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Abstract—The adoption of Cloud technologies is steadily increasing. In such systems, applications can benefit from nearly infinite
virtual resources on a pay-per-use basis. However, being the Cloud massively multi-tenant and characterized by highly variable
workloads the development of more and more effective provisioning policies assumes paramount importance. Boosted by the success
of the Cloud, the application of Game Theory models and methodologies has also become popular, since they have been
demonstrated to suit perfectly to Cloud social, economic, and strategic structures. This paper aims to study, model and efficiently solve
the cost minimization problem associated with the service provisioning of SaaS virtual machines in multiple IaaSs. We propose a
game-theoretic approach for the runtime management of resources from multiple IaaS providers to be allocated to multiple competing
SaaSs, along with a cost model including revenues and penalties for requests execution failures. A distributed algorithm for identifying
Generalized Nash Equilibria has been developed and analysed in detail. The effectiveness of our approach has been assessed by
performing a wide set of analyses under multiple workload conditions. Results show that our algorithm is scalable and provides
significant cost savings with respect to alternative methods (80% on average). Furthermore, increasing the number of IaaS providers
SaaSs can achieve 9–15% cost savings from the workload distribution on multiple IaaSs.

Index Terms—Cloud Computing; Game Theory; Generalized Nash Equilibrium.
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1 INTRODUCTION

In recent years we are witnessing the gradual virtualization
of software systems. We come from a world where applica-
tions were entirely developed in-house, possibly exploiting
third-party components and/or frameworks, but mainly
deployed and executed within each organization private
IT facilities. With the advent of Service Oriented systems,
applications were rethought as a collection of interacting
services, in some cases delegating part of their function-
alities to existing external software services provided by
other organizations. The recent advent of Cloud computing
rewrote the rules of software development by pushing for a
greater use of virtualization. Cloud users can now access not
only to third-party software components (Software as a Ser-
vice - SaaS), but also to fully virtualized hardware resources
(Infrastructure as a Service - IaaS) or even to complete
development and execution environments (Platform as a
Service - PaaS), paying only for the resources actually used.
The adoption of Cloud computing is attractive: users obtain
Cloud resources, whose management is partly automated
and can be scaled almost instantaneously. However, Cloud
technologies are still characterized by open critical issues.
Specifically, Cloud performance shows a high variability in
time, elasticity might not ramp at the desired speed and
unavailability problems do exist even when 99.9% up-time
is advertised (see, e.g., the Microsoft Azure outage in 8th
August 2014 [32]). Moreover, modern Cloud applications
operate in an open and dynamic world characterized by
constant, often unpredictable, changes. In such a context,
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the development of efficient service provisioning policies,
possibly spread among multiple IaaS providers [14], [49],
is very challenging.

If we consider Internet systems, non-cooperative Game
Theory models have been successfully applied to diverse
problems such as flow and congestion control, routing, and
networking, but also resource allocation and pricing. Game
theory approaches allow to gain an in-depth analytical
understanding of problems that can not be handled with
classical optimization approaches because each player can
be affected by the actions taken by all the other players
involved, not only by his/her own decisions [6]. One of
the most widely used solution concept in Game Theory is
the Nash Equilibrium [50]: a set of strategies constitutes
a Nash Equilibrium if no player can benefit by changing
his/her strategy unilaterally or, in other words, every player
is playing a best response to his/her opponents’ strategy
choices.

In this work, we develop novel resource allocation poli-
cies for Cloud systems based on the formulation and a
sound solution of a game theoretical model. We take the
perspective of SaaS providers that host their applications
at multiple IaaS providers, thanks to a software middle-
ware developed within the framework of the MODAClouds
project [14], [49]. Each SaaS provider aims at minimizing
the usage cost of Cloud resources and incurs penalties in
case of request execution failures. The cost minimization is
challenging since online services receive variable workloads
during the day. Furthermore, each SaaS behaves selfishly
and competes with others SaaSs for the use of the infras-
tructural resources supplied by the IaaSs. Each IaaS, in
turn, wants to maximize the revenues obtained providing
the resources. To capture the behavior of SaaSs and IaaSs
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in this conflicting situation, in which the best choice for
one depends on the choices of the others, we model such
problem as a Generalized Nash Equilibrium Problem (GNEP),
in which both the objective function and the feasible re-
gion of each player depend on the strategies chosen by
the other players (see, e.g., [23], [27], [29], [56]). Then,
we propose a distributed algorithm which converges to
a Generalized Nash Equilibrium after a finite number of
iterations. Experimental campaigns show that our algorithm
is scalable and provides significant cost savings with respect
to alternative methods currently adopted in real systems
(80% on average). Furthermore, by increasing the number
of IaaS providers we show that SaaSs can achieve 9-15%
cost savings from the workload distribution on multiple
IaaSs. A viability analysis of the data synchronization in
terms of cost associated with the egress traffic in multi-
IaaS deployments is also provided, along with a study of
the bandwidth requirements of the proposed distributed
algorithm.

The remainder of the paper is organized as follows.
A review of other approaches presented in literature is
provided in Section 2. The runtime service provisioning
problem and some related design assumptions are intro-
duced in Section 3. The problem under study is modeled
as a GNEP in Section 4 and an analysis of its properties is
presented in Section 5. In Section 6, we develop an efficient
algorithm for the runtime management and allocation of
IaaSs resources to competing SaaSs suitable also for a fully
distributed implementation. Section 7 is devoted to assess the
quality of our solution through analyses and experiments.
Conclusions are finally drawn in Section 8.

2 RELATED WORK

In recent years we witnessed the rise and consolidation
of Cloud systems. Consequently, the application of Game
Theory models and methodologies has also increased, since
they have been demonstrated to suit perfectly to the social,
economic and strategic structure of the Cloud [6]. In Clouds,
interaction across different players is non-negligible: each
player (e.g., IaaS or SaaS provider or individual end-users)
can be affected by the actions of all players, not only
by its own actions. Game Theory can reproduce perfectly
this aspect. In this setting, a natural modeling framework
involves seeking an equilibrium, or stable operating point
for the system.

Game Theory solutions for resource management and
load balancing of distributed computing systems are pre-
sented in [5], [10], [24], [39], [59], while a survey on network-
ing games, as well as a number of different applications in
telecommunications and wireless networks, can be found
in [6]. As for the specific issues of Cloud Computing, various
theories and methods have been used to represent, model
and manage Cloud services. Different types of equilibria
and games have been considered, according to the problem
addressed. A detailed survey of several resource allocation
strategies in Clouds is given in [64], whereas a recent com-
parative study can be found in [40].

In [62] the authors investigate the use of Game Theory
for the resource allocation problem in Cloud environments

starting from the bid-proportional auction model for re-
source allocation proposed in [20]. An incomplete common
information model is presented, in which one bidder does
not know how much the others would like to pay for
the computing resource. A bid-proportional auction model
is also presented in [63] to adaptively tune the price of
Cloud resources. The proposed model is validated through
simulation by considering dynamic and stochastic demands.
A pricing mechanism for allocation capacity in a utility
computing system among competing end user requests is
proposed in [68], where the fixed available service capacity
is allocated on the different flows proportionally to their
monetary bids. However, the capacity allocation problem is
considered for a single virtualized server, while in this work
we consider the whole data center infrastructure.

In [31] the authors present a methodical in-depth game
theory study on price competition, moving progressively
from a monopoly market to a duopoly market, and finally
to an oligopoly Cloud market. They characterize the nature
of non-cooperative competition with multiple competing
Cloud service providers, derive algorithms representing the
influence of resource capacity and operating costs on the
solution and prove the existence of a Nash equilibrium.
Studies on the maximization of the social welfare as a
long-term social utility are discussed in [46]. Considering
relevant queuing aspects in a centralized setting, the work
establishes existence and uniqueness of the social optimum.

