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Abstract Gene regulatory networks (GRNs) are complex biological systems
that have a large impact on protein levels, so that discovering network inter-
actions is a major objective of Systems Biology. Quantitative GRN models
have been inferred, to date, from time series measurements of gene expres-
sion, but at small scale, and with limited application to real data. Time series
experiments are typically short, (number of time points of the order of 10),
while regulatory networks can be very large, (containing hundreds of genes).
This creates an under-determination problem, which negatively influences the
results of any inferential algorithm. Presented here is an integrative approach
to model inference, which has not been previously discussed, to the authors’
knowledge. Multiple heterogeneous expression time series are used to infer the
same model, and results are shown to be more robust to noise and parameter
perturbation. Additionally, a wavelet analysis shows that these models display
limited noise over-fitting within the individual datasets.
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1 Introduction

Modelling gene regulatory networks (GRNs) has received a lot of attention
in the literature over the last 10 years [23]. Models range from coarse-grained
qualitative models (e.g. Boolean networks) to fine-grained quantitative models
(e.g. differential equations) [2]. The latter are typically inferred from time series
measurements of gene expression, [30], and provide more detailed information
on the dynamics of the complex system, facilitating quantitative simulation
and analysis of its behaviour. However, model granularity limits the scale of
the analysis, so that, at present, quantitative model inference can be performed
only for small scale systems. This is also due to the fact that, in general, since
in vivo/vitro experiments are costly, the length of time series expression data
is limited. This leads to under-determination [30], also known as the curse of
dimensionality. This means that multiple parameter sets are able to reproduce
the behaviour seen in the data, and, in consequence, means of discriminating
between these are necessary [9].

In order to increase the scale and quality of quantitative GRN modelling,
the problem of under-determination has to be tackled. Approaches based on
clustering genes before model inference, or reducing connectivity and thus the
number of parameters to be inferred can be found in the literature [30]. Fur-
ther, it is widely recognised that integrative modelling approaches are required
to enhance regulatory analysis, [21,2], and these have started to appear in re-
cent years, mostly for coarse-grained analysis [10,13] or based on Bayesian
models [4]. These integrate expression data with other types of measurements,
such as binding affinities or protein interactions, to better discriminate be-
tween candidate models. Also, multiple time series datasets from the same
single channel platform have been used for linear model inference using singu-
lar value decomposition [27]. However, integrating gene expression data from
different platforms has been formerly analysed only for tissue (sample) classi-
fication [6].

Here, an analysis of expression data integration in the context of quantita-
tive GRN modelling is presented, using microarray time series datasets from
different platforms. The hypothesis being investigated is that using such het-
erogeneous datasets is possible and gives models which are more robust to data
and parameter perturbations. Integration helps to capture essential dynamics
in the data, without noise over-fitting, (shown by the wavelet analysis de-
scribed in Section 3.2). While methods can be extended to include other types
of expression data, such as Next Generation Sequencing, time series are more
difficult to obtain from online databases, due to the novelty of the technique.
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2 Methods

2.1 Model

The analysis presented here has been performed using the S-System model
[22]. This is a differential equation system that models the change in gene
expression with time using the power-law formalism:

dxi

dt
= ®i

n∏

j=1

x
gij
j − ¯i

n∏

j=1

x
ℎij

j (1)

Here, xi denotes the expression level of gene i; the first and second terms
represent the synthesis and degradation of mRNA, which are influenced in a
positive or negative way by the genes in the network. The rate constants, ®i

and ¯i, represent basal synthesis and degradation rate, while gij and ℎij , the
kinetic orders, indicate the strength of the influence of gene j on synthesis and
degradation of gene i, respectively. Positive values of gij indicate activation of
gene i by gene j, while negative values indicate repression.

Building an S-System GRN model involves finding the set of parameters
{®i}, {¯i}, {gij} and {ℎij} that can reproduce the time series used for infer-
ence.

