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 17 

Abstract 18 

After decades of repose, Puyehue-Cordón Caulle Volcano (Chile) erupted in June 2011 following 19 

a month of continuously increasing seismic activity. The eruption dispersed a large volume of 20 

rhyolitic tephra over a wide area and was characterized by complex dynamics. During the initial 21 

climactic phase of the eruption (24-30 hours on 4-5 June), 11-14 km-high plumes dispersed 22 

most of the erupted tephra eastward towards Argentina, reaching as far as the Atlantic Ocean. 23 

This first eruptive phase was followed by activity of lower intensity, leading to the development 24 
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of a complex stratigraphic sequence, mainly due to rapid shifts in wind direction and eruptive 25 

style. The resulting tephra deposits consist of thirteen main layers grouped into four units. Each 26 

layer was characterized based on its dispersal direction, sedimentological features and on the 27 

main characteristics of the juvenile fraction (texture, density, petrography, chemistry). The 28 

lowest part of the eruptive sequence (Unit I), corresponding to the tephra emitted between 4 29 

and 5 June, is composed of alternating lapilli layers with a total estimated volume of ca. 0.75 30 

km3; these layers record the highest intensity phase, during which a bent-over plume dispersed 31 

tephra towards the southeast-east, with negligible up-wind sedimentation. Products emitted 32 

during 5-6 June (Unit II) signaled an abrupt shift in wind direction towards the north, leading to 33 

the deposition of a coarse ash deposit in the northern sector (ca. 0.21 km3 in volume), followed 34 

by a resumption of easterly directed winds. A third phase (Unit III) began on 7 June and resulted 35 

in tephra deposits in the eastern sector and ballistic bombs around the vent area. A final phase 36 

(Unit IV) started after 15 June and was characterized by the emission of fine-grained white 37 

tephra from ash-charged plumes during low-level activity and the extrusion of a viscous lava 38 

flow. Timing and duration of the first eruptive phases were constrained based on comparison of 39 

the dispersal of the main tephra layers with satellite images, showing that most of the tephra 40 

was emitted during the first 72 hours of the event. The analyzed juvenile material tightly 41 

clusters within the rhyolitic field, with negligible chemical variations through the eruptive 42 

sequence. Textural observations reveal that changes in eruption intensity (and consequently in 43 

magma ascent velocity within the conduit) and complex interactions between gas-rich and gas-44 

depleted magma portions during ascent resulted in vesicular clasts with variable degrees of 45 

shear localization, and possibly in the large heterogeneity of the juvenile material. 46 

 47 



Introduction 48 

Explosive activity fed by intermediate to silicic magmas spans a large range in eruptive styles 49 

and regimes, from Vulcanian to Plinian (Bursik 1993; Cioni et al. 2000; Morrissey and Mastin 50 

2000; Houghton and Gonnerman 2008). In general, small-moderate explosive eruptions are 51 

strongly unsteady, commonly showing high-frequency oscillations in eruptive parameters, 52 

including rapid transitions in eruptive style and sharp variations in eruptive intensity (Wong and 53 

Larsen 2010). The frequency of small-moderate, VEI 3-4 eruptions is high, with global 54 

recurrence times ranging between months to a few years (Simkin and Siebert 2000). These 55 

eruptions are often associated with tephra fallout, pyroclastic density currents (PDCs) and with 56 

long-lasting phases of ash emission that often occur together with lava flow activity. The 57 

variability of the eruptive style has been commonly related to a complex interplay of different 58 

factors, such as magma supply rate, degassing style, coupling of gas and melt phases prior to 59 

and during magma rise, ascent rate of magma in the conduit, syn-eruptive bubble and microlite 60 

growth, magma rheology and fragmentation (Villemant and Boudon 1998; Cashman and Blundy 61 

2000; Genareau et al. 2010; Adams et al. 2013). The frequent shifts in eruptive style and the 62 

long persistence of activity with low-level plumes result in complex deposits often hard to 63 

interpret. In addition, larger events associated with rhyolitic magma (which fuelled some of the 64 

Earth’s largest explosive volcanic eruptions) remain poorly understood, mainly due to the lack 65 

of directly observed eruptions.  66 

Apart from Chaitén volcano (Chile), which erupted explosively in 2008 (Castro and Dingwell 67 

2009; Alfano et al. 2011, 2012), no important explosive rhyolitic activity was observed in the 68 

20th Century until 2011, when Cordón Caulle Volcano (Chile) erupted after five decades of 69 

repose (Simkin and Siebert 2000). The 2011 Cordón Caulle event is an example of a subplinian 70 

to small-moderate, rhyolitic eruption (Bonadonna et al. 2015) characterized by a 24-30 hours-71 



long paroxysmal phase and followed by several months of low-intensity ash emissions and 72 

effusive activity. Due to the predominance of westerly winds, tephra fallout affected a wide 73 

area of Argentina and Chile and impacted both the local and regional economy, including the 74 

evacuation of 4000 people. Air traffic was disrupted by temporary closure of several Patagonian 75 

airports and flight cancellations. Agricultural economic losses were estimated at ca. USD200 76 

million; biotic effects linked to ash deposition were also widespread (Masciocchi et al. 2013). 77 

Recent papers focused on specific aspects of the eruption (petrology, deformation history, 78 

variations in the explosive activity, mechanisms of lava flow emplacement; Collini et al. 2012; 79 

Castro et al. 2013; Schipper et al. 2013; Tuffen et al. 2013; Jay et al. 2014), but a detailed 80 

stratigraphic study of the entire eruption sequence, discussing the relative roles of intra-81 

eruptive variability of magma physical parameters with respect to eruption dynamics 82 

parameters has hitherto been lacking. Our main objective is a field-based reconstruction of the 83 

2011 Cordón Caulle eruption, which presents a unique opportunity to study the complex 84 

stratigraphy of a subplinian to small-moderate rhyolitic event. We also discuss possible 85 

mechanisms and parameters controlling the observed shift in eruptive activity with time. 86 

 87 

Geological setting 88 

The Puyehue-Cordón Caulle volcanic complex (PCCVC) is a cluster of Pleistocene to recent 89 

volcanic vents aligned along a northwest (N135°) trend oblique to the main volcanic front of the 90 

Andean Southern Volcanic Zone (SVZ; Lara et al., 2004). The PCCVC encompasses ~140 km3 of 91 

Pleistocene and Holocene volcanic rocks that crop out over ca. 800 km2, mainly between 800 92 

and 2236 m above sea level (Singer et al. 2011; Fig. 1). Together with the collapse of volcanic 93 

edifices, repeated expansion and retreat of glaciers westward out of the Cordillera during the 94 



Pleistocene (Lowell et al. 1995) reduced older parts of the PCCVC complex to erosional 95 

remnants and incised kilometer-deep valleys that culminate in Lago Puyehue in the south and 96 

Lago Ranco in the north. Puyehue stratovolcano is flat-topped in profile, reaches an elevation of 97 

2236 m, and has a 2.5-km-diameter, 280-m deep summit caldera. Cordón Caulle, extending 20 98 

km along a fissure zone that trends northwest from Puyehue, is covered by ca. 9 km3 of 99 

rhyodacitic to rhyolitic domes, lava flows, pumice falls, and lahars generated from at least 27 100 

events during late Pleistocene to historic time (Katsui and Katz 1967; Lara et al. 2004, 2006).  101 

Two major rhyodacitic-rhyolitic fissure eruptions occurred during the 20th century (1921–1922 102 

and 1960), the latter only 38 hours after the 9.5 Mw Valdivia earthquake (the largest 103 

earthquake instrumentally recorded), centered 240 km northwest of the PCCVC (Kanamori and 104 

Cipar 1974; Moreno and Petit-Breuilh 1999; Lara et al. 2004, 2006). Tephra of the 1921–1922 105 

and 1960 eruptions blanketed most of the central and southern sector of Cordón Caulle and the 106 

northern flank of the Puyehue stratovolcano. In addition to these major events, other minor 107 

historical fissure eruptions (VEI = 1–2) occurred in 1759, 1893, 1905, 1914, 1919, 1929, 1934 108 

and 1990. 109 

 110 

Chronology of the eruption 111 

On 27 April 2011, a seismic swarm located at 4 km depth beneath PCCVC was interpreted by 112 

the Chilean Servicio Nacional de Geologia y Mineria (SERNAGEOMIN) and OVDAS  (Observatorio 113 

Volcanológico de Los Andes del Sur) as caused by magma movement in the volcanic system 114 

(Collini et al. 2012). Seismic activity was persistent during May 2011, with two major events on 115 

4 and 17 May (Mw 3.5 and 4.2, respectively). On 1 June, SERNAGEOMIN reported significant 116 

changes in volcano seismicity, with many events (750 in only 32 hours) located southeast of 117 

PCCVC at depths between 2.5 and 5 km. On 2 June the Chilean National Emergency Office 118 



(ONEMI) changed the volcanic alert code for civil protection to yellow (level 3). In the following 119 

days seismicity increased, reaching 230–250 earthquakes per hour on 4 June, 12 with 120 

magnitude ca. 4.5 (Silva Parejas et al. 2012). ONEMI changed the volcanic alert code to red 121 

(level 5), implying imminent volcanic eruption.  122 

The eruption started on 4 June at 14:45 local time (18:45 UTC) with the opening of a new vent 123 

and the development of a vigorous sustained eruption column that rose 10–12 km above the 124 

summit according to reports from SERNAGEOMIN, ONEMI and Buenos Aires Volcanic Ash 125 

