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Summary. A new semiparametric and robust approach for model-based small area prediction
for discrete outcomes is proposed. This approach is using extensions of M-quantile regression
for estimating small area proportions where a popular alternative approach is to use a predictor
based on a generalised linear mixed model. The paper motivates the proposed methodology
by means of two applications. The first is concerned with the estimation of unemployment
levels for Local Authorities in the UK. The second investigates the estimation of the proportion
of poor households in Local Labour Systems in the Tuscany region of Italy. In both applications
the accuracy of direct estimates is poor and the proposed model-based methodology produces
estimates with clearly improved coefficients of variation, which also compete with alternative
model-based estimators. Two estimators of the prediction mean squared error are proposed,
one using Taylor linerization and another using block bootstrap.
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1. Introduction

Decision-makers tasked with devising and implementing policies to maximum effect need as much
information as possible and at disaggregated geographical levels. The increasing demand for reliable
small area statistics has led to the development of a number of efficient model-based small area
estimation (SAE) methods (Rao, 2003; Jiang and Lahiri, 2006). For example, the empirical best
linear unbiased predictor (EBLUP) based on a linear mixed model (LMM) is often recommended
when the target of inference is the small area average of a continuous response variable (Battese
et al., 1988; Prasad and Rao, 1990). An alternative approach to small area prediction is to use M-
quantile regression (Breckling and Chambers, 1988) to characterise area heterogeneity (Chambers
and Tzavidis, 2006). Unlike traditional prediction with mixed models, the M-quantile approach
is semiparametric and automatically allows for outlier robust prediction. However, many survey
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variables are categorical in nature and are therefore not suited to standard SAE methods based on
LMMs. Two important discrete survey variables are unemployment and poverty, defined for the
purposes of this paper as income deprivation.

The demand for small area estimates of labour force activity in the UK is described in a letter
by the Librarian of the House of Commons to the Head of the Office for National Statistics (ONS)
Labour Market Division. The letter identifies the need and stresses the importance for producing
a common set of key labour force indicators at disaggregated geographical levels that can be used
by Members of the House of Commons. Responding to this need, the Office for National Statistics
in the UK has recognised that sample sizes at the level of Unitary Authorities/Local Authority
Districts (UALADs) may not be sufficient to meet the 20% Coefficient of Variation (CV) threshold
(ONS, 2004) necessary for publication of direct estimates of labour force activity. For this reason,
ONS established a project aiming at investigating the use of model-based SAE methodology for
producing reliable estimates of unemployment levels and rates for UALADs. This work resulted in
the development of methodology that now allows ONS to publish estimates with improved accuracy,
which are now are accredited as National Statistics.

Regarding poverty estimation, the Lisbon European Council (March 2000), assisted by the Nice
European Council (December 2000) and by the Gothenburg Council (2001), agreed to put in place
an EU strategy by the year 2010 aiming at making a decisive impact on the battle against poverty in
European Union Countries. A first towards achieving this goal requires estimates of poverty levels
at the small area level. However, only very recently National Statistical Institutes in Europe have
started investigating methodologies for producing small area estimates of income poverty. In Italy,
a target geography for producing poverty estimates is defined by Local Labour Systems (LLSs) but
the sample sizes at this level do not allow direct estimation with acceptable CVs.

One option for small area prediction in the case of discrete outcomes is to adopt a Hierarchical
Bayes approach (Malec et al., 1997; Nandram et al., 1999) or to use Empirical Bayes (MacGibbon
and Tomberlin, 1989; Farrell et al., 1997). Alternatively, if a frequentist approach is preferred, one
can follow Jiang and Lahiri (2001) who propose an empirical best predictor (EBP) for a binary
response, or Jiang (2003) who extends these results to generalised linear mixed models (GLMMs).
For example, the ONS methodology for estimating unemployment levels and rates is based on a
binary logistic GLMM with UALADs random effects. Large deviations from the expected response
as well as outlying points in the space of the explanatory variables (leverage points) are known to
have a large influence on classical maximum likelihood inference based on generalised linear and
generalised linear mixed models (GLMs and GLMMs). This has lead to the development of robust
methods for fitting these models (Pregibon, 1982; Preisser and Qagqish, 1999; Cantoni and Ronchetti,
2001; Noh and Lee, 2007). Sinha (2004) proposes a robust Monte Carlo Newton-Raphson method
of estimation, which can be considered as a modification of the Monte Carlo Newton-Raphson
method of McCulloch (1997). To obtain a Monte Carlo version of the robust maximum likelihood
estimate, similarly to McCulloch (1997), the author presents a Metropolis algorithm to approximate
the posterior distribution of the random effects. Maiti (2001) considered the development of robust
methods for GLMM-based small area prediction using a Hierarchical Bayes approach to fitting a
GLMM based on an outlier-robust normal mixture prior for the random effects.

To the best of our knowledge, there is no existing methodology for robust small area prediction
for discrete outcomes in the frequentist framework. In this paper we therefore propose a new ap-
proach to SAE for discrete data based on M-quantile modelling. This is achieved by extending the
existing M-quantile approach for continuous data to the case where the response is binary or, more
generally, a count. As with M-quantile modelling of a continuous response (Chambers and Tza-
vidis, 2006) random effects are avoided and between area variation in the response is characterised
by variation in area-specific values of quantile-like coefficients. Outlier-robust inference is achieved



in the presence of both misclassification and measurement error.

Starting with the target of producing small area estimates of unemployment levels in UALADs
in the UK and income poverty in Italy, two data sources are used for motivating the potential benefit
of using robust prediction. These are the Labour Force Survey (LFS) in the UK and the European
Survey of Income and Living Conditions (EU-SILC) in Italy. For the case of estimating unem-
ployment levels for UALADs in the UK, our research thesis is that the proposed robust small area
methodology offers reliable and in some cases improved estimates to the ones that are currently pub-
lished. For the case of estimating poverty levels for LLSs in the Italy, our research thesis is that the
proposed methodology offers estimates that are more accurate than direct estimates and competitive
to alternative model-based estimates.

The structure of the paper is as follows. In Section 2 we review the current industry standard
for estimating a small area proportion using a GLMM. The data we will use for small area estima-
tion in this paper come from the UK LFS and the EU-SILC from Italy. In Section 3 we present the
specification of a small area working model and exploratory analysis of these two datasets that aims
at motivating the use of the proposed methodology. Section 4 describes the methodological contri-
bution of this paper based on the extension of the M-quantile regression approach to binary data.
In Section 5 we explore the use of the M-quantile approach for small area prediction with discrete
outcomes. In this Section we further propose analytic and bootstrap estimators of the corresponding
mean squared error (MSE). In Section 6 we use the M-quantile approach to estimate: (1) levels of
ILO unemployment in 406 UALADs of the UK; and (2) the proportion of poor households (below
the poverty line) in the 57 Local Labour Systems (LLSs) of the Tuscany region in Italy. In Section
7 we present results from model-based simulation studies aimed at assessing the robustness of the
different small area predictors considered in this paper under a range of misspecification scenarios.
Finally, in Section 8 we summarise the main findings.

