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ABSTRACT
The increasing interest in non-coding RNAs (ncRNAs) and
their functions pushed towards the development of analysis
techniques to get as much information as possible from plain
RNA sequences. Thus, being able to properly compare RNA
secondary conformations is of prominent importance in any
structural investigation. Several different metrics have been
proposed to catch topological dissimilarities in RNA sec-
ondary structures, but so far their specific features have not
been assessed yet against extensive datasets. Such a char-
acterization is also crucial in analyzing structural ensem-
bles, because results strictly depend on the specific distance
used. The current availability of large ncRNA databases
has made it possible an extensive comparison of different
metrics, across both intra- and inter-ensemble structures.
Correlation analysis has uncovered the relative descriptive
power of such metrics, providing indications on their possi-
ble practical use in different contexts.

CCS Concepts
•Applied computing → Bioinformatics; Molecular se-
quence analysis; Molecular structural biology;
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1. INTRODUCTION
The discovery of the RNA capability to support a variety of
functions in cells has changed the traditional view of RNA
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as a passive medium between DNA and proteins, vitaliz-
ing research around non-coding RNA (ncRNA for short).
Nowadays, ncRNAs are known to be involved in a plethora
of biological mechanisms, from gene regulation to protein
synthesis and chromosome structures, and experimental val-
idations are growing year after year. Recent research has
shown a positive correlation between an increased propor-
tion of non-coding versus coding RNA and an organism’s
developmental complexity [11]. Much of the ncRNA func-
tions depends on its structure.

Several different representations have been proposed for RNA
secondary structures; however, the most popular belong to a
few different families [7]. In the dot-racket representation S
is represented by a string of length |x|, where each (i, j) ∈ S
correspond to a ‘(’ in position i and a ‘)’ in position j. One
dot ‘.’ is used for an unpaired base. In circle representation
each base is represented by a dot on the circumference of
a circle of arbitrary size. Lines are drawn to connect the
paired bases. A similar graphical representation keep the
“base” dots along a line, with arcs connecting paired bases.
Tree representation is mainly aimed at comparing secondary
structures [10]. Multiple different tree representations can
be possibly defined to account for the hierarchical arrange-
ments of secondary features. Finally, in mountain repre-
sentation each base pair is represented by a horizontal line
over the primary sequence at a height that is dictated by its
position in the sequence.

The prediction of RNA secondary structures from plain se-
quences has been widely investigated, and currently sev-
eral approaches and tools try to approximate real functional
structures. The three-dimensional RNA conformation di-
rectly relates to the function, but it can be hardly predicted
in a direct way. As the RNA folding process is thought to be
hierarchical [12], the secondary structure prediction repre-
sents a fundamental step towards the tertiary folding. Under
the usual thermodynamic hypothesis, a native conformation
corresponds to the structure with the Minimum Free Energy
(MFE) [5].

The energy of a structure must be carefully evaluated, and
in the present work it has been computed according to the
Nearest Neighbour Thermodynamic Model (NNTM), tuned
on a set of experimentally measured parameters [5]. More-
over, a broad variety of methods for predicting an ensemble



of structures admissible for a given sequence exists. Stochas-
tic sampling based on a Boltzmann statistical model is the
most common procedure [2] for ensemble sampling. Nonethe-
less, apart from considering the energy of each conforma-
tion, a precise characterization of members in an ensemble
of RNA secondary structures asks for the identification of
concise indicators that would summarize specific topologi-
cal similarities (or dissimilarities) across members: such in-
dexes may be then used as ensemble “features”. The specific
choice for pairwise distances across the ensemble structures
influences the information content in the ensemble itself, in-
fluencing in turn the outcomes of procedures (like cluster-
ing) aimed at extracting it. However, even if base-pair dis-
tance metrics has a predominant position in the literature in
comparing secondary structures, given its inherent simplic-
ity and its low computational weight, several other metrics
have been proposed.

In this work, we consider five different possible metrics (Ta-
ble 1) and we computationally investigate how they behave
in describing dissimilarities between structures. The study
refers to a very large set of ncRNA sequences and, to the best
of our knowledge, such an extensive comparison has never
been done before. Correlations have been uncovered, assess-
ing the statistical relationships between metrics in different
settings.

