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Abstract Heterogeneous wireless communication networks, like 4G LTE, transport diverse

kinds of IP traffic: voice, video, Internet data, and more. In order to effectively manage such

networks, administrators need adequate tools, of which traffic classification is the basis for

visualizing, shaping, and filtering the broad streams of IP packets observed nowadays. In this

paper, we describe a modular, cascading traffic classification system—the Waterfall archi-

tecture—and we extensively describe a novel technique for its optimization—in terms of

CPU time, number of errors, and percentage of unrecognized flows. We show how to

significantly accelerate the process of exhaustive search for the best performing cascade. We

employ five datasets of real Internet transmissions and seven traffic analysis methods to

demonstrate that our proposal yields valid results and outperforms a greedy optimizer.

Keywords Network management � Convergent networks � Traffic classification � Machine

learning

1 Introduction

Internet traffic classification—or identification—is the act of matching IP packets with the

computer program or communication protocol that generated them [1]. It resembles an

‘‘Internet microscope’’, which lets us to look at a given network link, see the traffic
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flowing, and identify various types of IP flows. Another useful metaphor to (TC) is lis-

tening to two foreigners talking nearby and recognizing their human language. Quite often,

we are able to identify an unfamiliar language or dialect even if we cannot fully understand

it. Similarly, the TC problem is recognizing network protocols given their traffic, without

interest in their full information content. Moreover, knowing the protocols behind IP flows

makes networks easier to manage. For instance, TC is important for network monitoring: if

we want to visualize the traffic flowing through a router, it is useful to know its compo-

nents. TC also helps network security officers to reveal and track suspicious network

activity. It is used for implementing (QoS) schemes, traffic shaping, and packet filtering. In

convergent networks, TC is the mechanism that enables separate routing policies for voice,

video, and data traffic.

A single IP packet alone is difficult to classify, as there is no application name in the

packet headers. In the past, the service port number was used for discriminating the traffic

class [2], but this became ineffective due to the raise of Peer-to-Peer (P2P) traffic in the

early 2000s [3]. A popular and de facto standard method used nowadays is Deep Packet

Inspection (DPI): pattern matching on full packet contents [4]. However, although being

more accurate than port-based classification, it requires more computing power and brings

privacy concerns. Moreover, pervasive encryption and other issues make DPI increasingly

irrelevant [5, 6]. Instead, modern classifiers investigate groups of packets to find distin-

guishing features of specific application, rather than of single packets. Usually, a flow of

packets is statistically summarized—for example, using the average packet size and inter-

packet arrival time—and the resultant feature vector is classified using a Machine Learning

(ML) algorithm [7]. Such methods are more reliable: the overall behavior of a particular

protocol or host is examined instead of seeking for a strict match in a few packets.

The current challenge in TC is that in future it will have to deal with an increasing

adoption of encryption, encapsulation, multi-channel techniques, and with the tremendous

growth of the Internet [8]. Inevitably, the TC problem is becoming a very complex task that

needs breaking into subproblems to keep it tractable. Recent papers proposed various

interesting techniques tailored at subproblems in TC [9–11], but so far few authors

addressed the problem of combining these proposals to work together. Thus, in this paper,

we describe our method for integrating different traffic classifiers—the Waterfall archi-

tecture [12]—and we introduce a novel algorithm for optimizing such systems.

In more detail, we will show how to apply a Multiple Classifier Systems (MCS)

technique called cascade classification [13] to build a modular TC system optimized for a

given computer network. The Waterfall architecture lets for dedicated classifiers for dif-

ferent types of network traffic, thus we believe our contribution is important for convergent

networks. For example, (LTE) networks allow transmitting voice calls directly over IP,

along with ordinary Internet data, which is known as Voice over LTE (VoLTE). Usually,

the network will use a finite set of destination IP addresses for the VoLTE traffic. If one

wants to identify IP traffic in such a network, Waterfall would allow separate classifiers for

VoLTE traffic—which is simple, e.g. using the IP address—and for typical Internet data—

which is more challenging. In overall, the system would effectively use computing

resources by applying adequate methods to various services present in the heterogeneous

network. Moreover, our optimization technique would further tune the system for desired

goal, e.g. real-time traffic visualization. Comparing to our introductory work [14], the

contribution of this paper is as follows:

1. We give an extended description of our novel method for optimizing classification

cascades (Sects. 2 and 3).
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2. We describe how to implement our algorithm recursively, and we reflect on its time

complexity (Sect. 3.3).