Advisory Center (Collini et al. 2012 and Global Volcanism Program, GVP), with mass flow rate of 126 

ca. 107 kg/s (Bonadonna et al. 2015). The vent probably opened at the intersection of a regional 127 

lineament (the Liquiñe-Ofqui Fault) with the northern Cordón Caulle principal graben fault 128 

system, ca. 7 km north-northwest of the crater rim of Puyehue Volcano. Sustained high-rate 129 

discharge continued on the 5 June (although a bulletin released by SERNAGEOMIN at 18:00 130 

local time of 4 June reports a general decrease of eruption intensity), when at least 5 episodes 131 

of partial column collapse occurred, generating PDCs mainly heading north. From 5 to 7 June 132 

the plume height started to fluctuate between 12 and 8 km high. On the 6 June plume dispersal 133 

rapidly shifted counterclockwise, heading NNE, before being again dispersed by westerly winds 134 

in the morning of the 7 June. The volcanic cloud reached the Atlantic coast early on 5 June, 135 

turning northeast to reach northern Argentina on 7 June and Buenos Aires on 9 June. After the 136 

peak in intensity of 4 June, until 15 June the column height fluctuated with mass flow rate 137 

always >106 kg/s (Bonadonna et al. 2015), and a number of PDCs were also reported.  138 

During this period, the fine-grained ash fraction was continuously injected into the atmosphere, 139 

circling the Southern Hemisphere, passing over southern Australia on 10 June, reaching the 140 

southern tip of New Zealand on 11 June, and returning to South America on 15 June, 141 

completing its first circle of the globe by 18 June. Seismic events diminished progressively from 142 



17 to 5 earthquakes per hour. After 16 June, seismicity changed to low-frequency harmonic 143 

tremor, and the eruption column height was around 3 km. This change possibly accompanied 144 

the ascent to the surface of a magma body, anticipating the emission of viscous lava that was 145 

first observed on 20 June (Tuffen et al. 2013). According to SERNAGEOMIN, the end of the 146 

effusive phase during the first months of 2013 closed the eruption. 147 

 148 

Methodology 149 

Four field campaigns were conducted to characterize the eruption deposit stratigraphy (Fig. 1A 150 

and B), with the first observations just a few hours after the onset of the eruption; other 151 

detailed stratigraphic and sampling surveys were conducted during July 2011 (when the 152 

eruption was still ongoing), November 2011, May 2012, and February 2013. We investigated 153 

about 70 outcrops from proximal (1 km) to distal (240 km) areas to define the complex 154 

stratigraphic architecture of the tephra deposits, and to unravel the time-related variability of 155 

erupted products. Deposits were also studied for their sedimentological, physical (volume, 156 

grain-size, componentry, density), textural and chemical characteristics. The tephra sequence 157 

was correlated among the different outcrops, and a detailed comparison with satellite imagery 158 

allowed a precise timing of the eruptive phases to be reconstructed. 159 

At each site, a detailed stratigraphic log of tephra layers was measured and described. The 160 

tephra sequence was mainly investigated in the northeastern and southeastern sectors, where 161 

most of the tephra was dispersed during the initial intense phases of the eruption (Fig. 1). Thin 162 

deposits were also recognized NNW of the eruptive vent, upwind of the main dispersal axis of 163 

the tephra fallout. Based mainly on sedimentologic features (color, grain-size, size grading of 164 

deposits), the tephra sequence was subdivided into layers that represent single eruptive pulses. 165 

The layers were organized into units (based on abrupt changes of lithological and granulometric 166 



features) representing different stages of the eruption sequence. Several key sections located 167 

along the dispersal axis (vent area, Río Gol Gol, Paso Cardenal Samoré, Lago Espejo, Villa La 168 

Angostura, Bariloche, Ingeniero Jacobacci (1 to 7, respectively, in Fig. 1A) were particularly 169 

useful to trace correlations between different tephra layers and to reconstruct an “ideal” 170 

stratigraphic sequence that comprises all the products emplaced during the first weeks of the 171 

eruption. Field thickness data were hand-contoured onto isopach maps (4 to 7 contour lines, 172 

from 0.1 to 30 cm). Dispersal maps of the different layers were compared with all available 173 

satellite images of the plumes dispersed during the different eruption phases and the resulting 174 

deposits. In particular, we used NASA MODIS (Moderate Resolution Imaging 175 

Spectroradiometer) Terra and Aqua and NOAA GOES (Geostationary Satellites) images for the 176 

period 4-9 June (a minimum of 5 images were used for each analyzed day). At some selected 177 

key sections, tephra deposits were also sampled for grain-size analyses. Samples were 178 

mechanically dry-sieved at half- intervals (=-log2D, where D is the particle diameter in 179 

millimeters) for the coarser fraction and then processed for fine material (<0.25 mm) with a 180 

laser-diffraction instrument (CILAS 1180). The combination of sieving and laser-diffraction data 181 

was validated on selected samples by overlapping data resulting from the two techniques for 182 

the fractions between 0.5 and 0.063 mm; grain-size parameters were calculated according to 183 

Inman (1952) and Folk and Ward (1957). The coarse fraction from the key sections (≥1 mm, 184 

which is ≥40-50 wt.% in each sample) was analyzed for componentry; components from each 185 

grain-size class were separated by hand picking under a binocular microscope and weighed. 186 

Different clast types were also described in thin sections and with back-scattered mode (BSE) 187 

scanning electron microscope (SEM) observations. Chemical analyses were performed on 188 

powdered aliquots of vesicular lapilli from selected layers of all the main coarse-grained units 189 

by inductively coupled plasma mass spectrometry (ICP-MS) at ALS Laboratories (Seville, Spain). 190 



Density measurements of juvenile clasts from a subset of the same units were performed on 191 

vesicular fragments from a restricted size fraction (-3<<-2) collected from the tephra deposit 192 

at key sections 2 (15 km SSE of the vent) and 3 (28 km), following the method of Houghton and 193 

Wilson (1989) by determining weights in air and water after sealing. Clast densities were 194 

converted to vesicularity values by using a dense rock equivalent (DRE) measured with a water 195 

pycnometer on powders obtained by grinding the same clasts. The density of juvenile 196 

fragments as a function of grain-size was also measured for clasts from 3 layers collected at 197 

section 2. Density of clasts from -4 to -1was determined with the method of Houghton and 198 

Wilson (1989); for grain-size from -1 to 1 an aliquot (around 2 g) of juvenile clasts for each 199 

size fraction was sealed with silicon spray and the cumulative volume measured on a high-200 

precision balance (10−6 g) with a 50 ml pycnometer, using distilled and degassed water and 201 

following the method of Eychenne and Le Pennec (2012). 202 

 203 

Stratigraphy 204 

Architecture of the tephra deposits 205 

Thirteen layers grouped in four different tephra units were identified within the eruptive 206 

sequence and correlated among all the surveyed stratigraphic sections. Correlations in proximal 207 

and medial outcrops were carried out based on lithology and grain-size characteristics at the 208 

outcrop scale. Within 25 km from the vent, the sequence is dominated by multiple lapilli-209 

bearing fallout layers (Units I and II) overlain by cm-thick, light gray, ash-rich fallout layers (Unit 210 

III). In the most proximal outcrops, along the slopes of the PCCVC, a fourth (younger) unit can 211 

also be recognized (Unit IV), represented by very fine-grained, thin (few millimeters to 1-2 cm) 212 

white ash. At outcrops 25 to 50 km from the vent, the sequence appears as a stratified, fine 213 

lapilli-bearing, multiple deposit (Units I and II), capped by multiple fine ash layers interbedded 214 



with thin, coarse ash to fine lapilli beds (Unit III). At very distal outcrops (>200 km), the whole 215 

eruptive sequence is recorded by multiple beds of gray to white fine ash. 216 

Thickness of different layers at each outcrop, grain-size parameters and componentry of 217 

representative samples are reported in Tables 1 and ESM1. 218 

Unit I (Layers A to F) 219 

Unit I (Fig. 2B) is a lapilli-bearing bedset made of six layers (A to F) which comprises the coarsest 220 

deposits of the eruption. It is mainly composed of pumice clasts, ranging in color from white at 221 

the base to yellow in the upper two-thirds of the unit. It is characterized by a distinct, multiple 222 

reverse grading, with three main coarser layers (B, D, F). The different layers of Unit I are 223 

separated by planar surfaces defined by sharp grain-size variations at many proximal (<25 km) 224 

outcrops (Fig. 2A and B); farther from vent (25-50 km), separation between the six layers 225 

becomes speculative (Fig. 3A), and the deposit grades into a single thin (<10 cm), massive, fine 226 

lapilli to coarse ash bed (Fig. 3B, C). Only the doublet formed by the A-B layers can be 227 

consistently distinguished among the deposits of Unit I within the first 50 km from the vent. 228 

The A-B doublet is made of highly vesicular, white pumice clasts, and the two layers 229 

progressively merge away from the vent into a single, reversely graded bed dispersed to the 230 

southeast, and always associated with the deposits of the following layers of Unit I (C to F); 231 

these in turn cannot be unequivocally separated farther than 20-25 km from the vent and are 232 

characterized by the coexistence of white and yellowish pumice clasts of the same composition, 233 

with the topmost part of Unit I, corresponding to layer F, being coarser-grained than the rest of 234 

the layers. 235 

At section 7 (Fig. 1, 240 km from the vent), the Unit I deposit, collected on a tombstone 236 

relatively sheltered from winds, consists of a uniform fine ash layer (Figs. 3D and 4). In transects 237 



across the dispersal area, Unit I rapidly thins and is commonly absent towards the north 238 

(sections 8, 9 and 13; Fig. 4), where Unit II was directly deposited on the soil.  239 

Unit II (Layers G and H) 240 

Unit II comprises the two lapilli-bearing layers G and H and is clearly exposed in the 241 

northeastern sector. Layer G has been observed in the very proximal area around the vent 242 

