
Automating large-scale simulation and data analysis

with OMNeT++: lessons learned and future

perspectives

Antonio Virdis, Carlo Vallati, Giovanni Nardini

Dipartimento di Ingegneria dell'Informazione, University of Pisa

Largo Lucio Lazzarino 1, I-56122, Pisa, Italy

a.virdis@iet.unipi.it, carlo.vallati@iet.unipi.it, g.nardini@ing.unipi.it

Abstract—Simulation is widely adopted in the study of modern

computer networks. In this context, OMNeT++ provides a set of

very effective tools that span from the definition of the network, to

the automation of simulation execution and quick result

representation. However, as network models become more and

more complex to cope with the evolution of network systems, the

amount of simulation factors, the number of simulated nodes and

the size of results grow consequently, leading to simulations with

larger scale. In this work, we perform a critical analysis of the tools

provided by OMNeT++ in case of such large-scale simulations. We

then propose a unified and flexible software architecture to

support simulation automation.

Keywords—OMNeT++; Large-Scale Simulations; Data

Analysis; Simulation automation

I. INTRODUCTION

Nowadays simulation is a methodology widely used to drive

the design and to assess performance of different computer

systems. In computer networks in particular, simulation is

widely adopted to drive the design of network or to assess the

performance of existing deployments for provisioning or

troubleshooting. Simulation models are exploited in place of

real measurements or experiments for two main reasons: (i)

simulation models can handle the complexity of such systems,

characterized by many factors or settings that can influence the

performance simultaneously; (ii) they can overcome the

difficulty of studying systems that are distributed over distant

areas and potentially all over the world.

In this context, OMNeT++ has gained popularity as a

mature simulation tool. Especially in the area of networking,

OMNeT++ is widely adopted by scientists and engineers that

can exploit the availability of many simulation models for

different network technologies, both wired and wireless.

Although simulation models are a simplified representation

of actual systems, the increasing complexity of new

communication technologies is currently pushing at a new

different level the complexity of simulation models. Let us

consider as example cellular networks: recent standards, e.g.

LTE and LTE-Advanced, introduced new functionalities to

handle the increasing demand for bandwidth and offer

additional features to end users, with, however, a significant

increase in complexity, which is necessarily reflected in the

simulation models adopted, characterized by an overwhelming

number of parameters, factors and number of simulated nodes.

Simulation models with a large number of factors and

parameters usually imply simulation campaigns with a large

number of different scenarios, aimed at evaluating the impact

of each one on the overall system performance. Even though

some techniques, e.g. factorial analysis [1], might be employed

to reduce the number of scenarios, such simulation campaigns

require a rigorous methodology to execute such large-scale

experiments and, in particular, to analyze properly the large

amount of results produced.

To this aim, software tools are usually employed to support

the researcher to ensure a proper simulation workflow and

eliminate - or minimize - biases or inaccuracies introduced by

human operations, [2]. Specifically, tools that automate the

execution of the simulation workflow and aid the researcher in

the post-simulation analysis are usually employed. In this

context, OMNeT++ already offers several tools and aids:

 An effective Graphical User Interface (GUI), which can

be used to automate the execution of simulations. The

end user can plan the simulation campaign through such

interface exploiting an ad-hoc language adopted by

OMNeT++ to configure the simulations and specify their

parameters. The GUI can be used to run the experiments

and monitor their progress through a graphical

representation of network events.

 A post-simulation analysis GUI that can be exploited to

visualize data and analyze metrics. Such GUI offers

some basic data analysis operations, which can be

exploited to produce simple graphs from simulation data.

 Some command line tools (opp_run) that drive and

automate the execution of simulations without the GUI.

Such tools can be used to run simulations on systems that

lack of a graphical window system, e.g. a cluster or a

server.

 A set of tools (scavetool) to export data from simulation

results into different formats suited for external

programs, e.g. Octave, Matlab, etc.

mailto:a.virdis@iet.unipi.it
mailto:carlo.vallati@iet.unipi.it

Although such functionalities are offered to automate the

simulation workflow and aid researchers in post-simulation

analysis, they have issues in handling large-scale simulation

campaigns. Supporting complex simulations and analyzing

large amount of results would require an improvement of the

current software tools in order to ensure the rigorous execution

of a consolidated simulation workflow. In this paper, we

highlight the limits and issues of current tools included in the

OMNeT++ suite in managing large-scale simulations and

propose possible improvements in future perspective. Our goal

is not to carry out a sterile analysis, but to trigger a fruitful

discussion in the community on the best practices and their

implementation, in order to improve future releases.