3. We extensively validate our proposal on a new dataset with reliable ground-truth

information, and on 7 classification modules total (Sect. 4).

4. We compare our proposal with myopic optimizer (Sect. 4.4).

5. We release an open source implementation of our proposal as a publicly available

module (Sect. 5).

We begin our paper with Sects. 2 and 3 describing the Waterfall architecture and our

optimization method, respectively. Then, we present the experimental results in Sect. 4.

We conclude our work in Sect. 5.

2 Cascade Traffic Classification

The field of network traffic classification needs a method for integrating results of various

research activities. Many papers in this area describe classification methods that in prin-

ciple propose a set of traffic features tailored at a set of network protocols [1, 9–11, 15–17].

Researchers promote their methods for classifying network traffic, which are usually quite

effective, but none of them is able to exploit all observable phenomena in the Internet

traffic and identify all kinds of protocols.

The question arises: could we integrate these approaches into one system, so that we

move forward, building on the achievements of our colleagues? How would this improve

classification systems, in terms of accuracy, functionality, completeness, and speed?

Answering these questions can open new perspectives for traffic classification. A robust

method for combining classifiers can promote research that is more focused on new

phenomena in the Internet, rather than addressing the same old issues.

In this Section we describe Waterfall: a modular architecture for traffic identification

systems, which we introduced in [12]. Waterfall allows existing classification methods to

complement each other, which makes the system as a whole capable of providing higher

performance than could be achieved by any of the constituent modules.

2.1 Background

A naı̈ve approach to the integration problem would be to survey recent papers for traffic

features and use them as long feature vectors, classified with a decent machine learning

algorithm. Even with adequate techniques employed, this could quickly lead us to the curse

of dimensionality [18]: an exponential growth in the demand for training data as the feature

space dimensionality increases. Besides, network flows differ in the set of available fea-

tures, e.g. only a part of Internet flows evoke DNS queries [10]. Some features need more

packets to be computed: e.g. port number is available after one packet, whereas payload

statistics need several tens of packets [11]. This means that different tools are needed for

different protocols: some flows can be classified immediately using simple methods, while

others need more sophisticated analysis. Finally, from the software engineering point of

view, a big, monolithic system could be difficult to develop and maintain.

Instead, researchers adopt multi-classification—in particular the Behavior Knowledge

Space (BKS) combination method that fuses the outputs of many classifiers into one final

decision. In principle, the idea behind BKS is to ask all classifiers for their answers on a

particular problem x and then query a look-up table T for the the final decision. The
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table T is constructed during training of the system, by learning the behavior of classifiers

on a labeled dataset. For example, if an ensemble of 3 classifiers replies (A, B, A) for a

sample with a ground-truth label of B, then the cell in T under index (A, B, A) is B (see

[13], p. 128). This powerful technique can increase the performance of TC systems—as

shown by Dainotti et al. [19]—but comparing to Waterfall, it inherently requires all

modules to be run on each flow, with the drawback that the more modules are used, the

more processing power is required.

2.2 The Waterfall Architecture

Waterfall applies the idea of multi-classification, but queries the constituent classifiers in

sequential manner instead of parallel. It employs cascade classification, of which

Kuncheva writes in her book on multi-classification: ‘‘cascade classifiers seem to be rel-

atively neglected although they could be of primary importance for real-life applications.’’

(in [13], p. 106). We argue that cascade classification is a powerful and effective technique

for combining algorithms that identify Internet traffic.

The Waterfall idea is presented in Fig. 1. The input to the system is an IP flow—a

feature vector x—which contains all the features required by all modules, but a particular

module will usually use only a subset of x.

The system sequentially evaluates selection criteria that decide which classification

modules to use for the problem x. If a particular criterion is fulfilled, the associated module

is run. If it succeeds, the algorithm finishes. Otherwise, or if the criterion was not satisfied,

the process advances to the next step. When there are no more modules to try, the flow gets

rejected and is labeled as ‘‘Unknown’’. More precisely,

DeciðxÞ ¼
ClassiðxÞ CritiðxÞsatisfied ^ ClassiðxÞsuccessful

Deciþ1ðxÞ otherwise

�
ð1Þ

Decnþ1ðxÞ ¼ Reject ð2Þ

where Deci is the decision taken at step i ¼ f1; 2; . . .; ng, n is the number of modules,

ClassiðxÞ is the protocol identified by the module i, and CritiðxÞ is the associated criterion.