(section 1; Figs. 4, 5B), where it consists of a 4 cm-thick, dark, poorly sorted coarse ash deposit, 243 

mainly made up of white pumice clasts and abundant obsidian chips, similar to those 244 

sporadically found in the other layers. It is mainly dispersed toward the north-northeast and is 245 

found sandwiched between Unit I and layer H deposits along the first 10 km of the road from 246 

Villa la Angostura to San Martin de Los Andes, which runs roughly parallel to the Argentina-247 

Chile border (Fig. 1B), 40 km east of the vent. At this distance, the layer is represented by a 1 248 

cm-thick, obsidian-rich ash bed. Farther north, layer G is found directly on soil and is the only 249 

deposit of Unit II in that area (section 9; Fig. 4).  250 

Due to the NNE dispersal of layer G, Unit II is represented in most of the outcrops of the 251 

eastern sector only by layer H, which clearly separates the deposits of Units I from those of Unit 252 

III. Layer H is a thin, normally graded layer of fine pumice lapilli characterized by the coexisting 253 

light gray and light brown-orange clasts (Fig. 2C and D). At section 5 (48 km from the vent), 254 

layer H consists of a basal, 1 cm-thick, lithic-rich, coarse-grained ash deposit with a light brown-255 

orange color overlain by a gray, finer-grained, normally graded, 3 cm-thick ash layer. Within the 256 

tephra sequence deposited at section 7 (240 km from the vent; Figs. 3D and 4), H corresponds 257 

to a 1-mm-thick orange ash layer separating  Units I and III. Due to its distinctive lithology, layer 258 

H is a useful marker bed for reconstructing the complex stratigraphy of the deposits. 259 

Unit III (Layers K) 260 



Unit III is composed proximally of five layers (K1 to K5), easily identifiable by their different 261 

grain-sizes; main divisions were made using the ubiquitous coarser (fine-lapilli) grain-size of 262 

layer K2 and, although less frequently recognized in the field, of K4. Conversely, layers K1 and 263 

K3 are finer-grained than K2 and K4 and show multiple internal laminations. Partial erosion or 264 

wind reworking often affected layer K5. In both medial and distal areas, Unit III is easily 265 

recognized at the top of the tephra sequence by the abrupt color change to light gray from the 266 

darker A-F layers (Unit I) below. 267 

In transects across the main dispersal axis, and at larger distances from the vent (e.g. sections 268 

8, 9, 12; Figs. 3D and 4), the distal tephra sequence consistently contains the trace of the 269 

different layers forming Unit III, with K2 the easiest to identify by its coarser grain-size. In some 270 

proximal outcrops, snow intercalations between tephra layers of Units I and III were also 271 

observed during the first survey (Fig. 3C), possibly suggesting low accumulation rates for some 272 

beds and/or small pauses between eruptive phases. 273 

Unit IV 274 

Unit IV is a white, millimetres-thick fine ash deposit (layer L) which caps the whole sequence in 275 

very proximal outcrops and is present as a thin sprinkling on the southern slopes of Puyehue 276 

volcano and in a few outcrops within a radius of 20 km from the active vent. Due to its limited 277 

dispersal coupled with partial reworking, Unit IV was not used for correlation of tephra layers. 278 

In very proximal outcrops, up-wind tephra deposits corresponding to Units I to III, are covered 279 

by the generally thin, discontinuous ash of Unit IV. The grain-size of this ash does not vary 280 

significantly with distance from the vent, suggesting deposition from ash-rich plumes during 281 

low-intensity activity.  282 

 283 

Near-vent deposits 284 



Observations carried out in proximal areas revealed very limited up-wind sedimentation during 285 

the entire explosive phase. Although the wind direction changed during the eruption, proximal 286 

up-wind tephra deposits are restricted to a narrow, 2 km-wide, north-south area on the 287 

western part of the vent. A 50 m-high tephra cone formed during the first days of the eruption 288 

(Schipper et al. 2013), which was partially opened on the northwestern side and surrounded by 289 

a thick lava flow during the following weeks of activity (Fig. 5A). Tephra deposits rapidly thin, 290 

disappearing 1 km west of the vent; in this area (section 1; Fig. 4), the lower part of the tephra 291 

sequence consists of a 5 cm-thick basal deposit of vesicular lapilli in a muddy brown ash matrix 292 

(Unit I; Fig. 5B). The different layers of Unit I identified in the medial outcrops cannot be 293 

distinguished. Unit I is overlain by a 3.5 cm-thick, dark-colored ash deposit rich in obsidian chips 294 

(layer G, Unit II). The top of the sequence is a 3 cm-thick, gray, fine ash with dark, coarse, 295 

interbedded ash laminae (Unit III).  296 

The proximal area hosts many ballistic blocks, clearly visible in satellite images. Fields of metre-297 

sized bombs and blocks with related impact craters are concentrated on the northern side of 298 

the cone (Fig. 6A) (see also Castro et al. 2013). The density of impact craters per unit area, 299 

extrapolated from high-resolution NASA Modis and Google Earth satellite images, is 14200/km2 300 

at 1.4 km from the vent and rapidly decreases to 2400/km2 at 2.3 km from the vent (Fig. 6B). 301 

These numbers are a cumulative estimate over the whole eruption. We directly observed a field 302 

of ballistic blocks 1800 m from the vent, where impact craters reached 7 m in diameter. Ballistic 303 

material varies from highly vesicular to dense; dense blocks generally correspond to sub-304 

angular pieces of glassy, sometimes sparsely banded obsidian, while bombs show a large 305 

lithologic variability. At least three different end-member bombs were recognized: 306 



- - black, glassy-rinded bombs, with highly vesicular inner portions and breadcrusted external 307 

surfaces (Fig. 5C); vesicle shape and size range widely, and vesicles are sparsely distributed in 308 

the bombs, often coalescing in the core to decametric size. 309 

- - scoriaceous, banded, bombs characterized by a range in vesicularity corresponding to light 310 

colored or dark colored bands (Fig. 5D); in some cases these bombs also have a dense, glassy 311 

rind; 312 

-  - bombs formed by spectacularly welded, highly contorted, breccia-like material (Fig. 5E). The 313 

breccia material is generally formed by centimetric to decimetric angular pumice, grey to pink 314 

colored clasts commonly separated by a finer-grained (cm- to mm-sized) matrix of the same 315 

material. Some clasts in the matrix are deformed and oriented. These bombs contain large gas 316 

cavities (up to 20 cm).  317 

All ballistic blocks and bombs clearly deformed layer G upon impact and, therefore, were 318 

presumably ejected during phase K1-2. Ballistic ejection possibly also accompanied the later 319 

phases of the eruption, which were characterized by a lower intensity than that of the first 10 320 

days of activity (Bonadonna et al. 2015) and the formation of low altitude ash plumes. 321 

SERNAGEOMIN and OVDAS reported an intense phase of ballistic ejection on 12-13 June 322 

(before the onset of the effusive activity), when jets of pyroclastic material carrying large blocks 323 

to distances up to 2.5 km were associated with oscillating tremor signals and seismic peaks 324 

(Schipper et al. 2013). 325 

Although it was not possible for us to directly observe PDC deposits in the field, high-resolution 326 

satellite images allowed a good definition of their boundaries and some distinctive features. 327 

Satellite images show large areas with trees knocked down and aligned along the main flow 328 

direction, bordered by areas with still standing, partially burned trees; analysis of these images 329 

revealed that most of the deposits were emplaced in valleys heading north from Cordón Caulle, 330 



as also shown by pictures of the eruption taken on 4 and 5 June. Due to topographic effects, 331 

some flows were channelized within the main valleys, while others reached topographic highs. 332 

The total area covered by the PDC deposits is estimated at 87 km2  (Fig. 6C), for a total runout of 333 

12 km, and is characterized by fallen trees in different directions (Fig. 6D), suggesting that 334 

multiple flow lobes were emplaced in the same area. Assuming an average thickness  1 m 335 

(trunks of downed trees are still visible and not fully covered by the ash), we obtain a total 336 

volume for the PDC deposits of 0.08±0.01 km3 (by considering an average error of 10% both on 337 

area and thickness estimates of the deposit).  338 

 339 

Timing, dispersal and volume of tephra layers 340 

Satellite images showed that, during the first hours of the eruption (4 June) and at least until 5 341 

June, the volcanic cloud was dispersed towards the east-southeast (Fig. 7, Table 2). During the 342 

night of 5-6 June (more than 30 hours after eruption onset), the volcanic cloud drifted rapidly 343 

north due to a change in wind direction and remained stable for the entire day. A second 344 

change in wind direction occurred early on 7 June, causing the cloud to rotate back again 345 

towards the east, with minor shifting continuing until 8 June. The plume was continuous, 346 

although progressively decreasing in height, until 7 June. Starting on 8 June, the trace of the 347 

cloud on the satellite images became narrower and strongly stretched, suggesting a progressive 348 

decrease in eruption intensity, with wind velocities ranging between 30 and 60 m/s. 349 

Comparison of deposit dispersal with satellite images constrains the timing of the different 350 

phases of the event. The coarser-grained layers A-F (Unit I) were related to the first 24-30 hours 351 

of the eruption (afternoon of 4 to morning of 5 June). Layer G, mainly dispersed to the north, 352 

was deposited overnight between 5 and 6 June while the plume drifted north along the Chile-353 

