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Abstract. This paper addresses the problem of approximating an eigenvector belonging to the
largest eigenvalue of a symmetric positive definite matrix by the power method. We assume that the
starting vector is randomly chosen with uniform distribution over the unit sphere.

This paper provides lower and upper as well as asymptotic bounds on the randomized error
in the Lp sense, p ∈ [1,+∞]. We prove that it is impossible to achieve sharp bounds that are
independent of the ratio between the two largest eigenvalues. This should be contrasted to the
problem of approximating the largest eigenvalue, for which Kuczyński and Woźniakowski [SIAM J.
Matrix Anal. Appl., 13 (1992), pp. 1094–1122] proved that it is possible to bound the randomized
error at the kth step with a quantity that depends only on k and on the size of the matrix.

We prove that the rate of convergence depends on the ratio of the two largest eigenvalues, on
their multiplicities, and on the particular norm. The rate of convergence is at most linear in the
ratio of the two largest eigenvalues.

Key words. eigenvectors, power method, random start, randomized error

AMS subject classification. 65F15

PII. S0895479895296689

1. Introduction. In this paper we deal with the power method, which is used
to approximate a largest eigenvector of an n× n symmetric matrix A. By the largest
eigenvector we mean a normalized eigenvector corresponding to the largest eigenvalue
of A. Our analysis holds for every matrix A for which the power method is convergent.
To simplify the analysis, we assume that A is positive definite.

It is well known that the convergence of the power method depends on the starting
vector b. In particular, the power method is not convergent if b is orthogonal to the
eigenspace corresponding to the largest eigenvalue of A. Since no a priori information
about this eigenspace is generally available, a random starting vector is usually chosen.
This indicates the need to study the convergence of the power method with a random
start.

It is easy to see that if b is randomly chosen according to the uniform distribution
then the power method approximates a largest eigenvector and the largest eigenvalue
with probability 1. The problem of approximating the largest eigenvalue by the power
method with a random start has been considered in [4], where sharp upper bounds on
the randomized relative error at each step are given. An important feature of these
bounds is that they are independent of the distribution of the eigenvalues.

The approach of our paper is similar to that of [4]. We analyze the convergence of
the power method for approximating a largest eigenvector when the starting vector b
is randomly chosen with uniform distribution over the unit sphere of the n-dimensional
space.
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In order to define the randomized error, we consider the acute angle αk = αk(b)
between the vector computed by the power method at the kth step and the eigenspace
corresponding to the largest eigenvalue, and we study the expectation of sin(αk(b))
over b in the Lp sense, p ∈ [1,+∞].

We first ask whether it is possible to get bounds on the randomized error that do
not depend on the distribution of the eigenvalues. We prove (see section 3) that for
every k and p there are matrices for which the randomized error is very close to 1.
This means that there are matrices for which the power method fails after k steps even
for a random starting vector. In contrast to the problem of approximating the largest
eigenvalue, this shows that the randomized error for the problem of approximating
a largest eigenvector must depend on the distribution of eigenvalues. In particular,
it must depend on the ratio between the two largest eigenvalues. So, the problem of
approximating a largest eigenvector is harder than the problem of approximating the
largest eigenvalue, and even a random start does not help to obtain distribution-free
bounds.

We show that the rate of convergence of the power method depends on the ratio
of the two largest eigenvalues, on their multiplicities, and on the particular norm
Lp. Let λ1 be the largest eigenvalue with multiplicity r, and let λr+1 be the second
largest eigenvalue with multiplicity s. Then the randomized error after k steps is

proportional to (λr+1/λ1)
k

if p < r, to k1/p (λr+1/λ1)
k

if p = r, and to (λr+1/λ1)
kr/p

if p > r. The multiplicative constants depend on p, r, and s. This means that the rate
decreases with p, increases with multiplicity r, decreases with multiplicity s, and is
at most linear in λr+1/λ1. For p = +∞, the power method has the randomized error
equal to one for all k.

The results in this paper provide useful insight into the behavior of the power
method for eigenvector approximation when the initial vector is randomly chosen.
Our bounds can be useful for determining the computational cost for achieving a
prescribed accuracy for eigenvector estimate. In fact, the sharpness of our upper
and lower bounds allows one to derive an accurate estimate of the computational
cost when the distribution of the eigenvalues is partially known. Another interesting
result of the paper is that in some cases the randomized error has a rate of convergence
lower than the well-known (λr+1/λ1)k ratio achieved in the deterministic case. This
is undoubtedly to be taken into account when one applies the power method with an
initial starting vector.

We briefly comment on related work on approximate computation of eigenvectors.
The idea of using random starting vectors for the power method can be found in
Shub [8]. Shub applies the power method to the matrix e−A and approximates an
eigenvector of A which is not necessarily a largest eigenvector. Although, for this
problem, the power method is globally convergent, the random start is used to improve
efficiency. Shub shows, however, that even for n = 2 there are matrices for which this
problem is very hard. In our paper we apply the power method to the matrix A, and
we are only interested in approximating a largest eigenvector.

Kostlan [2] studies the randomized performance of the power method. In partic-
ular, in that paper he bounds the number of steps that allows the error to be lower
than a fixed threshold ε. We discuss those bounds in section 4.3, comparing them
with the bounds proposed in this paper.

Wright [10] and Kostlan [3] analyzed the problem of approximating a largest
eigenvector by the power method in a different setting. They considered the average
case setting over a class of matrices, whereas we consider the randomized setting.
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In particular, they estimate the average time needed for computing a vector whose
relative distance from the eigenspace of largest eigenvectors is less than ε. In our
paper the matrix is fixed while the starting vector is chosen at random.

The paper is organized as follows. Section 2 contains the definition of the problem
and some general results that are used in subsequent sections. In section 3 we analyze
the behavior of the power method for worst case matrices. In section 4 we find
upper and lower bounds on the randomized error. We show that these bounds are
asymptotically optimal since, up to lower order terms, they match the asymptotic
bounds presented in section 5. Numerical tests are presented in section 6. The tests
show that the randomized error indeed depends on the distribution of the eigenvalues.
We compare the test results with the theoretical lower and upper bounds. Section 7
contains the conclusions and final remarks.

2. Definition of the problem. Let A be an n × n symmetric positive defi-
nite matrix with eigenvalues λ1 ≥ λ2 ≥ · · ·λn > 0 and corresponding orthonormal
eigenvectors z1, z2, . . . , zn. We will denote by Z the eigenspace corresponding to λ1.
We recall that the power method is defined as follows; see, e.g., [7]. Let u0 = b be
any nonzero starting vector. Then, for every k = 1, 2, . . ., we construct the following
sequences of vectors: {

yk= Auk−1,
uk= yk/‖yk‖,

where ‖ · ‖ is the Euclidean vector norm.
Without loss of generality, we may assume that the starting vector b is normalized,

so ‖b‖ = 1. Observe that if we express b as a linear combination of the orthonormal
eigenvectors,

b =

n∑
i=1

bizi,

then uk becomes

uk =

∑n
i=1 biλ

k
i zi√∑n

i=1 b
2
iλ

2k
i

.(2.1)

Let r be the multiplicity of the largest eigenvalue λ1. Without loss of generality,
we assume that 1 ≤ r < n, since r = n implies A = λ1I, and in this case any nonzero
vector is an eigenvector corresponding to λ1.

In order to estimate the error at the kth step, we consider the acute angle αk(b)
between the vector uk and the eigenspace Z. This angle is uniquely determined by
the vector uk and by its orthogonal projection on the subspace Z. The sine of αk(b)
is the distance between the vector uk and the subspace Z. From (2.1) we have

dist(uk,Z) := inf
z∈Z
‖uk − z‖ = sin(αk(b)) =

√ ∑n
i=r+1 b

2
iλ

2k
i∑r

i=1 b
2
iλ

2k
1 +

∑n
i=r+1 b

2
iλ

2k
i

.(2.2)

It is straightforward to see that, if the vector b has zero components in the directions
of the eigenvectors belonging to λ1 (i.e., bi = 0 for i = 1, 2 . . . , r), then αk = π/2 for
any k. Otherwise, uk converges to a vector of Z and the angle αk goes to zero as k
goes to infinity. The analysis of the power method for a fixed starting vector b may
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be found in many books (see, for example, [7] and [9]), where in particular one finds
that, if the method converges, the rate convergence is λr+1/λ1.

