
Diffeological connections on diffeological vector pseudo-bundles

Ekaterina Pervova

November 23, 2016

Abstract

We consider one possible definition of a diffeological connection on a diffeological vector pseudo-
bundle. It is different from the one proposed in [7] and is in fact simpler, since it is obtained by a
straightforward adaption of the standard definition of a connection as an operator on the space of all
smooth sections. One aspect prominent in the diffeological context has to do with the choice of an
appropriate substitute for tangent vectors and smooth vector fields, since there are not yet standard
counterparts for these notions. In this respect we opt for the simplest possibility; since there is an
established notion of the (pseudo-)bundle of differential forms on a diffeological space, we take the
corresponding dual pseudo-bundle to play the role of the tangent bundle. Smooth vector fields are then
smooth sections of this dual pseudo-bundle; this is one reason why we devote a particular attention to
the space of smooth sections of an arbitrary diffeological vector pseudo-bundle (one curiosity is that
it might easily turn out to be infinite-dimensional, even when the pseudo-bundle itself has a trivial
finite-dimensional vector bundle as the underlying map). We concentrate a lot on how this space
interacts with the gluing construction for diffeological vector pseudo-bundles (described in [10]). We
then deal with the same question for the proposed notion of a diffeological connection.
MSC (2010): 53C15 (primary), 57R35, 57R45 (secondary).

Introduction

Diffeology can be seen as a way to extend the field of application of differential geometry (or of differential
calculus, according to some). There have been, and are, other attempts to do this; some of these
approaches are summarized in [16]. Diffeological spaces first appeared in [14], [15]; a lot of fundamental
concepts, such as the underlying topology, called D-topology, and the counterpart of the fibre bundle,
among others, were developed in [6]. A recent and comprehensive source on the field of diffeology is [7].

From a certain (necessarily simplistic, but still interesting) point of view, diffeology can be seen as a
way to consider any given function as a smooth one — and then see what happens. This is essentially the
notion of a diffeology generated by a given plot ; what becomes for instance of the usual R if we consider
the modulus |x| as a smooth function into it? One immediate answer (there would be of course more
intricate ones) is that no linear function on it is smooth then (except the zero one); and this is just the
most basic of examples. This is the kind of a straightforward (it can be said, naive) approach that we
opt for in this paper.

The notion of a connection A certain preliminary notion of a diffeological connection is sketched
out in [7]. Our approach is different from one therein, but it is very much straightforward. A usual
connection on a smooth vector bundle E → M over a smooth manifold M can be defined as a smooth
operator C∞(M,E) → C∞(M,T ∗M ⊗ E), that is linear and obeys the Leibnitz rule. For all objects
that appear in its definition, there are well-established diffeological counterparts, with the bundle of
diffeological differential 1-forms Λ1(X) over a diffeological space X (see [7] again, although it is not the
original source) taking the place of the cotangent bundle. Thus, the definition-by-analogy of a diffeological
connection on a diffeological vector pseudo-bundle π : V → X is an obvious matter; it suffices to substitute
X for M , V for E, and consider diffeological forms instead of sections of the cotangent bundle. A few
minor details need to be explained (which we do), and it also should be specified that the covariant
derivatives are taken with respect to sections of the dual pseudo-bundle (Λ1(X))∗, which for us plays the
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role of the tangent bundle (of which there is not yet a standard theory in diffeology). However, covariant
derivatives is the only place where we need tangent vectors.

Most of what we do is devoted to constructing connections on pseudo-bundles obtained by diffeological
gluing (see [9]). To this end we first dedicate significant attention to the behavior of the spaces of sections
under gluing. Thus, if π1 : V1 → X1 and π2 : V2 → X2 are two pseudo-bundles, and π1 ∪(f̃ ,f) π2 :

V1 ∪f̃ V2 → X1 ∪f X2 is the result of their gluing (see below for the precise definition), the space
of sections C∞(X1 ∪f X2, V1 ∪f̃ V2) is a smooth surjective image of a subset of the direct product
C∞(X1, V1) × C∞(X2, V2) (Section 2). We use this to show that if V1 and V2 are both endowed with
connections, and these connections satisfy a specified compatibility condition, then there is an induced
connection on V1 ∪f̃ V2. If, finally, V1 and V2 are endowed with pseudo-metrics g1 and g2 (these are
diffeological counterparts of Riemannian metrics) that are well-behaved with respect to each other, and
the two connections on V1 and V2 are compatible with these pseudo-metrics, then they, again, induce a
connection on V1 ∪f̃ V2; this resulting connection is compatible with g̃, a pseudo-metric determined by
g1 and g2.