The remainder of the paper is organized as follows: in

Section II simulation automation tools available for other

network simulators are reviewed, in Section III the proper

simulation workflow for large-scale simulations is presented

along with an analysis of the automation tools currently

available in OMNeT++. In Section IV we propose a software

architecture for automating large-scale simulations, finally in

Section V conclusions and future perspectives are presented.

II. EXAMPLES OF SIMULATION AUTOMATION TOOLS

Network Simulator 2 (NS2) has been the standard de facto

network simulator for years, before OMNeT++ and the release

of its next major release NS3. Built around a simple basic

architecture, NS2 became popular for the many network models

made available over the years. Although popular, the simulator

was completely lacking of a statistic collection framework and

thus it offered no support for simulation automation or data

analysis. To this aim, several third-party add-ons have been

proposed over the year. Among them, it is worth to mention

ns2measure, a framework designed to automate the collection

of statistics, [3]. In addition, other extensions have been

proposed to drive the simulation workflow and offer aid for

post-simulation analysis. The ANSWER tool [2], for instance, is

proposed to drive the experimental execution and automate the

post-simulation data analysis through the aid of a GUI.

NS3, instead, provides native support for statistics

collection and simulation flow management [7]. In particular, a

set of internal modules are included to collect and store

statistics, which can be saved on persistent storage (e.g. a

database) or exported after simulation. Data provided by the

stat module can be also exploited to check the status of

simulations and drive their execution, e.g. stopping the

simulation campaign when a certain level of confidence interval

is reached. Although some functionalities for execution and

data collection are offered, no support for post-simulation data

analysis is provided natively as in OMNeT++.

III. LARGE SCALE SIMULATION WORKFLOW

Consider as an example of large-scale simulation a network

with hundreds of nodes of different types. Each type has a set

of metrics, in the order of tens, that are measured over time for

each node. The network and its nodes can be configured with

hundreds of parameters to tune their behavior. Our goal is to

perform a simulation campaign to assess the performance of the

network in various configurations. For this purpose, we define

as fixed parameters all the parameters that will assume the same

value during the whole simulation campaign; we define,

instead, as factors those parameters whose value will be varied

during the campaign and that will actually modify the system

configuration.

The common workflow is described in Figure 1: first, the

set of simulation scenarios required to include all (or a subset)

of the possible combination of parameters is generated, then all

the simulations are executed and results collected and parsed,

finally results are analyzed. In the following, we overview more

in details each single phase.

A. Scenario generation

The first step in the preparation of the simulation campaign

is the generation of the scenario according to the parameters and

factors. Within OMNeT++ this is done by means of .ini files,

which can be modified in the IDE, either manually or through a

form. Parameters are defined by simply assigning a value to

them whereas factors are specified by means of the so called

iteration variables, i.e. assigning an array of values to one

single parameter. An example of the definition of one parameter

and two factors is given in Figure 3. One of the most important

factor is the number of repetitions, i.e. the number of times one

configuration will be executed with different seeds for random

number generation. Multiple repetitions are in fact used to

perform independent replicas of the same scenario to increase

the statistical soundness of the results, e.g., to improve

confidence intervals.

Once all the above elements are defined, OMNeT++ will

automatically translate the whole set of factors into a simulation

campaign composed of N runs, one for each possible

configuration, as we represent in the left part of Figure 2. If we

indicate with ifact the number of values that are defined for

factor- i ,the total number of runs will be equal to:

i

i

N fact R
 

  
 


where R is the total number of repetitions. Each run is then

associated with a unique numeric ID that will identify the single

simulation all over the process. This approach leads to a run

identification that is factor-agnostic, thus losing correlation

between the run itself and the value of its factors. As we will

see in the following, the latter is fundamental in the whole

workflow as they define a run in a semantic way, representing

how the system is configured. Note that the association between

IDs and factors is preserved unless a factor is changed. It is

quite common, for example, to change a factor during the

Scenario
Generation

Execution
Result
Parsing

Result
Analysis

Figure 1 - Main operations to be performed during a large-scale

experiment.

campaign, e.g. adding one factor (or a value), or performing

additional repetitions of the same configuration in order to

reach the desired statistical confidence. Every time a factor is

added or more repetitions executed, the whole set of IDs is

modified accordingly, as shown in the right part of Figure 2.

This, however, modifies the correspondence between IDs and

factors, which might lead to errors when results are analyzed.