2.2 Data

Integration analysis has been performed on four distinct datasets representing
microarray time series measurements during the Yeast Saccharomyces Cere-
visiae cell cycle available online: Spellman [26], PramilaS [19], PramilaL [20]
and Hasse [18] datasets. Each of these analyse two cell cycles, at different
time intervals. The Spellman dataset contains 18 time points sampled every
seven minutes, measured using cDNA microarrays, while the PramilaS dataset
contains 13 time points, sampled every 10 minutes on Amplicon v1.1 microar-
rays(cDNA). The PramilaL dataset contains 25 time points sampled every 5
minutes on the same Amplicon platform, and features a dye-swap replicate,
which is used in our experiments as a second time series of the same length.
The Hasse dataset contains 15 time points, sampled with Affymetrix arrays
every 16 minutes, and a replicate that is again used as a separate time series
during inference. This results in six time series measurements of the cell cycle
sampled at different intervals. The analysis here was performed on a subset of
9 genes known to be involved in the cell cycle, retrieved from KEGG database
[3]. These were selected to form a sub-network poorly connected and relatively
independent of the rest of the GRN, to facilitate separate analysis.

The data must be normalised for integration to be possible. Normalisation
for noise has to be performed to remove random and systematic noise intro-
duced at different experimental stages [7]. Additionally, for GRN inference,
a normalisation for scale needs to be performed. This brings all data in the
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same range, to enable the same model parameters to describe the behaviour
seen in the different datasets. Typically, normalisation for scale is achieved by
standardisation [6]:

x′ =
x− x

s
(2)

Furthermore, when multiple datasets are used for inference, the time spans
between consecutive measurements in different datasets have to be measured
using the same unit, so a time span normalisation is also required. This heavy
pre-processing, involving so many stages, is mandatory for the integration
to be possible. However, the risk of removing important features during pre-
processing exists, as well as introducing false correlations and, in consequence,
influencing the resulting GRN model [14].

In this study, the four datasets retrieved from online databases had already
been normalised for noise by the authors themselves, but given the different
platforms used, the data values had different amplitudes. Consequently, a fur-
ther scale normalisation has been performed as follows. Firstly, each dataset
was standardised and, secondly, the values in all datasets were scaled to the
interval [0, 1] (by subtracting the minimum overall value and then dividing
by the maximum value). This was required because of the type of the model
used: the S-System model requires positive values for gene expression levels.
Additionally, the time spans were modified to bring the cell cycle length to the
same level, i.e. 120 minutes. This approach gave good results in our analysis.
However, different analyses of normalisation techniques for multi-platform in-
tegration [11,24] have been performed recently, and these may improve results
in the context of quantitative GRN modelling. Also, some normalisation tech-
niques, specific to single and dual-channel microarrays, have been extended to
be used for both types of microarrays, such a Loess or dChip [7]. We plan to
analyse their effect on data integration in future work.

2.3 Inferential Approach

Several inferential algorithms for regulatory network modelling exist in the
literature, and we have implemented and used one that has proven performance
with real microarray data [25]. This is an evolutionary algorithm based on a
hybridisation between Differential Evolution and Hill Climbing local search
[16]. Fitness evaluation is based on Akaike’s Information Criterion[1], which
uses the MSE between the simulated and real data as a measure of model
quality. Model parameters are inferred for each gene at a time, using a divide-
and-conquer approach. More information on the algorithm can be found in
the original paper [16].

In order to analyse performance when moving from one to more datasets,
we have split the four time series into two subsets: inference(training) and test
datasets. The inference subset has been used during model inference, while the



Integrating Expression Data for GRN Modelling 5

resulting models have been applied to simulate the test series. This bootstrap-
ping approach has been used several times, resulting in thirteen experiments,
each using a different combination of datasets for inference. Given the stochas-
tic nature of the evolutionary algorithm, twenty runs have been performed for
each of these experiments. All the results presented in this paper are based
on the models obtained for gene CLN2. This gene was chosen as it is one of
the genes that are differentially expressed during different stages of the cell
cycle. Similar analysis has been performed with the gene CLN1, but results
were similar so they are not shown here.