As already mentioned, we study the randomized error of sin(αk(·)) in the Lp
sense. Using (2.2) we have

sin(αk(b)) =

√ ∑n
i=r+1 b

2
ix

2k
i∑r

i=1 b
2
i +

∑n
i=r+1 b

2
ix

2k
i

,(2.3)

where

xi = λi/λ1 for i = 1, 2, . . . , n, and 1 = x1 = · · · = xr > xr+1 · · · ≥ xn > 0.(2.4)

Let us formalize the notion of Lp norm. Let µ be the uniform distribution over
the unit sphere Sn = {b : ‖b‖ = 1} such that µ (Sn) = 1. Then the Lp norm of the
function sin(αk(·)), defined as in (2.3), is given by

‖ sin(αk(·))‖p =

[∫
Sn

|sin (αk(b))|p µ(db)

]1/p
.(2.5)

From Remark 7.2 of [4], we have∫
Sn

|sin (αk(b))|p µ(db) =
1

cn

∫
Bn

|sin (αk(b))|p db,(2.6)

where cn is Lebesgue’s measure of the unit ball Bn = {b : ‖b‖ ≤ 1}; see (2.10) for
the definition of cn. Substituting (2.3) into (2.5) and using (2.6), we have

‖ sin(αk(·))‖p =

 1

cn

∫
Bn

( ∑n
i=r+1 b

2
ix

2k
i∑r

i=1 b
2
i +

∑n
i=r+1 b

2
ix

2k
i

)p/2
db

1/p

.

In the same way we define the norm of the space L∞ to be

‖ sin(αk(·))‖∞ = sup
b∈Sn

|sin(αk(b))|

= sup
‖b‖=1

√ ∑n
i=r+1 b

2
ix

2k
i∑r

i=1 b
2
i +

∑n
i=r+1 b

2
ix

2k
i

.(2.7)

It is easy to see that the supremum in (2.7) is achieved by setting
∑r
i=1 b

2
i = 0.

From (2.7), we get

‖ sin(αk)‖∞ = 1.(2.8)

In the following we refer to sin(αk(b)) as the error of the power method after k
steps for the starting vector b. We denote ‖ sin(αk)‖p by erank (A, p), and we call it
the randomized error in the Lp sense of the power algorithm after k steps. Hence, we
have

erank (A, p) =

 1

cn

∫
Bn

( ∑n
i=r+1 b

2
ix

2k
i∑r

i=1 b
2
i +

∑n
i=r+1 b

2
ix

2k
i

)p/2
db

1/p

.(2.9)
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For p = +∞, the power method fails to converge since its randomized error is 1
for all k; see (2.8). From now on we therefore assume that p < +∞. As we shall see,
the power method is then convergent: erank (A, p) → 0. The speed of convergence is,
however, poor for large p.

In the paper we will denote by ci the measure of the unit ball over IRi. We have

ci =
πi/2

Γ (i/2 + 1)
;(2.10)

see [1, eq. 8.310, 1] for the definition of the gamma function Γ (x). We will also use
the following relation between the beta and gamma functions:

B (i, j) = 2

∫ 1

0

t2i−1(1− t2)j−1 dt =
Γ (i) Γ (j)

Γ (i+ j)
.(2.11)

We will denote by F (a, b; c;x) the hypergeometric function; see [1, eq. 9.10] for the
definition and the properties of this function.

3. Worst case matrices. In [4], Kuczyński and Woźniakowski considered the
power method for approximating the largest eigenvalue λ1. They proved that the
randomized error after k steps is bounded by a quantity that goes to zero as fast
as ln(n)/k independently of the distribution of the eigenvalues. Our first goal is
to analyze the possibility of obtaining distribution-free bounds for the problem of
approximating a largest eigenvector. To this extent, we will deal with “worst case
matrices.”

Let us denote by s(k, p) the supremum of the randomized error in the Lp sense
over all positive definite matrices A, i.e.,

s(k, p) = sup
A=A∗>0

erank (A, p).

Since the randomized error increases with xi (see (2.4)), it is easy to show that the
supremum is achieved by setting xi = 1 for every i ≥ 2 and for every p, 1 ≤ p < ∞.
Then we get

s(k, p) =

[∫
Sn

( ∑n
i=2 b

2
i

b21 +
∑n
i=2 b

2
i

)p/2
db

]1/p

(3.1)

=

[
1

cn

∫
Bn

(
1− b21∑n

i=1 b
2
i

)p/2
db

]1/p

.

Hence, s(k, p) is independent of k and cannot go to zero. This shows that there are
no distribution-free bounds. In fact, s(k, p) are pretty close to 1. We first consider
the case p = 1. Using (3.1) and the symmetry argument, we have

s(k, 1) =
1

cn

∫
Bn

(
1− b21∑n

i=1 b
2
i

)1/2

db

≥ 1

cn

∫
Bn

(
1− b21∑n

i=1 b
2
i

)
db =

(
1− 1

n

)
.(3.2)

We obtain estimates on s(k, p) by the following proposition.
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Proposition 3.1. For every k and p, 1 ≤ p <∞, we have(
1− 1

n

)
≤ s(k, p) ≤ 1.

Proof. The right-hand side inequality is trivial. Let us prove the left-hand side.
For p = 1 it follows immediately by (3.2). For p > 1, applying Hölder’s inequality
to (3.1) gives us∫

Sn

(
1− b21∑n

i=1 b
2
i

)1/2

db ≤
[∫

Sn

(
1− b21∑n

i=1 b
2
i

)p/2
db

]1/p [∫
Sn

db

]1/q
,

where p and q are conjugate exponents; i.e., 1/p + 1/q = 1. The proof is completed
by observing that

∫
Sn
db = 1.

Proposition 3.1 states that for every k there are matrices for which the randomized
error is close to 1. These matrices have the largest eigenvalue of multiplicity 1, and
the second largest eigenvalue has multiplicity n− 1 and is pathologically close to λ1.
In this case, even if the starting vector is random, the sequence {ui} for i = 1, 2 . . . , k
does not approximate a largest eigenvector.

4. Nonasymptotic behavior. So far we have seen that if λr+1/λ1 ≈ 1 then
the power method behaves badly even for a random starting vector. We now ana-
lyze the relationship between the ratio λr+1/λ1 and the rate of convergence of the
power method for approximating a largest eigenvector. We first show upper and lower
bounds on the randomized error erank (A, p). These bounds depend on the distribution
of the eigenvalues of the matrix A and on the particular norm used. In particular,
we prove that the rate of convergence is slower when the multiplicity of λ1 is smaller
than the value of the parameter p of the norm. What seems interesting about these
results is that they hold for a complete class of norms, and we are able to show how
the speed of convergence of the power method depends on the norm.

4.1. Upper bounds. We now show how the rate of convergence depends on
the multiplicity r of the largest eigenvalue and on the value of the parameter p of
the norm. Theorem 4.1 shows that the rate of convergence depends on the relation
between the parameters r and p. In particular, the speed of convergence increases
with r and decreases with p.

Theorem 4.1. Let A be a symmetric positive definite matrix, and let r, r < n,
denote the multiplicity of the largest eigenvalue λ1 of A. Let

β =

[
Γ (n/2)

Γ (p/2) Γ ((n− p)/2)

(
2 +

2

n

)]1/p
xkr+1.

Then, for every p, 1 ≤ p <∞, and for every k we have

erank (A, p) ≤



xkr+1

(
Γ ((r − p)/2) Γ ((n+ p− r)/2)

Γ (r/2) Γ ((n− r)/2)

)1/p

if p < r,

xkr+1 (2k)1/p
(

ln

(
1

xr+1

)
Γ (n/2)

Γ (p/2) Γ ((n− p)/2)

)1/p

+ β if p = r,

x
kr/p
r+1

(
Γ ((p− r)/2) Γ (n/2)

Γ (p/2) Γ ((n− r)/2)

)1/p

if p > r.
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Proof. We have

[erank (A, p)]p =
1

cn

∫
Bn

( ∑n
i=r+1 b

2
ix

2k
i∑r

i=1 b
2
i +

∑n
i=r+1 b

2
ix

2k
i

)p/2
db.

Observe that the integrand is an increasing function of
∑n
i=r+1 b

2
ix

2k
i . The upper

bound is then obtained by replacing xi by xr+1 for i > r + 1,

[erank (A, p)]p ≤
xkpr+1

cn

∫
Bn

( ∑n
i=r+1 b

2
i∑r

i=1 b
2
i + x2k

r+1

∑n
i=r+1 b

2
i

)p/2
db.(4.1)

Let a = xkr+1, ‖b‖2 =
∑r
i=1 b

2
i , and let ti = bi/(1− ‖b‖2)1/2 for i = r + 1, . . . , n with

‖t‖2 =
∑n
i=r+1 t

2
i . If we rewrite the last integral as an integral over the balls Br and

Bn−r, we get

[erank (A, p)]p ≤ ap

cn

∫
Br

∫
Bn−r

‖t‖p (1− ‖b‖2)(n+p−r)/2

(‖b‖2 + a2‖t‖2(1− ‖b‖2))
p/2

dt db.

Let γ = r(n − r)crcn−r/cn. We twice apply [1, eq. 4.642] to reduce the last integral
to the two-dimensional integral, and we get

[erank (A, p)]p ≤ apγ
∫ 1

0

∫ 1

0

tn+p−r−1 br−1(1− b2)(n+p−r)/2

(b2 + a2t2(1− b2))p/2
db dt.