Two simple pricing schemes for selling Virtual Machine
(VM) instances and the trade-off between them are studied
in [1]. Exploiting Bayes Nash equilibrium, the authors pro-
vide theoretical and simulation based evidences suggesting
that fixed prices generate a higher expected revenue than
hybrid systems. Another work regarding spot bidding is
presented in [60]: the authors propose a profit aware dy-
namic bidding algorithm, which observes the current spot
price and selects bids adaptively to maximize the average
profit of a Cloud service broker, while minimizing costs in
a spot instance market. Similarly, a bid selection algorithm
for the optimal capacity segmentation problem with hybrid
pricing aimed at maximizing the revenue of a Amazon EC2-
like provider can be found in [65].

A game theoretic model of IaaS Cloud market that
includes price dynamics, usage, load profiles and economy
of scale in hybrid Cloud scenario is proposed in [43]. Dy-
namic resource pricing of multiple geo-distributed Cloud
providers interacting with multiple competing application
providers is formulated in [55] as a Stackelberg game. The
cost minimization of dynamic service placement in a geo-
graphically distributed Cloud, while fulfilling at the same
time certain Quality of Service (QoS) requirements, is faced
in [70]. Authors present a dynamic solution based on control
models and study how the price fluctuate in the presence
of several customers competing for Cloud resources. A non-
cooperative game is presented for which a Nash equilibrium
exists that is also socially optimum.

Three Cloud resource procurement approaches based on
economic and game-theoretic models are presented in [53].
The authors demonstrate that the larger the number of ven-
dors, the lower procurement costs tend to be, irrespective
to the considered approach, and also provide a mechanism
to select a suitable Cloud vendor in a multi-IaaS market.
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Similarly, three Cloud network economic problems are ana-
lyzed in [51] and modeled as non-cooperative price and QoS
games among multiple Cloud providers.

A multi-SaaS/single-IaaS problem with flat, on demand
and on spot VM instances is faced in [28], where a two
stage provisioning mechanism is proposed. In the first stage,
the VM requirements are calculated for each SaaS provider
by means of standard optimization techniques, whereas the
second stage, modeled as a Stackelberg game, determines
the spot price that maximizes the IaaS revenue. The same
problem is considered in [2], but the second stage is mod-
eled as an N -armed bandit problem in which every player
has to choose among N options taking into account past
feedback.

The resource allocation problem among different com-
petitive Cloud providers is considered in [66]: it is modeled
as a competitive normal-form game for which the existence
of a unique Nash equilibrium is proved.

Differently to previous literature proposals, we consider
a more complex setting where the choice of each player
influences the feasible strategy set of the others. This can
be naturally modeled as a Generalized Nash Equilibrium
Problem (GNEP), which is usually more difficult to solve
than a standard Nash Equilibrium Problem [29].

We considered GNEPs for service provisioning problem
in [12], [15], [16], where the perspective of SaaS providers
hosting their applications at an IaaS provider is taken.
Each SaaS needs to comply with end user Service Level
Agreements (SLAs) and at the same time minimize the cost
of use of resource supplied by the IaaS, whereas the IaaS
wants to maximize the revenues obtained providing on spot
resources. It is worth to be noticed that in this paper we
extend our previous work modeling the multi-Saas/multi-
IaaS situation and considering realistic follow-the-sun work-
loads that span over a 24-hour time horizon. In this context,
the considered problem turns out to be remarkably more
complex to analyze and to solve. Nonetheless, it is certainly
an important problem that deserves to be considered as
proven by the significant savings showed with respect to
the multi-Saas/single-IaaS case, even in presence of data
replication and synchronization costs.

3 PROBLEM STATEMENT AND ASSUMPTIONS

In this work, we consider SaaS providers using Cloud
computing facilities according to the IaaS paradigm to offer
multiple transactional Web Services (WSs), each service
representing a different application.

The hosted WSs can be heterogeneous with respect to
resource demands, workload intensities and QoS require-
ments and can be deployed at multiple IaaS providers.

We denote by I and S the sets of IaaSs and SaaSs,
respectively, by Si ⊆ S the set of SaaS providers running
at IaaS i ∈ I and by Ij ⊆ I the set of IaaS providers
supporting SaaS j ∈ S . Moreover, let A be the overall set
of WS applications, we denote by Aj ⊆ A the set of WS
applications offered by SaaS j ∈ S , and by Ai ⊆ A the set
of WS applications running at IaaS i ∈ I .

A SLA contract, associated with each WS application,
is established between the SaaS provider and its end users
and predicates on the average service response time. In

particular, the average response time E [Rk] for executing
WS application k has to be less or equal to a given threshold
Rk. Moreover, SaaS providers implement an admission con-
trol mechanism, i.e., incoming requests might be rejected.
However, if a SaaS provider rejects a request it has to pay a
penalty νk to its end user (specified again within the SLA)
usually far higher than the related processing cost.

Multiple VMs can run in parallel to support the same
application. In that case, we suppose that the running VMs
are homogeneous in terms of RAM and CPU capacity and
the workload is evenly shared among multiple instances
(see Figure 1), which is common for current Cloud solutions.

Applications are hosted in VMs that are dynamically
instantiated by IaaS providers up to a maximum of num-
ber equal to Ni for any i ∈ I . We assume that VMs
are homogeneous within an IaaS provider, and hetero-
geneous across different providers. Moreover, we assume
that SaaS providers can run their WS applications concur-
rently among multiple IaaSs that compete each other in the
Cloud market, and we consider the runtime provisioning
of resources at individual IaaS. This approach is possible
thanks to a software layer developed by the MODAClouds
project [14], [49], which allows concurrent execution, run-
time migration and data synchronization of applications
among multiple Cloud providers. MODAClouds provides
overall solutions for the modeling, deployment, and run-
time management of multi-Cloud applications. It aims at
removing all limitations or technological lock-ins that cur-
rently prevent the execution of a distributed application
on different Clouds. In our work, we will demonstrate
that deploying applications on multiple Clouds increases
applications availability and implies cost savings for SaaS
providers which can benefit from IaaS competition and re-
distribute workload at runtime to the cheapest IaaSs. From a
technological perspective, concurrent application execution
on multiple clouds requires to synchronize data among
database replica (either relational or NoSQL) hosted on
different Clouds. For this purpose, MODAClouds runtime
platform provides also a distributed middleware solution
(see Figure 1) in charge of synchronizing data among (even
technological) different databases [57]. We denote with
zk i1 i2 the data synchronization rate from IaaS i1 to IaaS i2
for WS application k. In striving for simplicity, we decided
not to introduce synchronization costs in the game formula-
tion. However, a study on the impact of data replication cost
on SaaS savings due to multi-IaaS deployment is presented
in Section 7.5 along with a possible extension of the game.

IaaS providers usually charge the use of their resources
on an hourly basis. Hence, the SaaS has to face the problem
of determining every hour the optimal number of VMs
for each WS application in order to minimize costs and
penalties, performing resource allocation on the basis of a
prediction of future WS workloads Λk. Concerning such
predictions (which formally can be modelled as random
variables), several methods have been adopted in many
fields for decades [22] (e.g., ARMA models, exponential
smoothing, and polynomial interpolation), making them
suitable to forecast seasonal workloads, common on hourly
basis, as well as non-stationary request arrivals character-
izing more fine grained time scales [3]. In general, each
prediction mechanism is characterized by several alternative
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Figure 1. Cloud infrastructures and data migration and synchronization system

implementations, where the choice about filtering or not
filtering input data (i.e., a run-time measure of the metric
to be predicted) and choosing the best model parameters in
a static or dynamic way are the most significant.