Argentina border. After a new shift in wind direction, layer H was emplaced starting on the 354 



night of 6 June. A pause of a few hours followed before the emplacement of layers K (Unit III), 355 

as also evidenced by snow intercalations within the tephra sequence. The vesicular aspect of 356 

the ash beds and the local occurrence of accretionary lapilli in layer K1 close to key section 5, 357 

coupled with direct observations during the eruption in Villa La Angostura describing the fallout 358 

of a muddy rain (personal communications from residents), indicate that K1 was emplaced 359 

during the late night of 6-7 June. A shower of coarser lapilli, representing layer K2, fell on the 360 

morning of 7 June, as also suggested by direct observations. The K3 and K4 ash layers were 361 

possibly emplaced immediately after K2 (8-9 June) or are either related to activity after 10 June. 362 

The eruptive activity after the first week did not form distinct beds in the distal sectors, but it 363 

was responsible for depositing the white ash of Unit IV all around the volcano at proximal sites 364 

(<20 km).  365 

Isopach maps (Fig. 8) show that the very first phase of the event, represented by layers A and B, 366 

has a more limited dispersal than the following layers and is restricted to the first 60-70 km 367 

from the vent. Layers H and K2 layers have an intermediate, east-oriented dispersal, if 368 

compared with A-F, which covers the largest area reaching  Ingeniero Jacobacci (240 km from 369 

the vent) with the 0.5 cm contour line. A-F isopachs and A-B and H at a lesser extent, show an 370 

asymmetric distribution (with the isopachs spreading more northeasterly than southwesterly) 371 

possibly due to the wind rotation during the first phase (Table 2) that progressively developed a 372 

fan towards the northern quadrants. 373 

The erupted volume was calculated for layers A-B, A-F, H and K2, the layers most easily 374 

correlated in the field. In order to quantify uncertainty, we have applied main existing 375 

strategies (i.e., integration of exponential, power law and Weibull fit; Pyle 1989; Bonadonna 376 

and Houghton 2005; Bonadonna and Costa 2012) (Fig. 9 and Table 3). All strategies agree well 377 

with each other except for A-F, for which the exponential fits (two or three segments) give 378 



values lower than power law or Weibull methods (from 0.44 to 0.88 km3). Based on the average 379 

among the different methods, we obtained a volume of 0.21 km3 for layers A-B, representing 380 

the very first stage of the eruption, of 0.75 km3 for the whole A-F, and of 0.21 and 0.05 km3 for 381 

layers H (Unit II) and K2 (Unit III), respectively. The volume of the post-7 June 2011 deposit 382 

could not be calculated due to correlation and erosion problems, but it is expected to be of 383 

significantly lower magnitude. Volume estimate of PDCs corresponds to ca. 10% of the A-F 384 

(average) total volume, suggesting that most of the magma volume fueled the eruptive column. 385 

 386 

Physical features of the erupted material 387 

Field observations were integrated with grain-size and componentry analyses (in the range -5 388 

to 0), and density, vesicularity and bulk rock chemistry of the juvenile vesicular material in 389 

order to characterize the physical and chemical features of the erupted material and their 390 

variations. We particularly focused on variations with time of the eruptive products, in order to 391 

discuss the relationships between heterogeneities in erupted materials and observed variations 392 

in the eruptive style and dynamics.  393 

 394 

Grain-size and componentry 395 

Five sections (1, 2, 3, 5 and 7) were selected to investigate grain-size and componentry 396 

variations within the eruptive sequence. The sections are located 1, 15, 28, 48 and 240 km from 397 

the vent, respectively (Figs. 1 and 4).  398 

Proximal outcrops (sections 2 and 3) have similar vertical variations in grain-size, showing 399 

oscillations in the median grain-size of the deposits of Unit I (Figs. 10 and 11; Table 1). Unit I is 400 

also characterized by good sorting ( between 1.16 and 1.72). Units II and III show an abrupt 401 



decrease of grain-size with respect to Unit I. Section 1, 1 km upwind of the vent, is 402 

characterized by a rapid upward decrease in mean grain-size and sorting passing from Unit I to 403 

Unit II, represented by layer G (Fig. 12). 404 

The tephra sequence at medial outcrops (e.g. section 5; Villa La Angostura, Fig. 12) is also 405 

characterized by a clear grain-size difference in the deposits, with a coarser basal bed 406 

corresponding to Unit I (in which the different sublayers recognized in the more proximal area 407 

are here represented by a single, lapilli-bearing bed) overlain by finer-grained Units II and III. 408 

The layers of Unit III (Fig. 12) show a very clear bimodality of grain-size, with the coarsest layer 409 

(K2) more enriched in the coarse population (with a mode around -0.4) with respect to the K1 410 

and K3-5 layers. Units I and II are well to very well sorted whereas Unit III is poorly sorted (Table 411 

1). 412 

Analyses performed on the distal tephra sequence (section 7; Ingeniero Jacobacci, Fig. 12) show 413 

a very fine uniform Md (5.3-5.5) and are well sorted (=1.5-1.6). Samples are characterized 414 

by F2>74% (where F2 represents the wt.% of ash fraction <63 m).  415 

In general, all samples of the lower three units present a clearly bimodal grain-size distribution, 416 

particularly evident in Units II and III (Bonadonna et al. submitted). A finer-grained mode 417 

generally peaks between 3 and 5 in all the samples, while the coarsest fraction has a mode 418 

that strongly varies according to the distance from the vent and the position of the deposit with 419 

respect to the dispersal axis (Table 1). 420 

Component analysis of the deposits was conducted on the coarsest (≥1 mm) grain-size fraction 421 

of samples from four stratigraphic sections at different distances from the vent, along the main 422 

dispersal axis of the deposit (sections 1, 2, 3 and 5). Componentry data are presented in Table 423 

1. On the basis of macroscopic external morphologies, texture, degree of alteration, crystallinity 424 

and vesicularity, we separate juvenile and lithic clasts. Observations of thin sections, coupled 425 



with SEM imaging, of the material reveal a large range of juvenile lithology, which can be 426 

subdivided into five different types: i) white pumice clasts, ii) banded pumice clasts, iii) dense 427 

juvenile clasts, iv) obsidians and v) free crystals (Fig. 13):  428 

- white pumice clasts: highly vesicular, nearly aphyric clasts. Vesicles have wide range in shape 429 

(from spherical, to irregular, to convoluted, to tubular) and size. Some clasts shows fluidal 430 

structures, marked by highly deformed, convoluted vesicles. Rare phenocrysts of plagioclase 431 

and pyroxene are present, generally oriented along the fluidal structures defined by the 432 

largest vesicles. Glomeroporphyritic textures (pyroxene and plagioclase) are also observed. 433 

Important differences in the general shape of vesicles (and consequently of the clasts) are 434 

observed between samples of lapilli-bearing layers (A-F, H, K2 and K4) and samples from 435 

layers characterized by an abundant ash component even in the proximal sectors (G, K1, K3, 436 

K5, Unit IV). In the ash-rich layers, elongated pumice clasts with tubular vesicles coupled 437 

with dense clasts with collapsed vesicles dominate in the fine lapilli to coarse ash 438 

component, while in the lapilli-bearing layers both the lapilli and coarse ash components are 439 

dominated by the presence of subequant fragments with spherical to deformed, convoluted 440 

vesicles. 441 

- Banded pumice clasts: fluidal, poorly to moderately vesicular, subaphyric clasts, 442 

characterized by alternating light and dark grey bands (banded or streaky pumice). These 443 

clasts are generally fine-grained (>-2). Many vesicles are elongated; light colored portions 444 

are generally more vesicular. Macroscopically, banded pumice resembles the ballistic 445 

scoriaceous banded bombs observed in proximal area. 446 

- Obsidian clasts: black to transparent brown, dense, massive to fluidal, subaphyric glassy 447 

fragments, with vitreous luster. Microlites are rare, and if present show a skeletal texture. In 448 

thin section the color of the glass ranges from light yellow to brownish. The darker 449 



fragments are characterized by a weak color banding. While fresh, vitreous clasts possibly 450 

represent juvenile material, dull black fragments could derive from the shattering of 451 

preexisting obsidian bodies (accidental lithics). Obsidian fragments are particularly abundant 452 

in the G layer, although they are present in variable amounts throughout the whole 453 

sequence. This type of clast is generally found only in the coarse ash fraction.  454 

- Dense juvenile clasts: aphyric to subaphyric, poorly vesicular, glassy grey fragments. Vesicles 455 

are small and generally spherical. In thin section the glass is transparent and unaltered, with 456 

very few microlites and no trace of banding or fluidal structures. Phenocrysts are plagioclase 457 

and pyroxene. These clasts have intermediate features between banded pumice and 458 

obsidian fragments. 459 

- Free crystals: millimetric to sub-millimetric crystals of plagioclase and rare pyroxene. Crystals 460 

are commonly present as fine-grained aggregates of subhedral plagioclase and pyroxene 461 

with interstitial glass and microlites of oxides. 462 

Lithic material is more homogenous than the juvenile clasts, and two different lithologies were 463 

distinguished: 464 

- altered clasts: fragments of igneous and sedimentary rocks with pervasive alteration (mainly 465 

oxidation) which conceals the original texture of the rock, making lithological recognition 466 

very difficult. Lava fragments are sometimes recognized by their scoriaceous texture or the 467 

presence of fairly abundant plagioclase and pyroxene crystals; accessory pumice (not 468 

juvenile) can be recognized by the occurrence of hydrothermally altered ash filling the 469 

vesicles. 470 

- Intrusive rocks: dark grey, fine-grained, holocrystalline fragments. In thin section these clasts 471 

present a typical monzogranite paragenesis, and a high temperature alteration paragenesis 472 



(sericite plus epidote). Due to the small amount of intrusive rocks, lithics are treated in the 473 

following as a single category. 474 

Componentry variations within the tephra sequence of sections 2 and 3 (Figs. 10, 11) show that, 475 

within Unit I, white pumice clasts are the most represented category (72 to 93 wt.%), followed 476 

by lithic clasts (5-25 wt.%, most abundant in layers C and F) and minor obsidian, banded pumice 477 

and dense juvenile clasts (<5 wt.%). Banded pumice clasts tend to increase from base to top of 478 