2. Small area estimation based on generalised linear mixed models

Let U denote a finite population of size /N which can be partitioned into D domains or small areas,
with Uy denoting small area d. The small area population sizes Ng;d = 1,..., D are assumed
known. Let y4; be the value of the variable of interest (in this paper a discrete random variable) for
unit j in area d, and let x4; denote a p x 1 vector of unit level covariates (including an intercept). It
is assumed that the values of x4; are known for all units in the population, as are the values z4 of a
g x 1 vector of area level covariates. The aim is to use the sample values of y4; and the population
values of x4; and z4 to infer the values 04;d = 1, ..., D of a small area characteristic of interest. To
save notation, in what follows we use E to denote the expectation conditional on this information.
It is well known that the minimum mean squared error predictor of 6 is then E,[6,].

In many cases 65 = N; '3 jev, f(yaj) where f is a known function. The minimum mean

squared error predictor of 64 is then Ny ' {3 . f(yaj) + 3 e, Es[f (ya;)]}, where s4 denotes
the ng sampled units in small area d and r4 denotes the N; — ng4 remaining (i.e. non-sampled) units
in this area. In general, the conditional expectation E,[f(y4;)] can be difficult to evaluate, and so is
replaced by a suitable approximation. One such approximation is E|f(yq;)|uq] where the ug; d =
1, ..., D are g-dimensional independent random effects characterising the between-area differences
in the distribution of yg; given x4; (see Rao, 2003; Jiang and Lahiri, 2006; Gonzdlez-Manteiga
et al., 2007). This can be formalised by assuming a generalised linear mixed model (GLMM) for
taj = Elyg;|ug] of the form

9(pa) = naj = X458 + zg 0, (1)

where g is a known invertible link function. When y4; is binary-valued a popular choice for g is the



logistic link function and the individual yg4; values in area d are taken to be independent Bernoulli
outcomes with

taj = Elygilua) = P(yg; = 1|ua) = exp{ng }(1 + exp{ng}) ™" 2

and Var[yg;|ua] = pa; (1 — pg;). The g-dimensional vector ug is generally assumed to be indepen-
dently distributed between areas and to follow a normal distribution with mean 0 and covariance
matrix ¥,,. The matrix X, is allowed to depend on parameters § = (1, ...,0k ), which are then
referred to as the variance components of the GLMM, while the vector 3 in (1) is referred to as the
fixed effects parameter of this model.

We focus on the situation where the target of inference is the small area d proportion, 5 =
Ny ! > jeu, Yaj and the Bernoulli-Logistic GLMM (2) is assumed. In this case the approximation
to the minimum mean squared error predictor of 74 is N[> jesy Yai T D ier, Haj]- Since fig;
depends on 3 and uy, a further stage of approximation is required, where unknown parameters are
replaced by suitable estimates. This leads to the Conditional Expectation Predictor (CEP) for the
area d proportion g4 under (2),

GG =N v+ Y s 3)

JE€sa JEra

where fig; = exp{fg; H(1+exp{fa}) ™", faj = xdeB + 214, B is the vector of the estimated fixed
effects and 114 denotes the vector of the estimated area-specific random effects. In the simplest case,
g = 1 and z,4 is a vector (0,0,...,1,...,0) with value 1 in the d-th position, in which case the
uy are scalar small area effects. We refer to (3) in this case as a ‘random intercepts’ CEP. For more
details on this predictor, including estimation of its MSE, see Saei and Chambers (2003), Jiang
and Lahiri (2006) and Gonzdlez-Manteiga et al. (2007). Note, however, that (3) is not the proper
Empirical Best Predictor by Jiang (2003) because the author develop the Prasad-Rao type frequen-
tist’s alternative to the already existing hierarchical Bayes methods under the GLMMs. Under this
approach the Empirical Best Predictor for P(yq; = 1|ug) is given by

[exp{(ya- + 1)Zu( — (ng + 1) log(1 + exp{7q; })}]
Elexp{ya.3u¢ — nalog(l + exp{7a;})}]

where yq. = > jesq Yaj and the expectations are taken with respect to ¢ ~ N (0,I). The proper
EBP does not have closed form and needs to be computed by numerical approximations. For this
reason, the CEP version (3) is used in practice as is the case with the small area estimates of Labour
Force activity currently produced by ONS in the UK. Despite their attractive properties as far as
modelling non-normal response variables are concerned, application of GLMMs in small area es-
timation is not always straightforward. Moreover, estimation can be numerically demanding. Nu-
merical approximations can be used, as for example in the R function glmer in the package 1me4.
Alternatively, estimation of the model parameters in (2) can be carried out using an iterative pro-
cedure that combines Maximum Penalized Quasi-Likelihood (MPQL) estimation of 3 and uy with
REML estimation of §. See Saei and Chambers (2003). In the empirical results reported in Section
7, we used function glmer for parameter estimation.

exp{x% 3} E (4)

3. Data sources, model specification and diagnostics

In this Section we describe the data available for performing small area estimation and also present
diagnostics for the GLMM model. These diagnostics allow us to motivate the use of the alternative
semiparametric methodology we propose in this paper.



3.1. The UKLFS

The data are coming from the UK LFS carried out by ONS in 2000. The LFS is a survey of house-
holds living at private addresses in the UK. Its purpose is to provide information on the UK labour
market which can then be used to develop, manage, evaluate and report on labour market poli-
cies. From 1992 the sample in UK was increased to cover about 50, 000 households every quarter
enabling quarterly publication of LES estimates. In one of the applications of this paper we are
interested in estimating unemployment levels for 406 UALADs in the UK. We use the ILO un-
employment definition and data from a sample of about 169,000 people aged 16 and over. ONS
considers an estimate to be publishable if its coefficient of variation is less than 20%. According to
this rule direct estimates can be published only for 75 out of the 406 UALADs with the data from
2000. For this reason the use of small area estimation appears to be appropriate in this case. The
application of small area methodologies requires at the first stage the estimation of the model using
the survey data. At the second stage the estimated model parameters are combined with population
information for predicting the level of unemployment in each UALAD. The covariates we use in
our working models are specified by prior studies of small area estimation of labour force charac-
teristics in the UK (ONS, 2006) and confirmed by the analysis of deviance from fitting a binary
GLMM with Normal random effects to the sample data. These covariates are: sex-age category of
an individual (6 categories corresponding to female/male and age groups 16 — 25,26 — 40 and
> 40), government office region of the UALAD (12 categories), ONS socio-economic classifica-
tion of the UALAD (7 categories, Bailey et al., 2000) and total of registered unemployed in the
sex-age group for the UALAD. The estimated model parameters and the resulting test statistics are
presented in Table 1. The estimated model parameters are in the expected direction. For example,
controlling for the effects of other explanatory variables and unobserved heterogeneity, the odds of
being unemployed for young females are higher than the odds of any other age-sex group. The ratio
unemployed over inactive and employed for sex-age=6 (men over 40) is about 0.09 times sex-age=1
(women aged between 16 and 25). When we move from the group of women over 40 (sex-age=3) to
men aged between 16 and 25 (sex-age=4), there is a reduction of the probability to be unemployed.
We can conclude that the probability to be unemployed decreases as age increases and this proba-
bility for men is less than that for women. The estimated o, and the value of the likelihood ratio test
are shown in the last row of Table 1. The variance of the random effects is significant suggesting
UALAD level heterogeneity in the levels of unemployment.

Figure 1 shows the normal probability plot of estimated UALAD random effects obtained by
fitting a logistic mixed model to the sample data. This plot indicates some departures from normality
in particular at the tails of the distribution. Furthermore, the distribution of level 1 Pearson residuals
is skewed indicating the presence of potential influential observations in the data, with a number
of large residuals (|rq;| > 2). This is also confirmed by the application of a robust fitting method
(Cantoni and Ronchetti, 2001) to this data set. In particular, the use of a robust GLM suggests
that although most observations receive a weight of 1, about 3.5% receive weights less than 0.7.
Therefore, using in prediction a model that bounds the influence of potentially outlying observations
seems worthy of investigation.