Fig. 1 The Waterfall architecture. A flow enters the system and is sequentially examined by the modules. In
case of no successful classification, it is rejected
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The selection criteria are designed to skip ineligible classifiers quickly. For example, in

order to implement a module that identifies traffic by analyzing the packet payload sizes,

the criterion could check if at least 5 packets with payload data were already sent in each

direction. Only if this condition is true, a machine learning algorithm is run to identify the

protocol. However, probably a large amount of flows will be skipped, saving computing

resources and avoiding classification with an inadequate method. On the other hand, if a

flow satisfies this criterion, it will be analyzed with a method that does not need to support

corner cases (that is, number of payload packets less than 5). The selection criteria are

optional, i.e. if a module does not have an associated criterion, the classification is always

run.

3 Waterfall Optimization

Now we will consider the problem of optimal cascade structure. Let F be a set of IP flows,

and E be a set of n classification modules,

E ¼ f1; . . .; ng ð3Þ

that we want to use for cascade classification of flows in F in an optimal way. In other

words, we need to find a sequence of modules X,

X ¼ ðx1; . . .; xmÞ m� n; xi 2 E; xi 6¼ xj for i 6¼ j ð4Þ

that minimizes a cost function C,

CðXÞ ¼ f ðTXÞ þ gðEXÞ þ hðUXÞ ð5Þ

where the terms TX; EX , and UX respectively represent the total amount of CPU time used,

the number of errors made, and the number of flows left unlabeled while classifying F with

X. The terms f ; g, and h denote arbitrary real-valued functions. Because m� n, some

modules may be skipped in the optimal cascade. Note that UX does not depend on the order

of modules, because unrecognized flows always traverse till the end of the cascade.

3.1 Background

Cascade classification is a multi-classifier system implementing the classifier selection idea

[13]. Interestingly, although first introduced in 1998 by Alpaydin and Kaynak [20], so far

few authors considered the puzzle of optimal cascade configuration that would match our

problem. In a 2006 paper, Chellapilla et al. [21] propose a cascade optimization algorithm

that updates the rejection thresholds of the constituent classifiers. The authors apply an

optimized depth first search to find the cascade that satisfies given constraints on time and

accuracy. However, comparing with our work, the system does not optimize the module

order. In another paper on this topic, published in 2008 by Abdelazeem [22], the author

proposes a greedy approach for building cascades: start with a generic solution and

sequentially prepend a module that reduces CPU time. Comparing with our work, the

approach does not evaluate all possible cascade configurations and thus can lead to sub-

optimal results. We will demonstrate this in Sect. 4 for an exemplary myopic optimizer.

Thus, we propose a new solution to the cascade classification problem, which is better

suited for traffic classification than existing methods. Note that comparing with [21] we do

not consider rejection thresholds as input values to the optimization problem. Instead, in
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case of classifiers with tunable parameters, one could consider the same module para-

metrized with different values as separate modules, and apply our technique as well. For

instance, a Bayes classifier with rejection thresholds on the posterior probability of 0.5,

0.75, 0.90 would be considered as three separate modules.

3.2 Proposed Solution

To find the optimal cascade, we propose to approximate the performance of every possible

X by calculating the performance of each module on the entire dataset and then smartly

combining the results. Note that for an accurate solution one would basically need to run

the full classification process for all permutations of all combinations in E. This would take

S experiments, where

S ¼
Xn
i¼1

n!

ðn� iÞ! � e � n! ð6Þ

which is impractical even for small n. On another hand, fully theoretical models of the cost

function seem infeasible too, due to the complex nature of the cascade and module inter-

dependencies.