Since b2 + a2t2(1− b2) ≥ b2, we have

[erank (A, p)]p ≤ apγ
∫ 1

0

tn+p−r−1 dt

∫ 1

0

br−1(1− b2)(n+p−r−1)/2

bp
db

= ap
γ

n+ p− r

∫ 1

0

br−p−1(1− b2)(n+p−r)/2 db.(4.2)

Consider first the case p < r. From the definition of the beta function, (4.2) becomes

[erank (A, p)]p ≤ ap γ

2(n+ p− r)B
(
r − p

2
,
n+ p− r

2
+ 1

)
= ap

Γ ((n+ p− r)/2) Γ ((r − p)/2)

Γ ((n− r)/2) Γ (r/2)
.

This proves the case p < r.
Let us now consider the case p = r. The integral in (4.1) can be rewritten

with respect to the ball Bn−p and the p-dimensional ball B′p = {b :
∑p
i=1 b

2
i ≤

1−
∑n

i=p+1 b
2
i }. We have

[erank (A, p)]p ≤ ap

cn

∫
Bn−p

 n∑
i=p+1

b2i

p/2 ∫
B′p

1(∑p
i=1 b

2
i + a2

∑n
i=p+1 b

2
i

)p/2 db.
Let ‖b‖2 =

∑n
i=p+1 b

2
i . From [1, eq. 4.642], we get

[erank (A, p)]p ≤ ap p cp
cn

∫
Bn−p

‖b‖p
∫ √1−‖b‖2

0

tp−1

(t2 + a2‖b‖2)p/2
dt db.(4.3)
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We have two cases, p = r = 1 and p = r ≥ 2. If p = 1, (4.3) becomes

[erank (A, 1)] ≤ a 2

cn

∫
Bn−1

‖b‖
∫ √1−‖b‖2

0

1

(t2 + a2‖b‖2)1/2
dt db

= a
2

cn

∫
Bn−1

‖b‖ ln

(√
1− ‖b‖2 +

√
1− (1− a2)‖b‖2

a ‖b‖

)
db.

Using [1, eq. 4.642], and observing that
√

1− ‖b‖2 ≤
√

1− (1− a2)‖b‖2, we get

[erank (A, 1)] ≤ a γ
∫ 1

0

bn−1 ln

(
2
√

1− (1− a2)b2

ab

)

≤ a γ

2n
ln

(
1

a2

)
+ a

γ

n
+ a

γ

n2
,(4.4)

where γ = (n− 1)2cn−1/cn. Hence, from (4.4) we have

[erank (A, 1)] ≤ a Γ (n/2)

Γ (1/2) Γ ((n− 1)/2)
ln

(
1

a2

)
+ a

Γ (n/2)

Γ (1/2) Γ ((n− 1)/2)

(
2 +

2

n

)
.

This proves the case p = r = 1.
Let us consider the case p ≥ 2. Notice that

(t2 + a2‖b‖2)p/2 ≥ tp +
p

2
t2(p/2−1)a2‖b‖2.

Then we can bound the denominator of the integrand of (4.3) with the first two terms
of this expansion. We have

[erank (A, p)]p ≤ ap p cp
cn

∫
Bn−p

‖b‖p
∫ √1−‖b‖2

0

tp−1

tp + p/2 tp−2a2‖b‖2 dt db

= ap
p cp
cn

∫
Bn−p

‖b‖p
∫ √1−‖b‖2

0

t

t2 + p/2 a2‖b‖2 dt db.

Solving the last integral, and using again [1, eq. 4.642] to reduce the first integral to
a one-dimensional integral, we obtain

[erank (A, p)]p ≤ apγ
∫ 1

0

bn−1 1

2
ln

(
1− (1− p/2a2)b2

p/2 a2b2

)
db

= ap
γ

2

∫ 1

0

bn−1 ln

(
1

p/2 a2b2

)
db+ ap

γ

2

∫ 1

0

bn−1 ln
(

1−
(

1− p

2
a2
)
b2
)
db

= ap
γ

2n
ln

(
2

pa2

)
+ ap

γ

n2
+ ap

γ

2

∫ 1

0

bn−1 ln
(

1−
(

1− p

2
a2
)
b2
)
db,(4.5)

where γ = p(n − p)cpcn−p/cn. Let us consider the argument of the logarithm in the
integral of (4.5). Observe that if a2 ≤ 2/p, then ln(1− (1− p/2 a2)b2) ≤ 0. Hence, in
this case, we can bound (4.5) by

[erank (A, p)]p ≤ ap γ
2n

ln

(
2

pa2

)
+ ap

γ

n2
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= ap
γ

2n
ln

(
1

a2

)
+ ap

γ

2n

(
ln

(
2

p

)
+

2

n

)
≤ ap Γ (n/2)

Γ (p/2) Γ ((n− p)/2)
ln

(
1

a2

)
+ ap

Γ (n/2)

Γ (p/2) Γ ((n− p)/2)

2

n
.(4.6)

Otherwise, if a2 > 2/p, then ln(1− (1− p/2 a2)b2) ≤ ln(p/2). In this case we have

[erank (A, p)]p ≤ ap γ
2n

ln

(
2

pa2

)
+ ap

γ

n2
+ ap

γ

2

∫ 1

0

bn−1 ln
(p

2

)
db

= ap
γ

2n
ln

(
1

a2

)
+ ap

γ

n2

= ap
Γ (n/2)

Γ (p/2) Γ ((n− p)/2)
ln

(
1

a2

)
+ ap

Γ (n/2)

Γ (p/2) Γ ((n− p)/2)

2

n
.(4.7)

Observing that 2/n < (2 + 2/n) and using (4.6) and (4.7), we have

[erank (A, p)]p ≤ ap Γ (n/2)

Γ (p/2) Γ ((n− p)/2)
ln

(
1

a2

)
+ ap

Γ (n/2)

Γ (p/2) Γ ((n− p)/2)

(
2 +

2

n

)
.

This proves the case p = r.
Finally, assume that p > r. From (4.1), repeating the same reasoning that led

to (4.3), we have

[erank (A, p)] ≤ ap rcr
cn

∫
Bn−r

‖b‖p
∫ √1−‖b‖2

0

tr−1

(t2 + a2‖b‖2)p/2
dt db

=
rcr
cn

∫
Bn−r

∫ √1−‖b‖2

0

tr−1

(t2/(a2‖b‖2) + 1)
p/2

dt db.

Changing variables by setting z = t/(a‖b‖), we get

[erank (A, p)]p ≤ ar rcr
cn

∫
Bn−r

‖b‖r
∫ d

0

zr−1

(z2 + 1)p/2
dz db,

where d =
√

1− ‖b‖2/(a‖b‖). Now set y = z2. From the last equation we have

[erank (A, p)]p ≤ ar rcr
2cn

∫
Bn−r

‖b‖r
∫ d2

0

yr/2−1

(y + 1)p/2
dy db.

We notice that d goes to infinity when a goes to zero. Then we have∫ d2

0

yr/2−1

(y + 1)p/2
dy ≤

∫ +∞

0

yr/2−1

(y + 1)p/2
dy = B

(
r

2
,
p− r

2

)
,

due to formula [1, eq. 3.194]. We apply [1, eq. 4.642] to reduce the integral over Bn−r
to a one-dimensional integral, and we get

[erank (A, p)]p ≤ ar r(n− r)crcn−r
cn

∫ 1

0

bn−1B

(
r

2
,
p− r

2

)
= ar

Γ (n/2) Γ ((p− r)/2)

Γ ((n− r)/2) Γ (p/2)
.

This concludes the proof.
Note that, when p = r, the bound is composed of two terms. The first term

depends on k through xkr+1k
1/p; the second term depends on k through xkr+1. We

remark that for large k the influence of the second term is negligible. Nevertheless,
numerical tests show that this term can affect the bound when the value of xr+1 is
close to 1.
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4.2. Lower bounds. In this section we find lower bounds on the randomized
error erank (A, p). As in section 4.1, we show that these lower bounds depend on the
multiplicity of the largest eigenvalue and on the value of the parameter p of the norm.
Upper and lower bounds show the same dependence on the ratio between the two
largest eigenvalues and on the relation between p and r.

Below we define some constants that are used in Theorem 4.2.