Unit I, and account for up to 9 wt.% in layer F at section 2 (Figs. 10, 11; Table 1).  479 

Unit II is more variable, with layers G and H having contrasting componentry. At section 2, only 480 

layer H is present, consisting of abundant white pumice clasts, minor banded pumice clasts, 481 

scarce lithic fragments and virtually no dense juveniles. The characteristic reddish color of part 482 

of the white pumice fraction (in general concentrated in a thin bed at the base of the layer) is 483 

related to external oxidation of the glass. Layer G, present only in the most proximal sites 484 

(section 1) and in a narrow lobe trending NNE, is instead characterized by abundant obsidian 485 

fragments (ca. 30 wt.%) and by white pumice with elongated, tube-like shapes, rare in the 486 

underlying layers. Unit III is characterized by an abrupt change in the color of the pumice clasts 487 

from white to light gray, a clear increase in banded pumice clasts (2-8 wt.%) and the virtual 488 

absence of lithic material (<1 wt.%). As a general rule, the coarsest grain-sizes are formed only 489 

by white pumice fragments, while lithic clasts and the other types of juvenile material are 490 

present in grain-size classes with  between -2.5 and 0. Free crystals are more abundant in the 491 

0φ class. White pumice in the ash-bearing layers of the unit (K1, K3, K5) is typically present as 492 

tube-like fragments. 493 

Componentry analyses performed at medial distances (section 5) show no systematic variations 494 

for Unit I, and an abrupt increase in banded and dense juvenile clasts within K layers. Layer K2, 495 

in particular, consists of abundant white pumice clasts (84 wt.%), banded pumice clasts (9 wt.%) 496 



and free crystals (2 wt.%), with virtually no dense juvenile or lithic clasts. Layer G, analyzed only 497 

at section 1, is very rich in obsidian (27 wt.%) and dense juvenile clasts (12 wt.%) (Fig. 12). 498 

 499 

Density  500 

Density was measured on 80-100 white pumice clasts in the size range 2-4 cm collected from 501 

each of the coarsest layers of Unit I (B, D and F) at section 3 (28 km from the vent), from Unit II 502 

(layer H), and Unit III (layer K2) at section 2 (15 km from the vent). Density distributions show 503 

unimodal trends, with values ranging from about 200 to 1000 kg/m3 (mean value = 485±141 504 

kg/m3), corresponding to vesicularities of 62 to 92 vol.% (Fig. 14A). Vesicularity trends 505 

(calculated using a measured dense rock equivalent (DRE) density of 2690 kg/m3) show no 506 

systematic variations within Unit I (83.3±4, 83.7±3, 83.8±3 average vol.% for layers B, D and F, 507 

respectively), whereas a decrease can be observed for the younger Units II and III (78.5±6 and 508 

77.0±5 average vol.% for H and K2, respectively). 509 

The variation of clast density with grain-size was evaluated for layers C, F and K2 collected at 510 

section 3. The data have a sigmoidal distribution (Fig. 14B), as also observed by Eychenne and 511 

Le Pennec (2012) for the August 2006 Tungurahua subplinian scoria layer (Ecuador). Density 512 

values are similar in the -4 to -3range, with a rapid increase below -3The trends do not 513 

reach a well-defined plateau, with maximum values of 1270 kg/m3 for the finest (1) class, well 514 

below the measured DRE values (2690 kg/m3), suggesting a rapid increase in density in the 515 

range 2-5Density values are practically the same for the three samples down to -1 but 516 

diverge at finer grain-size classes in the K2 sample, suggesting a different distribution of vesicle 517 

size in the clasts from Unit I compared with those from Unit III. 518 

 519 

Vesicle shape in pumice clasts 520 



Vesicular white pumice clasts have a very complex distribution of vesicles, well evident in thin 521 

sections. White pumice fragments from all layers of Unit I, and from lapilli-dominated layers of 522 

Unit II (layer F) and III (layers K2 and K4) show both spherical, homogeneously distributed 523 

vesicles and complex, very contorted vesicles (Fig. 15A, B). Tubular vesicles occur, but they are 524 

generally discontinuous, commonly affected by convolutions which deform and interrupt the 525 

vesicle tubes. When observed in polished sections with the SEM, white pumice clasts present 526 

clear evidence of shear localization, with obvious shear bands interrupted by transverse rigid 527 

and plastic structures generally oriented at high angles with the shear bands (Fig. 15C, D). Some 528 

structures resemble Riedel fractures or CS foliations. Many zones of shear localization insulate 529 

areas where deformation is not evident and vesicles are homogeneous in size and nearly 530 

spherical (indicated by lines in Fig. 15E, F). The overall arrangement of vesicles in these clasts 531 

indicates relatively low large bubble connectivity, as strained vesicles are generally interrupted 532 

over a short length by the occurrence of transversely-oriented structures.  533 

Conversely, vesicular pumice clasts from ash-dominated layers (layer G of Unit II, ash-bearing 534 

layers of Unit III, Unit IV) are mostly characterized by elongated shapes, owing to the 535 

occurrence of very well developed tubular vesicularity or clear vesicle collapse (Fig. 15G, H). In 536 

these fragments, vesicle trains are nearly parallel and not interrupted by transverse structures, 537 

evidence of the development of flow banding without important shear localization and 538 

deformation under a lower shear rate relative to those described for Unit I.  539 

 540 

Chemistry 541 

Bulk rock analyses were performed on white pumice clasts from selected layers of key section 3 542 

for A to F layers, from key section 4 for layer K2, and from bombs sampled close to the crater 543 

area at section 056 (Table ESM2). Major-element values for most samples cluster in a narrow 544 



range within the rhyolitic field on a total alkali vs. silica plot (Le Bas et al. 1986), as described by 545 

Castro et al. (2013) and Daga et al. (2014); exceptions are layers B and C, whose compositions 546 

lie along the rhyolite-dacite boundary. All samples are tightly clustered between 68.51 (layer C) 547 

and 71.6 (layer K2) wt.% SiO2, with a small variability for layer D and K2, which show a slightly 548 

more evolved composition. The slight change in silica content is not accompanied by an 549 

increase in phenocryst content or groundmass crystallinity as shown by petrographic 550 

observations; it could be related to incorporation of glomeroporphyritic clots often present 551 

within the pumice clasts.  552 

Trace elements show that the basal part of the tephra sequence (layers A and B) is 553 

characterized by a less evolved signature, as shown by Sr and Th concentrations (Fig. 10). Plots 554 

of Th vs. other elements (Cs, U, La, Ba) show positive correlations for most of the samples; 555 

however, samples belonging to the topmost part of the eruptive sequence (layers E, F and K2) 556 

lower Cs, U, La and Ba with respect to their higher Th contents. In general, these small changes 557 

probably did not influence variations in dynamic and rheologic parameters controlling the 558 

eruption, though they might reflect complex processes of magma evolution before eruption. 559 

 560 

Discussion 561 

The 2011 eruption of Puyehue-Cordón Caulle was fed by the ascent of slightly porphyritic, 562 

rhyolitic magma from a relatively shallow (ca. 5 km) depth (Castro et al. 2013; Schipper et al. 563 

2013). Although we identify several juvenile components, most is nearly homogenous rhyolitic 564 

white pumice clasts containing approximately 70 wt.% SiO2 with only minor variations in trace 565 

element composition. We constrain the stratigraphy, dispersal and volume of the eruptive 566 

phases and the timing by comparing deposit dispersal with satellite images. Insights into 567 



temporal variation of eruption dynamics before the effusive phase derive from changes of 568 

sedimentological, chemical and textural features of the explosive deposits. 569 

 570 

Insights into eruption dynamics from deposit characteristics 571 

Grain-size and dispersal of the tephra deposits and comparison with plume direction observed 572 

by satellite images suggest that Unit I was emplaced during the first 24-30 hours of the eruption 573 

(4 and 5 June) under nearly stable wind conditions. Despite this, the column clearly resulted 574 

from pulsating, unsteady magma discharge, as shown by some videos taken on 4 and 5 June 575 

(http://www.youtube.com/watch?v=1ulakwwtoUg; http://vimeo.com/24715989; 576 

http://cimss.ssec.wisc.edu/goes/blog/archives/8281). Such unsteady discharge probably 577 

resulted in the oscillating vertical grading of the fallout deposits A-F. In addition, several 578 

episodes of partial column collapse-generated PDCs during the first days of the eruption (at 579 

least 5 in the first two days) are recorded in the daily bulletins issued by the Chilean OVDAS. 580 

Despite these oscillations, during this phase the plume was continuously supplied and the slow 581 

change in wind direction from NW to W forced all the eruptive cloud to drift in W-E direction. 582 

Deposits of Unit II (layers G-H) signal a change in the eruption dynamics. Satellite images show 583 

narrower, less dense plumes after the morning of 6 June, possibly related to a lower mass 584 

discharge which resulted in the detachment of the plume in different pulses. During the 585 

deposition of Unit II, significant changes in column height and plume direction also occurred. 586 