3.2. The EU-SILC in Italy

In this second application we focus on estimating the number of poor households in each of the 57
LLSs of Tuscany, using the 2005 EU-SILC dataset. LLSs are defined as a collection of contiguous
municipalities. These are areas in which most of the daily activity of the people who live and work
in them takes place. Their definition is similar to that of the travel-to-work-areas widely used in
US and UK territorial analyses. The data was collected by the National Statistical Institute in Italy



Table 1. Model fitting results UK Labour Force Survey data: ‘" Significant at level
0.05, '« significant at level 0.01, “xx’ significant at level 0.001, “x * %

Variable Estimate  Std. Error zvalue Pr(> |z|)
Intercept -3.60404 0.18124 -19.89  0.000000 x * *
registered unemployed 0.20762 0.02967 7.00  0.000000% * *
sex-age=2 -0.17508 0.05417 -3.23  0.001229xx
sex-age=3 -1.06979 0.05003 -21.38  0.000000% * *
sex-age=4 -1.12496 0.04407 -25.53  0.000000% * *
sex-age=>5 -1.62521 0.05081 -31.99  0.000000 * * *
sex-age=0 -2.33940 0.07604 -30.77  0.000000 * * %
government=2 -0.06045 0.08692 -0.70  0.486763
government=3 0.05140 0.11485 045 0.654493
government=4 -0.09204 0.13790 -0.67  0.504487
government=>5 0.26696 0.09752 274 0.006191x%x*
government=6 -0.05835 0.08521 -0.68  0.493448
government=7 0.08996 0.08818 1.02  0.307664
government=8 -0.11991 0.08387 -143  0.152812
government=9 -0.02315 0.09120 -0.25  0.799652
government=10 0.02623 0.09845 0.27  0.789926
government=11 0.09053 0.08705 1.04  0.298359
government=12 -0.14834 0.09464 -1.57  0.116990
socio-economic cluster=2  0.03377 0.06922 0.49 0.625705
socio-economic cluster=3 0.27070 0.07935 341 0.000647 * *
socio-economic cluster=4  -0.04883 0.07690 -0.63  0.525454
socio-economic cluster=5 0.28525 0.07655 3.73  0.000194x * x
socio-economic cluster=6  0.05330 0.11659 0.46 0.647551
socio-economic cluster=7  0.33256 0.14546 2.29  0.022235 %
Parameter Estimate LR  Pr(> chi2)

Ou 0.18519 42.32 0.000000
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Fig. 1. Normal probability plot of estimated UALAD random effects for proportion of unemployed
population aged 16 and over, based on a logistic mixed model fit to UK LFS data.

(ISTAT) as part of the 2005 EU-SILC survey. We used a sample of 1, 560 households across 29LLSs
(out of 57) in Tuscany. The survey data provide information on a variety of issues related to living
conditions of the people in Tuscany, including details on income and non-income dimensions of
poverty in the region, and form the basis of poverty assessment in this region. Poverty maps based
on such measures are important tools for providing information on the spatial distribution of poverty,
and are often used to assist the implementation of poverty alleviation programs. In this application
a household is defined to be poor (= 1) if its equivalised income falls below a minimum level
(the poverty line) necessary to meet basic food and non-food needs. The poverty line is defined as
60% of median equivalised income. In this paper the household equivalised income is computed
by using the modified OECD scale (Hagenaars et al., 1994): it is calculated for each household as
the household total disposable net income divided by the equivalised household size, which gives a
weight of 1.0 to the first adult, 0.5 to other persons aged 14 or more and 0.3 to each child aged less
than 14.

Direct estimates of the number of poor households within each LLS level have high variances,
particularly for LLSs with small sample sizes. Moreover, direct estimates cannot be computed for
areas with no sample. The covariates used in the working small area model for the binary outcome
of being below the poverty line are ownership status (owner= 1), age of the head of the household,
gender of the head of the household (female= 0) and interactions between these covariates. Table 2
presents the estimated model parameter from fitting a GLMM for the binary response. The estimates
are in the expected direction with the odds of owners, for example, to be below the poverty line being
lower than the odds of non-owners. We note that ownership status and gender are significant. Age
appears to be non-significant, however, since the interaction term between ownership status x age is



Table 2. Model fitting results EU-SILC data: *.” Significant at level 0.05, ‘’
significant at level 0.01, ‘x«’ significant at level 0.001, “x x .

Variable Estimate ~ Std. Error zvalue Pr(> |z|)
Intercept -0.08060 0.70509 0.11  0.909
ownership status -2.73428 0.77693 -3.52  0.000x * *
age -0.01090 0.01129 -0.97 0.334
gender -1.43413 0.63847 -2.25  0.025 =
ownership status x age 0.03472 0.01207 2.87  0.004 xx
ownership statusx gender  0.58208 0.43060 1.35 0.176
gender X age 0.00262 0.00966 0.27 0.786
Parameter Estimate LR  Pr(> chi2)

Ou 0.47949 14.67 0.000110

significant, we decided to leave the age effect in the model. The results show that owner old man
has less probability to be poor. The last row of the table gives the estimate of o,, and the value of the
likelihood ratio test (LRT) statistic suggesting that the variance of the random effects is significant.
Population data for these covariates were taken from the Population Census 2001. An issue with this
approach is the potential lack of comparability between household-level variables measured in the
2001 Population Census and the same variables measured in the the 2005 EU-SILC. However, the
covariates used in this study are not expected to change significantly over a short period of time and
this has been shown by work conducted as part of the SAMPLE project (Small Area Methods for
Poverty and Living Conditions Estimates, URL: http://www.sample- project.eu/). See Fabrizi et al.
(2013) for a detailed discussion.

Figure 2 shows the distribution of the LLS-level residuals and the normal probability plot of
the of the LLS-level residuals obtained from the logistic mixed model fit to the EU-SILC data. The
departures from normality are even more pronounced in the case of the EU-SILC data. The distri-
bution of Pearson residuals indicates the presence of potential influential observations in the data,
with a number of large residuals (|rq;| > 2). Further evidence for the presence of these influential
observations is obtained by fitting the model using a robust method (Cantoni and Ronchetti, 2001)
and note that although most observations receive a weight of 1 in this fit, there are about 8.5% of
the overall sample that receive a weight of less than 0.7. This is confirmed by the Cooks distances,
reported in Figure 2, which indicate that there are outliers in the data. Note that in this Figure values
greater than 4/n ~ 0.003 are considered as potential outliers. These diagnostics provide evidence
for the presence of outlying observations in this dataset.

4. M-quantile regression for binary outcomes

In this Section we present the extension of linear M-quantile regression to binary data. Since M-
quantile regression does not depend on how areas are specified, in the notation we use in this Section
we drop subscript d.