Diffeological gluing A large part of our approach consists in establishing how the above-listed com-
ponents behave with respect to the operation of diffeological gluing. On the level of underlying sets, this
is the standard operation of topological gluing; the resulting space is endowed with a diffeology that is
probably the finest sensible one: it naturally includes the diffeologies on the factors, and not much else.
One disadvantage of this notion is that this is a pretty weak diffeology, that loses (or risks losing) sight
of some natural aspects of the underlying space; for instance, the obvious gluing diffeology on the union
of the coordinate axes in R2 is weaker than the subset diffeology relative to its inclusion into R2, see [18]
(on the other hand, the concept of gluing may provide a natural framework for treating objects such as
manifolds with corners, see below for more detail). As of now, we view this notion of the gluing diffeology
as more of a precursor to a coarser one, with more involved properties — but still as a useful testing
ground for the constructions that we are considering.

Acknowledgements Without any trace of doubt, my gratitude goes to Prof. Riccardo Zucchi for
providing a precious and, most of all, consistent support which allowed this paper to be completed.

1 The main notions

Here we briefly recall the notions of diffeology that appear throughout this paper, in the form in which
they appear in [7].

1.1 Diffeological spaces and diffeologies

The central object for diffeology is a set X endowed with a diffeological structure, which is a collection
of maps from usual domains to X; three natural conditions must be satisfied.

Definition 1.1. ([15]) A diffeological space is a pair (X,DX) where X is a set and DX is a specified
collection, also called the diffeology of X or its diffeological structure, of maps U → X (called plots)
for each open set U in Rn and for each n ∈ N, such that for all open subsets U ⊆ Rn and V ⊆ Rm the
following three conditions are satisfied:

1. (The covering condition) Every constant map U → X is a plot;

2. (The smooth compatibility condition) If U → X is a plot and V → U is a smooth map (in the usual
sense) then the composition V → U → X is also a plot;

3. (The sheaf condition) If U = ∪iUi is an open cover and U → X is a set map such that each
restriction Ui → X is a plot then the entire map U → X is a plot as well.

A standard example of a diffeological space is a standard manifold whose diffeology consists of all
usual smooth maps into it, but many others, and quite exotic, examples can be found.
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Since a diffeological structure on a given set is defined as a collection of maps (into the set), two
diffeologies can be compared with respect to inclusion. One says that a diffeology D′ is finer than
another diffeology D if D′ ⊂ D, whereas D is said to be coarser than D′. The finest of all possible
diffeologies is called discrete, and the coarsest one is said to be the coarse (or indiscrete) diffeology.
Furthermore, many standard diffeologies are defined as the finest/coarsest diffeology with a given property
P (see [7] for the existence issues and other details).

Generated diffeology Let X be any set, and let A = {Ui → X}i∈I be a set of maps into it, where
each map is defined on a domain of some Rmi . The diffeology generated by A is the finest diffeology
on X that contains all maps in A as plots.

Smooth maps, pushforwards and pullbacks Let X and Y be two diffeological spaces, and let
f : X → Y be a set map. It is a smooth map if for every plot p of X the composition f ◦ p is a plot
of Y . Suppose now that only X is endowed with a diffeology; then Y can be endowed with the so-called
pushforward diffeology with respect to f , which is the finest diffeology for which f is smooth. If, on
the contrary, Y carries a diffeology and X does not, then it can be given a natural one, the so-called
pullback diffeology, defined as the coarsest diffeology for which f is smooth. These are reciprocally
inverse notions, in the sense that locally a plot pY of a pushforward diffeology has form pY = f ◦ pX for
some pX a plot of X, and the pullback diffeology includes all maps pX for which pY is a plot (of Y ).

Inductions and subductions Let X and Y be diffeological spaces, and f : X → Y be a smooth map.
We say that f is an induction if it is injective and the pushforward by f of the diffeology of X coincides
with the subset diffeology on f(X) (since f is smooth, this pushforward diffeology is always contained
in the aforementioned subset diffeology, but in general it is properly contained in it). We say that f is a
subduction if it is surjective, and the diffeology of Y coincides with the pushforward of the diffeology
of X by f ; once again, in general it is strictly contained in it.