γ =

(
Γ ((r − p)/2) Γ (p+ 1/2) Γ ((r + 1)/2)

2Γ (r/2) Γ (1/2) Γ ((r + p+ 1)/2)
F

(
r + 1

2
,
r − p

2
;
r + p+ 1

2
; 1− x2k

r+1

))1/p

if p < 2, and

γ =

(
pΓ ((r − p)/2) Γ ((p+ 3)/2)

2(r + 1)Γ (r/2) Γ (1/2)
F

(
r + 1

2
,
r − p

2
;
r + 3

2
; 1− x2k

r+1

))1/p

if p ≥ 2. Moreover,

γ′ =

(
Γ ((p+ 1)/2)

Γ (p/2) Γ (1/2)

(
log

(
p2 + 3p

4

)
− 2

p+ 1
+

2p− 4

p+ 3
F

(
1,
p+ 1

2
;
p+ 5

2
; 1− x2k

r+1

)))1/p
,

γ′′ =

(
r Γ ((r + 1)/2 + 1) Γ ((p− r)/2)

4pΓ (1/2) Γ (p/2 + 1)
F
(r

2
+ 1, 1;

p

2
+ 1; 1− x2k

r+1

))1/p

.

Theorem 4.2. Let A be a symmetric positive definite matrix, and let r, r < n,
denote the multiplicity of the largest eigenvalue λ1 of A. Then, for every p, 1 ≤ p <∞,
and for every k we have

erank (A, p) ≥



xkr+1

(
Γ ((r − p)/2) Γ ((p+ 1)/2)

Γ (r/2) Γ (1/2)

)1/p

− γ xkr/pr+1 if p < r,

xkr+1(2k)1/r
(

ln

(
1

xr+1

)
Γ ((p+ 1)/2)

Γ (p/2) Γ (1/2)

)1/p

− γ′xkr+1 if p = r,

x
kr/p
r+1

(
Γ ((p− r)/2) Γ ((r + 1)/2)

Γ (p/2) Γ (1/2)

)1/p

− γ′′xk(r+2)/p
r+1 if p > r.

Proof. We have

[erank (A, p)]p =
1

cn

∫
Bn

( ∑n
i=r+1 b

2
ix

2k
i∑r

i=1 b
2
i +

∑n
i=r+1 b

2
ix

2k
i

)p/2
db.

Notice that the integrand is an increasing function of
∑n
i=r+1 b

2
ix

2k
i . Hence, the lower

bound is obtained by replacing xi by 0 for i > r + 1,

[erank (A, p)]p ≥
xkpr+1

cn

∫
Bn

bpr+1(∑r
i=1 b

2
i + x2k

r+1b
2
r+1

)p/2 db.
Let a = xkr+1. Writing the last integral as an integral over the ball Bn−r and the

r-dimensional ball of radius q =
√

1−
∑n
i=r+1 b

2
i , and applying [1, eq. 4.642], we get

[erank (A, p)]p ≥ rcr
cn

∫
Bn−r

∫ q

0

tr−1

(
a2 b2r+1

t2 + a2 b2r+1

)p/2
dt db.(4.8)
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Let us denote a2 b2r+1 by α and consider the integral

f(α) =

∫ q

0

tr−1

(
α

t2 + α

)p/2
dt.(4.9)

We have three cases depending on the relation between p and r.

Consider first the case p < r. It is convenient to split f(α) as follows:

f(α) = αp/2
(∫ q

0

tr−p−1 dt−
∫ q

0

g(t) dt

)
,(4.10)

where

g(t) = tr−1

(
1

tp
−
(

1

t2 + α

)p/2)
.

We can conveniently rewrite g(t) as

g(t) = tr−p−1

(
1−

(
t2

t2 + α

)p/2)
.

Setting y = t2/α, we have∫ q

0

g(t) dt =
α(r−p)/2

2

∫ q2/α

0

y(r−p)/2−1 (y + 1)p/2 − yp/2
(y + 1)p/2

dy.(4.11)

We consider two cases: p < 2 and p ≥ 2. Let us start with p < 2. Notice that
(y + 1)p/2 − yp/2 ≤ 1. Then from (4.11) we get∫ q

0

g(t) dt ≤ α(r−p)/2

2

∫ q2/α

0

y(r−p)/2−1

(y + 1)p/2
dy

=
qr−p

r − pF
(
p

2
,
r − p

2
;
r − p

2
+ 1;−q

2

α

)
,

due to [1, eq. 3.194] (also see [1] for the definition and the properties of the hypergeo-
metric function F (a, b; c;x)). Substituting it into (4.10) and solving the first integral,
we have

f(α) ≥ αp/2 q
r−p

r − p − α
p/2 q

r−p

r − pF
(
p

2
,
r − p

2
;
r − p

2
+ 1;−q

2

α

)
.

Hence, (4.8) becomes

[erank (A, p)]p ≥ rcr
(r − p)cn

∫
Bn−r

apbpr+1

(
1−

n∑
i=r+1

b2i

)(r−p)/2

db

− aprcr
(r − p)cn

∫
Bn−r

bpr+1

(
1−

n∑
i=r+1

b2i

)(r−p)/2

F

(
p

2
,
r − p

2
;
r − p+ 2

2
;

∑n
i=r+1 b

2
i − 1

a2b2r+1

)
db.
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Using [1, eq. 4.642], we get

[erank (A, p)]p ≥ apΓ ((p+ 1)/2) Γ ((r − p)/2)

Γ (1/2) Γ (r/2)
(4.12)

− ap (r + 1)Γ ((r + 1)/2)

(r − p)Γ (r/2) Γ (1/2)

∫ 1

0

tp(1− t2)(r−p)/2F

(
p

2
,
r − p

2
;
r − p+ 2

2
;
t2 − 1

a2t2

)
dt.

After setting y = (1− t2)/(a2t2), we can rewrite the integral in (4.12) as∫ 1

0

tp(1− t2)(r−p)/2F

(
p

2
,
r − p

2
;
r − p

2
+ 1;−1− t2

a2t2

)
dt

=
a−p−1

2

∫ ∞
0

y(r−p)/2

(y + 1/a2)(r+3)/2
F

(
p

2
,
r − p

2
;
r − p

2
+ 1;−y

)
dy.

From the last equation and using [1, eq. 7.512, 10], we have∫ 1

0

tp(1− t2)(r−p)/2F

(
p

2
,
r − p

2
;
r − p

2
+ 1;

t2 − 1

a2t2

)
dt(4.13)

=
2ap+1Γ ((r − p)/2 + 1)Γ (p+ 1/2) Γ ((r + 1)/2)

Γ ((r + 3)/2) Γ ((p+ r + 1)/2)
F

(
p+

1

2
,
r + 1

2
;
p+ r + 1

2
; 1− 1

a2

)
.

Applying the transformation formula to the hypergeometric function (see [1, eq. 9.131,
1]), we have

F

(
p+

1

2
,
r + 1

2
;
p+ r + 1

2
; 1− 1

a2

)
= ar+1 F

(
r + 1

2
,
r − p

2
;
p+ r + 1

2
; 1− a2

)
.

Substituting it into (4.13) and then into (4.12), we get

[erank (A, p)]p ≥ apΓ ((p+ 1)/2) Γ ((r − p)/2)

Γ (1/2) Γ (r/2)
− arγ,

where

γ =
Γ ((r − p)/2) Γ (p+ 1/2) Γ ((r + 1)/2)

2Γ (r/2) Γ (1/2) Γ ((r + p+ 1)/2)
F

(
r + 1

2
,
r − p

2
;
r + p+ 1

2
, 1− a2

)
.

This concludes the proof of the case p < 2.
Let p ≥ 2. Observe that, from Lagrange’s theorem, there exists a value ξ, y ≤

ξ ≤ y + 1, such that (y + 1)p/2 − yp/2 = p/2 ξp/2−1. Since ξp/2−1 ≤ (y + 1)p/2−1, we
obtain the bound∫ q

0

g(t) dt ≤ α(r−p)/2 p

4

∫ q2/α

0

y(r−p)/2−1

y + 1
dy

= qr−p
p

2(r − p) F
(

1,
r − p

2
;
r − p

2
+ 1;−q

2

α

)
,(4.14)

which follows from [1, eq. 3.194, 1]. Proceeding exactly as before, we get

f(α) ≥ αp/2 q
r−p

r − p − α
p/2 qr−pp

2(r − p) F
(

1,
r − p

2
;
r − p

2
+ 1;−q

2

α

)
.
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Using this bound in (4.8), we get

[erank (A, p)]p ≥ rcr
(r − p)cn

∫
Bn−r

apbpr+1

(
1−

n∑
i=r+1

b2i

)(r−p)/2

db(4.15)

− rpcr
2(r − p)cn

∫
Bn−r

apbpr+1

(
1−

n∑
i=r+1

b2i

)(r−p)/2

F

(
1,
r − p

2
;
r − p+ 2

2
;

∑n
i=r+1 b

2
i − 1

a2b2r+1

)
db.

Solving the second integral in (4.15) as before and applying the transformation formula
[1, eq. 9.131] to the hypergeometric function, we have

[erank (A, p)]p ≥ apΓ ((p+ 1)/2) Γ ((r − p)/2)

Γ (1/2) Γ (r/2)
− arγ,

where

γ =
pΓ ((r − p)/2) Γ ((p+ 3)/2)

2(r + 1)Γ (r/2) Γ (1/2)
F

(
r + 1

2
,
r − p

2
;
r + 1

2
+ 1, 1− a2

)
.