4.1.  M-quantile regression for a continuous response

M-quantile regression (Breckling and Chambers, 1988) is a ‘quantile-like’ generalisation of regres-
sion based on influence functions (M-regression). The M-quantile of order ¢ of a continuous random
variable Y with distribution function F'(Y") is the value @, that satisfies

/ wq(Y;f")dF(Y) =0, )
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Fig. 2. Model fit diagnostics for a logistic mixed model fit to the EU-SILC data: normal probability plot
of the LLS-level residuals (left-hand-side plots) and Cooks distances (right-hand-side plots).

where 1, (t) = 2¢(t){qI(t > 0)+(1—¢)I(¢t < 0)} and ¢ is a user-defined influence function. Here
04 is a suitable measure of the scale of the random variable Y — @),,. Note that when ¢ (t) = ¢ we
obtain the expectile of order ¢, which represents a quantile-like generalisation of the mean (Newey
and Powell, 1987), and when ¢ (¢) = sgn(t) we obtain the standard quantile of order ¢ (Koenker
and Bassett, 1978).

Breckling and Chambers (1988) define a linear M-quantile regression model as one where the
-based M-quantile Q,(X; ) of order ¢ of the conditional distribution of y given the vector of p
auxiliary variables X satisfies

Qq(X§ 77[1) = Xﬁm (6)

Let (y;,x;;j = 1,...,n) denote the available data. For specified ¢ and continuous 1), an estimate
B4 of B, is obtained by solving the estimating equation

n

n”! Z Vq(rjq)x; =0, ™)

Jj=1

where 754 = y; — Qq(X5;9), ¥g(rjq) = 20(6, 1) {qI (14 > 0) 4+ (1 — ¢)I(rjq < 0)} and &, is
a suitable robust estimator of scale, i.e. 5, = median|r;q|/0.6745. In this paper we will always use
the Huber Proposal 2 influence function ¢ (t) = tI(—c < t < ¢)4c-sgn(t)I(|t| > ¢). Provided the
tuning constant c is bounded away from zero, we can solve (7) using standard iteratively re-weighted
least squares (IRLS).

4.2. M-quantile regression for binary outcomes: an estimating equation approach

There is no obvious definition of a quantile regression function when Y is binary since the order ¢
quantile of a binary variable is not unique. However, provided the underlying influence function
is continuous and monotone non-decreasing, the M-quantiles of a binary variable do exist and are
unique. This is easily seen by considering the solution to (5) when Y is binary, with P(Y = 1) = p.



In this case (5) becomes

pav (1 UqQ") =1-pA-qv <§:> :

It is easy to see that when ¢(¢) = ¢ and ¢ = 0.5, the solution to this estimating equation is Qo 5 = p,
as should be the case. Furthermore, when both p and q lie strictly between 0 and 1, the preceding as-
sumptions about 1 ensure that (), also lies strictly between 0 and 1 and is monotone non-decreasing
in ¢ for fixed p. It is also monotone non-decreasing in p for fixed ¢ under the assumption of a fixed
scale parameter. A proof of this is available from the authors on request.

In the same way that we impose a linear specification (6) on (), (X; ) in the continuous case,
we can impose an appropriate continuous (in ¢) specification on Q4(X;%)) in the binary case. In
particular, we propose to replace (6) by the linear logistic specification

exp(x?,ﬁq)

1+ exp(x?ﬁq)' ®)

Qq(xj§ V) =
For estimating 3, we consider the extension to the M-quantile case of the Cantoni and Ronchetti

(2001) approach to robust estimation of the parameters of a GLM. In particular these authors pro-
pose a robustified version of the maximum likelihood estimating equations for a GLM of the form:

=3 {0 ute) i - alB)} =0, ®

where r; = UK are the Pearson residuals, E[Yj] = p;, Var[Y;] = 02(p;), p1f is the derivative
J

of u; with respect to Band a(8) = . >0 | E [w(rj)]w(xj)ﬁw) 1; ensures the Fisher consistency
of the solution to (9). The bounded influence function % is used to control outliers in y, whereas the
weights w are used to downweight the leverage points. When w(x;) = 1V j Cantoni and Ronchetti
(2001) refer to the solution to (9) as the Huber quasi-likelihood estimator. When v is the identity
function, (9) reduces to the usual maximum likelihood estimating equations for a GLM.

In the case of binary outcomes, the estimating equation (9) can be extended for obtaining the
M-quantile fit by applying the idea of asymmetric weighting of Pearson residuals that was also used
in the linear case. In particular, the estimating equations can be re-written as

- 2—:1 {%(qu)w(xj) . 0Qu(xiiv) _ a(,@q)} =0, (10)

U(Qq(xj§ ¢)) 8,3,1

g\ Xy — . . 0Qq(x;; — .
where 7j, = LUoCU) 0(Qq (x5319)) = [Qq (53 1) (1= Qq (353 9))]V/2, 22T — 02(Q, (x510)x;
and a(/3,) is a bias correction term:

Lo

QB D) N1 o il L 0Qu50)
V(g o) (1~ Qulosi ) o) s =t

Setting w(x;) = 1V j leads to a Huber quasi-likelihood M-quantile estimator. An alternative choice
is w(x;) = /1 — h; where h; is the jth diagonal element of the hat matrix H = X (X7 X) X7




This leads to a Mallows type M-quantile estimator. The estimating equation (10) can be solved
numerically using a Fisher scoring procedure to obtain an estimate Bq of B,.

Note that when ¢ = 0.5, (10) reduces to (9). Moreover, (7) is a special case of (10) if the the
linear link function Q,(x;;v¢) = xfﬁq is used and the tuning constant ¢ in the Huber influence
function tends to infinity (i.e. ¢ is the identity function). This estimating equation approach applies
quite generally. For example, it can be used when Y is a count random variable (Tzavidis et al.,
2013).

Assuming that v is a continuous monotone non-decreasing function, a first order approximation
to the variance of (10) is given by

Var(sy) = {E[ T3]} Varwan [{E[ 5]} an

Detailed expressions of these quantities are given in Appendix I. R routines for estimation and
inference using M-quantile regression with binary and count data are available from the authors.

4.3. Links with the econometric literature

The estimating equation approach described in the previous Section does not apply to standard
quantile regression for binary data. Quantile regression for binary data has been developed in the
econometric literature using a latent variable concept. However, as we now show, our proposed
approach and the econometric approach are very closely related, since the econometric approach
can be shown to be equivalent to the solution of an estimating equation analogous to (7). Since
we confine ourselves to standard quantiles in this Section, we drop the influence function v from
our notation and, following Kordas (2006), we assume that the observed values y; represent the
outcome of a continuously distributed latent variable. That is, the observed value y; is generated
by an unobserved (latent) real value y; in the sense that y; = I(y; > 0). Let Q;(x;) denote
the conditional quantile function of this latent variable. Since y; = I(y; > 0) is a monotonic
transformation of y7, the gth conditional quantile of y; should be the same transformation of the gth
conditional quantile of y7. That is

Qq(x;) = 1(Qy(x;) > 0).

Given that Q}(X) = Xg,, it follows that Q,(x;) = I(x] 3, > 0) and a ‘maximum score’
estimator for 3, , defined by

By o = max n” Z{yj (1-g)}(x]b>0) (12)

was suggested by Manski (1975, 1985). Put I;(b) = I{y; < I(x]b > 0)}. Since I{y; <
I;i(b)} = (1 —y;)I;(b), we can, after some simplification, show that (12) reduces to

Bo= min 07" 37 |al{y; > (0)) + (1= ) {y; < L)y = L) (13)
j=1

This is equivalent to fitting the quantile regression model Q,(x;) = I(x] 3,) to the observed

y;, subject to the restriction ||3, = 1||, or, in what amounts to the same thing, solving (7) with

¥(t) = sgn(t), subject to this restriction. Note that the restriction is necessary in order to ensure

that 3, is identifiable (since the scale of y;‘ is unknown) and so (12) has a solution.