Subset diffeology and quotient diffeology Each and every subset Y ⊆ X of a diffeological space
X carries a natural diffeology, called the subset diffeology, composed essentially of all plots of X
whose image is wholly contained in Y . Likewise, the quotient of X by any equivalence relation ∼ carries
the quotient diffeology, defined as the pushforward of the diffeology of X by the natural projection
X → X/ ∼.

The disjoint union diffeology and the product diffeology Let X1, . . . , Xn be diffeological spaces.
The disjoint union diffeology on the disjoint union of them is the finest diffeology such that for each
i = 1, . . . , n the natural injection Xi → X; is smooth; the product diffeology on their direct product is
the coarsest diffeology such that for each i = 1, . . . , n the natural projection πi : X = X1× . . .×Xn → Xi

is smooth.

Functional diffeology If X and Y are two diffeological spaces, C∞(X,Y ) stands for the set of all
smooth maps X → Y ; this set carries a natural diffeology called the functional diffeology, defined as
the coarsest diffeology such that the evaluation map, ev : C∞(X,Y )×X → Y , defined by ev(f, x) = f(x)
is smooth.

1.2 Diffeological vector spaces

We consider next the notion of a diffeological vector space and the related ones; see [7], and also [17] and
[19], for further details.

The definition A diffeological vector space (over R) is a vector space V endowed with a vector
space diffeology, that is, any diffeology for which the following two maps are smooth: the addition map
V × V → V , where V × V carries the product diffeology, and the scalar multiplication map R× V → V ,
where R has the standard diffeology and R× V carries the product diffeology. One concept that we will
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make frequent use of is that of the vector space diffeology generated by a given set A of maps. This is the
smallest diffeology that is both a vector space diffeology and that contains the set A.

Vector space diffeologies are, relatively speaking, rather large ones. For instance, the finest vector
space diffeology on Rn is its standard diffeology (the finest of all diffeologies is the discrete one). A vector
space endowed with its finest vector space diffeology is called a fine vector space.1

Subspaces and quotients Any usual vector subspace of a diffeological vector space is naturally a
diffeological vector space for the subset diffeology. The same is true for any quotient of a vector space,
which is automatically assumed to carry the quotient diffeology.

Linear maps and smooth linear maps If the diffeology of a given diffeological vector space is not
the standard one, not every linear map on it is smooth. As an example, it suffices to take any V = Rn
and endow it with the vector space diffeology generated by a single plot R 3 x 7→ |x|en ∈ V . Then the
last element of the canonical dual basis, en : V → R, is not a diffeologically smooth map (as a map into
the standard R).

Diffeological dual The diffeological dual V ∗ of a diffeological vector space V ([17], [19]) is the space
of all smooth linear maps with values into the standard R, endowed with the corresponding functional
diffeology. With respect to this diffeology, V ∗ is itself a diffeological vector space and, if dim(V ) <∞, it
is a standard space (unless V itself is standard, the dimension of V ∗ is strictly smaller than that of V ).

Scalar products and pseudo-metrics A scalar product on a diffeological vector space is a smooth
non-degenerate symmetric bilinear form V ×V → R (for the product diffeology on V ×V and the standard
diffeology on R). However, a scalar product in this sense rarely exists on diffeological vector spaces; in
particular, among the finite-dimensional ones, scalar products exist only on those diffeomorphic to the
standard Rn (see [7]). In general, the maximal rank of a smooth symmetric bilinear form on V is equal
to the dimension if its diffeological dual V ∗; a smooth symmetric semidefinite positive bilinear form that
achieves this rank (there is always one) is called a pseudo-metric on V .

Direct sum of diffeological vector spaces This is the usual direct sum endowed with the product
diffeology. It is interesting to note that frequently enough, decompositions of a given diffeological vector
space V as a direct sum of two of its subspaces do not give back the original diffeology of V , meaning
that the product diffeology corresponding to the subset diffeologies on the summands can be strictly finer
than the original diffeology of V . If the opposite is true, then we call such a decomposition smooth, and
say that any of its factors splits off smoothly in V .

Tensor product of diffeological vector spaces Given a finite collection V1, . . . , Vn of diffeological
vector spaces, their usual tensor product V1 ⊗ . . .⊗ Vn is endowed with the tensor product diffeology
(see [17], [19]). The tensor product diffeology is defined as the quotient diffeology corresponding to the
usual representation of V1 ⊗ . . .⊗ Vn as the quotient of the free product V1 × . . .× Vn (that is endowed
with the finest vector space diffeology on the free product containing the product, i.e. the direct sum,
diffeology on V1 ⊕ . . .⊕ Vn) by the kernel of the universal map onto V1 ⊗ . . .⊗ Vn.