B. Multiple run support

Once the scenario is defined, the actual simulation

campaign has to be performed, running the whole set of N

runs. Modern computers are equipped with multi-core

processors, which can be exploited for the execution of multiple

parallel simulations. Two main options are available in this

respect.

The OMNeT++ environment offers a tool for running

multiple batch simulations within the same machine, the

opp_runall tool. The latter can be executed either via IDE or via

command line and can be configured in terms of various

parameters, e.g. the set of runs to be executed and the number

of parallel processes. However, the simulations to be run are

specified through their IDs, and the corresponding set of factors

has to be retrieved manually. Moreover, opp_runall can be used

only to execute one configuration file at a time, thus parallel

execution of multiple configurations has to be performed

running two different instances.

The second tool that is available in this respect is AKAROA

[4]. The latter is a powerful framework for parallel execution of

multiple simulations in different computers. It also offers the

possibility to monitor at run-time a set of metrics, and extend

the duration until some defined criteria are met. Although

extremely powerful, AKAROA has a non-negligible setup cost,

as it needs to be integrated within the simulator code, e.g.

modifying the statistic collection. A few works on the

integration of AKAROA within OMNeT++ are available in

literature, e.g. [5]. However, considering the most recent

research works and the activity within the community, it does

not seem to be actually used.

C. Post simulation parsing

After the whole campaign has successfully completed,

results should be extracted and processed. One of the main

problem with large-scale simulations is that they generate a

considerable amount of result files, some of which can be very

large. Parsing files can be cumbersome and also error prone.

The OMNeT++ environment has an extremely useful

graphical tool for result extraction. First, it allows the selection

of the set of files or folders to parse. Then, it has a powerful

regular-expression based tool for parsing the results. The latter

is extremely useful to quickly evaluate a small set of data.

However, such tool does not scale with the size of results, i.e. it

becomes extremely slow with large files and when the overall

set of results becomes big. One common solution to the limits

of the graphical interface in analyzing and extracting large

volumes of simulation data is to exploit scavetool, a command

line tool available to extract simulation data. Data, extracted in

different format, can be imported in more powerful tools, e.g.

Octave or Matlab, for analysis. However, scavetool has some

limits, in particular when simulation scenarios with a large

amount of data are considered, the tool is often unable to

complete the extraction, as it requires all the data to be loaded

in RAM. In addition, the extraction of a single metric or specific

simulation scenarios is based on defining matching rules

through regular expression, which is flexible but also error

prone.

Another option available is to exploit R for data analysis. R

is one of the most famous tool for statistical analysis. A plugin

that allows to import directly in R simulation data is available.

The researcher can first import data directly inside the R tool

and then analyze the metrics and draw graphs. The main

advantage of this approach is the large variety of statistical

models and tools available in R, which makes possible the

execution of any kind of analysis. The R tool, however, is not

user-friendly and requires a non -negligible learning time. In

addition, when very large simulation campaigns are considered,

R cannot be used, as it requires all the data to be loaded in RAM.

When it comes to very large data sets, which cause memory

issues to all the aforementioned solutions, the adoption of

custom tools/scripts written by researchers is usually preferred,

e.g. [8]. The realization of ad-hoc tools, however, is difficult, as

simulation results are not stored in standard format, e.g. XML

or JSON, and requires every time to re-invent the wheel.

D. Results analysis

In the previous section, we mentioned that OMNeT++ IDE

provides an efficient tool for quick evaluation of simulation

results. Although this is very useful during the testing phase of

a new models or algorithms, it is not sufficient to show results

in a graceful and statistically sound way, i.e. for adequate

presentation in a research paper. For example, it lacks of the

possibility to evaluate confidence intervals for the mean values.

Moreover, several types of chart are not available in the

OMNeT++ environment, e.g. box plots and cumulative

distribution functions (CDFs) plots, which are widely used in

**.parameter = 50

**.factA = ${ 50 , 100 }

**.factB = ${ 1 , 2 }

ID factA factB ID factA factB repetition

0 50 1 0 50 1 0

1 100 1 1 50 1 1

2 50 2 2 100 1 0

3 100 2 3 100 1 1

 4 50 2 0

 5 50 2 1

 6 100 2 0

 7 100 2 1

Figure 2 - Example of mapping between run IDs and factors

Figure 3 - Parameters and factors definition in .ini files

the research community for representing distributions. In some

cases, more advanced analysis must be performed, e.g. factorial

analysis. Thus, results must be processed by external tools such

as Gnuplot, etc. However, such programs require to build

custom scripts that operate on results (or a subset of it) provided

in a predefined format, which could lead to the same issues

highlighted for the development of custom tools.