A smoothed version of (12) has been proposed by Horowitz (1992) as having better finite sample
properties:
ﬁ:maxn (1=¢q)}F(o, XTb (14)
max Z{y] FE(7,'xTb),
where F' is an appropriately chosen smooth’ cumulative distribution function defined on the entire

real line and 0, — 0 as n — oco. The same simplifying steps as those leading to (13) allow us to
write (14) as

,é - Hb—. n -1 Z {q[{yj 2 x;-pb)}—k(l— q)I{y; < F(o,;* x )}} = (Ugleb)|,

since 0 < F(t) <1 = I{y; < F(o,,'x]'b)} = 1 — y;. That is, this ‘smoothed’ loss function
for regression quantiles for binary data leads to essentially the same estimator as the logistic for-

mulation (8). In fact, if we put F(t) = exp{o,, be} (1 + exp{o,, be}> then as o, — 0,

F(o,'x]b) — exp{x]b} (1 + exp{ijb}) , and we end up with the quantile analogue of the
solution to (7), with Q4(x;; 1) defined by (8) and subject to the restriction |3, = 1]|.

4.4. Links with statistical literature

Efron (1992) proposed an alternative approach to modelling the conditional distribution of a count
outcome given the covariates using asymmetric maximum likelihood (AML) estimation. As Machado
and Silva (2005) point out, asymmetric maximum likelihood estimation can be seen as the result of
smoothing the objective function used to define the quantile regression estimator. Efrons’ approach
results in estimates of the conditional location that is similar to conditional expectiles proposed by
Newey and Powell (1987). Efrons’ method can be extended to model the conditional distribution of
a binary outcome given the covariates. Using the binomial deviance, the AML estimate Bw for 3
can defined as

Bu = arg maxn B Z y;log (1 (b)) + (1 — y;) log(1 — p;(b))Jw!t=1 1 = (15)
j=1

-1
where 11;(b) = exp{x] b} (1 + exp{xfb}) . From (15), by vector differentiation, the following
estimating equation is obtained:

n

w3 (s — (b)) | T2 = o, (16)

j=1

The approach we propose in this paper for estimating M-quantile regression also uses an objective
function that has a degree of smoothness. In particular, the smoothness can be increased by setting
the tuning constant in the Huber influence function equal to a large value in which case estimates
of the model parameters from our approach are those obtained by Efrons’ asymmetric maximum
likelihood estimation for a specific choice of w. In particular, setting the tuning constant equal to a
large value, (10) can be written as:

B Z{ —Qq XJ»¢))qung} 0, W)

Jj=1



where w;, = [q[{yj > Qqx )+ (1—)I{y; < Qq(xy; w)}} . This weight can be also written

as wjq = [(%q)—’{yj > Qq(x559)} + Hy; < Qqlxy; ¢)}] Setting w = 775 in Efrons’
estimating equation (15) results in estimates that are equivalent to those obtained from our proposed
estimating equation (17).

5. Robust prediction of small area proportions using M-quantile regression

Many survey variables are binary and there is a growing demand for reliable small area estimates
based on such variables. From now on therefore we focus on using M-quantile regression models
for binary outcomes with the aim of obtaining small area estimates of proportions.

5.1. The M-quantile small area population model

Random effects models use random area effects to account for between-area variation. The M-
quantile approach to small area prediction suggests a completely different approach to capturing
area heterogeneity. To start with, the population model is specified at the unit level. Define g4; such
that yg; = Qq,, (X4j;1).Under the logit transformation, the population model is defined by

Qde (Xdﬁ ) = eXp{Xg;‘ﬁqdj } (1 + eXp{XZl;‘/@qu })

Chambers and Tzavidis (2006) used the term M-quantile coefficients for g4;. The variability in
qq; reflects variability at the unit level. If clustering exists, then units in the same clusters (clus-
ters) will have similar M-quantile coefficients and different from those of units that belong to other
clusters (areas). A cluster specific M-quantile coefficient is then defined as 64 = El[gq;|d].

5.2.  Point estimation

Provided there are sample observations in area d, an area d specific M-quantile coefficient, 64 can
then be defined as the average value of the estimated M-quantile coefficients in area d, otherwise
we set §; = 0.5. Following Chambers and Tzavidis (2006), the M-quantile predictor of the average

Jq in small area d is
= NS+ Y Qa0 (18)

JESd JETA

When Y is binary, and we model its regression M-quantile of order ¢ via (8), the natural extension

of this approach is to put Qéd (xqj;9) = exp{xdeBéd} (1 + exp{xgj,ééd}) in (18). However,

this begs the question of how one defines 64, since the estimating equation y; = qu (x;; %) for the
estimated M-quantile coefficient of a continuous y; no longer has a solution when y; is binary. We
therefore discuss extensions of the M-quantile coefficient concept to binary Y before we consider
inference based on (18).

5.3. M-quantile coefficients for binary data

A first step in defining M-quantile coefficients for binary data is to note that any reasonable defini-
tion of this concept has to associate a larger M-quantile coefficient with a value y; = 1 compared
with a value y; = 0 at the same value of x;. The next thing to note is that the solution m; to the
equation Qm]. (x;5%) = 0.5 can be interpreted as a measure of the propensity for y; = 1 to be



observed relative to the propensity for y; = 0 to be observed at x;. A value m; < 0.5 indicates that
y; = 1is more likely than y; = 0 and vice versa. This leads to our first definition of an estimated
M-quantile coefficient when Y is binary.

DEFINITION A: Given binary data with fitted M-quantile regression function Qq(xj; ), the
estimated M-quantile coefficient for observation j is ¢; = (m; + y;)/2, where Qmj (x559) =0.5.

Note that provided Qq(xj; 1) is monotone in ¢ at x;, the above definition of an estimated
M-quantile coefficient should be unique. In order to understand the motivation for this definition,
suppose that y; = 0 at x; and that there are many more Y = 0 than Y = 1 ‘near’ x;. Then (a) y; =
0 is not unusual, and (b) we anticipate that the monotone increasing function f(g) = Qq(xj; )
will only exceed half for values of ¢ close to one. That is, m; will be close to one and so g; will
be slightly less than half. On the other hand, suppose y; = 1 but there are still many more ¥ = 0
than Y = 1 ‘near’ x;. Then (a) y; = 1 is unusual, and (b) we still anticipate that the monotone
increasing function f(q) = Qq (x;;1) will only exceed half for values of g close to one. Here ¢,
will be close to one. Conversely, suppose that there are many more observations with Y = 1 than
with Y = 0 ‘near’ x;, so m; is close to zero. Then if y; = 0 (an unusual value) we expect g; will
also be close to zero, while if y; = 1 (not unusual) we expect g; will be slightly greater than a half.

The estimated M-quantile coefficients allow us to ‘index’ the sample data. A somewhat different
indexing based on quantile regression modelling of Y is described in Kordas (2006). This takes a
latent variable approach and the resulting index is essentially defined by a quantile-based estimate
of P(y; = 1|x;). Under linearity of the conditional quantiles of this latent variable, we have already
seen that Q,(x;) = I(xjrﬁq > 0) and so P(y; = 1|x,) = 1—h;, where XJT,B;”. = 0. Consequently,
given an estimate ﬁq for each value 0 < ¢ < 1 we can index the sample observations by p; = 1—h;
where X?th = 0. Note that this index does not depend on y;, and so cannot reflect individual
effects, which would seem to limit its usefulness in characterising how groups differ after covariate
effects have been taken into account. However, we can use the approach leading to Definition A to
extend this index by allowing it to reflect individual effects.This leads to our second definition of an
estimated M-quantile coefficient for the binary case.