Thus, we propose a heuristic solution to the cascade optimization problem. The algo-

rithm has two evaluation stages:

1. Static: classify all flows in F using each module in E, and

2. Dynamic: find the X sequence that minimizes C(X).

3.2.1 Static Evaluation

In every step of stage A, we classify all flows in F using each single module x 2 E. We

measure the average CPU time used for flow selection and classification: tðxÞs and tðxÞc . We

store each output flow identifier in one of the three outcome sets, depending on the result:

F
ðxÞ
S , F

ðxÞ
O , or F

ðxÞ
E . These sets hold respectively the flows that were skipped, properly

classified, and improperly classified. Let us also introduce F
ðxÞ
R ,

F
ðxÞ
R ¼ F n ðFðxÞ

S [ F
ðxÞ
O [ F

ðxÞ
E Þ ð7Þ

that is, the set of rejected flows. See Fig. 2 for an illustration of the module measurement

procedure. As the result of every step, the performance of module x on F is fully char-

acterized by a tuple PðxÞ,

PðxÞ ¼ ðF; tðxÞs ; tðxÞc ;F
ðxÞ
S ;F

ðxÞ
O ;F

ðxÞ
E Þ ð8Þ

Finally, after n steps of stage A, we obtain n tuples: a model of our classification system,

which is the input to stage B.

3.2.2 Dynamic Evaluation

Having all of the required experimental data, we can quickly estimate C(X) for arbitrary X.

Because f, g, h, are used only for adjusting the cost function—and can be modified by the
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network administrator according to her needs (see Sect. 4.2)—we focus only on their

arguments, i.e. the cost factors TX;EX , and UX .

Let X ¼ ðx1; . . .; xi; . . .; xmÞ represent certain order and choice of modules, and Gi

represent the set of flows entering the module number i,

G1 ¼ F ð9Þ

Giþ1 ¼ Gi n ðFðxiÞ
O [ F

ðxiÞ
E Þ 1� i�m ð10Þ

then we estimate the cost factors using the following procedure:

TX �
Xm
i¼1

jGij � tðxiÞs þ jGi n FðxiÞ
S j � tðxiÞc ð11Þ

EX ¼
Xm
i¼1

jGi \ F
ðxiÞ
E j ð12Þ

UX ¼ jGmþ1j ð13Þ

where |G| denotes the number of flows in set G.

Note that the difference operator in Eq. 10 connects the static cost factors with the

dynamic effects of a cascade. In stage A, our algorithm evaluates static performance of

every module on the entire dataset F, but in stage B we want to simulate cascade operation,

so we need to remove the flows that were classified in the previous steps. Thus, the

operation in Eq. 10 is crucial.

Module performance depends on its position in the cascade, because preceding modules

alter the distribution of traffic classes in the flows conveyed onward. For example, we can

improve accuracy of a port-based classifier by putting a module designed for P2P in front

of it, which should handle the flows that misuse the traditional port assignments.

3.3 Discussion

In our solution, instead of e � n! experiments (see Eq. 6), we simplified the optimization

problem to n experiments and several computations, which in overall is much faster. Note

that in case of adding a new module xj to an already simulated cascade X, we can re-use

previous computations:

Fig. 2 Measuring performance of module x 2 E
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Gj ¼ UX ð14Þ

TXþxj � TX þ jGjj � tðxjÞs þ jGj nFðxjÞ
S j � tðxjÞc ð15Þ

EXþxj ¼ EX þ jGj \ F
ðxjÞ
E j ð16Þ

UXþxj ¼ Gj n ðFðxjÞ
O [ F

ðxjÞ
E Þ ð17Þ

Thus, we suggest searching for the minimum C(X) in a recursive algorithm. However,

although simulation is orders of magnitude faster than experimentation, we still check

every possible cascade. This makes the time complexity of our algorithm factorial, con-

sidering set computations as the elementary operations. This might leave space for further

improvements by the introduction of heuristics, possibly tuned to a specific cost function.

Moreover, note that the results depend on F: the optimal cascade depends on the

protocols present in the traffic, and on the ground-truth labels. The presented method

cannot provide the ultimate solution that would match every network, but it can optimize a

specific cascade system for a specific network. We further discuss this issue in Sect. 4.

We assume that the flows are independent of each other, i.e. labeling a particular flow

does not require information on any other flow. If such information is needed, e.g. flow

DNS names, it should be extracted before the classification process starts. Thus, traffic

analysis and flow classification must be separated to uphold this assumption. We suc-

cessfully implemented such systems for our DNS-CLASS [10] and MUTRICS [12]

classifiers.