This concludes the proof for p < r.

Let p = r. The integral denoted by f(α) in (4.9) becomes

f(α) = αp/2
∫ q

0

tp−1

(
1

t2 + α

)p/2
dt(4.16)

and can be rewritten as

f(α) = αp/2
(∫ q

0

t

t2 + p/2α
dt−

∫ q

0

g(t) dt

)
,(4.17)

where

g(t) =
t

t2 + p/2α
− tp−1

(t2 + α)p/2
.

Since p = r, we have that p is an integer between 1 and n. We analyze separately the
cases p = 1 and p ≥ 2. If p = 1, then g(t) ≤ 0 and

f(α) ≥ α1/2

(∫ q

0

t

t2 + 1/2α
dt

)
=
α1/2

2
ln

(
q2 + 1/2α

1/2α

)
.

From (4.8) and since q =
√

1−
∑n
i=2 b

2
i , we get

[erank (A, 1)]1 ≥ 1

cn

∫
Bn−1

α1/2 ln

(
1−

∑n
i=2 b

2
i + 1/2α

1/2α

)
db.



926 GIANNA M. DEL CORSO

Let ‖b‖ =
∑n
i=3 b

2
i and t = b2/(1− ‖b‖2)1/2. Since α = a2 b22, using [1, eq. 4.642], we

have

[erank (A, 1)] ≥ a 2

cn

∫
Bn−2

∫ 1

0

t
(
1− ‖b‖2

)
ln

(
1− (1− 1/2 a2)t2

1/2 a2t2

)
dt db

= a
(n− 2)cn−2

cn
B
(n

2
− 1, 2

)∫ 1

0

t ln

(
1− (1− 1/2 a2)t2

1/2a2t2

)
dt

= a
(n− 2)cn−2

cn
B
(n

2
− 1, 2

) 1

2(1− 1/2 a2)
ln

(
2

a2

)
≥ a (n− 2)cn−2

2cn
B
(n

2
− 1, 2

)
ln

(
1

a2

)
+ a

(n− 2)cn−2

2cn
B
(n

2
− 1, 2

)
ln(2),

from which we have

erank (A, 1) ≥ a

π
ln

(
1

a2

)
+
a

π
ln(2).

This provides the proof for p = r = 1.
Now let p ≥ 2. We notice that t2 + p/2α ≥ t2 + α. Then

g(t) ≤ t(t2 + α)p/2−1 − tp−1

(t2 + α)p/2
.

Setting y = t2/α, we have∫ q

0

g(t) dt ≤
∫ q2/α

0

(y + 1)p/2−1 − yp/2−1

2(y + 1)p/2
dy

≤ 1

2

(p
2
− 1
)∫ q2/α

0

1

(y + 1)2
dy

=
1

2

(p
2
− 1
) q2

α+ q2
.

We substitute this inequality into (4.17). We have

f(α) ≥ αp/2
(∫ q

0

t

t2 + p/2α
dt− 1

2

(p
2
− 1
))

=
αp/2

2
ln

(
q2 + p/2α

p/2α

)
− αp/2

2

(p
2
− 1
) q2

α+ q2
.

Since q =
√

1−
∑n
i=p+1 b

2
i and p = r, we obtain the lower bound

[erank (A, p)]p ≥ pcp
2cn

∫
Bn−p

αp/2 ln

(
1−

∑n
i=p+1 b

2
i + p/2α

p/2α

)
db

− pcp
2cn

(p
2
− 1
)∫

Bn−p

αp/2
1−

∑n
i=r b

2
i

α+ 1−
∑n
i=r b

2
i

db.

Let ‖b‖2 =
∑n
i=p+2 b

2
i and t = bp+1/(1− ‖b‖2)1/2. Then from the definition of α and
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using [1, eq. 4.642], we have

[erank (A, p)]p ≥ ap pcp
cn

∫
Bn−p−1

∫ 1

0

tp(1− ‖b‖2)(p+1)/2 ln

(
1− (1− p/2 a2)t2

p/2 a2t2

)
dt db

− ap pcp
cn

(p
2
− 1
)∫

Bn−p−1

∫ 1

0

tp(1− ‖b‖2)(p+1)/2 (1− t2)

1− (1− a2)t2
dt db.

Again using [1, eq. 4.642], we get

[erank (A, p)]p ≥ apγB
(
n− p− 1

2
,
p+ 1

2
+ 1

)∫ 1

0

tp ln

(
1− (1− p/2 a2)t2

p/2 a2t2

)
dt

− apγ p− 2

2
B

(
n− p− 1

2
,
p+ 1

2
+ 1

)∫ 1

0

tp(1− t2)

1− (1− a2)t2
dt,(4.18)

where γ = p(n− p− 1)cpcn−p−1/(2cn). Observe that∫ 1

0

tp ln

(
1− (1− p/2 a2)t2

p/2 a2t2

)
dt

=
1

p+ 1
ln

(
2

pa2

)
+

2

(p+ 1)2
+

∫ 1

0

tp ln
(

1−
(

1− p

2
a2
)
t2
)
dt.(4.19)

Notice that if a2 > 2/p then ln(1 − (1 − p/2 a2)t2) ≥ ln(1) = 0. Hence, from (4.19)
and using [1, eq. 3.197, 3] to solve the integral in (4.18), we have

[erank (A, p)]p ≥ ap γ′

p+ 1
ln

(
2

pa2

)
− apγ′ 2(p− 2)

(p+ 3)
F

(
1,
p+ 1

2
;
p+ 5

2
; 1− a2

)
+ apγ′

2

p+ 1
,

where γ′ = γB ((n− p− 1)/2, (p+ 1)/2 + 1). Using (2.10), we can express ci in terms
of the gamma function, and we get

[erank (A, p)]p ≥ ap Γ ((p+ 1)/2)

Γ (p/2) Γ (1/2)
ln

(
1

a2

)
(4.20)

− ap Γ ((p+ 1)/2)

Γ (p/2) Γ (1/2)

[
2(p− 2)

p+ 3
F

(
1,
p+ 1

2
;
p+ 5

2
; 1− a2

)
− ln

(
2

p

)
− 2

p+ 1

]
.

Otherwise, when a2 ≤ 2/p, we use the fact that

ln(1− ct2) = −
∞∑
i=1

(ct2)i

i
,

where c is a constant such that −1 ≤ ct2 < 1. Setting c = (1− p/2a2), and using the
previous relation, the integral in (4.19) becomes∫ 1

0

tp ln
(

1−
(

1− p

2
a2
)
t2
)
dt = −

∞∑
i=1

(1− p/2 a2)i

i(2i+ p+ 1)
≥ − 1

p+ 1
ln

(
p+ 3

2

)
.
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In this case, from (4.19) we have∫ 1

0

tp ln

(
1− (1− p/2a2)t2

p/2a2t2

)
dt ≥ 1

p+ 1
ln

(
2

pa2

)
− 1

p+ 1
ln

(
p+ 3

2

)
+

2

(p+ 1)2
,

and then

[erank (A, p)]p ≥ ap Γ ((p+ 1)/2)

Γ (p/2) Γ (1/2)
ln

(
1

a2

)
− ap Γ ((p+ 1)/2)

Γ (p/2) Γ (1/2)

[
2p− 4

p+ 3
F

(
1,
p+ 1

2
;
p+ 5

2
; 1− a2

)
+ ln

(
p(p+ 3)

4

)
− 2

p+ 1

]
,

which concludes the proof for p = r.

The last case is p > r. Setting y = t2/α, the integral f(α) defined by (4.9)
becomes

f(α) =
αr/2

2

∫ q2/α

0

yr/2−1

(y + 1)p/2
dy.

It can be rewritten as

f(α) =
αr/2

2

[∫ ∞
0

yr/2−1

(y + 1)p/2
dy −

∫ ∞
q2/α

yr/2−1

(y + 1)p/2
dy

]
.(4.21)

The first integral of the right-hand side of (4.21) can be solved using [1, eq. 3.194, 3]
and is equal to B(r/2, (p − r)/2). The second integral of (4.21) can be solved using
[1, eq. 3.194, 2] and is equal to(

α

q2

)(p−r)/2
2

p− rF
(
p

2
,
p− r

2
;
p− r

2
+ 1;− α

q2

)
.

Hence, (4.21) becomes

f(α) =
αr/2

2
B

(
r

2
,
p− r

2

)
− αp/2

(p− r) qp−rF
(
p

2
,
p− r

2
;
p− r

2
+ 1;− α

q2

)
.(4.22)

By substituting (4.22) into (4.8), and from the definition of α and q we have

[erank (A, p)]p ≥ ar rcr
2cn

B

(
r

2
,
p− r

2

)∫
Bn−r

brr+1 db

− aprcr
(p− r)cn

∫
Bn−r

bpr+1(
1−
∑n
i=r+1 b

2
i

)(p−r)/2F(p2 , p− r2
;
p− r + 2

2
;

a2b2r+1∑n
i=r+1 b

2
i − 1

)
db.