The SaaS needs also an estimate of the future perfor-
mance of each VM in order to determine application average
response time. In the following, we model each WS appli-
cation hosted in a VM as an M/G/1 queue (see Figure 2)
in tandem with a delay center, as in [41], [69]. We assume
(as common among Web service containers) that requests
are served according to the processor sharing scheduling
discipline [3]. The delay center allows to model network
delays and/or protocol delays introduced in establishing
connections, etc. Performance parameters are also contin-
uously updated at runtime in order to capture transient
behavior, VMs network and I/O interference and perfor-
mance time of the day variability of the Cloud provider
(see [69] for further details). We denote with µki and Dki the
maximum service rate and queueing delay for executing WS
application k at IaaS i, respectively (see Figure 2). Although
more accurate performance models exist in the literature for
Web and Cloud systems (e.g., [21], [38], [54]), there is a fun-
damental trade-off between the accuracy of the models and
their mathematical tractability, which has prevented us from
exploiting such results here. It is important to note, however,
that highly accurate approximations for general queueing
networks [33], [34], having functional forms similar to our
performance model, can be directly incorporated into our
modeling and game theoretical framework.

For the IaaS provider we consider a pricing model sim-
ilar to Amazon EC2 [8]: each IaaS provider offers reserved

Figure 2. System performance model.

VMs, for which SaaS providers applies for a one-time pay-
ment (currently every one or three years) for each instance
they want to reserve, on demand VMs, that let the SaaS
pay for compute capacity by the hour with no long-term
commitments, and on spot VMs, for which SaaS providers
bid and compete for unused IaaS capacity.

In the following, we will denote with rki, dki and ski
the number of reserved, on demand, and on spot instances
for WS application k running at any time instant at IaaS i,
respectively. VM instances are charged with the on spot cost
σji to the SaaS j by the IaaS i, σji fluctuates periodically
depending on the IaaS provider time of the day energy costs
ωi and on the supply of VMs and demand from SaaS for on
spot VMs [8]. On spot costs vary also with the Cloud site
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region, and we assume that SaaS providers set an upper
bound σMax

ji strictly lower than the on demand VM time
unit cost δi, because no one is willing to pay for a less
reliable resource a time unit cost higher than on demand
instances, which provide a higher availability level. On spot
instances have been traditionally adopted to support batch
computing intensive workload during peak periods, but we
advocate their use also for traditional transactional services
as in [15], [16]. The reserved instances time unit cost is
equal to ρi, according to the SLA contract, and each SaaS j
cannot have more than Rji at IaaS i (for which SaaS applied
for long-term contract). We denote with ηj the maximum
fraction of resources allocated as on spot VMs for SaaS
provider j to allow a reasonable reliability for every WS
application. For the sake of clarity, the notation adopted here
is summarized in Table 1.

4 GENERALIZED NASH GAME MODEL

The resource provisioning problem under study describes a
conflicting situation, in which the optimal choices of SaaS
and IaaS providers depend on the choices of the others. In
this section, we formulate this problem as a Generalized
Nash Equilibrium Problem. Section 4.1 is devoted to the for-
mulation of the SaaS resource allocation problem, Section 4.2
presents the IaaS providers optimization problems, while
the Generalized Nash equilibria of the game are defined in
Section 4.3.

4.1 Game formulation from the SaaS side

The goal of SaaS provider j is to determine every hour the
number of reserved rki, on demand dki, on spot VMs ski
and the throughput xki in order to minimize its costs and,
at the same time, to satisfy the prediction Λk for the arrival
rate of the WS application k running at IaaS i to avoid the
risk of paying penalties.

If the workload is evenly shared among the VMs, then
the average response time for application k requests execu-
tion is given by (see Figure 2):

Dki +
1

µki −
xki

rki + dki + ski

.

We further assume that the VMs are not saturated, i.e., the
equilibrium conditions for the M/G/1 queues hold:

µki (rki + dki + ski)− xki > 0.

With this settings in mind, the problem that the generic
SaaS provider j has to periodically solve becomes:

min
rki,dki,ski,xki

Θj =
∑
k∈Aj

∑
i∈Ij

(ρi rki + δi dki + σji ski)

+
∑
k∈Aj

T νk (Λk −Xk) (1)

subject to the constraints:

Dki +
1

µki − xki
rki+dki+ski

≤ Rk, ∀ k ∈ Aj , ∀ i ∈ Ij , (2)

xki < µki (rki + dki + ski), ∀ k ∈ Aj , ∀ i ∈ Ij , (3)

ski ≤
ηj

1− ηj
(rki + dki) , ∀ k ∈ Aj , ∀ i ∈ Ij , (4)∑

k∈Aj

rki ≤ Rji, ∀ i ∈ Ij , (5)

∑
j∈Si

∑
k∈Aj

(rki + dki + ski) ≤ Ni, ∀ i ∈ Ij , (6)

∑
i∈Ij

xki = Xk, ∀ k ∈ Aj , (7)

λk ≤ Xk ≤ Λk, ∀ k ∈ Aj , (8)
rki, dki, ski, xki ≥ 0, ∀ k ∈ Aj , ∀ i ∈ Ij . (9)

The SaaS goal is to minimize its cost function (1) which
includes the fees requested by the IaaSs for instances used
and the penalties incurred when requests are discarded
(note that

∑
k∈Aj

T (Λk −Xk) is the total number of requests

rejected in time T , i.e., one hour).
Constraint (2) ensures that the response time is less or

equal to the threshold Rk established in the SLA contract,
while (3) guarantees that resources are not saturated. Con-
straint (4) is introduced for fault tolerance reasons and guar-
antees that the on spot instances are at most a fraction ηj < 1
of the total capacity allocated for WS application k at IaaS i.
Constraints (5) and (6) entail that allocated VMs are less or
equal to the maximum number reserved or available at IaaS
providers. Constraint (5) depends only on applications run
by SaaS j, while constraint (6) refers to all applications of the
set of SaaSs running at IaaS i. In addition to response time
constraints and the number of VMs due to IaaSs limited
capacity, we have throughput constraints: constraints (7)
defines the total traffic served by the system as a fraction of
the one served by individual IaaSs. Furthermore, constraint
(8) establish a lower bound λk for the total throughput
needed to satisfy SLA contracts and an upper bound Λk

equal to the total incoming workload.
We remark that, in the formulation of the problem, we

have imposed variables rki, dki and ski to be non-negative
but not integer, as in reality they are. In fact, requiring vari-
ables to be integer makes the solution much more difficult
(NP-hard). However, experimental results have shown that
if the optimal values of the variables are fractional and they
are rounded to the closest integer solution, the gap between
the solution of the real integer problem and the relaxed one
is very small, justifying the use of a relaxed model (see also
[16]). We therefore decide to deal with continuous variables,
actually considering a relaxation of the problem.