DEFINITION B: Given binary data with fitted M-quantile regression function Qq (x45%), the
estimated M-quantile coefficient for observation j is ¢; = (h; + y;)/2, where x?ﬁh_j =0.

Note that if ij,qu =0< Qq(xj; 1) = 0.5 then Definition B and Definition A are identi-

cal. This condition will hold, for example, whenever 1) is the identity function and Qq(xj5;0) =
Qq(x;) = F(x] B,) where F(t) is a distribution function that satisfies F'(0) = 0.5.

Unfortunately, both Definition A and Definition B have a serious deficiency. This follows from
the fact that in applications where h; varies around some constant, say h, ¢; will be ‘concentrated’
near (1 + h)/2 and h/2. Furthermore, it is impossible to observe ¢; = 0.5 in general. An extreme
case is where there is no relationship between y; and x;, and y; = 1 is just as likely as y; = 0. In
this case h; = 0.5, and there are just two possible values of ¢;, 0.75 (y; = 1) and 0.25 (y; = 0).

The basic reason for this behaviour is that both Definition A and Definition B compute g; on
the same scale as y;. This makes sense when the distribution of y; is measured on a linear scale.
However, in the binary case the distribution of y; is linear in the logistic scale, and so it makes
sense to define g; in the same way. That is, we replace g; and h; in Definition B by qu (x;;1) and
Q0,5(xj; 1) respectively, leading to our third, and final, definition of ¢;:

DEFINITION C: Given binary data with fitted M-quantile regression function Q(x;;1), the
estimated M-quantile coefficient for observation j is ¢;, where Qq, (x5 ) = (Qo.5(x;3:%) +y;)/2.

Note that under a logistic specification for Qq(xj; 1), using Definition C is equivalent to defin-



ing g; as the solution to y; = X;‘F By;» where

. 0.5{Qo.5(x;; %) +y;}
=1 ~ .
%= (1 —0.5{Qo.5(x;:v) + Z/y})

The value y; above can be thought of as a pseudo-value that behaves ‘like’ the unobservable latent
variable whose distribution determines that of y;. In the rest of this paper, and particularly in the
simulation experiments reported in Section 7, we use Definition C when calculating estimated M-
quantile coefficients.

Efficient estimates of area effects are necessary for small area estimation via GLMMs. Simi-
larly, estimation of M-quantile coefficients is necessary for small area estimation using the binary
M-quantile model proposed in this paper. A natural question is then the strength of the relationship
between the actual area effects and the estimated M-quantile coefficients. Some empirical evidence
for such a relationship is displayed in Figure 3. These scatterplots show how area effects estimated
using the glmer function in R and M-quantile coefficients estimated via Definition C are related
to true area effects. The simulated data underpinning these plots were generated using D = 200
areas, each with a sample size of ny = 25. At each simulation, values of x4 were independently
drawn as Normal(0,1) and corresponding values of y4; were then generated as Bernoulli(pg;)
with pg; = exp{na; }(1 + exp{ng;}) "' and ng; = x4 + uq. The small area effects uq were inde-
pendently drawn as Normal(0, 1). Figure 3 shows how the estimated area effects and the estimated
M-quantile coefficients are related to the true area effects in one Monte-Carlo simulation. Over
1,000 simulations, the average correlation between the true area effects and estimated area effects
was 0.89, and the corresponding average correlation between the true area effects and the estimated
M-quantile coefficients was 0.80. These results suggest that M-quantile coefficients are compara-
ble to estimated area effects obtained using standard GLMM fitting procedures as far as capturing
intra-area (domain) variability is concerned. Note also that these simulations build on data generated
via a GLMM. In real applications, where GLMM assumptions may be violated, we expect that an
M-quantile approach should offer a robust alternative for small area estimation.

5.4. Mean squared error estimation

In this section we propose a MSE estimator for (18) based on the linearisation approach set out
in Chambers et al. (2013). This assumes that the working model for inference conditions on the
realised values of the area effects, and so the MSE of interest is conditional and equal to a condi-
tional prediction variance plus a squared conditional prediction bias. In order to conserve space, we
omit some technical details in the following development, but these are available from the authors
upon request. We also assume that the estimated area-level M-quantile coefficient values 6, have
negligible variability and so can be treated as fixed. A first order approximation to the conditional
prediction variance of (18) is then

Var(j,'® — galoa) = NJQ{VGT{ > Qed(xjﬂ/))} + ) Va?"(yj)}
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Fig. 3. Estimated area effects vs. true area effects (left plot) and estimated M-quantile coefficients
vs. true area effects (right plot) in a Monte-Carlo simulation with D = 200 and n4 = 25.

which can be estimated by
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Here Var(ﬁéd) is a sandwich-type estimator that can be estimated using the expressions in Ap-

pendix I and @"(yj) can be calculated either by (i) using the sample data from area d, 17a\r(yj) =
Ya(1 — q) or by (ii) pooling data from the entire sample, in which case Var(y;) = 3(1 — ¢). Note
that the pooled estimator should lead to more stable prediction variance estimates when area sample

sizes are very small.

The conditional prediction bias can be approximated using the results of Copas (1988):
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The estimator of the conditional MSE of ﬁéwQ is then
mse (G39) = Var(§3'9) + {Bias(§}'9)}2. (19)

In the development above we make the standard assumption that a consistent estimator of the
MSE of a linear approximation to the small area estimator of interest can be used as its MSE es-
timator. As noted by Harville and Jeske (1992), such an approach will not generally be consistent,
and the resulting MSE estimator can be biased low. The MSE estimator ignores the contribution to
the mean squared error from the estimation of the area level M-quantile coefficients by 04. This is
a linearisation assumption since for large overall sample sizes the contribution to the overall mean
squared error of (18) arising from the variability of 64 is of smaller order of magnitude than the
prediction variance of (18). As a consequence, (19) will tend to be almost unbiased. However, the
potential underestimation of the MSE of (18) implicit in (19) needs to be balanced against the bias
robustness of this MSE estimator under misspecification of the second order moments of y, and may
well lead to (19) being preferable to other MSE estimators based on higher order approximations
that depend on the model assumptions being true (Chambers et al., 2013).

We also propose a bootstrap-based method for estimating the MSE of (18), which is a form of a
random effects block bootstrap. In order to save space, the computational details the bootstrap pro-
cedure are set out in the Appendix II. Here we summarise the main characteristics of the method.
The block bootstrap, see Chambers and Chandra (2013), is a robust alternative to parametric boot-
strap methods for clustered data. It is free of both the distribution and the dependence assumptions
of the usual parametric bootstrap for such data and is consistent when the mixed model assumption
is valid. In particular, it preserves area effects by bootstrap resampling within areas. We adapt this
procedure (hereafter BB) for estimating the distribution of the M-quantile predictor (18) by resam-
pling the marginal logistic scale residuals TQ;IQ = xgj (Béd — éog) within each area to generate
bootstrap values of P(y; = 1|x;) for the population units making up the area. Bootstrap binary
population values are then obtained using Bernoulli simulation.