Using again the technique of reducing integrals to one-dimensional integrals, we get

[erank (A, p)]p ≥ ar γ
2
B

(
r

2
,
p− r

2

)
B

(
r + 1

2
,
n− r − 1

2
+ 1

)
− apγ′

∫ 1

0

tp

(1− t2)(p−r)/2
F

(
p

2
,
p− r

2
;
p− r

2
+ 1;−a2 t2

1− t2

)
dt,(4.23)
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where γ = rcrcn−r−1/cn and γ′ = Γ ((r + 1)/2 + 1) / ((p− r)Γ (1/2) Γ (r/2)). Con-
sider the integral in (4.23). By setting z = t2/(1− t2), we obtain∫ 1

0

tp

(1− t2)(p−r)/2
F

(
p

2
,
p− r

2
;
p− r

2
+ 1;−a2 t2

1− t2

)
dt

=
1

2ap−r−2

∫ ∞
0

z(p−1)/2

(a2 + z)(r+3)/2
F

(
p

2
,
p− r

2
;
p− r

2
+ 1;−z

)
dz.(4.24)

We notice that

z(p−1)/2

(a2 + z)(r+3)/2
≤ z(p−r)/2

(a2 + z)2
.

Using this inequality and [1, eq. 7.51, 10], (4.24) can be bounded as follows:

1

2ap−r−2

∫ ∞
0

z(p−1)/2

(a2 + z)(r+3)/2
F

(
p

2
,
p− r

2
;
p− r

2
+ 1;−z

)
dz

≤ 1

2ap−r−2

∫ ∞
0

z(p−r)/2

(a2 + z)2
F

(
p

2
,
p− r

2
;
p− r

2
+ 1;−z

)
dz

=
1

2ap−r−2

Γ ((p− r)/2 + 1) Γ (r/2 + 1)

Γ (p/2 + 1)
F
(r

2
+ 1, 1;

p

2
+ 1; 1− a2

)
.(4.25)

Substituting (4.25) in (4.23), we get

[erank (A, p)]1/p ≥ ar Γ ((p− r)/2) Γ ((r + 1)/2 + 1)

Γ (p/2) Γ (1/2)

− ar+2 rΓ ((r + 1)/2 + 1) Γ ((p− r)/2)

Γ (p/2 + 1) Γ (1/2)
F
(r

2
+ 1, 1;

p

2
+ 1; 1− a2

)
.

This concludes the proof.

4.3. Discussion. Theorems 4.1 and 4.2 state that the randomized error erank (A, p)
must depend on the ratio λr+1/λ1. In addition, these theorems describe the actual
behavior of the rate of convergence for every k, p, and r. We notice that only when
r > p do we have the same rate of convergence as in the asymptotic deterministic case
with

∑r
i=1 b

2
i 6= 0. For the other two cases, r = p and r < p, the rate convergence is

slower. This is due to the fact that Theorems 4.1 and 4.2 deal with the randomized
case. So, in order to compute the randomized error we have to integrate over all
possible starting vectors, even those for which the power method does not converge
or converges very slowly.

To give an intuitive idea about the difference in the rate of convergence between
the asymptotic deterministic case (the rate is then proportional to (λr+1/λ1)k) and
the randomized case, let us analyze the error for p = 1. In this case we have only two
possibilities: r > p or r = p = 1. Assuming

∑r
i=1 b

2
i 6= 0, we have

sin(αk(b)) =

(
λr+1

λ1

)k√b2r+1 + · · ·+ b2r+s
b21 + · · ·+ b2r

+ o

((
λr+1

λ1

))
,

where s is the multiplicity of the second largest eigenvalue.
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If r = 1, the expected value of sin(αk(b)) with respect to b cannot be proportional
to (λ2/λ1)k since ∫

‖b‖=1

√
b22 + · · ·+ b2s+1

b21
µ(db) = +∞.

A more careful analysis shows that we have to lose a factor proportional to ln(λ1/λ2)2k

in order to achieve the convergence of the integral. For r ≥ 2,∫
‖b‖=1

√
b2r+1 + · · ·+ b2r+s
b21 + · · ·+ b2r

µ(db) < +∞,

so we have a rate of convergence proportional to (λr+1/λ1)k, as in the deterministic
case. The explanation of the general case p ≥ 1 is similar.

Analyzing upper and lower bounds together, we see the complete behavior of the
power method for computing a largest eigenvector. In fact, for every p and r, upper
and lower bounds exhibit the same dependence on λr+1/λ1 and on k.

We now comment on the bounds proposed by Kostlan in [2].
Kostlan estimates the number of steps required by the power method to give a

dominant ε-eigenvector, averaged over all the possible starting vectors. However, he
considers another error criterion, so it is not easy to compare these bounds with our
bounds. In particular, we use the Euclidean distance, where in [2] the Riemannian
distance is considered. Moreover, we study the error in the Lp case, while Kostlan
simply integrates the error over the all possible starting vectors.

5. Asymptotic behavior. In section 4 we provide upper and lower bounds for
the randomized error of the power method for each step k. These bounds differ only
by multiplicative constants and by lower order terms. We notice that only for upper
bounds do the constants depend on the size of the matrix, while for the lower bounds
they depend only on p and r. Moreover, if A is a large matrix, the constants of the
upper bound become huge. So, it is natural to ask if these constants are sharp. We
answer this question by analyzing the asymptotic behavior of the randomized error
erank (A, p).

Theorem 5.1. Let A be a symmetric positive definite matrix and let r, r < n,
and s denote the multiplicities of the two largest eigenvalues λ1 and λr+1 of A. Then
for every p, 1 ≤ p <∞, we have

lim
k→+∞

erank (A, p)

xkr+1

=

(
Γ ((r − p)/2) Γ ((p+ s)/2)

Γ (r/2) Γ (s/2)

)1/p

for p < r,

lim
k→+∞

erank (A, p)

xkr+1 (2k)1/r [ln (1/xr+1)]
1/r

=

(
Γ ((p+ s)/2)

Γ (p/2) Γ (s/2)

)1/p

for p = r,

lim
k→+∞

erank (A, p)

x
kr/p
r+1

=

(
Γ ((p− r)/2) Γ ((r + s)/2)

Γ (p/2) Γ (s/2)

)1/p

for p > r.

Proof. From (2.9) we have

erank (A, p) =

 1

cn

∫
Bn

( ∑n
i=r+1 b

2
ix

2k
i∑r

i=1 b
2
i +

∑n
i=r+1 b

2
ix

2k
i

)p/2
db

1/p

.
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We can rewrite the previous equation as follows:

erank (A, p) =

 1

cn

∫
Bn

( x2k
r+1

∑r+s
i=r+1 b

2
i∑r

i=1 b
2
i + x2k

r+1

∑r+s
i=r+1 b

2
i

)1/2

+ rk(b)

p

db

1/p

,

where

rk(b) =

( ∑n
i=r+1 b

2
ix

2k
i∑r

i=1 b
2
i +

∑n
i=r+1 b

2
ix

2k
i

)1/2

−
(

x2k
r+1

∑r+s
i=r+1 b

2
i∑r

i=1 b
2
i + x2k

r+1

∑r+s
i=r+1 b

2
i

)1/2

.(5.1)

Let

ẽrank (A, p) =

 1

cn

∫
Bn

(
x2k
r+1

∑r+s
i=r+1 b

2
i∑r

i=1 b
2
i + x2k

r+1

∑r+s
i=r+1 b

2
i

)p/2
db

1/p

.

We want to show that

lim
k→+∞

erank (A, p) = lim
k→+∞

ẽrank (A, p).(5.2)

Notice that

ẽrank (A, p) ≤ erank (A, p) ≤ ẽrank (A, p) + ‖rk‖p,

where

‖rk‖p =

(
1

cn

∫
Bn

rk(b)p db

)1/p

.

Since rk(b) → 0 pointwise almost everywhere, and |rk(b)| ≤ 1 for the Lp-dominated
convergence theorem (see [6, p. 312]) we have limk→+∞ ‖rk‖p = 0. This proves (5.2).

Equation (5.2) shows that the asymptotic behavior of erank (A, p) can be studied
by analyzing ẽrank (A, p). Let a = xkr+1. Integrating with respect to br+s+1, . . . , bn, we
have

[ẽrank (A, p)]
p

= ap
cn−r−s
cn

∫
Br+s

( ∑r+s
i=r+1 b

2
i∑r

i=1 b
2
i + a2

∑r+s
i=r+1 b

2
i

)p/2(
1−

r+s∑
i=1

b2i

)(n−r−s)/2

db.

