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HIGHLIGHTS 
 

 Au(III) reacts with PADA on SDS surface; the Au-PADA complex is fully retained. 

 The reaction rate is modulated by suitable changes of pH and NaCl concentration. 

 The reaction at high pH is much faster owing to the high reactivity of the Au(OH)3(H2O) 

species 

 LM-MEUF of the Au(III)-PADA system in SDS provides high extraction yields. 

 
 

Abstract 

The PADA/SDS system provides an excellent tool to selectively extract metal ions using the ligand-

modified micellar-enhanced ultrafitration (LM-MEUF) technique. Application of this method to the 

extraction of Au(III) has required a detailed knowledge of the conditions under which the 

interaction of the metal ion with the extractor are optimal. For this purpose the kinetics and the 

equilibria of the reaction between tetrachloro-aurate ion and PADA have been investigated in 

water/SDS medium, exploring wide ranges of pH values and NaCl concentrations. Addition of 

PADA to the water/SDS medium results in the full adsorption of the ligand on the micelle and, in 

the presence of Au(III), the resulting Au-PADA complex is fully retained on the SDS surface. The 

binding process is, in fact, a ligand displacement reaction where PADA interacts with different 

Au(III) chloro-aquo complexes, displacing Cl- or OH- or H2O molecules, depending on pH. The 

reaction is biphasic and its mechanism is discussed. Experiments at different SDS concentrations 

show that the reaction of complex formation is retarded on going from pure water to a water/SDS 

mixture with [SDS] just above the cmc, while for further increases of the SDS content the reaction 

rate tends to stay constant. The obtained results enabled to establish that the reaction occurs on the 

SDS surface while the aquo-species, Au(Cl)3(H2O) and Au(OH)3(H2O), which are not involved in 

the binding process in pure water, play an important kinetic role in the H2O/SDS medium. 

 

Keywords SDS; Au(III)–PADA complex; Micellar catalysis; Reaction mechanism; Gold speciation 
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1. Introduction 
 
The recovery of gold (and other precious metals) from secondary grade sources such as electronic 

scraps, spent catalysts and other waste constituting materials is now a tool of crucial importance. 

Recent research on metal extraction based on metal entrapping systems has led to the development 

of clean and safe methods that could be favorably used to remove metal ions from waste streams. In 

this context, the Micellar Enhanced Ultrafiltration (MEUF) provides a surfactant based method to 

extract metal ions with high yields [1]. Metal ions are attracted on the surface of an oppositely 

charged micelle by the electrostatic force and the resulting complex is removed from the aqueous 

phase by ultrafiltration. However,  MEUF is not a selective method since ions of same-sign charges 

are removed with similar yields [2]. In order to impart selectivity to MEUF, the ligand-modified 

micellar-enhanced ultrafitration (LM-MEUF) technique was developed by Scamehorn and 

coworkers [3]. This method is based on the addition of a suitable complexing agent (the extractor) 

and a surfactant (in concentration higher than the critical micellar concentration, cmc) to the 

solution containing the target metal.  

The commercially available ligand PADA (Figure 1) is totally adsorbed on a variety of surfactants, 

including SDS [4] and has proven to be an excellent metal extractor, being able to transfer metal 

ions from water to micellar phases with yields approaching 100% [5-7] Moreover, we have found 

that PADA is able to complex Au(III) with great affinity even if the coordination shell of the metal 

is occupied, as in AuCl4
- [8, 9]. In this case, a molecule of PADA replaces two chloride ions 

forming a strong chelate. As a consequence of this ligand replacement process, the resulting Au-

PADA complex will display a positive charge and therefore will be bound to a negatively charged 

micelle by the double action of hydrophobic adsorption and electrostatic attraction.  Since the 

optimization of the extraction process can be achieved through the knowledge of the 

physicochemical parameters that rule the process itself, we have found it interesting and useful to 

investigate the mechanism of the binding of AuCl4
- to PADA in the presence of SDS micelles under 

the conditions employed to extract gold with LM-MEUF. Different from most of the studies of this 

kind, the metal containing species is negatively charged; hence, simple MEUF could not be applied. 