4.2 Game formulation from the IaaS side

On the other side, the goal of each IaaS provider i is to
determine the time unit cost σji for on spot VM instances of
each SaaS provider j in order to maximize its total revenue:

max
σji

Θi =
∑
j∈Si

∑
k∈Aj

[(ρi − ωi) rki + (δi − ωi) dki

+ (σji − ωi) ski] (10)
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Parameters
S Set of SaaS providers
I Set of IaaS providers
Si Subset of SaaS providers set S running applications at IaaS

i ∈ I
Ij Subset of IaaS providers set I supporting SaaS j ∈ S
A Set of applications of all the SaaS providers
Aj Subset of applications set A of the SaaS provider j ∈ S
Ai Subset of applications set A running at IaaS i ∈ I
Λk Prediction of the arrival rate for application k
λk Minimum arrival rate to be guaranteed for application k
µki Maximum service rate for executing application k at IaaS i
Dki Queueing delay for executing application k at IaaS i
Rk application k average response time threshold
νk Penalty for rejecting a single application k request
ρi Time unit cost for reserved VMs for SaaS providers at IaaS i
δi Time unit cost for on demand VMs for SaaS providers at

IaaS i
ωi VM time unit energy cost for IaaS provider i
ηj Maximum fraction of total resources allocated as on spot

VMs for SaaS provider j
Ni Maximum number of VMs that can be executed at the IaaS i
Rji Maximum number of reserved VMs that can be executed for

the SaaS j at IaaS i
σMax
ji Maximum time unit cost offered by SaaS j for on spot VMs

instances to IaaS i
T Control time horizon

SaaS Decision Variables
rki Number of reserved VMs used for application k at IaaS i
dki Number of on demand VMs used for application k at IaaS i
ski Number of on spot VMs used for application k at IaaS i
xki Throughput for application k at IaaS i
Xk Overall throughput for application k

IaaS Decision Variables
σji Time unit cost set by IaaS i to SaaS j for on spot VMs

instances

Table 1
Parameters and decision variables.

subject to the following constraints:

σji ≥ ωi, ∀ j ∈ Si, (11)

σji ≤ σMax
ji , ∀ j ∈ Si. (12)

The on spot instance cost lower bound (11) is the energy
cost for running a single VM instance for one hour according
to the time of the day, while the upper bound (12) is a fixed
value σMax

ji established by the SaaS j provider.

4.3 Generalized Nash Equilibria

In this framework, SaaS and IaaS providers are making deci-
sions at the same time. For each SaaS provider, the objective
function depends on the strategies of the IaaS providers
and the feasible region on the strategies of others SaaSs
(see constraint (6)), while the objective function of each IaaS
depends on SaaS decisions. To capture the behavior of SaaSs
and IaaSs in this conflicting situation (game), we model
the problem as a Generalized Nash Equilibrium Problem
(GNEP), which is broadly used in Game Theory and other
fields [29]. We recall that a GNEP differs from the classical
Nash Equilibrium Problem since, not only the objective
function of each player depends upon the strategies chosen
by all the other players, but also each player’s strategy set
may depend on the rival players’ strategies.

The service provisioning problem results in a GNEP,
where the strategies of SaaS j are rj = (rki)k∈Aj ,i∈Ij , dj =

(dki)k∈Aj ,i∈Ij , sj = (ski)k∈Aj ,i∈Ij and xj = (xki)k∈Aj ,i∈Ij ,
while the strategies of IaaS i are σi = (σji)j∈Si .

In this setting, a Generalized Nash Equilibrium (GNE)
is a set of strategies such that no player can improve its
payoff function by changing its strategy unilaterally, i.e., it
is a vector (r∗, d∗, s∗, x∗, σ∗) such that constraints (2)–(9)
and (11)–(12) are satisfied, for any j ∈ S we have

Θj(r
∗
j , d
∗
j , s
∗
j , x
∗
j , σ
∗) ≤ Θj(rj , dj , sj , xj , σ

∗) (13)

for any (rj , dj , sj , xj) satisfying constraints (2)–(9), and for
all i ∈ I we have

Θi(r
∗, d∗, s∗, x∗, σ∗i ) ≥ Θi(r

∗, d∗, s∗, x∗, σi) (14)

for any σi satisfying constraints (11)–(12).

5 GAME ANALYSIS

In this section, we study the properties of the game formu-
lated in Section 4.

Proposition 5.1. For every IaaS i ∈ I , the strategy σji =
σMax
ji , for any j ∈ Si, is a dominant strategy.

Proof: Since the objective function Θi is non-
decreasing with respect to σji and each variable σji belongs
to the interval [ωi, σ

Max
ji ], it is clear that the maximum

possible revenue is obtained setting σji = σMax
ji .

Hereafter, we suppose that each IaaS provider plays
its dominant strategy. Therefore, IaaS providers can be
dropped in the game formulation.

Proposition 5.2. If (r∗j , d
∗
j , s
∗
j , x
∗
j ) is an optimal solution of

SaaS j, then all the constraints (2) are active, i.e.

Dki +
1

µki −
x∗ki

r∗ki+d
∗
ki+s

∗
ki

= Rk, ∀ k ∈ Aj , ∀ i ∈ Ij . (15)

Proof: If, by contradiction, there exist k ∈ Aj and
i ∈ Ij such that

Dki +
1

µki −
x∗ki

r∗ki+d
∗
ki+s

∗
ki

< Rk,

then we could decrease the value of variables r∗ki, d
∗
ki, s

∗
ki,

if they are positive, of a sufficiently small quantity such that
all the constraints remain satisfied. However, the new value
of the cost function Θj would be less than the optimal value,
which is impossible.

Proposition 5.2 allows us to write constraints (2) as
equality constraints, i.e.

xki = (µki − pki) (rki + dki + ski) , ∀ k ∈ Aj ,∀ i ∈ Ij , (16)

where pki := 1/(Rk−Dki). Furthermore, it is easy to check
that constraints (16) imply that constraints (3) are always
fulfilled. Thanks to the previous results, the SaaS j problem
can be reformulated as follows:

min
rj ,dj ,sj ,xj

Θj =
∑
k∈Aj

∑
i∈Ij

[ρi rki + δi dki + σMax
ji ski+

−T νk xki] +
∑
k∈Aj

T νk Λk
(17)
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subject to:

∑
j∈Si

∑
k∈Aj

(rki + dki + ski) ≤ Ni, ∀ i ∈ Ij , (18)

ski ≤
ηj

1− ηj
(rki + dki) , ∀ k ∈ Aj , ∀ i ∈ Ij , (19)∑

k∈Aj

rki ≤ Rji, ∀ i ∈ Ij , (20)

xki = (µki − pki) (rki + dki + ski) , ∀ k ∈ Aj , ∀ i ∈ Ij , (21)

λk ≤
∑
i∈Ij

xki, ∀ k ∈ Aj , (22)

∑
i∈Ij

xki ≤ Λk, ∀ k ∈ Aj , (23)

rki, dki, ski, xki ≥ 0, ∀ k ∈ Aj , ∀ i ∈ Ij . (24)

We note that the SaaS optimization problem (17)–(24) is
a linear programming problem, where constraints (18) are
shared with the other SaaS providers.

The resulting equilibrium model is a GNEP with joint
constraints, where the players are the SaaS providers only.
Since the objective function (17) of each SaaS is independent
of the strategies of all other SaaSs, we can conclude that
this game is a Generalized Potential Game [30], where the
potential function is the sum of player cost functions Θj .

Proposition 5.3. The function

Π (r, d, s, x) =
∑
j∈S

∑
k∈Aj

∑
i∈Ij

[
ρi rki + δi dki + σMax

ji ski

−T νk xki] +
∑
j∈S

∑
k∈Aj

T νk Λk

is a potential for the game.

This means that the equilibria of our game coincide with
those of a game where all the cost functions are equal to the
potential Π. If we denote by yj := (rj , dj , sj , xj) the strategy
vector of SaaS j, by y = (yj)j∈S the strategy vector of all the
players, and by Y the set of vectors y satisfying constraints
(18)–(24) for all the SaaS providers, then the minimizers of
Π over Y are called social equilibria of the game. It is clear
from the above definitions that each social equilibrium is a
special GNE; indeed, no single player can improve its payoff
by unilaterally deviating from its strategy. In other words,
social equilibria represent the GNE which are optimal from
a social point of view. We now show the existence of social
equilibria for our problem.

Proposition 5.4. There exists at least one social equilibrium of
the game.

Proof: It is easy to check that the polyhedron Y
is closed and bounded. Since the potential Π is a linear
function on y, the existence of a social equilibrium follows
directly from the Weierstrass Theorem.