In the next Section, we experimentally validate our method and show that it perfectly

predicts EX and UX , and approximates TX properly. The simulated cost follows the real

cost, so we claim our proposal is valid and can be used in practice. We also analyze the

trade-offs between speed, accuracy, and ratio of unlabeled flows, to stress out that the final

choice of the cost function should depend on the purpose of the system.

4 Experimental Validation

Below we present the outcome of using real traffic datasets for experimental evaluation of

our proposal. We ran four experiments:

1. comparing simulation with reality, which proves validity of Eqs. 11–13;

2. analyzing the effect of cost function parameters on the result, which demonstrates

optimization for different goals;

3. optimizing on one dataset and using the cascade on another dataset, which evaluates

stability;

4. comparing our optimization method with myopic optimization, which shows that our

work is meaningful.

For the experiments, in general we used 5 datasets, summarized in Table 1. Datasets

ASNET1 and ASNET2 were collected at the same ISP serving\500 domestic users, with an

8-month time gap. Dataset IITIS1 was collected at an academic network serving \50

researchers, at the same time as ASNET1. Dataset UNIBS1 was also collected at an academic

network (University of Brescia,1) but a few years earlier and using a reliable ground-truth

1 Downloaded from http://www.ing.unibs.it/ntw/tools/traces/.
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information [23] (this dataset was anonymized). Finally, the UPC1 dataset was artificially

generated—with manual simulation of different human behaviors—hence it contains full

packet payloads and the names of applications that generated the traffic flows [24–26].

For the first 3 datasets, we established ground-truth using light DPI [27]. For UNIBS1 and

UPC1, we used the supplied ground-truth information, which sometimes was challenging:

for example, a skype process generates some HTTP traffic apart of the Skype protocol.

For each dataset, we trained the modules using 60 % random sample of all flows, and used

the remainder for testing. We considered only the first 10 s of each flow to resemble a near-

immediate traffic identification.

Finally, in total we evaluated 7 classification modules, summarized in Table 2 [10, 12].

As additional traffic features, we used the transport protocol and destination port number

for each module. Although we consider port numbers as an unreliable feature, they still can

provide valuable hint for more sophisticated classification mechanisms. Note that the

modules support the reject option, so each module can drop any flow if its not certain about

the outcome.

4.1 Experiment 1

In the first experiment, we compare simulated cost factors with real values for arbitrary

cascade configurations. We randomly selected 100,000 flows from each of the first 4

datasets and ran static evaluation on them. Next, we generated 100 random cascades, and

for each cascade we ran both real and simulated classification. As a result, we obtained

corresponding pairs of real and estimated values of TX; EX , and UX .

The results for TX are presented in Fig. 3. For EX and UX we did not observe a single

error, i.e. our method perfectly predicted the real values. For CPU time estimations, we see

a high correlation of 0.95, with little under-estimation of the real value. For all datasets, the

estimation error was below 20 % for majority of evaluated cascades (with respect to the

real value). The error was above 50 % only for 5 % of evaluated cascades.

We conclude that in general our method properly estimates the cost factors and we can

use it to simulate different cascade configurations. Note that accurate prediction of the

CPU time is not necessary for optimization: it is enough for the simulated time to be

roughly proportional to the real value. Moreover, even the real values will vary depending

e.g. on the CPU load due to other tasks executed in the background, which is difficult to

predict.

Table 1 Datasets used for experimental validation

Dataset Start Duration Src. IP Dst. IP
(K)

Packets
(M)

Bytes
(G)

Avg. util
(Mbps)

Avg. flows
(/5 min)

Payload

Asnetl 2012-05-26 216 h 1800 K 1500 2500 1600 18 7.7 K 92 B

Asnet2 2013-01-24 168 h 2500 K 2800 2800 1800 26 12 K 84 B

IITiSl 2012-05-26 216 h 32 K 46 150 95 1.0 750 180 B

Unibsl 2009-09-30 58 h 27 1 30 26 0.9 110 0 B

UPC1 2013-02-25 65 days 90 K 18 37 33 51 68 Full

2013-11-18 35 days 7.5 K 54 43 31 88 49 Full
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4.2 Experiment 2

In our second experiment we show the effect of tuning the system for 3 different goals: (a)

minimizing the computation time, (b) minimizing errors, and (c) labeling as many flows as

possible. We chose the following cost function:

CðXÞ ¼ f ðTXÞ þ gðEXÞ þ hðUXÞ ¼ ðTXÞa þ ðEXÞb þ ðUXÞc ð18Þ

with the default values of a, b, c equal to 0.95, 1.75, 1.20, respectively. We separately

varied these values in range of 0–10, and observed the performance of the resultant

cascades. For the sake of brevity, we ran the experiment for datasets ASNET1, ASNET2, and

IITIS1 and for modules dnsclass, dstip, npkts, port, and portsize.