2. Experimental  

Materials. All the chemicals not expressly cited are of analytical grade and were employed without 

further purification. Chloroauric acid, HAuCl4•3H2O, the complexing ligand, pyridine-2-azo-p-

dimethylaniline (PADA), and the surfactants, sodium dodecylsulphate (SDS) and 

dodecyltrimethylammonium chloride (DTAC), were obtained from Sigma-Aldrich. The stock 

solutions of these reactants were prepared by dissolving appropriate amounts of the relevant solid 

material in water. The gold content was determined by direct UV absorption spectrometry 
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exploiting the absorption band of AuCl4
- ion centred at 233 nm whose maximum absorption is 

proportional to the gold concentration [8, 9]. Water, purified by pumping deionized water through a 

Milli-Q apparatus, was used to prepare the solutions and also as the reaction medium. 

Methods.  The pH measurements were made using a Metrohm 713 pH-meter equipped with a 

combined glass microelectrode.  

The spectra of PADA and of its complex with Au(III) were recorded using a Shimadzu 2450 

double-beam spectrophotometer in quartz cells (1 cm path length) thermostatted to within ± 0.1°C.  

The kinetic experiments were all done under pseudo first-order conditions, keeping the analytical 

concentration of metal ion, CAu, at least ten times higher than that of the ligand, CL (CAu  10CL). In 

these experiments both solutions where brought to the same acidity, ionic strength and surfactant 

concentration before mixing. The reaction between Au(III) and PADA displays both slow and fast 

kinetic effects. The fast process was investigated using the stopped-flow method. The apparatus, 

assembled in our laboratory, uses a Hi-Tech SHU-61SX2 stopped-flow sample handling unit with a 

mixing time of about 1 ms. The reactant solutions were mixed and the absorbance change 

associated to the reaction course was monitored spectrophotometrically. Most of the experiments 

have been carried out at 633 nm using as a light source a red laser diode, which provides a signal to 

noise ratio much more favourable than that provided by conventional tungsten lamps [10]. Each 

experiment was repeated at least five times,. The kinetic traces were stored in a Tektronix 2210 

digital oscilloscope and then transferred to a personal computer for the mathematical analysis. The 

slow effect was investigated using the above cited Shimadzu 2450 double-beam spectrophotometer. 

The reaction was started by adding a calibrated excess of HAuCl4 to a known amount of PADA 

already contained in the spectrophotometric cell at prefixed values of acidity and ionic strength. The 

kinetic curves of both effects were processed according to single or double exponential functions 

using a non-linear least square program of the Jandel Scientific package (AISN software, 

Richmond, CA). The reported data values are the average of at least four repeated runs.  A further, 

very slow, kinetic effect was detected, which was ascribed to a redox process; however, this process 

has been disregarded because it was much slower than the substitution reaction. 

3. Results and Discussion 

3.1 The partitioning of PADA, Au(III) and Au-PADA complex between SDS and water. 

The partitioning of PADA between SDS and water has been determined using a combination of 

spectrophotometric and ultrafiltration methods. A solution of SDS was added to an aqueous 

solution of PADA in such a proportion that the resulting mixture contains 1×10-5 M PADA and 

0.04 M SDS. The absorbance spectrum of the mixture was recorded. Then, the mixture was 

subjected to ultrafiltration under pressure using a filter with a cut-off capability of 3000 Dalton. 



5 
 

Doing so, the micellar pseudo-phase has been separated from the aqueous pseudo-phase. 

Afterwards, the absorbance spectrum of the filtrate was recorded. The amount of PADA retained on 

the SDS micelles has been calculated as the difference between the absorbance values of initial and 

filtered solutions. Fig. 2 shows that the ligand is totally retained by the micelles (black stars). The 

figure shows as well that Au(III), if complexed by PADA, is almost totally retained on the micelle 

surface (open circles), whereas, in the absence of PADA (black triangles), all the gold remains in 

the aqueous pseudo-phase (as expected). The extent of retention is independent of the solution pH.   