Ultimately, we want to remark that, being Π a linear
function and Y a polyhedron, modern LP solvers can ef-
ficiently find a social equilibrium even for problems with
several thousands of variables. In preliminary experiments
we were able to solve instances of up to 10 IaaS, 1,000 SaaS
and 10,000 WSs in less than 30 minutes.

Algorithm 1:
1 IL = ∅ // Initialization
2 for j ∈ S do

// Solution of relaxed subproblems

3 Find an optimal solution ỹj of

{
min Θj(yj)

gj(yj) ≤ 0

4 repeat
5 IN = {i ∈ I \ IL : hi(ỹ) > 0}

6 Nij =

∑
k∈Aj

(r̃ki + d̃ki + s̃ki)∑
j∈Si

∑
k∈Aj

(r̃ki + d̃ki + s̃ki)
Ni ∀ i ∈ IN , ∀ j ∈ Si

7 IL = IL ∪ IN
8 for j ∈ S do

// Solution of new subproblems
9 Find an optimal solution ỹj of

10


min Θj(yj)

gj(yj) ≤ 0

hij(yj) =
∑

k∈Aj

(rki + dki + ski)−Nij = 0,

∀ i ∈ IL ∩ Ij
11 until IN = ∅

6 A DISTRIBUTED ALGORITHM FOR IDENTIFYING
GENERALIZED NASH EQUILIBRIA

From the theoretical point of view, a GNE could be com-
puted by solving the social problem miny∈Y Π(y), which is a
Linear Programming problem. However, this is not possible
in practice because it would require to share the information
on the SLA contracts and performance parameters (i.e., νk,
µki, pki, etc.) among SaaS providers.

In order to overcome this drawback, we propose an
ad-hoc distributed algorithm (see Algorithm 1) for finding
a GNE. Roughly speaking, first each SaaS solves its own
optimization problem without the joint constraints. If the
optimal solutions satisfy the shared constraints, then a social
equilibrium is found; otherwise, for each IaaS correspond-
ing to a violated shared constraint, the VMs are shared pro-
portionally among SaaS providers. Next, each SaaS solves
its own relaxed problem with additional constraints: if all
the shared constraints are satisfied in the new solution, then
it is a GNE, otherwise we repeat the previous procedure for
each violated constraint, and so on.

We now give a more detailed description of Algorithm 1.
For the sake of simplicity, we denote constraints (19)–(24) of
the SaaS j problem, which are independent of the strategies
of other players, by gj(yj) ≤ 0 and constraints (18), shared
with the other players, by

hi(y) :=
∑
j∈Si

∑
k∈Aj

(rki + dki + ski)−Ni ≤ 0, ∀ i ∈ I.

The algorithm performs the following steps. At the first
iteration (lines 2-3), each SaaS j finds the optimal solution ỹj
of its own relaxed problem, in which the joint constraints are
removed. As stated previously, if the solution ỹ satisfies the
shared constraints, then it is a social equilibrium. Otherwise,
for each IaaS i such that the corresponding shared constraint
hi is violated by ỹ, the VMs of IaaS i are shared proportion-
ally among SaaS providers according to the solution ỹ (line
6), i.e., we define

Nij :=

∑
k∈Aj

(r̃ki + d̃ki + s̃ki)∑
j∈Si

∑
k∈Aj

(r̃ki + d̃ki + s̃ki)
Ni, ∀ j ∈ Si,
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which represents the number of resources of IaaS i that
will be used by SaaS j in the successive iterations. Next, each
SaaS provider solves its own problem with these new indi-
vidual constraints (lines 9-10). If all the shared constraints
are satisfied in the new solution, then it is a GNE, otherwise
we compute Nij for each violated constraint again and we
add to each SaaS provider the corresponding constraints as
before.

Note that Algorithm 1 can be implemented in a fully
distributed manner: the SaaS providers initially send to the
IaaSs their bid σMax

ji and the required value for the on-spot
resources, i.e., ski obtained solving the relaxed subproblem
at line 3. Then iteratively, the IaaS providers send back to
individual SaaSs the effective on-spot cost and the number
of VMs available Nij . In the following, each SaaS provider
solves independently its individual subproblem at lines 9-
10. When Algorithm 1 terminates, each SaaS starts reserved,
on-demand, and on-spot VMs according to the determined
solution.

Theorem 6.1. Algorithm 1 finds a Generalized Nash Equilibrium
after a finite number of iterations.

Proof: The set IL represents the set of IaaS providers
with limited resources with respect to the requests of SaaS
providers at previous iterations, while IN represents the set
of IaaS providers with limited resources with respect to the
requests of SaaS providers at the current iteration. Since IL
is a subset of I with increasing cardinality and IN is a subset
of I \ IL, after a finite number of iterations we get IN = ∅,
i.e., the algorithm stops.

Two cases can occur: either the algorithms stops at the
first iteration with IL = ∅ or it stops after several iterations
with IL 6= ∅.

In the first case, we prove that the found solution ỹ
is a social equilibrium. In fact, each SaaS provider j finds
individually the optimal solution ỹj of the relaxed problem
without the shared constraints, thus there are optimal KKT
multipliers β̃j such that the following system holds for all
j ∈ S : 

∇Θj(ỹj) + β̃Tj ∇gj(ỹs) = 0

β̃Tj gj(ỹj) = 0

β̃j ≥ 0
gj(ỹj) ≤ 0.

Since ỹ also satisfies all the shared constraints, i.e.,
hi(ỹ) ≤ 0 for all i ∈ I , then (ỹ, β̃, γ̃), with γ̃ij = 0 for
all i ∈ I and j ∈ Si, solves the KKT system associated to
the social problem


min

∑
j∈S

Θj(yj)

gj(yj) ≤ 0, ∀ j ∈ S,
hi(y), ≤ 0, ∀ i ∈ I.

Since the social problem is a linear programming problem,
it follows that ỹ is a social equilibrium.

We now consider the second case, i.e., the algorithm
stops after several iterations with IL 6= ∅. We know that,
for each SaaS j, ỹj is an optimal solution of the optimization

problem at line 10, thus there exist KKT multipliers (β̃j , γ̃ij)
such that the following system holds:

∇Θj(ỹj) + β̃Tj ∇gj(ỹj) +
∑

i∈IL∩Ij
γ̃ij∇hij(ỹj) = 0,

β̃Tj gj(ỹj) = 0,

hij(ỹj) = 0, ∀ i ∈ IL ∩ Ij ,
β̃j ≥ 0,
gj(ỹj) ≤ 0.

We now prove that multipliers γ̃ij are non-negative. In fact,
if there was a γ̃ij < 0, then the SaaS j could reduce its
objective function if the constraint on the VMs of the IaaS i
was

∑
k∈Aj

(rki + dki + ski) < Nij , but this is impossible
because in a previous iteration the SaaS j had already
requested the IaaS i more than Nij VMs.

For each i ∈ IL we have hij(ỹj) = 0 for any j ∈ Si,
which is equivalent to

∑
k∈Aj

(r̃ki + d̃ki + s̃ki) = Nij , ∀ j ∈
Si, thus

hi(ỹ) =
∑
j∈Si

∑
k∈Aj

(r̃ki + d̃ki + s̃ki)−Ni =
∑
j∈Si

Nij −Ni = 0,

i.e., the shared constraint hi is active at ỹ.
Furthermore, we note that ∇hij(yj) = ∇yjhi(y). If we

define γ̃ij = 0 for all i ∈ (I \ IL) ∩ Ij , then ỹj satisfies the
following system:



∇Θj(ỹj) + β̃Tj ∇gj(ỹj) +
∑
i∈Ij

γ̃ij∇yjhi(ỹ) = 0,

β̃Tj gj(ỹj) = 0,

γ̃ij hi(ỹ) = 0, ∀ i ∈ Ij ,
β̃j ≥ 0,
gj(ỹj) ≤ 0,
γ̃ij ≥ 0, ∀ i ∈ Ij ,
hi(ỹ) ≤ 0, ∀ i ∈ Ij .