2.4 Wavelets

Wavelets [12] are a mathematical tool used for signal processing, which permit
a simultaneous time and scale analysis of the signal. At large scale, i.e. low
frequencies, general features of the data can be analysed, while at small scale,
i.e. high frequencies, more detailed aspects are investigated. Mother wavelets
are functions that satisfy a set of conditions [12], and contracted and dilated
versions of these functions, i.e. wavelets, are used to decompose the signal
into components corresponding to different scales. Continuous wavelet analysis
describes the signal as a continuous superposition of wavelets, while discrete
wavelet analysis, employed here, as a discrete superposition.

Discrete wavelet decomposition results in a set of coefficients that describe
the signal at different scales. The frequency spectra is spanned using smaller
and smaller windows, (usually size of windows is decreased twofold from one
iteration to another), and coefficients are computed at each level. Level 1
coefficients correspond to the smallest scale, i.e. the highest frequencies in
the data, (the upper 50% of the frequency spectrum), level 2 to the next
scale (the 25-50% section of the frequency spectrum), and so on. Having 2k

time points in the data, 2k−1 level 1 coefficients are computed, for short time
windows (total time divided by number of coefficients), 2k−2 level 2, for double
sized time windows, while the last level, k, contains 2 coefficients, for large
time windows. Each of these coefficients indicates in what amount the current
frequency spectrum is present in the signal in the current time window. This
results in high time resolution and low frequency resolution at small scale and
vice versa at large scale.

In real world applications, noise effects are high frequency, thus visible at
small scale in wavelet analysis, while much of the signal is reflected in low
frequencies, i.e. large scale. Gene expression time series measurements can
be considered as signal levels; we thus performed a wavelet decomposition
of the real signal (seen in the four datasets) corresponding to gene CLN2 in
the cell cycle GRN. For this, the signal was resampled using Spline interpo-
lation to generate 32 data points. This was necessary because the number of
points required for the wavelet analysis needs to be a power of 2, with 25 just
larger that the number of samples in each time course dataset. In this way
we avoided under-sampling for all datasets and loss of information, as well as
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over-sampling, to reduce interpolation errors. The Haar[12] wavelet was used
for decomposition and resulted in 32 coefficients at 5 scales (levels). The last
two scales, 4 and 5, containing 4 coefficients, were combined and labelled as
level 4,5 coefficients in this paper. The decomposition was performed using the
Matlab toolbox WaveLab [8].

3 Results and Discussion

3.1 Performance on Test Datasets

Quantitative integration of cross-platform time-series data is not straightfor-
ward, due to platform differences that may interfere with the model which, in
consequence, may describe a different process. This is why we have chosen the
train/test datasets methodology, to make sure the data is compatible and the
models obtained valid.

The results show that for a specific time series used as a test dataset, the
data fit of the models obtained from multiple inference datasets is generally
better that for those models inferred from one time series, as shown in Figure
1. For instance, in using the Spellman dataset to test models inferred from
PramilaL and Hasse together, the figure shows the RSS (Residual Sum of
Squares) values to be, on average, lower than when using each dataset sepa-
rately. This indicates that even though the points added when moving from
one to more datasets are from a different source, the resulting model still cap-
tures more essential features in the data, (as expected when adding different
time points from a single platform), and, in consequence, is better able to
describe new test data.

Figure 1 also displays an expected exception: datasets PramilaS and Prami-
laL describe one another very well, as the performance of the models obtained
by using one as inference dataset, and the other as test dataset, is better that
when using more datasets. This is, probably, due to the fact that the mea-
surements are performed on the same platform and in the same laboratory
(although at different times), so the datasets lie in the same space and are
very close to one another (the measuring time spans also overlap). This ex-
plains the behaviour seen for the Spellman and Hasse test datasets: the RSS
values for the models inferred from both PramilaL and PramilaS datasets are
not significantly different than when using each of these individually. This in-
dicates that, when two datasets are very similar, and the measurement time
points overlap, the integration does not significantly improve the RSS criteria.
However, we believe that, had the time spans been different, the integration
would have brought value to our experiments, as seen for the heterogeneous
datasets in this analysis.
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Fig. 1 Performance of models on test datasets. Graphs are displayed as notched boxplots
[15], (showing medians and quartile ranges over 20 models for each experiment), using the R
module from Wessa.net [28], in order to allow for an analysis of the distribution of RSS values
over all models obtained in different runs for each experiment, and to identify statistically
significant differences between these. On the x axis different experiments are represented,
using one to three inference datasets as follows: S - Spellman, Pl - PramilaL, Ps - PramilaS,
H - Hasse. The four boxes correspond to the four datasets used for test, as labelled.