 

3.2 Spectral observations 

Fig. 3 shows the spectra of AuCl4
- ions recorded at pH 5.0 in water, in 0.04 M SDS, and in 0.04 M 

DTAC. The comparison reveals that the spectrum in DTAC, where the Au(III) species are adsorbed 

[8], is totally different from the spectrum in water. In contrast, the shape of the spectrum in SDS 

does not differ from that of the spectrum recorded in water. One can conclude that the Au(III) ions 

do not interact with SDS and stay essentially in the aqueous pseudo phase.  

 

Fig. 4 shows the spectra recorded during titration of PADA with AuCl4
- in water (Fig. 4A) and in 

SDS 0.02M (Fig. 4B). The two families of spectra are totally different, thus revealing that, in the 

presence of SDS, the binding reaction does not occur in the aqueous pseudo-phase; it occurs, 

instead, on the micellar pseudo-phase, where the free ligand and the complex are both adsorbed on 

the surfactant surface. The free ligand spectrum exhibits a maximum at 460 nm, but during the 

titration in the presence of SDS, the maximum is shifted to 530 nm corresponding to the absorption 

band of the Au(III)/PADA complex. The well-defined isosbestic point reveals the occurrence of a 

single overall binding process under the investigated conditions. Further additions of Au(III) result 

in the disruption of the isosbestic point. This effect is ascribed to a slow fading effect, already 

observed in water and in DTAC [8], that could interfere with the binding process. So, the static 

method, as a tool to study the binding equilibria, has been discarded, although the interference starts 

to appear after more than one hour after the mixing of the reactants. 

 

3.3 Kinetic measurements  

The kinetic method, allowing monitoring the temporal course of the reaction, enables to separate the 

complex formation process from the (much slower) fading process.  

The reaction under study is a ligand exchange process which, in its simplest form, can be 

represented by reaction (1) 
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 ML’ + L  ML + L’           (1) 

 

Under conditions of constant pH and chloride ion (L’) excess (with respect to the PADA 

concentrations, L) reaction (1) is reduced to the apparent reaction (2) which constitutes a useful 

basis for the analysis of the kinetic behaviour. 

 

M + L  ML                   (2) 

 

The apparent reaction (2) exhibits two kinetic effects which manifest themselves within different 

pH ranges and display different reaction velocities. It has been found that, under pseudo first-order 

conditions (CAu  10 CPADA), the time constant, 1/τ, of both effects depends linearly on CAu 

according to Eq. (3) 

 

d
k

Au
C

f
k 

τ

1
           (3) 

  

3.3.1 Kinetics of the slow effect 

The slow effect was observed between pH 4.0 and 6.0 and displays mono-exponential kinetic 

curves. A typical trace is shown as an inset in Fig. 5. The values of the time constant of the slow 

effect, 1/τs, depend linearly on the analytical Au(III) concentration, CAu, according to eq. (3), as 

shown in Fig. 5. The slope of the plot gives the value of the apparent forward rate constant, kf, of 

reaction 2, while the intercept gives the value of the reverse rate constant, kd.  

 

Rate dependence on pH. Table 1 and Table 2 report the values of kf and kd respectively for different 

pH values and different concentrations of SDS. Inspection of the tables shows that, in the presence 

of SDS, both rate constants do increase on rising the pH values except that at pH 6.0 where the rate 

constants suddenly display values definitely lower than expected on the basis of the trend. The 

graphical representation given in Fig. 6A and B provides a clearer description of the behaviour 

observed, which suggests that a change of reactive Au(III) species has occurred at pH 6.0. The 

behaviour in water ([SDS]=0M in Tables 1 and 2) is opposite to that displayed in the presence of 

SDS 
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Rate dependence on Cl. The rate of the reaction depends on the concentration of added chloride 

ions, as shown in Table 3 where the values of 1/τs measured at the different [Cl-] and pH values are 

reported. 

 

Fig. 7 shows that, on increasing [Cl-], the time constant values display a flat minimum, mainly at 

the lower pH values. This behaviour suggests opposite dependence of kf and kd on [Cl-]. Moreover, 

the level of the curves displays a general increase with pH up to pH 5.5 but, at pH 6, the plotted data 

(black stars) fall to values definitely lower than expected. Such an abrupt change suggests again, 

that, at the highest pH level, a change of reacting species has occurred. The observed trends will be 

rationalized on the basis of the reaction scheme shown below. 