This means that ỹj is the optimal solution of the problem: min Θj(yj)
gj(yj) ≤ 0
hi(yj , ỹ−j) ≤ 0, ∀ i ∈ Ij ,

that is ỹj is the best reply of player j to the strategies ỹ−j
of the other players. Therefore, ỹ is a Generalized Nash
Equilibrium.

We remark that the algorithm complexity is polynomial
since it finds a GNE after resolving at most |S|(1+|I|) linear
programming problems.

7 EXPERIMENTAL RESULTS

In this section, we present some numerical results we
achieved with the algorithm presented in Section 6 in a
number of system configurations. The analysis is structured
as follows: Section 7.1 describes the experiment settings, in
Section 7.2 the scalability of the proposed approach is evalu-
ated, Section 7.3 presents a comparative study on equilibria
efficiency between our solution approach and an alternative
state-of-the-art algorithm, Section 7.4 is devoted to analyze
potential benefits that are achievable by a SaaS hosting its
applications on multiple IaaSs. Finally, the impact of data
replication on SaaS savings is analyzed in Section 7.5.

Note that, the comparison of different solutions is per-
formed through analytical formulae and it is based on the
evaluation of the response time through M/G/1 in tandem
with delay center performance model. The validation of the
approach in a real prototype environment has been reported
in [16].
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Figure 3. Example of WS application request trace.

7.1 Design of experiments

Analyses performed in this section are intended to be
representative of a real Cloud environment. A very large
set of randomly generated instances has been considered.
Application performance parameters have been generated
uniformly according to the ranges reported in Table 2, as
in other literature approaches [4], [11], [17], [42]. Time unit
costs have also been randomly generated by considering
commercial fares applied by real IaaS Cloud providers [8],
[36], [48].

µki [200, 400] req/s σMax
ji [0.013, 0.047] $/h

Rk [0.025, 0.100] s ρi [0.048, 0.076] $/h
Dki [0.001, 0.050] s δi [0.120, 0.175] $/h

Table 2
Performance parameters and time unit costs.

For what concerns the distribution of incoming requests
to WS applications, we used real-life measurements coming
from a large website that, for privacy reasons, wants to
remain anonymous. A 12-days log trace is sampled ev-
ery 10 minutes. To differentiate workload of multiple WS
applications, we applied to each application a different
scaling factor and added a white noise to each sample, as
in [11], [42]. The workload is periodic and follows a bimodal
distribution with two peaks around 11:00 and 16:00.

Furthermore, with the aim of generating realistic scenar-
ios in which applications receive requests worldwide dis-
tributed over multiple time zones, we considered Facebook
annual report statistics [58] to characterize geographically
requests distribution. Each application is then localized on a
random basis. According to the assigned location, the daily
pattern of arrival rate is adjusted to the correct time zone. In
this way, WS applications can have multiple peak hours or
overlapping peaks during the same day. An example of trace
is reported in Figure 3. In order to limit request rejection, we
always set λk = 0.8 Λk.

7.2 Scalability analysis

To evaluate the computation and network overhead of our
resource allocation algorithm, we performed a scalability
analysis and considered a set of 100 randomly generated
instances according to the parameters setting described
above. The number of SaaS providers varied between 100
and 1,000, the number of applications (evenly shared among
SaaSs) between 1,000 and 10,000. The values reported in
this section are averaged over 10 instances of the same
size. In order to guarantee the existence of competition

among SaaSs, for each instance we calculate beforehand the
optimal solution of the social problem with infinite capacity
(Ni =∞, ∀i ∈ I) for every hour (rtki, d

t
ki, s

t
ki) and impose

Ni = 0.9 × maxt∈T (
∑

k∈Aj
(rtki + dtki + stki)) ∀i ∈ I . We

then assess the scalability of the presented approach by
performing tests on a Virtualbox VM based on Ubuntu
14.04.1 LTS server running on an Intel Xeon Nehalem dual
socket quad-core system with 32 GB of RAM and CPLEX
12.2.

Table 3 reports in the Appendix the results (in terms
of average computation and network time, number of it-
erations, and bandwidth requirements of our solution) for
different problem instance sizes, considering |I| = 10 and
|Ij | = 3 for every j ∈ S .

As a first consideration, we can state that, considering
the computation time, our algorithm scales linearly with
respect to the size of the instance remaining below 1.5s; as
evidence, the coefficient of determination R2 for the linear
regression calculated over the collected data is equal to
0.931, showing a strong linear correlation between com-
putation time and instance size. The computational time
assumes that at each iteration SaaS problems are solved
in parallel (i.e., a distributed implementation is adopted),
while the network time considers the time required to access
current on spot price and to set the price of running on
spot instances on Amazon EC2 (we used the average time
measured performing almost 200 tests through the Amazon
EC2 python API [9] during 22-hour experiment).

As regards the network time, which is comparable with
the computation time, it is proportional to the number of
iterations and is almost constant, ranging between 1.19s and
1.34s. Table 3 reports also the peak bandwidth requirements
for SaaSs and IaaSs. SaaS bandwidth is negligible in the
order of kB/s. The same observation holds for IaaSs. In the
very worst case, IaaS peak bandwidth is around 19 MB/s,
which is affordable for a Cloud data center. The overall
Algorithm 1 total execution time is on average lower than
3s.

Finally, under the assumption to perform runtime re-
source allocation periodically on a hourly basis [4], [18], [19],
we can assert that the proposed method is certainly efficient
and it can be used at runtime, as it demonstrate to solve the
largest problem instances in the very worst case in less than
one minute.

7.3 Equilibria efficiency

This section is devoted to analyze the quality of our solu-
tion in the frame of an extensive experimental campaign
in which also an alternative algorithm is considered. The
next two sub-sections present a reference solution from the
literature and a sound comparative evaluation based on
established performance indicators.

7.3.1 Alternative algorithm
Algorithm 2 is intended to mimic the typical policy, based
on CPU utilization thresholds, implemented by SaaSs to
manage incoming workload variations. In particular, the
method is designed to calculate the number of VMs for a
given WS application k, such that the average CPU utiliza-
tion is lower than a given threshold U . The algorithm can be
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Algorithm 2:
1 Set IL = ∅
2 for j ∈ S do
3 Find an optimal solution ỹj of

min Θj(yj)
g̃j(yj) // Initialization
uj(yj) ≤ U

4 SN = S
5 repeat
6 for j ∈ S do
7 Find an optimal solution ȳj of

min Θj(yj)
g̃j(yj) // Best Reply
uj(yj) ≤ U

8 if ȳj 6= ỹj then
9 ỹj = ȳj

10 SN = S
11 else
12 SN = SN \ {j}

13 until SN = ∅

described as a sequence of two steps executed for each SaaS
provider: an initialization step performed to generate a first
VM allocation, followed by a best reply mechanism aimed
at finding a GNE of the game where each SaaS problem is
defined by (26).

The crux of both steps is a typical policy based on
CPU utilization thresholds, which leverages the auto-scaling
mechanisms offered by IaaS providers (see, e.g., [7]) and
considered also by other literature approaches (see, e.g., [25],
[67], [71]). Therefore, we replaced in the problem defined by
(1)–(9) the constraints (2)–(3), related on the response time,
with a new one predicating on the utilization, i.e.:

uj(yj) =
xki

µki(rki + dki + ski)
≤ U, ∀ k ∈ Aj , ∀ i ∈ Ij . (25)

Consequently, SaaS problem to solve becomes:
min Θj(yj)

g̃j(yj) ≤ 0

uj(yj) ≤ U,
(26)

where g̃j(yj) denotes constraints (4)–(9). As in [25], [67],
[71], we set U = 60%.