In Fig. 4, we present the results: dependence of cascade performance and module count

on the cost function parameters. As expected, higher a exponent leads to faster classifi-

cation and usually less errors, but with fewer modules in the cascade, and more unclassified

flows as a consequence. Optimizing for accuracy—higher b exponent—leads to reduction

of errors at the cost of higher number of flows left without a label. Finally, if we choose to

classify as much traffic as possible (increasing the c exponent), the system will use all

available modules, at the cost of higher CPU time and error rate.

In more detail, for time optimization, the optimal cascades are: port for ASNET1,

portsize for ASNET2, and dnsclass for IITIS1. In the last case, dnsclass is pre-

ferred due to high percentage of DNS traffic in IITIS1. Instead, in case of accuracy

optimization, the optimal cascades are: portsize, dnsclass, npkts, port for

ASNET1, dstip, dnsclass, portsize for ASNET2, and dnsclass, port,
dstip, portsize, npkts for IITIS1. Finally, optimizing for minimum percentage of

unrecognized flows yields a common result for all datasets: dnsclass, dstip,
npkts, port, portsize.

Note that the results depend on the cost function. We used a power function for pre-

sentation purposes, in order to easily show contrasting scenarios by small adjustments to

the exponents. For specific purposes, a multi-linear function may be more appropriate, as it

is often found in the literature, e.g. linear scalarization of multi-objective optimization

problems. Moreover, more complex expressions—including thresholds on some parame-

ters—can be used to find a classification system capable of real-time operation: given an

expected amount of flows per second, one could find a cascade that is fast enough to handle

the traffic while keeping the other cost factors at possible minimum.

We conclude that our proposal works and is adaptable, i.e. by varying the parameters we

optimized the classification system for different goals.

Table 2 Waterfall modules used for experimental validation

Module ML algorithm Traffic features

dnsclass Linear SVM DNS name

dstip Lookup table Destination IP address

npkts Random forest Payload sizes: first 4 packets in?out

port Lookup table Destination port number

portsize Lookup table Payload sizes: first packet in?out

portname Lookup table DNS name

stats Random forest 4 basic statistics of packet sizes and inter-arrival times
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Fig. 3 Experiment 1. Estimated classification time versus real classification time. Dashed line shows least-
squares approximation. The Pearson product-moment correlation is 0.95

a b c

Fig. 4 Experiment 2. Optimizing the cascade for different goals: best classification time (a exponent),
minimal number of errors (b exponent), and the lowest number of unlabeled flows (c exponent): the plot
shows the averages for 3 datasets
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4.3 Experiment 3

In the third experiment, we wanted to verify if the result of optimization is stable in time

and space, i.e. if the optimal cascade stays optimal with time and changes of the network.

We ran our optimization procedure for 4 datasets, obtaining different cascade configuration

for each dataset. Next, we evaluated these configurations on all datasets and measured the

increase in the cost function C(X) compared with the original value. Note that we did not

use the UNIBS1 dataset for this experiment, as it lacks packet payloads and hence needs

different set of available modules.

Table 3 presents the results. We see that our proposal yielded results that are stable in

time for the same network: the cascades found for ASNET1 and ASNET2, which are 8 months

apart, are similar and can be exchanged with little decrease in performance. However, the

cascades found for ASNET1 and ASNET2 gave 5–7 % worse performance compared with

IITIS1, and 23–49 % worse performance on UPC1. We observed extreme decrease in

performance when we varied both the network and time, especially when classifying UPC1

with cascade optimized for IITIS1.

We conclude that cascade optimization is specific to the network, but on the other hand

our results suggest that an optimal cascade does not change significantly with time for

given network. Thus, the network administrator does not need to repeat the optimization

procedure frequently.