3.2 Wavelet Analysis

A second issue when building GRNs from data is noise handling, as this can
influence the resulting model, due to noise over-fitting. Naturally, integrating
heterogeneous datasets decreases overall variability, but, in order to avoid over-
fitting and model disturbances, the variable elements eliminated have to be
those corresponding to noise. This means variability between datasets with
respect to main features has to be small enough to facilitate integration. In this
section, we will show, using wavelets, that the datasets used in the analysis are
compatible, and the models obtained from more datasets display lower noise
over-fitting.

Firstly, we compared the coefficients for the four datasets used for infer-
ence. For this, the Pearson correlation coefficient [5] was computed at each
level, and results are shown in Table 1. Correlation values between coefficients,
corresponding to a pair of signals, show how similar the features of the two
signals are at different scales. As the values in the table show, all four datasets
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Table 1 Correlation of wavelet coefficients for four gene expression time series (Spellman -
S, PramilaS - Ps, PramilaL - Pl, Hasse - H). Level 1 corresponds to the smallest scale, i.e.
highest frequencies, while level 4,5 to lowest frequencies.

Level 1 Level 2 Level 3 Level 4,5
Ps Pl H Ps Pl H Ps Pl H Ps Pl H

S .582 .742 .087 .950 .890 .143 .907 .996 .844 .994 .998 .966
Ps .283 .078 .902 .167 .939 .707 .991 .938
Pl .156 .316 .828 .975

are very similar at levels 3 and 4,5 (corresponding to low frequencies, i.e. real
features), while at levels 1 and 2, (i.e. noise effects), most correlations are very
low, indicating heterogeneity of noise in the datasets. The high correlation in
essential features indicates that the datasets are compatible for integration.
The low correlations of the Hasse dataset with all other datasets at the first
two levels show that this dataset is very different from the others, and this
may be because of the difference in microarray platform (one channel vs. two
channels). Also, correlations indicate many similarities, even at levels 1 and 2,
between the three datasets measured on two channel microarrays, indicating
these lay in the same space. However, this was visible in the experiments pre-
sented in Section 3.1 only for datasets PramilaL and Pramilas, confirming our
hypothesis that, even when datasets describe very similar features in terms
of dynamics, non-overlap of measured time points means the integration im-
proves RSS on test datasets, (as expected, when adding more time points to
the analysis).

To analyse noise over-fitting, wavelet coefficients for the simulated signals
by the models inferred in different runs were also computed. The coefficients
obtained at each level for each model were compared to those in the initial data,
by computing the same Pearson correlation coefficient. The values obtained
are displayed in Figure 2 for the Spellman and PramilaL datasets.

Results show that correlation values at levels 1 and 2, (corresponding to
high frequencies, i.e. noise), decrease when adding more time series to the
inference process, while those corresponding to real features in the data, (levels
3 and 4,5), are stable. This proves that using heterogeneous time series reduces
noise over-fitting, (as different types of noise exist in the data, and it is very
difficult for the inferential algorithm to over-fit all types), while main features
in the data are maintained. For instance, for the Spellman dataset, when the
model was inferred only from the Spellman time series, the correlations are
high at all levels (including those corresponding to noise), indicating over-
fitting of noise. However, when adding other datasets to the inference and
comparing again with the initial Spellman data, correlations decreased for
high frequency levels, while for low frequencies they remained high.
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Fig. 2 Correlation of wavelet coefficients for datasets PramilaL and Spellman at different
levels. Image 2(a) shows all levels for both datasets, while 2(b) and 2(c) show enlarged
images of three levels for which details are poorly visible in the main image, due to scale
differences. When moving from one to more inference datasets, correlations at levels 1 and
2 (high frequencies) decrease, while those at levels 3 and 4 remain very high, indicating less
noise over-fitting, while maintaining important features in the data.