2. METRICS FOR RNA SECONDARY
STRUCTURES

An RNA strand can be represented as a string over an alpha-
bet of nucleotides {A, C, G, U}. In an RNA sequence x, the
base at position i is indicated as xi. Bases in a strand tend
to form pairs, and one base can either participate at most
in one pair, or be unpaired. An RNA secondary structure S
over x is the set of all the relative base pairs, each indicated
by the two indexes (i, j), i < j of the composing bases, such
that: 1) the bases in the pair (i, j) ∈ S, i.e. (xi, xj), form ei-
ther a Watson-Crick (AU,CG) or a Wobble (GU) base-pair;
2) every position i can appear at most once across all index
pairs in S, 3) for every (i, j) ∈ S, |j− i| > 3 must hold (just
for steric constraints in hairpin loops), and, if pseudoknots
are not considered, 4) if (i, j) ∈ S and (k, l) ∈ S and i < k,
then either i < j < k < l or i < k < l < j holds.

Given the importance of measuring dissimilarity between
RNA secondary structures, diverse metrics for comparison
have been proposed since the emergence of RNA secondary
structure prediction. The base-pair (BP) distance was the
first metric to be proposed and, likely, at present it is still
the most used. It is plainly defined as the total number of
base pairs that occur in one structure, but not in the other
(Equation 1) [1].

dBP (S1, S2) =
∣∣∣S1

⋃
S2

∣∣∣− ∣∣∣S1

⋂
S2

∣∣∣ (1)

Even f it is computationally convenient, this coarse metric
does not capture much of the structural information. Sev-
eral modifications have been proposed measuring maximal
distance between any two base pairs in a pair of secondary
structures. For each base pair b1(i, j) ∈ S1 and b2(i′, j′) ∈ S2

the distance between b1 and b2 is defined

d0((i, j), (i′, j′)) := max
[
|i− i′|, |j − j′|

]
(2)

Then dZ(S1, S2) between the two structures is defined to be
the smallest d such that for every b1 ∈ S1 there is a base
pair in S2 within distance d0 at most d of b1, and (to ensure
symmetry) for every base pair b2 ∈ S2 there is a base pair
in S1 within distance d0 at most d of b2 [7]. The relaxed
base-pair (RBP) score has been proposed to overcome the
discriminative limitation inherent to the BP score [1]. It is
based upon a relaxation parameter t ≥ 0 that indicate the
degree of relaxation,

dRBP (S1, S2) = min {m ∈ Z | m > 0,∆k ≤ tm if k > m}
(3)

where k iterate on ∆k that is the vector of sorted distances
between each base pair of S1 and the nearer base pair of S2

and between each base pair of S2 and the nearer base pair of
S1. Even if several solutions have been proposed, the choice
of the correct value for t, as far as we know, still remains an
open problem.

Table 1: Metrics for RNA secondary structures
Metric: ID: References:
BP distance BP [1]
Mountain distance MD [7]
String edit distance SE [3]
Tree edit distance TE [4, 10]
Coarse tree edit distance HTE [4]

Mountain metrics are based on “mountain representation” of
RNA secondary structures, and are quick to compute and
easy to handle from a theoretical point of view [7]. Consid-
ering a structure S of length n, let fS be a vector of length n,
where fS(i) is equal to the number of ‘)’ minus the number
of ‘(’ found in the range [i, n]. Then dpM is defined as:

dpM (S1, S2) =

(
n∑

i=1

|fS1(i)− fS2(i)|p
) 1

p

(4)

Tree edit distances are built upon an ordered rooted tree rep-
resentation of secondary structures. In a nutshell, a tree can
be transformed into another by a series of defined elemen-
tary operations (i.e, insertion, deletion, relabeling, although
some metrics define case-apt edit operations), each with an
associated cost. The minimum cost required to turn one
tree into another defines the tree edit distance between the
two. Among many possible tree distances, we have evaluated
both the full structure based and the coarse grained based
tree edit distances, as implemented in RNAdistance from
the ViennaRNA package [4]. Furthermore, a string-edit dis-
tance can be applied both to complete and coarse-grained
representations.
All the metrics chosen for cross-evaluation are listed in Ta-
ble 1.