6. Applications

6.1. Estimating levels of ILO unemployment for UALADs in the UK

In this Section we use the model specification of Section 3.1 and the CEP and M-quantile predictors
for estimating the level of ILO unemployment for UALADs in the UK. For assessing the resulting
estimates we note that model-based small area estimates should be consistent with corresponding
unbiased direct estimates but more precise. In addition, given the model diagnostics presented in
Section 3.1, we may expect that the proposed robust approach may offer some gains in efficiency
over the CEP predictor. Figure 4 maps the estimated levels of ILO unemployment for UALADs
in the UK in 2000 using three small area predictors. The emerging patterns of unemployment for
UALAD:s in the UK produced by using the proposed methodology are consistent with the patterns
reported by ONS (2006). Hubs of higher unemployment in 2000 are located in UALADs in Lon-
don, parts of Wales, North-east and North-west England and Scotland. However, as the preceding
analysis showed, the proposed methodology may offer more accurate estimates.

We now present further evidence from internal validation of our estimates. Figure 5 presents
M-quantile estimates of the total number of unemployed against corresponding direct estimates for
each UALAD. We note that M-quantile estimates appear to be generally consistent with the direct
estimates with the correlation between the two sets of estimates being 0.78.

In order to assess the potential gains in precision from using model-based estimates instead
of direct estimates, we examine the distribution of the ratios of the estimated CVs of the direct
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Fig. 4. Maps of the estimates of levels of ILO unemployment for UALADs in the UK in 2000: Direct
(top left), CEP (top right) and MQ (bottom left) estimates.



Direct Estimate
20000 30000 40000 50000

10000

0

T T T T T T

0 10000 20000 30000 40000 50000

Model Estimate

Fig. 5. Numbers of unemployed people aged 16 and over in UALADs in the UK in 2000: Model-based
M-quantile estimates versus corresponding direct estimates.

and the model-based estimates. A value greater than 1 for this ratio indicates that the estimated
CV of the model-based estimate is smaller than that of the direct estimate. Figure 6 shows the
relationship between these ratios and the number of unemployed people in each UALAD. Two
sets of ratios are plotted - those corresponding to CEP estimates (red) and those corresponding
to the M-quantile estimates (blue). Note that the CV for the M-quantile estimates is calculated as
[mseBB(Gh )25y 9,  while that for the CEP estimates is calculated as
[msePBE (yGEP)|1/2 /5GP where mseC PP (y$FF) is obtained using the bootstrap procedure
proposed in Gonzdlez-Manteiga et al. (2007). Figure 6 shows that the estimated CVs of the M-
quantile and CEP estimates of unemployment are generally much lower than those of the direct
estimates. Furthermore, the estimated CVs of the M-quantile estimates are generally lower than
those of the CEP estimates, indicating better accuracy. This may be due to of the small number of
sampled unemployed individuals within the UALADs and consequent problems with estimation of
the area random effects when fitting the logistic mixed model using LFS data.

6.2. Estimating poverty levels in LLSs of Tuscany

In this Section we derive estimates of the proportion of households below the poverty line in LLSs
of Tuscany in 2005 using the model specifications of Section 3.2. Figure 7 maps the small area
poverty estimates. These maps indicate that the LLSs in the north-western part and northern part
of the region of Tuscany, corresponding to the LLSs in the province of Massa-Carrara and in the
northern part of the provinces of Lucca and Prato, are characterised by the highest estimates of
poor households. Hence, these areas can be considered as the most critical in the region. On the
other hand, the LLSs with the lowest proportions of poor households are found in the provinces of
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Fig. 6. Ratio of estimated coefficients of variation of direct estimates to M-quantile (blue) and CEP
(red) estimates of total number of unemployed for each UALAD.

Florence, Siena and Arezzo, in the central-eastern part of Tuscany. One thing to note is that direct
estimates are not produced for all LLSs because of the absence of sample units from these LLSs in
the EU-SILC. For those cases model-based estimation is the only option.

Validating the small area estimates is a challenging task due to the lack of official estimates at
this level of geography. Some internal diagnostics are presented below. The correlation between the
direct and M-quantile estimates for the sampled LLSs is 0.97, while the corresponding correlation
for the CEP estimates is 0.95. As Figure 8 shows, M-quantile estimates are consistent with direct
estimates. The left plot in Figure 9 presents ratios of the estimated CVs for the direct and model-
based estimates of numbers of poor households and the right plot shows the estimated CVs of these
estimates across LLSs (in percentage terms). In both plots blue indicates M-quantile estimates and
red indicates CEP estimates. The solid black line in the right plot refers to the direct estimates. The
efficiency gains by using model-based estimates over direct estimates are not as striking as in the
previous application but are still substantial, particularly for LLSs with a small number of sampled
households. Generally, the M-quantile estimates have a smaller estimated CV than corresponding
CEP estimates, with the most striking differences found for the non-sampled LLSs (located to the
right of the vertical line).

7. Model-based simulations

The validity of model-based inference depends on the validity of the model. The preceding anal-
ysis relies on the analysis of one sample, which makes it difficult to generalise our findings. In
this Section we empirically evaluate the properties of small area predictors and corresponding MSE
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Fig. 7. Maps of the estimated proportion of poor households for LLSs in Tuscany in 2005: Direct (top
left), CEP (top right) and MQ (bottom left) estimates.
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Fig. 8. Model-based M-quantile estimates of the number of households in poverty in sampled LLSs
compared with corresponding direct estimates.

estimators. This is done by means of a sensitivity analysis to departures from the GLMM model
assumptions using Monte Carlo simulation. In particular, population data are first generated under
different scenarios for departures from the assumptions of the GLMM model with samples then
being selected from this simulated population. Estimates of small area proportions and the corre-
sponding MSE are computed, using the samples, and empirically assessed.

Two different M-quantile versions of (18) were investigated in the simulations, both based on
a linear logistic M-quantile model defined by a Huber influence function with tuning constant c.
In the first, referred to as M-quantile below, ¢ = 1.345, while the second, referred to as Expectile
below, ¢ = 100. These estimators were compared with the CEP (3) under a GLMM with logistic link
function and with the direct estimator (the sample proportion). Both MSE estimation and confidence
interval coverage performance were evaluated using the analytic and the bootstrap method described
in Section 5.4. Note that the logistic M-quantile linear regression fit underpinning the M-quantile
and Expectile predictors was obtained using an extended version of a M-quantile linear regression
model function for SAE written in R. The parameters of the GLMM used in the CEP were estimated
using the function glmer in R.

In each simulation we generated N = 5, 000 population values of X and Y in D = 50 small
areas with Ny = 100, d = 1,...,D. Individual z4; values were drawn independently at each
simulation as Uniform(ag,bq), for ag = —1 and by = d/4,d = 1,...,D, j = 1,...,Ng.
Values of y,4; were then generated as Bernoulli(pg;) with pgj = exp{n4;}(1 + exp{n4})~* and
Naj = *4i3 + uq. The small area effects uy were independently drawn from a normal distribution
with mean 0 and variance ¢ = 0.25, and 8 = 1 (Gonzalez-Manteiga et al., 2007). Population values
generated under this scenario are denoted by (0) below. In addition, we generated data correspond-
ing to a combined misclassification error and measurement error scenario, denoted (M) below. In
this scenario, a random 1% sample of the z4; values were replaced by 20 (introducing measurement
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Fig. 9. The left plot shows the ratio of estimated CVs of direct estimates to M-quantile (blue) and
CEP (red) estimates of the proportion of poor households for each LLS. The right plot shows the
estimated CVs for the direct (solid line) and the model-based estimates. Estimated CVs for the M-
quantile predictor shown by the dashed blue line and estimated CVs for the CEP shown by the
dashed red line.

error) and the corresponding y4; values were set to 0 (introducing misclassification error). For each
of these scenarios 7' = 1, 000 Monte-Carlo populations were generated. For each generated popula-
tion and for each area d we then took simple random samples without replacement of sizes ng = 10
and ng = 20 so that the overall sample sizes were n = 500 and n = 1, 000. For each sample the
M-quantile and Expectile predictors, the CEP and the direct estimator were used to estimate the
small area proportions 4, d = 1,...,D.