Notice that it is possible to demonstrate (in a similar
fashion as done for Proposition 5.2) that constraints (25) are
active in any optimal solution of problem (26).

Finally, since g̃j(yj) relies on the knowledge of strate-
gies implemented by the other players of the game (see
constraint (6)), Algorithm 2 must be implemented as a
centralized solution.

7.3.2 Comparative analysis
In the following, we denote with (r̃, d̃, s̃, x̃) a social op-
timum solution and with (r, d, s, x) a solution found by
Algorithm 1. Under this assumption, the equilibria effi-
ciency can be measured in terms of Price of Anarchy (PoA)
and of Indivual Worst Case (IWC), defined as:

PoA =
Π(r, d, s, x)

Π(r̃, d̃, s̃, x̃)
, IWC = max

j∈S

Θj(r, d, s, x)

Θj(r̃, d̃, s̃, x̃)
.

PoA and IWC represent a measure of the inefficiency due
to IaaSs and SaaSs selfish behavior with the respect to the
scenario where the social optimum is pursued. In particular,

the IWC is a measure of the gap between the social optimum
and a GNE achieved in the worst case by every single SaaS
provider. Moreover, we analyze how equilibria efficiency
varies with respect to the percentage φi of reserved instances

at IaaS i, i.e., φi :=

( ∑
j∈Si

Rji

)
/Ni. Withal, since data regard-

ing IaaSs trade policies and resource overbooking are not
public, we consider three values of φi, namely 10%, 30%
and 50%.

Furthermore, with the purpose of comparing the algo-
rithms in situations in which resource contention increases,
we gradually decreased the value of Ni for each IaaS, until
no feasible allocation is found. With a high value of Ni a
small fraction of VMs available at each IaaS are used by
SaaS providers and consequently the shared constraints are
not active. The service provisioning problem becomes easy
to solve since there is no competition among players and
each SaaS problem can be considered separately and solved
to optimality (note that in such cases PoA is equal to 1).
Vice versa, by reducingNi, the service provisioning problem
becomes more complex, as shared constraints are active and
SaaS players compete for resources assignment.

Results obtained for |I| = 10, |S| = 100, |A| = 1, 000,
and |Ij | = 3 for any j ∈ S are summarized in the Appendix
by Table 4.

Algorithm 1 shows a very good behavior since all the
solutions found are very close to the social optimum. The
PoA is lower than 1.03 (i.e., on average, the percentage
difference of the sum of the payoff functions with respect
to the social optimum is lower than 3%), while the IWC is
lower than 1.37 (i.e., in the worst case, the cost of a SaaS
provider in the social equilibrium is 37% greater than in the
GNE). Finally, the analysis of the ratio Xk/ΛkXk/ΛkXk/Λk tells us that
when the problem addressed become very difficult to solve,
because only few VMs are available, SaaSs are willing to
reject a small fraction of the input load to keep the response
time below the threshold Rk.

As regards Algorithm 2, we do not present the values
of PoA and IWC, as we did for our algorithm, because hav-
ing replaced conditions (2) with utilization constraints (25)
we radically changed the structure of the problem and
they have less or no meaning in such condition. Instead,
we decided to calculate and report the averaged values of
ratio ΠAlgorithm 2/ΠAlgorithm 1ΠAlgorithm 2/ΠAlgorithm 1ΠAlgorithm 2/ΠAlgorithm 1 (that is the ratio between the
total cost of solution returned by Algorithm 2 and by
Algorithm 1 for the same instance) and the total number
of request violations associated to the equilibrium found.
As the reader can see, the outcomes of Algorithm 2 are
about 82%, more expensive on average. Furthermore, the
algorithm identifies equilibria with greater difficulty, failing
to converge to feasible solutions from Ni = 70/65 onwards
and introducing also a significant number of response time
violations (evaluated as the total number of requests such
thatE[Rk] > Rk). With this respect an increasing trend with
φi is also evident, meaning that with the growing resource
contention the algorithm tends to return worse quality solu-
tions in terms of SLA. Finally, it is evident that the utilization
threshold based policies commonly implemented are far
from being optimal, being slower (doubling the number
of iterations to converge), more expensive (∼55% more
VMs allocated) and failing in guaranteeing the SLAs (some
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WS applications are over-provisioned, others are under-
provisioned).

7.4 Multiple IaaS analysis
This section is devoted to the study of pros, cons and
possible trade-offs arising when SaaSs rely on more than one
IaaS to host their applications. In this regard, we performed
a campaign of experiments considering SaaS providers leas-
ing resources from one up to three IaaSs at the same time
and we compared the results in terms of efficiency and total
execution cost (i.e., payoff function value).

In order to perform a fair comparison with the single
IaaS case, the number of reserved resources is kept constant
and independent of the number of IaaSs available, that is:∑
i∈Ij , |Ij |=1

Rji =
∑

i∈Ij , |Ij |=2

Rji =
∑

i∈Ij , |Ij |=3

Rji , ∀ j ∈ S.

The performance index under study is the average value
of the payoff function (PF), which represent the SaaS total
daily cost net of replication costs and, like in Section 7.3, we
consider three values for φi ∈ {0.1, 0.3, 0.5}. The payoff
function, therefore, catches only the cost associated to the
use of resources and penalties (in $); the impact of data
replication and synchronization is analyzed separately in
the next section.

Let us start the analysis considering a Cloud environ-
ment characterized by φi = 0.1, which means that each
single IaaS offers a maximum of 10% of its virtual machines
as reserved. A summary of average results is reported by
Table 5 in the Appendix, where the value of the PF is
expressed in $.

It appears evident that having more than one IaaS to
exploit is an advantage for the SaaS if we consider only the
payoff function and the reliability. With the use of two IaaS
providers, there are, indeed, savings of 9.83% with respect
to the single-IaaS deployment, and up to 15.26% when the
SaaS leverages three IaaSs. This result is due to the fact that
the only IaaS involved in the experiment offers a limited
number of reserved VMs and the SaaS is forced to run the
on-demand ones, more expensive; this choice, however, is
often better than paying the penalties for unsatisfied SLAs.

The same trend can be identified in the results of the
experiments performed with φi = 0.3 and φi = 0.5 whose
outcomes are also collected and summarized in Table 5.
There is still a 8.95% and 13.59% (10.60% and 15.16%, re-
spectively) savings on average when deploying applications
on two and three IaaSs.

After discussing in deep the results of this experiment,
we can ultimately draw some considerations on the behav-
ior of a SaaS provider, which we have obtained by inspect-
ing equilibrium solutions. A SaaS provider, according to the
workload conditions, can be in one of the following four
situations:

1) The workload is satisfied only leasing reserved and,
proportionally to the ηj parameter, spot instances at
the cheapest IaaS provider. In this way the SaaS can
easily guarantee that all requests will be served and
the pledged QoS will be granted to its customers.

However, if restrictions in resource allocations exist, due,
for instance, to a limited number of resources available at the

IaaS side, or by the competition of other SaaS players, or to
the low amount of reserved instances (e.g., for a low φi), it
has to enact adequate countermeasures:

2) In the case the SaaS profits from using more than
one IaaS, it can ask a different IaaS to provision
the extra resources needed to satisfy the incoming
traffic or bidding for the cheapest spot resources
on multiple sites, with the aim of exploiting the
lowest price zones. In doing so, the SaaS provider
is also improving the reliability of its applications
portfolio.

3) Differently, if the SaaS cannot rely on multiple IaaSs
or if the SaaS has already consumed the reserved
instances and the on spot ratio has been reached, it
has no other choice but to use the most expensive
type of VMs, the on demand ones.