Rotation of the dispersal axis occurred during the night of 5-6 June, and the plume remained 587 

stable toward the NE until the following day, leading to a gap of tephra deposition in the 588 

eastern sector. The NE dispersed eruption cloud was sharply diverted to SE at a distance of 589 

about 1000 km NE from the vent, where it encountered a different wind field which caused the 590 

http://www.youtube.com/watch?v=1ulakwwtoUg
http://vimeo.com/24715989


formation of a prominent “elbow” in the plume (Fig. 7C). The fine-grained, obsidian-rich, ash-591 

bearing layer G was only dispersed to the northern sector, thus representing the combined 592 

result of a decreased intensity of the eruption and of the progressive shift from westerly to 593 

southerly winds. The different lithology of layer G with respect to the deposits of the preceding 594 

phase (large amount of juvenile obsidian clasts, finer-grained nature of the deposit) also 595 

indicates that important changes in the eruption dynamics and/or a possible shift in vent 596 

location had occurred. These changes anticipate and prepare for the shift towards a phase 597 

dominated mainly by ash emission, generation of low-level plumes and pulsating activity, 598 

recorded by the deposits of Unit III and by the wide ballistic bomb field in the proximal area. 599 

Before passing to this phase, however, the eruption went through a new short period of 600 

increased activity, with a stronger plume which rotated eastwards during the night of 6-7 June 601 

and deposited the lapilli-bearing layer H.  602 

Starting on the morning of 7 June, Unit III deposits were emplaced; available activity bulletins 603 

(GVP) refer to lower plumes until 15 June (5.5 to 10 km high on 7, between 3.5 and  5.5 km 604 

from 7 to 15) which occasionally rose to 7-8 km. This matches well with the deposits, made of 605 

ash-bearing beds interlayered with at least two coarser layers (K2 and K4). 606 

The correlation among deposits, satellite images and direct accounts of the eruption clearly 607 

shows a progressive decrease in intensity of the eruption and the change from sustained, high-608 

level columns typical of subplinian activity to activity dominated by lower magma discharge, 609 

diffuse, bent-over plumes and ash emissions. The transition between the two phases occurred 610 

during the deposition of Unit II, and ash emissions punctuated by episodes of higher, sustained 611 

discharge is recorded in the deposits of Unit III. The large field of ballistic bombs visible in the 612 

most proximal areas is clearly associated with this type of activity, and possibly marks the shift 613 

to lava effusion (Schipper et al. 2013).  614 



Observations of proximal deposits also reveal that up-wind tephra sedimentation was scarce to 615 

null, with tephra deposits pinching out hundreds of meters from the vent. This observation 616 

suggests that the plume was characterized by a wind-dominated dynamics even during the first, 617 

more intense phases of the event (Bonadonna et al. 2015), and that upwind spreading was very 618 

limited (stagnation point very close to the plume axis). The bimodality of most grain-size data, 619 

even in the more proximal outcrops, also suggests that ash aggregation possibly played an 620 

important role during tephra sedimentation (see also Bonadonna et al. submitted). 621 

 622 

Insights into eruption dynamics from tephra characteristics 623 

Component analyses show a large textural variability in juvenile material throughout the whole 624 

deposit. Conversely, both the amount and lithologic variability of lithic material are restricted. 625 

The occurrence of lithic material in Unit I and its almost total disappearance thereafter suggest 626 

that the major phase of conduit/vent enlargement was mainly restricted to this first, higher 627 

discharge phase of the eruption (Bonadonna et al. 2015). Surprisingly, hydrothermally altered 628 

rocks form only a very low percentage of lithic fragments, despite the very large geothermal 629 

field associated with the Cordón Caulle structure (Sepulveda et al. 2005). This suggests that 630 

most of the lithic clasts result from shallow conduit enlargement, rather than from deep 631 

conduit erosion, and that this conduit structure did not progressively enlarge during the 632 

eruption, in agreement with the general decrease in magma discharge.  633 

High-resolution satellite images (Schipper et al. 2013) and sparse direct accounts (GVN) also 634 

reveal that, at different times during the eruption, more than one vent was active, possibly 635 

aligned along the main structural lineaments of Cordón Caulle (N145; N165). We suggest that 636 

the coexistence of many different types of juvenile material within each single tephra layer is 637 

consistent with magma ascent through a fissure rather than through a “cylindrical” conduit. The 638 



abundance of obsidian could be explained, in this interpretation, by rapid quenching and 639 

degassing of magma ascending slowly through the narrower portions of the conduit, while the 640 

abundant, highly vesicular, pumice fraction could represent the most rapidly ascending part. In 641 

this model, the large abundance of fine-grained clasts of obsidian erupted on 6 June, 642 

immediately after the end of the most intense phase of the eruption, could be related to the 643 

opening of a new vent along the eruptive fissure.  644 

The abundant banded pumice within Unit II and mainly Unit III is lithologically similar to the  645 

material forming the glassy ballistic bombs emplaced around the vent by the end of Unit II 646 

(layer H) and the start of Unit III (layers K). The coexistence of vesicular and dense, obsidian-like 647 

bands testifies to complex interactions between gas-rich and gas-depleted magma portions 648 

during ascent to the surface. 649 

The composition of the microlite-free, shallow-residing magma feeding the eruption did not 650 

change significantly during the event; bulk rock chemistry of juvenile clasts is rather 651 

homogeneous throughout the eruption, mostly clustered within the rhyolitic field, with only 652 

Unit III pumice showing a slightly more evolved composition. The large variety of juvenile 653 

components within the tephra deposits, and the transitions in eruptive dynamics during the 654 

eruption, cannot be explained by changes in magma composition and rheology; instead, they 655 

possibly relate to a complex magma outgassing history and/or to vertical and lateral variability 656 

within the magma column.  657 

 658 

Inferences on magma ascent processes from clast vesicularity 659 

The observed variations in the relative proportions of juvenile components during the eruption 660 

show that heterogeneities increase with the decrease in eruptive intensity. As pointed out by 661 

Castro et al. (2013) and Schipper et al. (2013), the efficiency of magma outgassing during ascent 662 



may have controlled the intensity of the first explosive phase and the subsequent progression 663 

from early pyroclastic venting to later effusive eruption.  664 

Schipper et al. (2013) suggested that a highly connected vesicularity had developed after the 665 

end of the first, more energetic phase, which they considered as evidence for open-system 666 

degassing during this phase of the eruption. This suggestion was based on the presence of 667 

tubular, prolate pumice clasts in the tephra during the late stage of the eruption (January 668 

2012), when activity was dominated by lava effusion and vulcanian explosions, and on the 669 

vesicularity observed in some bombs ejected during a preceding phase. Our careful observation 670 

of the juvenile material from the different layers of the first week of the eruption (the phase 671 

with the highest mass flow rates; Bonadonna et al. 2015) shows that tubular pumice is present 672 

only during phases dominated by ash emission, while the most intense phases that emplaced 673 

the main lapilli beds are dominated by subequant, highly vesicular pumice with a highly 674 

contorted vesicles.  675 

These clasts also present clear evidence of important shear localization (Fig. 15), a factor which 676 

largely influences degassing and outgassing and magma ascent rate (Okumura et al. 2009, 677 

2013). We suggest that the high magma discharge during the most intense phases resulted in a 678 

larger strain rate with respect to the phases of lower intensity (e.g. G, K1, K3, K5), which 679 

triggered shear localization in a relatively narrow conduit; shear localization allowed a high flow 680 

rate by decreasing the apparent viscosity of the magma (Wright and Weindberg 2009). Another 681 

important effect of shear localization is creation bands of highly deformed, elongate, connected 682 

vesicles and insulation of large areas of very minor deformation, characterized by nearly 683 

spherical, poorly coalescent vesicles. We suggest that this kept bulk magma permeability at a 684 

lower level relative to that measured for the tubular vesicularity of the following phases 685 

(Schipper et al., 2013). The coexistence of high ascent rate and relatively low permeability of 686 



the magma column due to the strongly complex vesicularity stabilized conditions of closed-687 

system degassing. Detailed observations of textures were carried out on the white, vesicular 688 

pumiceous fraction only, so that inferences on component variability within the deposits are 689 

not straightforward. However, during lower intensity phases (e.g. G or K), higher magma 690 

permeability resulted from the development of a continuous, un-interrupted tubular 691 

vesicularity. This could possibly favor open-system outgassing resulting in banded or denser 692 

clasts characterized by collapsed vesicles, with obsidian clasts the end member of this process. 693 

 694 

Comparison with rhyolitic small-moderate eruptions 695 

Few studies and observations exist on small-moderate rhyolitic eruptions. Available data 696 

suggest that, in general, these events are characterized by complex stratigraphic architectures 697 

of tephra deposits mainly due to unsteady column dynamics and PDC activity, dome extrusion 698 

or transitions from explosive to effusive phases (e.g. Southern Mono Crater, Bursik et al. 2014; 699 

Chaitén, Alfano et al. 2011; Taranaki, Platz et al. 2007). In particular, the progression from mid-700 

intensity explosive activity to a lower intensity, simultaneous explosive-effusive eruption is a 701 

characteristic of several eruptive events involving intermediate to evolved magma. This has 702 

been, for example, recently observed at Chaitén in 2008 (Castro and Dingwell 2009; Alfano et 703 

al. 2011; Wicks et al. 2011). 704 

These events share common stratigraphic features, such as complexity of dispersal patterns 705 

due to the long duration and, therefore, to the changes in wind direction and velocity. 706 

Nonetheless, the characteristics of the juvenile material can be highly variable, ranging from: i) 707 

eruptions characterized by homogeneous juvenile material, mainly composed of rhyolitic 708 

pumice with variable texture and obsidian clasts (e.g. 2008 eruption of Chaitén, Alfano et al. 709 

2012; 1.8 ka activity of Taupo, Houghton et al. 2010) to ii) events in which the juvenile 710 



componentry shows a large variability, ranging from white to dark rhyolitic pumice to brown or 711 

black scoriaceous material, and obsidian clasts (post-64 ka activity of Okataina Volcanic Centre, 712 