Let ‖b‖2 =
∑r
i=1 b

2
i and let ti = bi/(1− ‖b‖2)1/2 for i = r + 1, . . . , r + s, and ‖t‖2 =∑r+s

i=r+1 t
2
i . If we rewrite the last integral as an integral over the balls Br and Bs, we

have

[ẽrank (A, p)]
p

= ap
cn−r−s
cn

∫
Br

∫
Bs

‖t‖p(1− ‖b‖2)(n+p−r)/2(1− ‖t‖2)(n−r−s)/2

[‖b‖2 + a2‖t‖2(1− ‖b‖2)]
p/2

dt db.

Using [1, eq. 4.642] for both integrals, we get

[ẽrank (A, p)]
p

= apγ

∫ 1

0

∫ 1

0

ts−1 br−1 tp(1− b2)(n+p−r)/2 (1− t2)(n−r−s)/2

[b2 + a2t2(1− b2)]p/2
dt db

= apγ

∫ 1

0

tp+s−1(1− t2)(n−r−s)/2
[∫ 1

0

br−1(1− b2)(n+p−r)/2

[b2 + a2t2(1− b2)]p/2
db

]
dt,(5.3)
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where γ = rscn−r−scrcs/cn.
We have now three cases depending on the relation between p and r. Consider

first the case p < r. Then the last integral of (5.3) is finite even for a = 0. Substituting
a = 0, we get

[ẽrank (A, p)]
p

= apγ

∫ 1

0

tp+s−1(1− t2)(n−r−s)/2 dt

∫ 1

0

br−p−1(1− b2)(n+p−r)/2 db.

From the definition of the beta function (2.11) we have

[ẽrank (A, p)]
p

= ap
γ

4
B

(
p+ s

2
,
n− r − s

2
+ 1

)
B

(
r − p

2
,
n+ p− r

2
+ 1

)
.

Using (2.10), we can express ci in terms of the gamma function. We obtain

[ẽrank (A, p)]
p

= ap
Γ ((r − p)/2) Γ ((p+ s)/2)

Γ (r/2) Γ (s/2)
.

This proves that for p < r, by using (5.2) we have

lim
k→+∞

erank (A, p)

xkr+1

=

(
Γ ((r − p)/2) Γ ((p+ s)/2)

Γ (r/2) Γ (s/2)

)1/p

.

Consider now the case p = r. From (5.3) we have that [ẽrank (A, p)]p is equal to

apγ

∫ 1

0

tp+s−1(1− t2)(n−p−s)/2
[∫ 1

0

bp−1(1− b2)n/2

[b2 + a2t2(1− b2)]p/2
db

]
dt.(5.4)

We expand bp−1(1−b2)n/2 as bp−1−(n/2)bp+1+O
(
bp+3

)
. Since [b2(1−a2t2)+a2t2]p/2

behaves as bp+o
(
a2t2

)
, it is sufficient to consider the first two terms of the expansion.

As a approaches zero, we have∫ 1

0

bp−1(1− b2)n/2

[b2(1− a2t2) + a2t2]p/2
db

=

∫ 1

0

bp−1

[b2(1− a2t2) + a2t2]p/2
db+O

(∫ 1

0

bp+1

[b2(1− a2t2) + a2t2]p/2
db

)
=

∫ 1

0

bp−1

(b2 + a2t2)p/2
db+O

(∫ 1

0

b db

)
.

Observe that (b2 + a2t2)p/2 = bp + (p/2)b2(p/2−1)a2t2(1 + o (1)) as a→ 0. Then from
the last equation we have∫ 1

0

bp−1

(b2 + a2t2)p/2
db+O

(∫ 1

0

b db

)
=

∫ 1

0

bp−1

bp−2 (b2 + p/2 a2t2)
db+O (1)

=

∫ 1

0

b

b2 + p/2 a2t2
db+O (1)

=
1

2
ln
(
b2 +

p

2
a2t2

)∣∣∣∣1
0

+O (1)

= ln

(√
2

pa2t2

)
(1 + o (1)).
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Substituting this equality into (5.4) we get

[ẽrank (A, p)]
p

= apγ

∫ 1

0

tp+s−1(1− t2)(n−p−s)/2 ln

(√
2

pa2t2

)
dt

= ap
γ

4
ln

(
2

pa2

)
B

(
p+ s

2
,
n− p− s

2
+ 1

)
+O (ap) .

If we replace the expression for γ in the last equation, from (5.2) we obtain

lim
k→+∞

erank (A, p)

xkr+1(2k)1/r [ln (1/xr+1)]
1/r

=

(
Γ ((p+ s)/2)

Γ (p/2) Γ (s/2)

)1/p

.

The last case is p > r. We want to compute the limit

lim
x→+∞

erank (A, p)

x
kr/p
r+1

=

[
lim

k→+∞

[ẽrank (A, p)]
p

xkrr+1

]1/p
.

From (5.3) we get

lim
k→+∞

[erank (A, p)]
p

xkrr+1

= lim
a→0

[erank (A, p)]
p

ar
(5.5)

= lim
a→0

ap−rγ

∫ 1

0

tp+s−1(1− t2)(n−r−s)/2

[∫ 1

0

br−1(1− b2)(n+p−r)/2

[b2 + a2t2(1− b2)]
p/2

db

]
dt.

Observe that for a→ 0 we have∫ 1

0

ap−r
br−1(1− b2)(n+p−r)/2

[b2 + a2t2(1− b2)]
p/2

db

=

∫ 1

0

ap−r
br−1(1− b2)(n+p−r)/2

[b2 + a2t2]
p/2

db

=

∫ 1

0

ap−r
br−1(1− b2)(n+p−r)/2

aptp (b2/(a2t2) + 1)
p/2

db.(5.6)

We change variables by setting y = b/(at). Then the integral (5.6) becomes

1

tp−r

∫ 1/(at)

0

yr−1(1− a2t2y2)(n+p−r)/2

(y2 + 1)p/2
dy.

If we set z = y2, this integral can be transformed into

1

2tp−r

∫ 1/(a2t2)

0

zr/2−1(1− a2t2z)(n+p−r)/2

(z + 1)p/2
dz.

We substitute this integral into (5.5). We get

lim
k→+∞

[ẽrank (A, p)]
p

xkrr+1

= lim
a→0

[erank (A, p)]
p

ar
(5.7)

=
γ

2

∫ 1

0

tr+s−1(1− t2)(n−r−s)/2

[
lim
a→0

∫ 1/(a2t2)

0

zr/2−1(1− a2t2z)(n+p−r)/2

(z + 1)p/2
dz

]
dt.
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To find the limit of the last integral, we use the following bounds (for a < 1):∫ 1/(at)

0

zr/2−1(1− at)(n+p−r)/2

(z + 1)p/2
dz ≤

∫ 1/(a2t2)

0

zr/2−1(1− a2t2z)(n+p−r)/2

(z + 1)p/2
dz

and ∫ 1/(a2t2)

0

zr/2−1(1− a2t2z)(n+p−r)/2

(z + 1)p/2
dz ≤

∫ 1/(a2t2)

0

zr/2−1

(z + 1)p/2
dz.

Since

lim
a→0

∫ 1/(at)

0

zr/2−1(1− at)(n+p−r)/2

(z + 1)p/2
dz = lim

a→0

∫ 1/(a2t2)

0

zr/2−1

(z + 1)p/2
dz,

passing to the limit and then using [1, eq. 3.194, 3], we get

lim
a→0

∫ 1/(a2t2)

0

zr/2−1

(z + 1)p/2
dz =

∫ +∞

0

zr/2−1

(z + 1)p/2
dz = B

(
r

2
,
p− r

2

)
.

Hence, we also have

lim
a→0

∫ 1/(a2t2)

0

zr/2−1(1− a2t2z)(n+p−r)/2

(z + 1)p/2
dz = B

(
r

2
,
p− r

2

)
.

From (5.7), we get

lim
k→+∞

[erank (A, p)]
p

xkrr+1

=
γ

2
B

(
r

2
,
p− r

2

) ∫ 1

0

tr+s−1(1− t2)(n−r−s)/2dt

=
Γ ((p− r)/2) Γ ((r + s)/2)

Γ (p/2) Γ (s/2)
.

This concludes the proof.
Theorem 5.1 shows that upper and lower bounds provided in section 4 are asymp-

totically optimal. In fact, the analysis of the asymptotic case indicates that the upper
and lower bounds cannot be improved since the constants coincide with those of the
upper bound when we set the multiplicity of the second largest eigenvalue to n − r,
and with those of the lower bound for s = 1. The constants increase with s and 1/r.
This corresponds to the intuitive idea that the convergence is fast if the eigenspace Z
is large and is slow if the eigenspace corresponding to the second largest eigenvalue
is large. Note that if p approaches infinity, the rate of convergence approaches 1 and
even the constant converges to 1. This agrees with (2.8) for p =∞.