4) Withal, there exists a forth, albeit unlikely, scenario
in which a SaaS could decide to reject part of the
incoming workload and pay the resulting penalties.
In the experimental analysis we set the cost asso-
ciated with request rejection much higher (> 10
times) than the execution cost of the most expensive
VMs in the game, in order to make the rejection an
extreme and expensive choice. Nonetheless, there
are some conditions that impose the SaaS to reject
part of the workload; it happens when the total
number of VMs is unable to cover the resource
requirements of all SaaS providers. In this case the
SaaS, behaving according to the model described
in Section 4.1, rejects some requests to keep the
response time under the thresholds Rk.

To conclude, the analysis presented in this section clearly
demonstrates that simultaneously exploiting more than one
IaaS can be really beneficial for the SaaS from a monetary
and reliability point of view. In fact, in terms of profits,
a SaaS would achieve savings ranging from a minimum
of 10% up to 15%. Finally, the advantages related to the
reliability, which can be guaranteed to end users, are also
considerable. As a matter of fact, the reliability of the sys-
tem increases with the number of used IaaSs, raising, for
instance, from 99.9% (i.e., around 6 hours of downtime per
year) to 99.9999% (11 sec/year) when two IaaSs are consid-
ered together (according to the Cloud providers reliability
measures reported in [26]).

7.5 Impact of Data replication on Multi-IaaS cost sav-
ings
We now evaluate the impact of data replication and syn-
chronization on multi-IaaS cost savings reported and an-
alyzed in Section 7.4. We do this by means of a sample
application (Meeting in the Cloud: MiC). The outcomes
of this experiments are collected and analyzed with the
goal of assessing the viability of multi-Cloud solutions also
from the monetary point of view. The research question
we try to answer is: provided a suitable multi-Cloud data
synchronization system, how strong is the impact of the
inter-Cloud data transfer on the SaaS execution costs?

In the following, first we briefly introduce the MiC
application and then we present the experiment carried on
and analyze the results.
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7.5.1 Case study: Meeting in the Cloud (MiC) application
To validate our approach and evaluate the cost overhead
introduced by data synchronization, we have implemented
a sample application, which leverages several data storage
services [35]. MiC is a social networking web application.
It allows a user to register and to choose his/her topics
of interest providing a grade in the range 1-5. At the end
of the registration process, MiC identifies the most similar
users in the social network according to the user’s prefer-
ences [44], [45] (similarity is computed through the Pearson
coefficient [52]). Then, the user can access to the portal and
interact with his/her Best Contacts creating and reading
posts on the selected topics.

The application is developed in Java using JSP and
Servlet technologies and the following data storage services
are used:

• Blob Service: used to store profile pictures.
• NoSQL Service: used for storing user interests and

preferences.
• SQL Service: used for storing user profiles, messages,

and best contacts.

7.5.2 Cost analysis of Data replication impact
To study the impact of data replication in terms of sup-
plementary cost incurred to maintain the consistency in a
multi-IaaS deployment, we have to calculate the amount of
data that has to be synchronized among multiple Clouds.
In this sense, if ξk is the average size of records written
by WS application k, the data transfer rate from IaaS i1
to IaaS i2 for each WS application k can be calculated as
zk i1 i2 = αk xk i1 ξk for any k ∈ Aj and i1, i2 ∈ Ij , where
αk ≥ 0 is a parameter that characterizes the I/O behavior of
the application. Higher values of αk describe an application
that tends to execute several write operations for every
incoming request, whereas lower values are representative
of an application prone to execute read operations.

If WS application k is deployed on |Ij | different Clouds,
to achieve full data replication zk i1 i2 = zk i1 bytes per
second must be transferred from i1 to each of the |Ij | − 1
IaaSs. Therefore, the amount of data that have to be sent
from Cloud i during a certain period of time T is

Ξki = (|Ij | − 1)Tzki, (27)

whereas the cost associated to the synchronization process
can be calculated as

CSynch =
∑
i∈Ij

Ciout(Ξki), (28)

where Ciout is a function representing the fee applied by the
IaaS provider i for the transfer of data.

At the time of writing, all the major Cloud providers
do not apply fees for inbound data flows (that is the SaaS
is not charged for data coming from outside the Cloud) but
they charge egress costs that depends on the traffic spawned
(in TB) per month. Moreover the cost functions are usually
concave due to the economy of scale policies adopted by the
IaaS providers.

For our study we considered |S| = 100, |A| = 100,
φi ∈ {0.1, 0.3, 0.5} and varied the number of involved IaaSs
|I| = |Ij | in [1, 3].
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Figure 4. Break-even curves for φi ∈ {0.1, 0.3, 0.5} and |I| ∈ {2, 3}

We use our solution to calculate the total execution
cost and the related incoming workload split zki for each
application and each IaaS for a time horizon of 24 hours.

At this point, to calculate the average egress cost we
need two important pieces of information: the values of
αk and ξk. For our reference MiC application, the average
data record ξk is known and equal to 462 bytes, while αk

depends on end users behaviour (e.g., how many posts
are written per visit to the social network). To determine a
general insight of our problem, we performed a parametric
break-even analysis, that is the study of the values of αk

corresponding to the balance point between the multi-IaaS
cost savings and the data synchronization cost and their
dependence on ξk. The results of the analysis are depicted
in Figure 4.

For this study we use the pricing models of three real
IaaS providers, namely Amazon AWS [8], Google GCP [37]
and Microsoft Azure [47].

As the reader can easily note, for all the experiments
conducted the curves of αk show high values (ranging from
12 to 24) for ξk = 462 bytes meaning that, depending on the
case, the application can execute up to 12 (24, respectively)
writing operations per request. Moreover, the break-even
point for αk = 1 (that describes the scenario where there
is one writing operation for each incoming request) corre-
sponds to a data record of ∼10 MB, which proves that our
approach is viable even for data intensive applications or
with a significant overhead added by the synchronization
tool.

As a final remark: in principle, the synchronization
costs (28) might be introduced in the game formulation
presented in Section 4 but this would eventually only com-
plicate the model (making it non-linear) without changing
much neither the social optima nor the equilibria found
by our algorithm. In fact, for values of αk < 1 (more
realistic for Web applications [17], [61]) we have seen that
synchronization has little impact on the overall execution
cost and it is even less relevant if we consider that all major
Cloud providers are applying very similar fees for the egress
traffic and thereby it cannot influence the choice of a IaaS
provider against another.

8 CONCLUSIONS

The overall goal addressed in this paper is to model and
efficiently solve the cost minimization problem associated
with the allocation of SaaS virtual machines in multiple
IaaSs, while guaranteeing QoS constraints. To achieve this
purpose, we proposed a game-theoretic approach for the
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runtime management of IaaSs provider capacities among
multiple competing SaaSs along with a cost model including
infrastructural costs associated with IaaSs resources and
penalties incurred for request rejections. A distributed algo-
rithm for identifying a Generalized Nash Equilibrium has
been developed and described in detail. The effectiveness
of our approach is demonstrated by performing a wide set
of analyses under multiple workload conditions. A num-
ber of different scenarios of interest have been considered.
Systems up to thousands of applications can be managed
very efficiently in a fully distributed way. Our algorithm
found efficient GNE, for a hourly basis resource alloca-
tion, in less than a minute proving to be perfectly suitable
for runtime provisioning. Furthermore, a comparison with
an utilization-based state-of-the-art technique demonstrated
that our solution outperforms the alternative method in
many aspects and shows high equilibrium efficiency, with
both PoA and IWC close to one. Finally, analyses showed
clear benefits for SaaSs that decide to exploit multiple IaaS
deployment and traffic redistribution with average savings
up to 15% compared to single IaaS architectures.

Future work will extend the proposed solution to con-
sider multiple time-scales ranging from few minutes to
one hour, exploiting also receding horizon techniques along
the lines we developed in [13] and we will consider also
different IaaS on spot pricing scheme.
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