4.4 Experiment 4

In the last experiment, we compared our proposal with a greedy optimizer, i.e. a situation

in which we select all modules in order of increasing CPU time. This resembles the basic

approach in the original paper on Waterfall [12]: start with generic, heavy classifier, and

prepend faster modules in front of it (see section 5 in [12]). Thus, for each module, we

calculated the sum of ts and tc for each dataset separately, and ordered the modules from

the fastest to the slowest. We used the results as cascade configurations, i.e. Waterfall

systems configured with a conservative algorithm: ‘‘myopic’’ optimization.

On the other hand, we also optimized the system using our proposal, with the cost

function given in Eq. 18, for a, b, c equal to 3.00, 1.75, 1.50, respectively. We chose these

exponent values arbitrarily to show an example of time optimization: note that the a ex-

ponent (influencing the time cost factor) is the highest. Then, we used the results as cascade

configurations, but optimized with an ‘‘optimal’’ algorithm.

Table 4 compares the results: in every case, our algorithm optimized the classification

system to work faster and with less errors, usually with the same amount of unclassified

flows. This demonstrates the point of cascade optimization: it brings performance

Table 3 Experiment 3. Result
stability: relative increase in the
cost C(X), depending on the ref-
erence dataset used for deter-
mining the optimal cascade

Reference Test dataset

Asnetl (%) Asnet2 (%) IITiSl (%) UPC1 (%)

Asnetl 1.01 5.31 48.96

Asnet2 2.67 7.29 23.34

IITiSl 33.37 34.19 192.91

UPC1 14.51 11.11 31.77
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improvements. Recall that UNIBS1 lacks packet payloads, hence we used 5 modules in

general for this dataset instead of 7.

On average, the system worked 8 % faster compared with myopic time optimization,

and reduced the error rate by 19 %. For ASNET2, it also resulted in higher number of

unrecognized flows, but the increase is insignificant given the dataset size, and this cost

factor was not the goal of optimization. For instance, if one wants a real-time traffic

visualization system, then some small portion of flows might remain unrecognized without

negative effect on the whole system. Thus, we conclude that our work is meaningful and

can help network administrators to tune cascade TC systems better than ad-hoc tools.

5 Conclusions

We showed that our Waterfall architecture, together with the new optimization technique,

lets for effective combining of traffic classifiers. We presented background on cascade

classification (a multi-classifier variant) and employed it for identifying IP transmissions.

Waterfall brakes the complex TC problem into smaller, independent modules, which are

easier to manage. Moreover, we presented an optimization technique that automatically

selects the set of best modules from a pool of available methods, and puts them in right

order for maximized performance. By means of experimental validation we demonstrated

Table 4 Experiment 4. Average improvements compared to myopic cascade optimization

Dataset Algorithm Cascade configuration Time (s) Errors Unknowns

Asnet1 Myopic Portname, portsize, port, dstip, dnsclass,
stats, npkts

89 40 886

Optimal Portsize, portname, dstip, dnsclass, npkts,
port, stats

87 30 886

?2 % ?26 % 0 %

Asnet2 Myopic Portname, portsize, port, dstip, dnsclass,
stats, npkts

141 49 817

Optimal Portsize, portname, dstip, dnsclass, npkts,
port

139 22 1224

?2 % ?55 % -50 %

IITiS1 Myopic Dnsclass, port, portname, portsize, dstip,
stats, npkts

5.7 2.4 80

Optimal Port, portsize, npkts, stats 5.1 2.4 80

?11 % ?0 % 0 %

Unibs1 Myopic Portsize, port, dstip, stats, npkts 102 2017 13,892

Optimal Dstip, portsize, port, npkts, stats 91 1985 13,892

?10 % ?2 % 0 %

UPC1 Myopic Portname, port, portsize, dstip, dnsclass,
stats, npkts

110 686 1746

Optimal Port, portname, dstip, portsize, dnsclass,
npkts, stats

92 604 1746

?16 % ?12 % 0 %

Average improvement ?8 % ?19 % -10 %
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that our proposal works and can bring significant improvements to classification speed,

accuracy, and number of recognized flows.

Our approach to optimizing Waterfall systems brings major improvements over ad-hoc

methods. First, it reduces the time needed for optimization by orders of magnitude, by

replacing experimentation on different cascades with simulation, which is much faster.