 

The mechanism of the slow phase. Since the Au(III) species are neither attracted nor adsorbed on 

the micelle surface, their  distribution in water/SDS should be the same as in water. The distribution 

diagram of Au(III) (Fig. 2S) shows that, between pH 4 and 6 (where the slow phase has been 

investigated) and at the chloride ion concentrations employed, the prevailing complexes are AuCl4
- 

and AuCl3(OH) in equilibrium. Therefore, the reaction mechanism of the slow phase should 

involve most conceivably these species. The results agree with the reaction scheme (4)-(5) where 

the vertical steps are assumed to be fast because they do not include the chelating process which 

could cause rate reduction. In contrast, chelation is present in the horizontal steps (here PADA 

chelator is written as L-L to explicit the presence of the two binding sites). 

 

 

 

  

 (4) 

 

 

 

(5) 

 

 

Being K[Cl-] >> [OH-], the expression for 1/τs is given, according to the above reaction scheme, by 

the relationship (Supplementary Material): 

 

 AuCl4
- +  L  L

k1
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               + 2Cl-
L
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L

L
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A non-linear least square analysis of the results according to equation (6), where KA2 is derived 

from Figure 4D of ref.[4] and has been introduced as a known parameter, provides the values of the 

rate parameters k1 = 1.0 ± 0.5 M-1s-1, k2/K = (4.1±0.6)×107 M-1s-1, k -1 = 0.21±0.06 M-2s-1 and 

k-2/K’= (1.0 ± 0.1)×107 M-2s-1. A check of the goodness of the proposed mechanism is provided by 

the combination of the equilibrium constants of the cyclic scheme (4)-(5) according to which it 

results that k1/k-1 = K’k2/Kk-2. Using the above reported data one obtains k1/k-1= 4.8 and K’k2/Kk-2 

= 4.1. Considering the errors of the rate parameters, the test should be considered valid. Using the 

Baes and Mesmer value of K (1.7×10-8) one obtains k2 = 0.70 M-1s-1. The similarity of the values of 

k1 and k2 reveals that the hydroxide ion present in AuCl3(OH) does not affect the energetics of the 

ligand substitution process, thus confirming that only Cl- ions are replaced in the reaction step (5).  

The vertical steps of the reaction scheme could induce the reader to think that the displacement of 

Cl- ions could be operated by the direct attack of OH- ions. However, it should be noted that, in the 

investigated range of pH (4.0 < pH < 6) the concentration of OH- ion is so low that it results 

improbable that OH-  ions could succeed in displacing directly the Cl- ion from the metal 

coordination shell at measurable rates. The most probable process should be the one represented by 

the sequence (7)-(9) whose combination yields the vertical step with equilibrium constant K. In the 

first step of the sequence a H2O molecule operates a nucleophilic attack at the metal centre; in the 

second (diffusion controlled) step, the coordinated water molecule loses a proton which eventually 

is neutralized according to step 9. 

 

AuCl4
- + H2O    Au(H2O)Cl3  + Cl-        (7) 

  

Au(H2O)Cl3    Au(OH)Cl3
-  +  H+         (8) 

 

H+ + OH-    H2O           (9) 

 

It should be noted that the aquo-chloro species Au(H2O)Cl3 has been detected or postulated in 

speciation studies of gold(III); however, this species seems to behave as a strong acid [11-13] and 

therefore, under the conditions of the experiments here described, it acts only as a transient 

intermediate.  
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3.3.2 Kinetics of the fast effect 

The fast kinetic effect has been investigated between pH 8 and 9. A typical monoexponential curve 

is shown as an inset in Fig. 8A. Moreover, the figure shows that the fast effect is first-order with 

respect to Au(III), as revealed by the plot of the relevant time constant, 1/τf, against the gold 

concentration, in agreement with Eq. (3). The positive value of the intercept reveals that, under the 

employed conditions, the binding process is not quantitative. Fig. 8B shows, instead, the 

dependence of the reaction rate on the concentration of NaCl. It is found that the value of 1/τf  

decreases on increasing [Cl]. According to Reaction (1) the rate of the reverse step, corresponding 

to kd in Eq. (3), should increase on increasing [L’], i.e. [Cl-], but this is not the case. The decreasing 

trend observed indicates that the ligand substitution reaction is coupled to another reaction through 

the chloride ion as a common component. Fig. 8C shows that a plot of 1/τf vs [OH-] is linear, thus 

indicating the existence of a reaction step first-order with respect to the hydroxide ion. 