6. Numerical tests. We tested the power method for several matrices with
many pseudorandom starting vectors b. The matrix A can be chosen as follows. As
before, let uk(A, b) be the vector computed by the power method applied to the
matrix A with starting vector b. Observe that for any orthogonal matrix Q, we
have uk(QTAQ, QTb) = uk(A, b). Moreover, the uniform distribution on the unit
sphere of the vectors b implies the same distribution of vectors QTb. So, without
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Table 6.1

Quadratic distribution 2 with the eigenvalues λi = 2(1− (i/101)2).

k εran εworst εbest εlb εub p
10 9.737e− 01 9.999e− 01 7.567e− 01 4.782e− 01 7.998e+ 00 1

100 9.111e− 01 9.999e− 01 4.149e− 01 4.850e− 01 7.992e+ 00 1
1000 7.114e− 01 9.999e− 01 6.811e− 02 5.185e− 01 7.685e+ 00 1

10 9.735e− 01 9.999e− 01 7.226e− 01 6.457e− 01 3.522e+ 00 2
100 9.239e− 01 9.999e− 01 3.319e− 01 6.394e− 01 3.474e+ 00 2

1000 7.383e− 01 9.999e− 01 7.003e− 02 5.799e− 01 3.035e+ 00 2

10 9.779e− 01 1.000e+ 00 7.649e− 01 2.712e− 01 1.129e+ 00 10
100 9.412e− 01 9.999e− 01 3.882e− 01 2.729e− 01 1.127e+ 00 10

1000 8.675e− 01 1.000e− 01 5.303e− 02 2.902e− 01 1.097e+ 00 10

loss of generality, we can restrict ourselves only to considering diagonal matrices; see
also [4] and [5]. Vectors uniformly distributed over the unit sphere can be generated
as described in [4] and [5].

The tests were performed on a Sun SPARCsystem 10 using double precision. To
compute the values of the hypergeometric and gamma functions we used the program
Mathematica.

We tested many different matrices of size 100 with the distributions of the eigen-
values chosen as in [5]. We tested the following distributions:

• Chebyshev distribution: λi = 1 + cos(((2i− 1)π)/200);
• quadratic distribution 1: λi = 2 (1− i/101)2;
• quadratic distribution 2: λi = 2(1− (i/101)2);
• uniform distribution: λi = 2(1− i/101);
• logarithmic distribution: λi = 2 log(102− i)/ log(102);

• exponential distribution 1: λi = 2 e−
3√i;

• exponential distribution 2: λi = 1 + e−i.
From the theoretical bounds (see Theorems 4.1 and 4.2), it turns out that the

behavior of the power method depends on the relation between r and p. We tested
the power method for different values of p and r for a fixed ratio between the two
largest eigenvalues.

The main goal of these tests was to verify the results proved in Theorems 4.1 and
4.2 and to see how much upper and lower bounds differ from the experimental values.

In order to approximate the randomized error erank (A, p) we have used 1,000 pseu-
dorandom vectors b. So, the randomized error is replaced by εran obtained as the
mean value among the 1,000 pseudorandom vectors, i.e.,

εran =

(
1

1, 000

1,000∑
i=1

sinp(αk(bi))

)1/p

.

By εworst and εbest we denote, respectively, the worst and best value of sin(αk(bi)).
These values give an indication about how much εran differs from the values sin(αk(bi)).
Let εlb and εub denote the lower and the upper bounds computed using formulas given
by Theorems 4.2 and 4.1. Finally, k and p are the number of iterations and the pa-
rameter of the norm, respectively.

In order to underline the dependence of the rate of convergence on the ratio
between the two largest eigenvalues we report the results obtained for the quadratic
distribution 2 (see Table 6.1) and the exponential distribution 1 (see Table 6.2). In
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Table 6.2

Exponential distribution 1 with the eigenvalues λi = 2 e−i
1/3

.

k εran εworst εbest εlb εub p
10 1.770e− 01 9.999e− 01 9.630e− 04 1.698e− 01 2.124e+ 00 1
30 2.432e− 03 8.996e− 01 1.077e− 06 2.300e− 03 2.864e− 02 1

10 2.509e− 01 9.999e− 01 7.056e− 04 2.368e− 01 9.616e− 01 2
30 2.468e− 02 7.652e− 01 9.823e− 07 2.006e− 02 7.148e− 02 2

10 6.801e− 01 9.999e− 01 2.079e− 03 3.888e− 01 8.715e− 01 10
30 3.562e− 01 7.081e− 01 1.977e− 06 3.421e− 01 5.182e− 01 10

Table 6.3

Modified exponential distribution 2 with the eigenvalues λ1 = λ2 = 1+e−1 and λi = 1+e−(i−1)

for i = 3, . . . , n.

k εran εworst εbest εlb εub p
10 4.100e− 01 9.960e− 01 1.124e− 01 1.276e− 01 1.920e+ 00 1
30 3.765e− 03 1.075e− 01 2.915e− 04 3.693e− 03 4.622e− 02 1

10 4.593e− 01 9.989e− 01 1.171e− 01 1.570e− 01 3.650e+ 00 2
30 7.979e− 03 1.063e− 01 2.693e− 04 7.511e− 03 1.245e− 01 2

10 6.904e− 01 9.973e− 01 1.190e− 01 2.472e− 01 8.850e− 01 10
30 2.551e− 01 5.089e− 01 2.435e− 04 1.950e− 01 4.200e− 01 10

fact, these distributions are those (among the different distributions considered) for
which we have the largest (the smallest) ratio between λ2 and λ1 and then the slowest
(the fastest) convergence, respectively.

From Table 6.1 we see that for three different values of p, even after 1,000 itera-
tions the randomized error is still very close to 1. An important observation concerns
the lower and upper bounds. We notice that the lower bound is a good approximation
of the expected value εran while the upper bound is clearly an overestimate. This is
due to the following reasons.

1. The constants in the upper bounds (see Theorem 4.1) grow with the size of
the matrix.

2. Since the ratio x2 = λ2/λ1 is very close to 1, xk2 goes very slowly to 0 with
k. In this case, the upper bound is more sensitive to the big multiplicative
constants.

Table 6.2 is more interesting since it allows us to see the dependence of the speed
of convergence on p and r. The speed of convergence is now good. In fact, after only
30 iterations we get an error of the order of 10−3 when p = r = 1. In this case, we
have also that εlb and εub are relatively close to each other and that the error εran for
k = 30 is very close to the theoretical lower bound.

In general, it is possible to observe that the values of εran computed with these
tests are very close to the theoretical lower bounds, while they are more distant from
the upper bounds even for small λr+1/λ1. This is due to the importance of the
multiplicity s of λr+1, which results from the asymptotic constants of Theorem 5.1.
Experimental results prove that the power method behaves differently for matrices
with the same two largest eigenvalues but with different multiplicities. In particular,
increasing s, we get bounds closer to the upper bounds.

To understand the role of p and r, we have performed tests with matrices for
which the multiplicity of the largest eigenvalue is r ≥ 2. In Table 6.3 we report the
results for the modified exponential distribution 2 with r = 2.

An important observation concerns the comparison between the three cases, p < r,
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p = r, and p > r. From Table 6.3 it is easy to see that for the same value of k, the
rates of convergence are different. For example, for k = 30 we have an error of the
order of 10−3 for p ≤ r, and of order 10−1 for p > r.

We also performed tests with matrices with only two distinct eigenvalues. These
tests indicate the asymptotic dependence of the randomized error on the multiplicity
s of the second eigenvalue. In particular, they show that εran is closer to εub when s
is big. This is an important consequence of Theorem 5.1.

7. Conclusions. In this paper we have investigated the convergence of the power
method for approximating an eigenvector corresponding to the largest eigenvalue. As
our error measure, we have taken the sine of the acute angle αk(b) between the vec-
tor computed by the power method after k steps with the starting vector b, and
the eigenspace related to the largest eigenvalue. We have analyzed the Lp norm of
sin(αk(·)) for p ∈ [1,+∞]. We have shown that, if the starting vector b is chosen
according to the uniform distribution over the unit sphere, the rate of convergence
depends on the ratio between the two largest eigenvalues. In particular, if r is the
multiplicity of the largest eigenvalue λ1, and the Lp norm is used, then the random-

ized error is proportional to (λr+1/λ1)
k

if p < r, to (λr+1/λ1)
kr/p

if p > r, and to

k1/p (λr+1/λ1)
k

if p = r.
For every p ∈ [1,+∞), we have found asymptotic and nonasymptotic bounds,

and we have shown that the asymptotic constants are equal to those obtained for
the upper and lower bounds when the multiplicity of the second largest eigenvalue is
set to n − r and 1, respectively. We stress that our results hold for a class of norms
and that they show how, by using a different norm, we can have a different speed
of convergence. Our bounds depend on the distribution of the eigenvalues, and we
have proven that this is unavoidable. Comparing with results of [4], we conclude
that approximating a largest eigenvector by the power method is more difficult than
approximating the largest eigenvalue in the randomized setting.
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