3. METHODS
First, a set of sequences has been selected; for each sequence
structural ensembles have been produced and metrics eval-
uated on the ensembles. Then results have been analyzed



by means of correlation coefficient estimation and PCA. Fi-
nally, for certain sequences, ensembles have been thoroughly
studied using diverse clustering procedures.

3.1 Dataset
A set of 510,055 RNA functional sequences has been gath-
ered from fRNAdb1 [6], a comprehensive database of non-
coding RNA (ncRNA) sequences. Among these, excessively
short sequences yield a very small number of different struc-
tures, while ensembles of excessively long ones do not exhibit
consistent diversity, with our current methods. So, only se-
quences in the range 50-250 nt have been considered, making
a total of 138,903 sequences. To the best of our knowledge,
this is the largest set ever used for tests of this kind. No-
tably, ncRNAs have been considered because, among other
RNA categories, they more likely rely on structure to per-
form their function.
Furthermore, as non structural RNA sequence database, we
have used a pool of random generated sequences in the same
length range. The current sets selection have been guided by
the aim of studying intra-ensemble relation between struc-
tures, i.e. studying ensemble of similar structures from the
same sequence. To extend our study, however, a third set
has been generated comprising structures randomly gener-
ated from random sequences of the same length, to asses how
metrics behave and correlate when comparing structure that
are not related. Finally, particular sequences that show clus-
ters in ensemble, due to different in-vivo conformation, such
as riboswitches, have been selected from previous studies [8]
and an ensemble test has been executed.

3.2 Generation of Ensembles
For each sequence in the dataset an ensemble of N = 20
Boltzmann sampled structures has been generated with RNA-
subopt from the ViennaRNA package [4]. For each metric,
we have computed the N(N − 1)/2 pairwise distances be-
tween all couples of samples. For N = 20 we have evaluated
190 distances per metric per structure. Reduced ensem-
ble size are due to limited computational resources. How-
ever, in evaluating how ensemble characterisation is outlined
by diverse metrics, we have generated bigger ensembles of
N = 1000 structures, roughly corresponding to 450,000 dis-
tances per metric. This has been done for a limited number
of structures for which diverse in-vivo clusters of structures
are known.

3.3 Distance and Correlation Evaluation
Distances between structures have been evaluated using the
metrics defined in Table 1 and described in Section 2. As
a preliminary step, considering the ensembles for all the
dataset entries, the pairwise distances have been computed,
according to each target metric. Moreover, using the same
method, all the pairwise distances have been computed for
the random sequence dataset as well. Finally, even if our
work was primarily directed at assessing intra-ensemble per-
formances, cross-sequences analyses have been performed,
on a set of random structures from random sequences de-
scribed before.

1http://www.ncrna.org/frnadb/

3.4 Clustering Procedures
Clustering has been executed using Partition Around Medoids
(PAM), a well-known k-medoids algorithm, which takes all
the pairwise distances as input. This algorithm implements
a partition clustering method, based on the definition of k
representative objects, called medoids. Results have been
compared with a k-means clustering using both energy of
structures and bp-distance w.r.t. the MFE. Clustering con-
sistency has been measured by means of silhouette score (Sil)
[9].

3.5 Decomposition
The target metrics for this work have been thoroughly anal-
ysed by means of different approaches. In particular, PCA
analysis has been used to spot out redundancy in the set of
metrics, and possibly uncover what subset of metrics better
describes the structural diversity in an ensemble of struc-
tures originated from a single sequence. To make compara-
ble the results from sequences of different lengths, distances
have been normalized before analysis.

4. EXPERIMENTAL RESULTS
The analysis performed in our work has been roughly di-
vided into two phases: single sequences analysis and ensem-
ble analysis. The methods are further described in Section 3.