Jurado-Chichay and Walker 2001; 1960 eruption Cordón Caulle, Daga et al. 2012). This textural 713 

and morphological heterogeneity in the juvenile fraction is accompanied in only some eruptions 714 

by minor variations in composition (Daga et al. 2012, 2014). The similarity of the lithologic 715 

variability of the juvenile fraction described for the 2011 Cordón Caulle eruption (this work and 716 

Daga et al. 2014) with the material described for the 1960 event (Daga et al. 2012) is striking. 717 

We suggest that at least part of this variability can be related to the clear presence of dyke-like 718 

conduits in both the 1960 and 2011 eruptions (Castro et al. 2013), mainly related to the 719 

structural setting of the Cordón Caulle complex. This clearly suggests that the large 720 

heterogeneity of juvenile types in these events reflects complex dynamics during magma ascent 721 

and fragmentation due to wall effects (a low ratio of conduit diameter to conduit walls, along 722 

which shear effects are higher) and also complex feeding systems which may undergo variable 723 

evolution trends or reactivation cycles. 724 

 725 

Conclusions 726 

Our detailed stratigraphic study of the 2011 Cordón Caulle eruption illustrates the following 727 

points:  728 

1) Four main eruptive phases are recognized: i) a first phase (4-5 June) with the highest 729 

intensity, during which tephra was dispersed towards the east-southeast (Unit I), with a total 730 

volume of ca. 0.75 km3; ii) a second phase (5-6 June) marked by an abrupt wind shift towards 731 

the north and possibly after a shift of the vent, leading to the deposition of an obsidian-rich ash 732 

deposit (layer G) in the northern sector and by the return to a west wind that dispersed ash 733 

eastwards (emplacement of layer H, total volume ca. 0.21 km3); iii) a third phase (from the 734 



morning of 7 June) during which tephra deposits accumulated in the eastern sector (Unit III). 735 

This phase was characterized by ballistic bomb emplacement around the vent area, 736 

corresponding in mid-distal areas to the coarsest layer (K2, total volume ca. 0.05 km3); iv) a 737 

fourth phase (possibly after 15 June) characterized by the emission of fine-grained white ash 738 

from plumes during low-level activity (Unit IV). 739 

2) A wide range of juvenile components, with abundant vesicular, white pumice clasts and 740 

minor banded and dense juvenile fragments characterize the erupted tephra. The white 741 

juvenile fraction has a narrow compositional range, mostly clustering within the rhyolitic field, 742 

and is characterized by negligible density variations throughout the eruptive sequence, with a 743 

slight increase for layer K2. The large variety of tephra clasts and textural features of the white 744 

pumice components suggest possible heterogeneities within the magma column, within which 745 

variable strain rate due to variable magma ascent velocity induced strain localization within the 746 

clasts and rapid changes in magma degassing efficiency. 747 

 3) The dynamics of the eruption can be related to the rapid ascent of magma from a 748 

homogeneous rhyolitic reservoir, generating a first phase with high plumes and rapid rise rate 749 

(i.e. high mass discharge) during which lapilli were emplaced with an increasing lithic content 750 

related to vent/conduit enlargement. Due to the high strain rate during magma ascent, 751 

vesicular material of this phase is characterized by evident strain localization disturbing 752 

vesicularity and decreasing average bubble connectivity. During the following phases, lower 753 

mass discharge (resulting in lower strain rate) possibly favored open-system degassing, and 754 

juvenile clasts do not show evidence of shear localization. The decreasing intensity of the 755 

eruption finally led to extrusion of lava and to a shift towards vulcanian activity characterized 756 

by emplacement of ash deposits and ballistic bombs. 757 



4) Regardless of the short duration of the initial, intense phases of the event, stratigraphic 758 

reconstruction reveals a complex tephra stratigraphy related to wind shifts and oscillations in 759 

eruptive intensity. Detailed study of this mid-intensity eruption clearly illustrates the complex 760 

time evolution (changes in eruptive style and eruptive regime) characteristic of these types of 761 

events, and highlights the need for very detailed field surveys of the deposits of such eruptions 762 

in order to fully capture their dynamics. 763 
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 900 

 901 

Figure captions 902 

Figure 1 903 

(A) Shaded relief map of the Puyehue-Cordón Caulle area. Surveyed outcrops are indicated 904 

(different colors and symbols denote different field campaigns). Black and white stars indicate 905 

Puyehue volcano and the 2011 vent, respectively. Locations and numbers of the key sections 906 

used in the text are also indicated. The black square represents the enlarged area in (B). In (B), 907 

the black line shows the Chile-Argentina border, the red lines refer to the intersection between 908 

the Liquiñe-Ofqui Fault and the Cordón Caulle graben. 909 

Figure 2 910 

(A) Locations of the pictures used in Figs. 2 and 3. (B) The tephra sequence on July 2011 at 911 

section 3 (Paso Cardenal Samoré, 28 km from the vent). (C) Layers F, H, and K at section 4 (Lago 912 

Espejo, 42 km from the vent). (D) The tephra sequence 100 km east of the vent. 913 

Figure 3 914 

(A) Layers A to F become difficult to separate within the sequence 5 km west of section 3, along 915 

the route towards the Chile-Argentina border. (B) The tephra sequence at section 5 (in the 916 

town of Villa La Angostura, 48 km from the vent). (C) Snow intercalations in the tephra 917 



sequence observed in July 2011, 40 km east from the vent. (D) The tephra sequence on a tomb 918 

stone at section 7 (Ingeniero Jacobacci, 240 km east of the vent). 919 

Figure 4 920 

Stratigraphic correlations among different outcrops. A-A’ includes key sections along the main 921 

dispersal axis. B-B’ and C-C’ are transects across the main dispersal axis.  922 

Figure 5 923 

(A) The 2011 lava flow front and the vent area seen from the west; the tephra cone and the 924 

Puyehue volcano are visible in the background. (B) The tephra sequence 1 km upwind from the 925 

vent. (C) Black obsidian bomb in proximal area. (D) Scoriaceous, banded bombs in the vent 926 

area. (E) Welded breccia in inner part of a bomb. 927 

Figure 6 928 

(A) Close-up aerial view of the vent area; note the portions of the tephra cone engulfed by the 929 

active lava flow. Black and white boxes refer to images in (D) and (B), respectively. (B) Impact 930 

crater area north of the active vent. Inset shows variation of the impact crater density 931 

(number/km2) with distance from vent. (C) Inferred area of PDC deposits from satellite images. 932 

(D) Detailed view of the fallen trees in different directions due to the passage of multiple PDCs. 933 

Figure 7 934 

NOAA-GOES satellite images taken during the eruption (5, 6, 7 and 8 June 2011) at ca. 16:00 935 

local time (LCT). The vent area is indicated with the red circle and the plumes are highlighted in 936 

red. 937 

Figure 8 938 

(A) Isopach maps in cm of layers A-B, A-F, H and K2. The inferred limit of the deposits (dashed 939 

lines) is also indicated.  940 



Figure 9 941 

Plots of log thickness versus square root of area for four fallout tephra layers (A-B, A-F, H and 942 

K2), showing exponential (black lines), power-law (yellow curves) and Weibull (red curves) best 943 

fits. Diamonds represent field data. 944 

Figure 10 945 

Stratigraphic section of the tephra sequence at Río Gol Gol, 15 km SE of the vent area (section 946 

2). Grain-size distributions, Md, componentry and chemical variations (Sr and Th) for the 947 

main tephra layers are shown. Width of stratigraphic column scales with grain-size. Variation 948 

bars for Sr and Th refer to the standard deviations of analyses made on different selected 949 

clasts.  950 

Figure 11 951 

Stratigraphic section of the tephra sequence at Paso Cardenal Samoré, 28 km SE of the vent 952 

area (section 3). Grain-size distributions, Md, and componentry variations for the main 953 

tephra layers are shown. Width of stratigraphic column scales with grain-size. 954 

Figure 12 955 

Stratigraphic sections of the tephra sequence at the vent area, Villa La Angostura and Ingeniero 956 

Jacobacci (sections 1, 5 and 7, respectively). Grain-size and sorting variations for the main 957 

tephra layers are shown, as are componentry analyses for layer G (section 1) and for the 958 

sequence at section 5. Width of stratigraphic column scales with grain-size. 959 

Figure 13 960 

Images of juvenile (A) white pumice, (B) banded pumice, (C) dense and (D) obsidian clasts. 961 

Macroscopic images of clasts on the left, SEM backscattered images in the center and plane-962 

polarized light thin section pictures on the right. 963 



Figure 14 964 

(A) Vesicularity and density distributions for juvenile vesicular fragments collected from layers 965 

B, D, F, H and K2. (B) Plots of mean particle densities (in kg/m3) in the grain-size fractions (-4 to 966 

1) for layers C, F and K2 collected at section 4. Symbol size is larger than the error bar defined 967 

as ±1 standard deviation (1σ; evaluated from the results of three sets of measurements 968 

performed on a sample for each size class). Red star refer to the measured DRE values. 969 

Figure 15 970 

SEM back-scattered images of vesicular fragments from layer H (A), layer C (B, C, D, F), layer A 971 

(E), and layer G (G, H). White lines and arrows refer to areas with contrasting vesicularity and 972 

shear localization. 973 

 974 

Table 1 975 

Grain-size and componentry data of representative samples collected at the key sections. 976 

Modes 1 and 2 are indicated for bimodal samples. Md and  are the median and the 977 

standard deviation of the size distribution, respectively, with =-log2D (where D is the particle 978 

diameter in millimeters). F1 and F2 represent the weight sample fraction <1 mm and <63 m, 979 

respectively. 980 

Table 2 981 

Satellite image sources and average plume directions from 4 to 9 June 2011 for the different 982 

layers. 983 

Table 3 984 

Volumes (km3) calculated using different strategies (see main text for details). Average and 985 

standard deviation based on all strategies are shown in the last column (considering only the 3 986 



exponential segments for A-F). Uncertainty for the power-law calculation is derived based on 987 

different distal extreme of integrations (200, 500 and 700 km for A-B; 700, 1000 and 1500 km 988 

from vent for A-F, H and K2). Given that the power-law exponent is >2 for all layers, the volume 989 

is mostly sensitive to the proximal integration limit, which was calculated based on the eq. 7 of 990 

Bonadonna and Houghton (2005) for all layers. 991 

 992 

Table ESM1 993 

Thickness data for each stratigraphic layer measured at each location. Numbers of outcrops and 994 

geographic coordinates (UTM, WGS 1984-Zone 19 South) are also reported. Key sections 995 

described in the text are indicated in brackets. 996 

Table ESM2 997 

Whole-rock major and trace element analyses. Values are averages of 2-3 analyses for each 998 

layer made on different selected clasts. Key sections 3 and 4 correspond to section 001 999 

(Cardenal Samorè) and 004 (Lago Espejo), respectively. 1000 

 1001 

 1002 



Layer Unit Dist. (km) Section MdΦ σΦ Sorting F1 F2 Mode 1 Mode 2 
White 
pum. 