3.3 Robustness Analysis

The transcriptional process is stochastic in nature [23], and real GRNs are ro-
bust to relatively small changes in expression values. Also, it has been argued
that quantitative models should also be robust to small parameter pertur-
bations [9], as the connectivity of the network is the main factor influencing
causal effects [2]. By integrating heterogeneous data, with different types of
noise present, more robust models should be obtained. This has been tested
in this paper by performing a sensitivity analysis for noise and parameter
perturbation.

Firstly, models obtained in different runs were analysed on data containing
Gaussian noise, which was added to the initial datasets used for inference, sim-
ilar to [17]. Although, in reality, the distribution of the noise may be different,
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Fig. 3 Sensitivity to noise. Histograms show RSS ratios over 20 models for different exper-
iments, ranging from one (top) to four (bottom) inferential datasets, under two noise levels
(standard deviations 0.01 - left - and 0.05 - right). A clustering to the left of the ratios can
be seen when moving from top to bottom under both noise levels.

this analysis gives a good indication on the robustness of the models to given
percentage level of perturbations in the data. The resulting simulation time
series were compared to the initial data and RSS values compared to those
obtained with data without added noise (a ratio value was computed). Figure
3 plots histograms of RSS ratios for the 20 models in each experimental run,
under two noise levels (deviation of 0.01 and 0.05). When moving from experi-
ments with one to more inference datasets, more models maintain a good RSS
value (ratios around 1), indicating the models obtained using integrated data
are more robust to noise.

Secondly, a parameter sensitivity analysis was performed. For this, for each
model inferred, individual parameters were slightly modified and the time
series simulated and compared. A RSS ratio against initial RSS (obtained
by the unmodified model) was computed, analogous to the noise sensitivity
analysis. Figure 4 shows histograms of ratios obtained for the 20 models in
each experiment, with perturbations of ±1% of initial search interval, (0.2 in
our case). Again, a clustering of the RSS ratios to the left, (lower values), can
be seen when moving from experiments using one dataset to those using three
or four datasets, indicating better resilience to parameter perturbations for
the latter.

It is important to note that even similar datasets, such as PramilaL and
PramilaS, add robustness when used together. For instance, Figures 3 and
4 show that models inferred from all four datasets are more robust to both
types of perturbations than those inferred from three datasets by eliminating
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Fig. 4 Sensitivity to parameter perturbations. Histograms of RSS ratios are plotted for 20
models obtained in each experiment. Ratios are smaller for models obtained from multiple
datasets (bottom right), compared to those from one dataset only (top left).

PramilaS. This is due to the stochasticity of gene expression: even if the series
describe, in essence, the same process, small variability exists and forces the
resulting model to handle this. This is similar to adding noisy replicates to
the inferential process, which has been previously proven to give more robust
models [29].

4 Conclusions and Future Work

We have shown that integration of multiple time series for GRN quantitative
model inference is possible and can result in improved models. We have in-
ferred GRN S-System models from four gene expression datasets measured on
different platforms, and analysed these and their simulated data. A robustness
analysis proved models obtained from multiple datasets were more resilient to
both noise in the data and parameter perturbations. Additionally, a wavelet
decomposition of signals corresponding to gene CLN2 has been performed,
and results proved that over-fitting of noise was reduced for models inferred
from heterogeneous time series.

In this analysis, normalisation for noise was performed by the authors,
and their normalised data were used. However, this step is very important in
microarray data pre-processing, as it can influence resulting models. A further
analysis on how different normalisation techniques influence the integration
process is required, and will be performed in future work. Also, an analysis
of the entire GRN, as opposed to single gene models, is required to further
validate results. Additionally, tests on other types of gene expression data are
planned, (e.g. RNA-seq data), to demonstrate that results obtained can be
extended to other cases.
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5 List of Abbreviations

GRN - Gene Regulatory Network, mRNA - messenger RNA, cDNA - com-
plementary DNA, RSS - Residual Sum of Squares, S - Spellman dataset, Pl -
PramilaL dataset, Ps - PramilaS dataset, H - Hasse dataset.
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