IV. A SOFTWARE ARCHITECURE FOR LARGE-SCALE SIMULATION

In this section, we will propose a software architecture for

automating the execution of large-scale simulation campaigns.

The purpose of this architecture is to serve as reference for

future development, triggering a discussion within the

community towards a consolidated point of view. We will take

into account all the limitations highlighted in the previous

sections and focus on four main goals:

1. define a modular and customizable structure;

2. use a factor-based indexing of configuration;

3. guarantee and improve statistical soundness of results;

4. ensure scalable performance.

We define four operational blocks, as represented in Figure

4, each one implementing one of the main steps of the

simulation workflow described in Section III. The interactions

between blocks occur using well-defined interfaces, but the

internal structure of each of them can be customized.

Using Figure 4 as reference, the scenario generator creates

two files: a first one containing all the fixed parameters of the

campaign (the common .ini file generated through the

OMNeT++ GUI); a second file, instead, containing all the

factors with their values.

The launcher will take as input the parameters and the

factors to execute the whole simulation campaign in parallel on

a defined number of CPUs. The launcher should allow to

execute selectively a subset of the simulation scenarios, e.g. for

test or troubleshooting, with scenarios selected in a factor-based

manner. This will allow one for example to execute all the

campaigns where factor x has value y. The number of

repetitions will be also configurable, allowing dynamic

extension.

The output of the launcher is a set of result files, each one

tagged with the values of all the factors, which will be made

available to the parser. The latter will translate the output of the

simulator in the format expected by the analyzer. The parser

can have various implementations depending on the format of

the result files. For example if standard .sca files are used, it can

be implemented as a wrapper for scavetool, still maintaining the

aforementioned scalability issues, but with limited

development cost. More efficient solutions can be obtained

creating custom parses for the .sca files (e.g. [8]) or through the

definition of a new format for data files from scratch (e.g.

binary files) or adopting a standard format (e.g. XML, JSON,

etc.).

Regardless of its internal implementation, the parser will

produce a set of results, tagged with the values of the factors.

The analyzer in turn will use such files to perform three main

operations:

1. compute scalar results such as mean values;

2. create ordered statistics which can be used to generate

CDFs, scatterplots, etc.;

3. perform advanced statistical processing, such as

factorial analysis.

The analyzer has access to the list of factors; thus it can be

configured to selectively operate on a subset of the results. Its

final goal is to produce results that are ready for representation,

thus any tool can be used to create plots, such as Excel,

Kaleidagraph and Calc, or batch ones such as Gnuplot.

V. CONCLUSIONS AND FUTURE PERSPECTIVES

In this work, we presented a critical analysis of the tools for

simulation automation provided by the OMNeT++ framework.

We focused on the context of large-scale simulations and

discussed the limitation of such tool in each step of the

simulation workflow. Finally, we proposed a software

architecture for large-scale simulation, with the aim of serving

as guideline for future development within the community. Our

main goal is to trigger a discussion with all the members of the

OMNeT++ community, and share our view on the subject.

REFERENCES

[1] C. Cicconetti, E. Mingozzi, C.Vallati, “A 2k · r factorial analysis tool for
ns2measure”, In Proceedings of VALUETOOLS 2009.

[2] M. M. Andreozzi, G. Stea, C. Vallati, “A framework for large-scale
simulations and output result analysis with ns-2”, Simutools 2009.

[3] C. Cicconetti, E. Mingozzi, G. Stea. “An integrated framework for
enabling effective data collection and statistical analysis with ns-2”,
WNS2 2006.

[4] K. Pawlikowski, V. W. C. Yau and D. McNickle, "Distributed stochastic
discrete-event simulation in parallel time streams," Simulation
Conference Proceedings, Winter, Lake Buena Vista, FL, USA, 1994.

[5] S. Sroka, H. Karl, “Using Akaroa2 with OMNeT++”, 2nd OMNeT++
Workshop, Berlin, Germany, Jan 2002.

[6] http://www.r-project.org

[7] https://www.nsnam.org/docs/manual/html/statistics.html

[8] https://github.com/sommer/inet-sommer/tree/analysis/etc

Scenario
Generator

Launcher Parser
Analyzer

Scalars Ordered Advanced

Result
files

values

Factors

Parameters

Figure 4 - Proposed architecture for large-scale experiment

http://www.r-project.org/
https://www.nsnam.org/docs/manual/html/statistics.html
https://github.com/sommer/inet-sommer/tree/analysis/etc