The performances of different small area estimators for area d were evaluated with respect to two
criteria: their average error 71 Zthl (Ya¢ — Yaz) and the square root of their average squared error
71 Zthl (;ﬁdt — gdt)2. These are denoted Bias and RMSE respectively below. Here ¢4, denotes the
actual area d value at simulation ¢, with predicted value a¢. The median values of Bias and RMSE
over the D small areas are set out in Table 3, where we see that claims in the literature (Chambers
and Tzavidis, 2006) about the superior outlier robustness of the M-quantile predictor compared with
the CEP and the Expectile predictor certainly hold true in these simulations. In particular, under the
(0) scenario the CEP performs better than the M-quantile and Expectile predictors in terms of Bias,
whereas the M-quantile predictor is the best under the (M) scenario. In terms of RMSE, there is no
notable difference between CEP, M-quantile and Expectile under the (0) scenario, while under the
(M) scenario the M-quantile predictor appears to be superior.

In order to evaluate the performances of the MSE estimators for M-quantile predictor (¢ =
1.345) proposed in Section 5.4 we used the data generated for the scenario with D = 50 and ng =
10 and also carried out a further model-based simulation study with the same sample sizes within
the small areas but with D = 100 and N4 = 100. Again, 7" = 1, 000 Monte-Carlo populations were
generated, with individual z4; values drawn independently as Uniform(agq, bq), with ag = —1
and by = d/8,d = 1,...,D, j = 1,..., Ny. For each generated population a simple random
sample without replacement of size nqy = 10 was drawn from each area d, the M-quantile predictor



Table 3. Model-based simulation results: Predictors of
small area proportions.

ng = 10 Ng = 20
Predictor/Scenario ) (M) 0) M)
Median values of Bias
CEP 0.0013  -0.0200 0.0008 -0.0116
M-quantile 0.0041 0.0046  0.0041 0.0045
Expectile 0.0043  -0.0178 0.0045 -0.0164
Direct 0.0004 -0.0001 0.0001 -0.0001
Median values of RMSE
CEP 0.0519  0.0598 0.0442  0.0507
M-quantile 0.0509  0.0511 0.0444  0.0445
Expectile 0.0506  0.0625 0.0442  0.0508
Direct 0.1146  0.1148 0.0770  0.0777

Table 4. Model-based simulation results: MSE estimators.

Median values Median values Median values
of Relative Bias (%) Relative RMSE (%)  of Coverage Rate (%)
D =50
Estimator/Scenario ) (M) ) ™M) () M)
mse’ (§779) -5.36 6.05 2434 2530 95 94
msePB (5}'?) -0.73 -0.91  13.66 1290 95 95
D =100
mse” (5779) -5.81 691 25.12 2451 95 94
mseP P (39) -0.85 -0.86  12.08 1149 95 95

calculated as well as its linearisation MSE estimator (19) and the bootstrap MSE estimator BB using
100 bootstrap iterations. The performance of these MSE estimators for each scenario is presented
in Table 4 where we show the medians of their area specific Bias and RMSE values, expressed
in relative terms (%). We also show the median empirical coverage rates for nominal 95 per cent
confidence intervals based on these methods. In the case of (19) these intervals were defined by
the small area estimate plus or minus twice the value of the square root of (19). For BB these
intervals were based on the 2.5 and the 97.5 percentiles of the corresponding bootstrap distribution.
Examination of the results in Table 4 shows that both MSE estimation methods tend to be biased low,
but all generate nominal 95 per cent confidence intervals with acceptable coverage. Overall, the BB
estimator seems preferable because it shows smaller bias and better stability than the linearisation-
based estimator (19).

8. Final remarks

Small area prediction for discrete outcomes is an important and challenging problem. In this paper
we propose a new approach for small area estimation of binary outcomes. The proposed methodol-
ogy uses an extension of M-quantile regression for discrete data, which is then adapted for small area
estimation. By construction, the proposed approach is outlier robust. The benefits of using the new
method are illustrated in two applications. In both applications the results show that the proposed
methodology produces model-based estimates that are consistent but more efficient than direct esti-
mates and competitive to alternative model-based estimates. We further present two approaches for
estimating the MSE of the M-quantile model-based predictor, one based on a linearisation argument



and the other based on block bootstrap. The MSE estimators provide acceptable coverage perfor-
mance in our simulations, with the block bootstrap being perhaps preferable because of its stability
and simplicity.

An obvious extension of the development set out in this paper is the development of M-quantile
versions of GLMs for count data. Although we briefly describe an extension to GLM-type modelling
for a count outcome, we do not explore the behaviour of corresponding small area estimators. This
is an area of current research. We also do not explore the extension of M-quantile modelling to
multi-category outcomes, which remains an open problem.

Appendix |

A first order approximation to the variance of (10) is given by (11) where
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a? (B4) is the square of the bias correction term for unit j, and the expectation £ [%ﬁﬁ“)} i
q
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An estimator of (11) is then defined by plugging in estimates of unknown quantities into these

expressions. Denoting these plug-in estimates by a hat leads to a variance estimator for 3, of the

form

Var(8,) = n ' B~H(B,) Var{¥(8,)}[B~1(8,)]”. 20)

Appendix I

Let A denote a set of objects and let m denote a strictly positive integer. In what follows, we use the
notation srswr(A, m) to denote the set of size m obtained by sampling with replacement m times
from the set A.

Block bootstrap procedure
The steps in the BB bootstrap are as follows.

e (Step 1) Calculate D vectors of marginal residuals rfy @ = (rgjm) = Xg(Iéde - BO-S)’
7 =1....,nq, d =1,...,D, re-scaling the elements of the vector ryQ so that they have
mean equal to zero.

) (Steg) 2) Construct the indiv1dual bootstrap errors for the N; population units in area d as
(ré\jQ*) = srswr(r) h(d), Ng) where h(d) = srswr({1,...,D},1).



e (Step 3) Generate a bootstrap population U* of N independent bootstrap Bernoulli realisa-
tions made up of D areas with area d of size Nq, and with bootstrap Bernoulli realisation y;
in area d taking the value 1 with probability

2 MQ*
eXp{XZ;BOﬁ + de @ }

1+ exp{XZ}Bo.5 + 7“(1134[@*}

pdj 7j:17"'7Nd~

e (Step 4) Calculate the bootstrap population parameters 4, d = 1,..., D.

e (Step 5) Extract a sample s* of size n from the bootstrap population U* using the same
sample design as that used to obtain the original sample and calculate the bootstrap M-quantile
predictor gjfin*, d=1,...,D.

e (Step 6) Repeat steps 2-5 B times. In the bth bootstrap replication, let y;

3751” Qx(b)

®) be the quantity of

interest for area d and let be its corresponding M-quantile estimate.
e (Step 7) The BB estimator of the MSE of gj(]in is

B
2
mSBBB(gl]iWQ) — B71 Z (g;;wQ (b) _ gd(b)) . (21)
b=1
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