Second, by performing an exhaustive search for the best solution, it finds better cascades

than a greedy algorithm. However, due to the complex nature of the problem, it still

requires a considerable amount of computations to check for all possible cascade config-

urations, which in practice limits the maximum size of the module pool.

We believe our contribution is important for managing convergent networks like LTE.

Finally, in order to support further research in this area, we release an open source

implementation of our proposal as an extension to the MUTRICS classifier, available at

https://github.com/iitis/mutrics.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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impact of sampling on NetFlow traffic classification. Computer Networks, 55(5), 1083–1099.

27. Alcock, S., & Nelson, R. (2012). Libprotoident: Traffic classification using lightweight packet
inspection. WAND Network Research Group, Technical Report.

Paweł Foremski is a Ph.D. student at the Institute of Theoretical and
Applied Informatics of the Polish Academy of Sciences (IITiS PAN).
He received his M.Sc. Eng. degree in Informatics (Macrocourse) in
2011 from the Silesian University of Technology in Gliwice, Poland.
He works as a research assistant at IITiS PAN and as an IT consultant.
His professional interests include Computer Networks, IPv6, DNS,
Traffic Classification, Open Source, and Machine Learning.

Waterfall Traffic Classification: A Quick Approach to...

123



Christian Callegari received the B.E. and the M.E. degrees in
telecommunications engineering and the Ph.D. degree in information
engineering from the University of Pisa, Italy, in 2002, 2004, and
2008, respectively. Since 2005, he has been with the Department of
Information Engineering at the University of Pisa. In 2006/2007, he
was a visiting student research collaborator at the Department of
Computer Science at ENST Bretagne, France, and in 2014 he was a
visiting researcher at Eurecom in France. Dr. Callegari is currently a
researcher at RaSS National Laboratory (CNIT) and teaching assistant
at the University of Pisa. Moreover he has given lectures in the
framework of several Ph.D. courses (both at national and international
level) and he has also given several tutorials about network security in
leading international conferences. His research interests are mainly in
the area of network security, with focus on Anomaly Detection and
distributed architecture for security monitoring and privacy aware data
exporting and processing. Moreover, he has co-authored more than 80

papers presented in leading international journals and conferences.

Michele Pagano received laurea (cum laude) in Electronics in 1994
and a Ph.D. in Information Engineering in 1998, both at University of
Pisa. From 1997 to 2007 he has been Researcher at the Department of
Information Engineering of the same university, and then became
associate professor (confirmed in 2010). Currently he is the official
instructor of the courses of Telematics, Performance of Multimedia
Networks, Network Security and Architectures, Components and
Network Services. In 2006, in collaboration with Prof. Vaton, he gave
a Ph.D. Course on ‘‘IP traffic characterization, data analysis and sta-
tistical methods: Bayesian Methods in Teletraffic Theory’’. Further-
more, he gave lectures on Network Performance Analysis in different
Polish and Russian universities. His research interests are related to
statistical traffic characterization and network performance analysis,
statistical traffic classification, anomaly detection, security issues in
distributed architectures and Green Networking. He has co-authored
around 200 papers published in international journals and conference

proceedings. He has been involved in the activities of the NoE Euro-NGI (Design and dimensioning of the
Next Generation Internet) and in several national and international projects, being the local coordinator for
the 2006 PRIN RECIPE (Robust and Efficient traffic Classification in IP nEtworks) and the 2008 PRIN
EFFICIENT (Energy eFFIcient teChnologIEs for the Networks of Tomorrow). In 2006/2007 he has been
supervisor of Dr. Marchenko in an INTAS grant and in 2009/2012 he has been the principal investigator in
two inter-university cooperation projects with PetrSU, PFUR and TvSU. Finally, in 2011–2013 he has been
the supervisor of Pawel Foremski in the framework of the project ‘‘Multilevel traffic classification in the
Internet’’, funded by the Polish National Science Centre.

P. Foremski et al.

123


	Waterfall Traffic Classification: A Quick Approach to Optimizing Cascade Classifiers
	Abstract
	Introduction
	Cascade Traffic Classification
	Background
	The Waterfall Architecture

	Waterfall Optimization
	Background
	Proposed Solution
	Static Evaluation
	Dynamic Evaluation

	Discussion

	Experimental Validation
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4

	Conclusions
	Open Access
	References