 
 

The mechanism of the fast phase. The fast phase has been observed in a range of pH values between 

8.0 and 9.0 where the main species present in solution is the Au(OH)3Cl- ion. The analysis of the 

results allows Scheme (10), where non-coordinated water molecules are omitted for simplicity, to 

represent in the best way the kinetic features of this phase. 

 

 

 

 

 

 

             (10) 

 

 

The existence of the vertical equilibrium (K’’) was postulated in a study of the hydrolysis products 

of tetrachloroaurate ion [11].  No evidence could be found for a reaction of Au(OH)3Cl-  ion with L-

L. Owing to the high lability of the coordinated water, one con reasonably assume that Au(OH)3Cl-  

reacts with L-L at a much lower rate than Au(OH)3(H2O), so the entire complex formation process 

undergoes through the horizontal path (10). In deriving the rate law, it has been assumed, as for the 

slow phase, that the vertical reaction is faster than the horizontal  reaction. The expression for 1/τf is 

expressed by Eq. (11) (Supplementary Material). 

 Au(OH)3(H2O) +  L  L
k3

k -3

 Au(OH)2
+

          + OH-
L

L

K''

 Au(OH)3Cl-

 +Cl-
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1/τf = (k3/K’’)CAu /[Cl-] + k-3[OH-]         (11) 

 

A non-linear least square analysis of the results according to equation (11) provides the values of 

the rate parameters k3/K’’ = (55±14) s-1, k-3 = (4.7±2.3) ×105 M-1s-1. Being K”= 7.9 ×105M-1 [11] it 

turns out that k3 = 4.3×107 M-1s-1. 

Although this paper is focused mainly on the investigation of the effect of the SDS micelles on the 

kinetics, we find interesting to make a short discussion on the role of OH- in the fast phase. Even if 

the concentration of hydroxide ions is more than 103 times higher than in the slow phase, it is still 

too low to make feasible a reaction path where OH- ion acts as a nucleophililic reagent. Rather, the 

fact that measurable changes of 1/τf are observed at the very low levels of [OH-] employed, suggests 

for this anion a mode of activation different from the SN2 mechanism generally assumed for ligand 

substitution at square-planar complexes. We propose for reaction (10) the sequence (12) where the 

role of the hydroxide ion is that of extracting a proton from the final complex in the reverse of 

reaction (10), generating the neutral oxo species Au(O)OHL-L as a reaction intermediate. 

 

 

 

 

(12) 

 

It could be argued that ring closure with direct elimination of OH-,  as in the scheme (13), 

 

             (13) 

 

would render the reaction mechanism much simpler. Nevertheless we reject this mechanism since it 

implies the direct attack of the OH- to the metal in the reverse path. Analogous considerations were 

made in order to explain the mechanism of the base hydrolysis of Co(NH3)5Cl2+ ion [14]. Here the 

function of OH- is that of extracting a proton from one of the five ammonia atoms yielding the 

intermediate Co(NH3)4(NH2)Cl+ which plays the same role of Au(OH)(O)
L

L
) in the present system. 

L

L

 Au(OH)3(H2O) + L   L           Au(OH)3L + H2O          Au(OH)(O)(H2O)L  + H2O

L L

Au(OH)(O)             + 2H2O          Au(OH)2
+         + OH- + H2O

L

L

Au(OH)3L

L

  Au(OH)2
+         + OH-

L

L
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The effect of the SDS concentration. Fig. 9A shows the dependence of the forward rate constant of 

the slow step on the SDS concentration. The negatively charged SDS micelles exert a retarding 

effect on the binding reaction. Actually, the rate in 0.01 M SDS (just above the cmc [7]) is lower 

than in water (experiment at [SDS] = 0.0 M), contrary to the behaviour observed in DTAC where a 

remarkable increase of rate was obtained under similar conditions [8].  