1.3 Diffeological vector pseudo-bundles

The notion of a diffeological vector pseudo-bundle appeared initially in [6] as a partial instance of diffeo-
logical fibre bundle (see also [7], Chapter 8), then in [17] under the name of a regular vector bundle, and
finally in [2] under the name of a diffeological vector space over X. We use the term diffeological vector
pseudo-bundle, in order to emphasize that frequently it is not really a bundle (it is not required to be
locally trivial), and also to avoid confusion with individual diffeological vector spaces, something which
might happen with the term adopted in [2] when both concepts appear simultaneously.

1We mostly treat finite-dimensional spaces here, for which a fine space is just a standard Rn of appropriate dimension.
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1.3.1 Properties

We recall the notion of a diffeological vector pseudo-bundle, along with the main properties.

The definition A diffeological vector pseudo-bundle is a smooth surjective map π : V → X
between two diffeological spaces V and X such that for each x ∈ X the pre-image π−1(x) carries a vector
space structure. The corresponding addition and scalar multiplication maps, as well as the zero section
s0 : X → V , must be smooth for the appropriate diffeologies.

More precisely, the addition on each fibre induces a map V ×X V → V . It should be smooth for the
subset diffeology on V ×X V as a subset of V × V , which itself is considered with the product diffeology.
Likewise, scalar multiplication induces a map R × V → V , which must be smooth for the standard
diffeology on R and the corresponding product diffeology on R× V .

Non-local triviality The only true difference of the above definition with respect to the usual one of a
vector bundle is thus the absence of the usual requirement of the existence of local trivializations. Indeed,
a diffeological pseudo-bundle may not be locally trivial in the diffeological sense (nor in the topological
one); this matter was already discussed in [6] (see also the more recent [7]). One specific example, which
has the merit of arising in an independent context (thus indicating that the interest in the notion is not
a purely aprioristic one), is due to Christensen-Wu [2]. The internal tangent bundle, described therein,
of the union of the coordinate axes in R2 (as a diffeological space, this union carries the subset diffeology
inherited from the standard diffeology of R2) is not locally trivial.

The operations All the usual operations on vector bundles (direct sum, tensor product, taking the
dual bundle) are for diffeological vector pseudo-bundles as well, although, due to the absence of local
trivializations, they are defined in a slightly different manner. Most of the material on this matter
appeared first (to my knowledge) in [17]; some additional considerations appear in [9].

• Sub-bundles and quotient pseudo-bundles. A sub-bundle Z of a diffeological vector pseudo-
bundle π : V → X is any subset of V such that its intersection with any fibre is a vector subspace
of the latter. Endowed with the subset diffeology and the restriction of π to it, it becomes itself
a diffeological vector pseudo-bundle with the base space X. Note that any collection of vector
subspaces of fibres of V , one per fibre, is a sub-bundle.

If we fix now a sub-bundle Z ⊂ V , there is a natural fibrewise quotient W = V/Z that is called
the quotient pseudo-bundle. This is indeed a diffeological vector pseudo-bundle for the quotient
diffeology. The corresponding subset diffeology on each fibre (V/Z)x of the quotient V/Z is the
same as the quotient diffeology relative to the subset diffeology on Vx.

• Direct sum. Given two diffeological vector pseudo-bundles π1 : V1 → X, π2 : V2 → X over the
same base space X, their direct sum pseudo-bundle is given by the subset V1×X V2 = {(v1, v2) | v1 ∈
V1, v2 ∈ V2, π1(v1) = π2(v2)} ⊂ V1 × V2. It carries the subset diffeology relative to the product
diffeology on V1 × V2 and is endowed with the obvious fibrewise operations of addition and scalar
multiplication, which are smooth. Moreover, the subset diffeology of the fibre at any x ∈ X is the
same as that of π−1

1 (x)⊕ π−1
2 (x).

• Tensor product. The tensor product of two vector pseudo-bundles π1 : V1 → X and π2 : V2 → X
can be constructed as the quotient pseudo-bundle of the free product pseudo-bundle V1×X V2 → X,
with the quotient being taken over the sub-bundle consisting of the kernels of the universal maps on
each fibre: π−1

1 (x)× π−1
2 (x)→ π−1

1 (x)⊗ π−1
2 (x). The diffeology is then the corresponding quotient

diffeology and the fibre at any x ∈ X is the diffeological tensor product π−1
1 (x) ⊗ π−1

2 (x) of the
corresponding fibres.