4.1 Single Sequences Analysis
In the first place we have analysed how diverse RNA sec-
ondary structure metrics correlate with each other. On the
matrix of data produced for each metric we have studied
correlation between corresponding data series.In this phase
of the study, while using structures produced in ensembles
for each sequence, we have not studied ensemble distribu-
tion. Results can be compared with those generated from a
pool of random sequences, as shown in the middle third of
the Table 2. Moreover, in the first sets we have evaluated
correlation in the set of shorter sequences, as shown between
parentheses in the upper third of Table 2. Finally, on a third
set of random sequences, distances have been measured be-
tween structures generated from different sequences.

4.1.1 Correlation estimation
Correlations between metrics have been evaluated on the
dataset. Results are outlined in Table 2. Our results sug-
gest a high degree of correlation between metrics. According
to our results, string-edit distance and tree-edit distance on
the full structure tree representation, correlate almost per-
fectly. Furthermore, even generating random sequences, and
evaluating correlation on that random dataset, values seems
not to vary (Middle part of Table 2). An important con-
sideration is related to the fact that sequence length seems
to impact correlation between metrics; in the upper third
of Table 2 results related to limit our correlation analysis
on sequences shorter than 100nt are shown between paren-
thesis. Correlation coefficients decrease as sequence length
decreases. So far we have studied inter-ensemble distances,
i.e. distances between structures extracted from the same
sampled ensemble for a particular sequence. What happens,
studying distances between different structures from ran-
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Figure 1: Outline of correlation between target metrics
In plot captions, target metrics are indicated by their IDs, as reported in Table 1. Charts placed in the lower-left triangular

portion are scatter plots of pairwise distances for intra-ensemble structures (i.e. internal to the same Boltzmann-sampled
ensembles), on a random subset of all the sequences. On the contrary, scatter plots in the upper-right part refer to pairwise

distances for randomly-chosen inter-ensemble structures of equal length. On the diagonal, the overall distributions of
inter-ensemble distances are shown.

domly generated diverse sequences, i.e. not comparing only
structures from the same sequences, is that the correlation
coefficients decrease significantly (Lower third of Table 2).
Correlations between various metrics on our dataset have
been graphically shown, as scatter plots, in Figure 1.

4.1.2 PCA
PCA has been executed on the dataset, aiming at finding re-
dundancy in the distances analysed here. Our results point
out that a great degree of redundancy exists, at least for
intra-ensemble comparison. Results are outlined in Table 3.
According to what we have computed, in the first case, one
single component greatly explains the majority of the vari-
ance. This component seems to be made in equal part from
the whole set of measures. This suggests equal importance
for each measure. This result struggles to be confirmed
when the degree of correlation decreases, i.e. in measur-
ing distances between structures produced by diverse ran-

Table 3: PCA Components and Variance Explained
PC1 PC2 PC3 PC4 PC5

Var. Expl. 90.48% 4.41% 3.56% 1.18% 0.37%

PC1 PC2 PC3 PC4 PC5
BP 0.44 -0.52 0.14 -0.70 -0.12
MD 0.42 0.70 0.54 -0.15 0.06
SE 0.45 -0.34 0.11 0.44 0.68
TE 0.46 -0.12 0.02 0.51 -0.71
HTE 0.43 0.33 -0.82 -0.14 0.10

dom sequences (Table 4). In the worst case, when the first
component struggles to explain a little more than 50% of
the variance, its composition is roughly the same as before,
even if base-pair distance explains as itself roughly the 20%
of the variance.



Table 2: Correlation Between Metrics
fRNAdb Sequences [in parentheses, limited to seqs <100 nt]

BP MD SE TE HTE
BP 1
MD 0.811 (0.752) 1
SE 0.952 (0.917) 0.847 (0.835) 1
TE 0.934 (0.880) 0.878 (0.877) 0.976 (0.963) 1

HTE 0.829 (0.702) 0.820 (0.749) 0.859 (0.761) 0.894 (0.811) 1

Random Sequences
BP 1
MD 0.822 1
SE 0.960 0.853 1
TE 0.943 0.879 0.975 1

HTE 0.852 0.844 0.879 0.913 1

Random Sequences, Different Structures
BP 1
MD 0.210 1
SE 0.134 0.519 1
TE 0.133 0.607 0.590 1