 

The rate reduction, improperly defined as “anticatalytic effect” [15-17] can be explained on the 

basis of fact that the gold aquo-chlorocomplexes are all in the aqueous pseudo-phase, while the 

ligand is totally absorbed on the negatively charged micelle surface. Under these circumstances, the 

two reaction partners are kept apart, due to the electrostatic repulsion and, as a consequence, the 

reaction rate is reduced compared to the value in pure water. On raising the SDS level, the rates 

remain almost constant unless one wants to accept the occurrence of a very slight rate increase 

which could be ascribed to a small reduction of the micelle electrostatic potential induced by the 

rise of [SDS] [18]. The fact that the kinetic behaviour in SDS differs from that in water enables us 

to rule out a mechanism where the reaction occurs in the aqueous phase and the reaction product is 

transferred to SDS by diffusion. If this were the case, the kinetic results obtained in water would be 

coincident with the results in SDS, contrary to the experimental evidence. Actually, Table 1 shows 

that in water, i.e. for [SDS] = 0 M, the values of kf decrease monotonically as pH values do 

increase, while for [SDS] > 0 M the values of kf increase with pH and only at pH 6 a decrease of 

rate occurs, which could suggest that the contribution to the overall reaction rate from a less 

reactive Au(III) species begins to make itself felt.  

Finally, it seems useful to make a brief discussion about the protonation sites of PADA which, in 

Fig. 1, is protonated in the pyridine nitrogen and in the –N(CH3)2 group. Since dimethyl azo 

benzene behaves as a diprotic acid, being able to be protonated at the –N(CH3)2 group and at the –

N=N– group, one can conceivably suppose that PADA as well could bear an additional proton at 

the –N=N– residue. Actually, the spectra of PADA reported in a paper by Klotz and Ming [19] 

display an expressed bathochromic shift, which could be ascribed to the protonation of the azo 

group, although the authors did not consider this point. Hence, the hypothesis that PADA could be a 

triprotic acid, could not be excluded, in principle. However, our previous experiments [4] aimed to 

measure the proton dissociation constants of PADA in the pH range between 0.5 and 6, are 

perfectly fitted by two dissociation steps both in pure water and in micellar solution, and the 

relevant dissociation constants were found to be rather different. Moreover, it should be noted that 

protonation at the –N=N– group (where chelation occur) would entail a direct dependence on [H+] 
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in the kinetics of the complex dissociation step, which is not the case for the Au-PADA system here 

investigated.  
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Fig. 1 Molecular structure of pyridine-2-azo-p-dimethylaniline (PADA) in the di-protonated form 

(HL-LH2+). 

 

Fig. 2 Retention percentage of species composing the Au(III)/PADA system at different pH values; 

SDS 0.04 M,  ◄Au, ○ AuPADA,  PADA. 

 

Fig. 3 Spectra of AuCl4
- at pH 5.0, [NaCl]= 0.0 M, T= 25°C: (•••) water, (─) SDS 0.04 M, (--) 

DTAC 0.04M.  
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Fig. 4 Spectral changes recorded during titration of PADA with Au(III); CAu from 0 M (a) to 

1.0×10-3 M (b), CPADA = 3.0×10-5 M, [NaCl] = 0.03 M, T = 25 C. (A) water pH 7.9 (0.03 M 

phosphate buffer), (B) SDS 0.02 M, pH 7.9.  