Banded 
pum. 

Dense 
juven. 

Obsidians Crystals Lithics (tot.) 

A I 15 2 - Gol Gol -3.10 1.54 Well sorted 4.40 2.25 -3.7 4.6 88.3 0.4 1.6 0.2 1.0 8.6 

B I 15 2 - Gol Gol -2.79 1.58 Well sorted 3.84 1.91 -3.6 4.9 72.4 3.6 0.9 0.2 0.6 22.3 

C I 15 2 - Gol Gol -2.89 1.56 Well sorted 3.57 1.64 -3.06 4.83 71.1 2.5 0.4 0.1 0.7 25.2 

D I 15 2 - Gol Gol -2.96 1.50 Well sorted 4.34 2.15 -3.2 4.41 89.6 0.4 0.1 0.3 0.1 9.6 

E I 15 2 - Gol Gol -2.68 1.72 Well sorted 5.19 2.21 -2.84 4.85 85.1 1.4 1.2 0.6 0.1 11.6 

F I 15 2 - Gol Gol -3.11 1.68 Well sorted 5.28 1.68 -3.35 4.88 82.0 7.9 0.1 4.4 0 5.6 

H II 15 2 - Gol Gol -0.82 1.57 Well sorted 16.51 5.79 -0.95 5.19 89.5 5.9 0.8 1.7 1.0 1.1 

K2 III 15 2 - Gol Gol -1.62 1.25 Well sorted 11.30 7.80 -1.76 5.17 88.0 8.1 0.2 1.4 1.8 0.5 

K4 III 15 2 - Gol Gol -0.57 1.43 Well sorted 22.52 9.39 -0.73 4.78 95.5 2.5 0.1 0.1 0 0.4 

AF I 15 2 - Gol Gol -2.34 1.80 Well sorted 5.48 2.45 -2.47 5.08 − − − − − − 

G  1 1 - Vent  0.32 2.99 Poorly sorted 44.36 18.82 0.06 5.76 59.0 11.2 1.2 27.6 0 1.0 

A I 28 3 - Samoré -2.46 1.16 Well sorted 2.11 1.75 -2.52 5.88 86.9 0.1 2.6 0.2 1.2 9.1 

B I 28 3 - Samoré -3.20 1.29 Well sorted 5.38 2.81 -3.46 5.81 92.8 0.3 0.6 0.03 0.7 5.6 
C I 28 3 - Samoré -2.22 1.33 Well sorted 4.66 2.41 -2.3 5.95 77.8 1.5 1 0.2 1 18,5 

D I 28 3 - Samoré -2.64 1.56 Well sorted 7.03 3.26 -2.86 5.5 85.7 0.8 1 0.2 0.9 11.6 

E I 28 3 - Samoré -1.86 1.53 Well sorted 8.16 2.52 -1.98 5.93 78.9 3.2 1.6 0.4 1 14.9 

F I 28 3 - Samoré -1.80 1.51 Well sorted 11.06 5.29 -1.98 5.51 72.7 3.3 3.6 0.4 1 19 
AF I 28 3 - Samoré -2.45 1.48 Well sorted 4.44 1.48 -2.58 5.55 − − − − − − 

K1 III 28 3 - Samoré 0.39 3.36 Poorly sorted 47.28 31.33 -0.22 5.76 90.8 7.6 0 0.4 0.8 0.4 
K2 III 28 3 - Samoré 1.74 3.19 Poorly sorted 63.55 27.99 -0.11 4.72 93.2 5.6 0 0.3 0.6 0.4 

AF I 42 4 - Espejo -0.12 1.14 Well sorted 29.53 1.53 -0.09 6.13 − − − − − − 
H II 42 4 - Espejo 0.77 0.34 Very well sort. 83.92 4.59 0.77 6.42 − − − − − − 

K1 III 42 4 - Espejo 0.88 2.07 Poorly sorted 54.26 2.81 0.78 5.64 − − − − − − 

K2 III 42 4 - Espejo -0.18 3.16 Poorly sorted 96.44 26.45 -0.56 5.56 − − − − − − 

K3 III 42 4 - Espejo 4.47 2.68 Poorly sorted 30.9 21.02 1.3 5.05 − − − − − − 

AF I 48 5-V. La Ang. -0.20 1.21 Well sorted 25.59 4.37 -0.32 3.11 89.9 7.0 0.8 0.5 0.4 1.3 

H base II 48 5-V. La Ang. 0.55 0.61 Very well sort. 63.55 27.99 0.58 6.54 − − − − − − 
H top II 48 5-V. La Ang. 0.99 0.65 Very well sort. 31.39 1.62 0.9 4.8 97.7 1.7 0 0.4 0.1 0.1 

K1 III 48 5-V. La Ang. 4.20 2.83 Poorly sorted 93.34 46.06 0.9 5.18 − − − − − − 

K2 III 48 5-V. La Ang. 0.40 3.33 Poorly sorted 47.83 30.46 -0.44 5.13 93.2 4.8 0 0.4 1.3 0.3 
K3-5 III 48 5-V. La Ang. 4.11 2.50 Poorly sorted 97.44 44.61 1.57 5.15 − − − − − − 

AF I 240 7 - Jacobacci 5.36 1.53 Well sorted 100 74.88 − 5.41 − − − − − − 
K1 III 240 7 - Jacobacci 5.34 1.50 Well sorted 100 75.52 − 5.34 − − − − − − 

K2 III 240 7 - Jacobacci 5.50 1.56 Well sorted 100 77.24 − 5.5 − − − − − − 
K3 III 240 7 - Jacobacci 5.44 1.56 Well sorted 100 76.49 − 5.44 − − − − − − 
K4 III 240 7 - Jacobacci 5.37 1.53 Well sorted 100 74.88 − 5.37 − − − − − − 
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Date 
Time 
(LTC) 

Image 
source 

Av. plume dispersal 
(deg. from N) 

Layer (Unit) 

4 June 18:28 GOES 135° (SE) AF (I) 
4 June 18:45 GOES 125° (SE) AF (I) 
4 June 18:50 AQUA 120° (SE) AF (I) 
4 June 19:28 GOES 120° (SE) AF (I) 
4 June 19:45 GOES 120° (SE) AF (I) 
4 June 19:58 GOES 120° (SE) AF (I) 
4 June 20:15 GOES 118° (SE) AF (I) 

5 June 12:28 GOES 123° (SE) AF (I) 
5 June 13:45 TERRA 119° (SE) AF (I) 
5 June 14:45 GOES 118° (SE) AF (I) 
5 June 17:55 AQUA 118° (SE) AF (I) 
5 June 19:45 GOES 115° (SE) AF (I) 

6 June 12:45 GOES 30° (NE) – 126° (SE) G (II) 
6 June 14:25 TERRA 26° (NE) – 125° (SE) G (II) 
6 June 16:45 GOES 25° (NE) – 133° (SE) G (II) 
6 June 18:40 AQUA 25° (NE) – 138° (SE) G (II) 
6 June 19:45 GOES 25° (NE) – 142° (SE) G (II) 

7 June 13:28 GOES 120° (SE) K2 (III) 
7 June 15:10 TERRA 115° (SE) K2 (III) 
7 June 17:45 GOES 110° (SE) K2 (III) 
7 June 19:20 AQUA 110° (SE) K2 (III) 
7 June 19:45 GOES 110° (SE) K2 (III) 

8 June 12:58 GOES 55° (NE) K3 (III) 
8 June 14:15 TERRA 70° (NE) K3 (III) 
8 June 16:28 GOES 50° (NE) K3 (III) 
8 June 18:25 AQUA 50° (NE) K3 (III) 
8 June 19:28 GOES 50° (NE) K3 (III) 

9 June 13:28 GOES 40° (NE) K4 (III) 
9 June 14:55 TERRA 55° (NE) K4 (III) 
9 June 16:28 GOES 50° (NE) K4 (III) 
9 June 17:15 GOES 50° (NE) K4 (III) 
9 June 18:15 GOES 50° (NE) K4 (III) 
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Layer Exponential Power Law Weibull Average 

 1 segment 2 segments 3 segments    

AB 0.21   0.20 ± 0.00 0.22 0.21± 0.01 

AF  0.44 0.56 0.81 ± 0.03 0.88 0.75± 0.17 

H  0.13  0.23 ± 0.04 0.27 0.21± 0.07 

K2 0.04   0.06 ± 0.00 0.04 0.05± 0.01 
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