced by some coordinate system on

the tree T is good if there exists a permutation i1, . . . , in of 1, . . . , n which gives a

collapsing sequence both for T and for Γ0. In other words, at each step we always

remove either the maximum labelled vertex or the minimum, and this is a collapsing

sequence for T.

We say that T is good if there exists an admissible coordinate system such that

the induced labelling on V T is good (see fig 3).

Notice that a very good labelling is a good labelling where at each step one removes

the maximum vertex.

Consider some arrangement A with graph Γ and labels on the vertices which

are induced by some coordinate system. Notice that changes of coordinates act on

the labels by giving all possible cyclic permutations, which are generated by the

transformation i → i + 1 mod n. So, given a labelled tree T, checking if T is very

good (resp. good) consists in verifying if some cyclic permutation of the labels is

very good (resp. good). This property depends not only on the ”shape” of the tree,

but also on how the lines are disposed in R2 (the associated oriented matroid). In

fact, one can easily find arrangements where some ”linear” tree is very good, and

others where some linear tree is not good.

Definition 4.5. We say that an arrangement A is very good (resp. good) if Γ is

connected and has a very good (resp. good) spanning tree.

It is not clear if this property is combinatorial, i.e. if it depends only on the

lattice. Of course, A very good implies A good.

By simplifying the 2-boundary of the above complex one obtains:

Theorem 8. Let A be a good arrangement. Then A is a-monodromic. �

We can have a mixed situation between definitions 4.5 and 4.1 (see fig 6).

Theorem 9. Assume that Γ is connected and contains a spanning tree T which

reduces, after a sequence of moves where we remove either the maximum or the

minimum labelled vertex, to a subtree T ′ which is conjugate-free. Then A is a-

monodromic. �

Some examples are given in the following section.
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5. Examples

Recall that the vertices of the graph Γ correspond to the lines of the arrangement.

In the examples below the specified spanning trees are subgraphs of Γ. The edges

of such trees correspond to certain double intersection points in the arrangement,

indicated by heavy dots in the pictures.

In the first example (fig.1 and 2) we give an arrangement together with a very

good tree and its sequence of contractions.

Figure 1. A very good tree

Figure 2. contractions
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Next (fig. 3, 4) we give a good tree with a sequence of contractions

Figure 3. A very good tree

Figure 4. contractions
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and (fig.5) a conjugate free tree which is not good.

Figure 5. A conjugate free tree
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In fig. 6, 7, we have a tree which is not good but reduces to a conjugate free

tree after two admissible moves.

Figure 6. A very good tree

Figure 7. contractions
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In fig.8 the affine complete triangle has ϕ3-monodromy but its conified arrange-

ment is a-monodromic. The computations of H1(M(A), Rt) are done by using the

algebraic complex of theorem (6) as well as some computer calculations.

Figure 8.

H1(M(A), Rt) '
(
Q[t±1]

(t− 1)

)4

⊕ Q[t±1]

(t3 − 1)

H1(M(cA), Rt) '
(
Q[t±1]

(t− 1)

)6
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