 
 
 

Fig. 5. Slow effect: dependence of the time constant (1/s) on the Au(III) concentration for the 

reaction between Au(III) and PADA in 0.02 M SDS; [NaCl] = 0.02 M, pH = 4.5, T = 25C. Inset: 

kinetic curve recorded for CPADA = 2.0×10-5 M, CAu = 2.0×10-3 M,  = 633 nm; the continuous line 

represents the fit according to a monoexponential function which provides the value of the time 

constant, 1/τs. 
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Fig. 6. Slow effect: plots of rate constants kf (A) and kd (B) vs. pH for the Au(III)/PADA system in 

0.07 M SDS; [NaCl] = 0.04 M, T = 25 C. 

 
 
 
Fig. 7 Slow effect: reciprocal time constants of the Au(III)/PADA system, 1/τs, measured at 

different chloride ion concentrations and at different pH values in 0.02 M SDS. CAu = 5104 M, 

CPADA = 2105 M, T = 25C.  
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Fig. 8 Fast effect: (A) Dependence of the fast time constant, 1/τf, on CAu for the reaction between 

Au(III) and PADA in 0.02 M SDS, [NaCl] = 0.03 M, pH = 8.2, T = 25 C.; inset: monoexponential 

stopped-flow curve obtained for CPADA= 1.0×10-5 M and   CAu = 3.0×10-4 M. (B) Dependence of 

1/τf on [NaCl] at [SDS] = 0.02 M, CAu = 2.0×10-4 M, pH = 8.2. (C) Dependence of 1/τf on [OH-] at 

[SDS] = 0.02 M, CAu = 2.0×10-4 M, [NaCl] = 0.03 M. The continuous lines represent the fits 

according to Eq. (11);  

 

 

Fig. 9. Rate dependence on the SDS concentration for the Au(III)/PADA system: slow effect at 

pH = 5.0, [NaCl] = 0.03 M, T=25°C. (A) Plot of kf vs [SDS], (B) plot of kd vs [SDS]. 
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Table 1 Forward rate constant for the slow effect relevant to the interaction of Au(III) with PADA 

measured at different pH values and SDS concentrations. [NaCl] = 0.04 M, T = 25 C. 
 

[SDS]        
(M) 

kf (M-1 s-1) 
pH = 4.0 

kf (M-1 s-1) 
pH = 4.5 

kf (M-1 s-1) 
pH = 5.0 

kf (M-1 s-1) 
pH = 5.5 

kf (M-1 s-1) 
pH = 6.0 

0 72 70 57 22 7.3 
0.01 0.95 1.38 2.8 3.6 3.1 
0.02 0.32 0.86 1.6 2.8 2.2 
0.03 0.45 0.73 1.7 2.3 1.4 
0.04 - - 2.0 - - 
0.05 0.42 0.76 1.8 2.2 1.1 
0.07 0.46 0.86 1.9 2.4 0.92 
 

 

Table 2 Slow effect: reverse rate constant, kd, for the interaction of Au(III) with PADA measured at 

different pH values and SDS concentrations. [NaCl] = 0.04 M, T = 25 C.  

 
[SDS]        
(M) 

104 kd (s-1) 
pH = 4.0 

104 kd (s-1) 
pH = 4.5 

104 kd (s-1) 
pH = 5.0 

104 kd (s-1) 
pH = 5.5 

104 kd (s-1) 
pH = 6.0 

0 5.4 5.6 1.1 1.8 0.19 
0.01 4.6 8.6 15 19 2.8 
0.02 2.4 5.5 6.9 6.4 3.6 
0.03 4.3 5.5 5.6 14 4.2 
0.04 - - 3.8 - - 
0.05 2.0 4.3 6.2 9.5 5.9 
0.07 1.8 4.6 6.0 9.1 3.9 
 

 

Table 3 Values of the reciprocal time constant of the slow process, 1/s, for the gold(III)-PADA 

system in 0.02 M SDS at different [Cl-] and pH values. CAu = 5.0×10-4 M, CPADA = 2.0×10-5 M, T = 

25 °C. 

[Cl] 1041/τs pH=4.0 1041/τs pH=4.5 1041/τs pH=5.0 1041/τs pH=5.5 1041/τs pH=6.0 

0.02 8.3 12.0 13.0 14.0 6.0 

0.04 5.7 11.0 12.0 22.0 7.0 

0.07 4.8 11.0 13.0 21.0 8.8 

0.10 5.2 10.5 13.0 25.0 10.0 

0.15 5.7 11.0 13.4 28.0 15.0 

0.20 6.3 14.0 15.4 31.0 19.0 

0.25 7.1 20.0 23.0 33.0 20.0 

 
 