HTE 0.230 0.515 0.310 0.597 1

Table 4: PCA Components and Variance Explained
Random Sequences, Different Structures

PC1 PC2 PC3 PC4 PC5
Var. Expl. 52.06% 19.56% 13.94% 8.50% 5.94%

PC1 PC2 PC3 PC4 PC5
BP -0.17 0.94 -0.23 0.09 -0.11
MD -0.51 0.01 0.05 -0.85 0.10
SE -0.44 -0.24 -0.73 0.27 0.38
TE -0.54 -0.20 0.06 0.23 -0.78
HTE -0.47 0.08 0.63 -0.78 0.47

4.2 Ensemble characterization
In our work we have tried to outline how diverse metrics
could be used to characterise ensembles of structures pro-
ducing diverse results. For a limited set of sequences we
have generated bigger ensembles, as described in Section 3.1.
On this ensembles pairwise distances have been computed
for different metrics and have been used as inputs to diverse
clustering procedures.
Supplementary Fig “blabla” shows k-medoids clustering out-
come on the ensemble for a relevant sequence (Notably the
“thiM TPP riboswitch”as described in [8]). All the subplots
in the figure depict structure in the ensemble, for a partic-
ular riboswitch sequence, known to present in-vivo bistable
states, in a bp-distance w.r.t. the MFE structure vs. energy
of the structures. Diverse colors outline clustering results,
using diverse distance matrices as input. The latter plot
shows instead a k-means clustering using both energy and
base pair distance w.r.t. to the mfe as features. The lat-
ter clustering shows higher performances, as measured by
silhouettes. Nonetheless both the BP and MD k-medoids
clustering shows quite good silhouettes even if the classic
scatter plot used in representing RNA ensemble fails to show
these groups.

5. CONCLUSIONS
In the presented work, different metrics on RNA secondary
structures have been evaluated against a big dataset of ncRNA
sequences, focusing in particular on structures from ensem-
bles calculated for each sequence. The first relevant result is
the high degree of correlation for all the studied metrics, in
case intra-ensemble distances are taken into account: in this
setting, each distance value is computed between different
possible structures for the same sequence. This holds both
for real and for random sequences. Indeed, the correlation
analysis on distances for structures randomly produced from
diverse randomly generated sequences, yields far less im-
pressing results. Although apparently obvious, the fact that
distance correlations for inter-ensemble structures are basi-
cally the same for real ncRNA and random sequences can
be interpreted as a characteristic of the metrics themselves,
instead of being related to the specific dataset used. More-
over, further analysis shows that correlation values slightly
depend on the sequence length, as shorter sequences give
lower values. This may be due to an effect of the sam-
pling procedure, which on fixed-size ensembles catches more
distant conformations for smaller sequences that for longer
ones. The main practical results can be itemized as follows:
In measuring distances between structures in the same en-
semble, all the metrics offer the same contribution in ex-
plaining variance. The high correlation between metrics in-
dicates that they all offer a similar descriptive power. Be-
cause of its simplicity, the base-pair distance (BP) can thus
be conveniently used instead of more complex ones.
Conversely, in comparing structures from different sequences,
the use of at least three measures seems an advisable choice.
We propose the use of mountain distance (MD) combined
with base-pair (BP) and string-edit (SE) distance, to assure
a proper variance explanation, yet keeping low the required
computational effort.
Furthermore, our results point out that, in comparing RNA
structures on the described setting, the tree representation
does not necessarily provide relevant benefits over the string



representation. Actually, for intra-ensemble distances TE
and SE have very high correlation values (∼ 0.976).

Assessing the influence of using a specific metric in providing
a well-described ensemble is a complex job. In our tests, we
considered diverse clustering outcomes for a particular se-
quence, known to be present in-vivo in two alternate forms.
On this testbed, only three metrics lead to satisfying out-
comes, with two distinct clusters (Sil > 0.6).

Future work will necessarily address more complex energy
landscapes, aiming at finding better ways to build descrip-
tive and representative ensembles of RNA secondary struc-
tures.
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