• Dual pseudo-bundle. For any diffeological vector pseudo-bundle π : V → X there is the corre-
sponding dual pseudo-bundle such that the fibre at any x ∈ X is the diffeological dual (π−1(x))∗,
so we can write V ∗ := ∪x∈XV ∗x . The diffeology on V ∗ can be characterized as follows: a map
p : Rl ⊃ U → V ∗ is a plot for the dual bundle diffeology on V ∗ if and only if for every plot
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q : Rl′ ⊃ U ′ → V of V the map Y ′ → R defined on Y ′ = {(u, u′)|π∗(p(u)) = π(q(u′)) ∈ X} ⊂ U×U ′
and acting by (u, u′) 7→ p(u)(q(u′)), is smooth for the subset diffeology of Y ′ ⊂ Rl+l′ and the stan-
dard diffeology of R. The corresponding subset diffeology on each fibre V ∗x is its usual functional
diffeology as the dual space of the diffeological vector space Vx.

1.3.2 Assembling a pseudo-bundle from simpler components: diffeological gluing

This operation, considered in some detail in [9], mimicks the usual topological gluing, with which it
coincides on the level of underlying topological spaces. The space comes with the standard choice of
diffeology, called the gluing diffeology. As we mentioned in the Introduction, this is in some sense the
finest diffeology that it makes sense to consider.

The gluing of two diffeological spaces Let X1 and X2 be two diffeological spaces, and let f : X1 ⊃
Y → X2 be a map smooth for the subset diffeology of Y .2 Then there is a usual topological gluing of X1

to X2 along f (symmetric if f is injective), defined as

X1 ∪f X2 = (X1 tX2)/ ∼, where X1 ⊃ Y 3 y ∼ f(y) ∈ X2.

This space is endowed with the quotient diffeology of the disjoint union diffeology on X1 tX2.

The inductions i1 and i2 There are two natural inclusions into the space X1 ∪f X2, whose ranges
cover it. These are given by the maps i1 : (X1 \ Y ) ↪→ (X1 tX2) → X1 ∪f X2, where the second arrow
stands for the natural projection onto the quotient space, and i2 : X2 ↪→ (X1 tX2) → X1 ∪f X2. They
are clearly bijective; furthermore, they are inductions (see [10]). The images i1(X1 \ Y ) and i2(X2) are
disjoint and yield a covering of X1 ∪f X2, which is useful for constructing maps on X1 ∪f X2.

Plots of the gluing diffeology on X1∪f X2 The plots of X1∪f X2 admit the following local descrip-
tion. Let p : U → X1 ∪f X2 be a plot; then for every u ∈ U there is a neighborhood U ′ ⊂ U of u such
that the restriction of p on U ′ lifts to a plot p′ : U ′ → (X1 tX2). Since locally every plot of X1 tX2 is
a plot of either X1 or X2, up to restricting it to a connected component U ′′ of U ′ , there exists either a
plot p1 : U ′′ → X1 or a plot p2 : U ′′ → X2 such that p|U ′′ lifts to, respectively, p1 or p2. Furthermore, if
p|U ′′ lifts to p2 then its actual form is p|U ′′ = i2 ◦ p2, whereas if it lifts to p1, its actual form is then as
follows:

p|U ′′(u′′) =

{
i1(p1(u′′)) if p1(u′′) ∈ X1 \ Y,
i2(f(p1(u′′))) if p1(u′′) ∈ Y.

The gluing of two pseudo-bundles The operation of gluing of two pseudo-bundles consists in per-
forming twice the gluing of diffeological spaces, once for the total spaces, and the second time for the
base spaces; the two gluing maps must be consistent with each other for the result to be a pseudo-
bundle. Specifically, let π1 : V1 → X1 and π2 : V2 → X2 be two diffeological vector pseudo-bundles, let
f : X1 ⊃ Y → X2 be a smooth map, and let f̃ : π−1

1 (Y )→ π−1
2 (f(Y )) be any smooth lift of f such that

the restriction of f̃ on each fibre π−1
1 (y) for y ∈ Y is linear. Consider the diffeological spaces V1 ∪f̃ V2

and X1 ∪f X2; since f̃ is a lift of f , the pseudo-bundle projections π1 and π2 yield a well-defined map,

denoted by π1 ∪(f̃ ,f) π2, from V1 ∪f̃ V2 to X1 ∪f X2. Furthermore, by the linearity assumption on f̃ (see

[9]), the map
π1 ∪(f̃ ,f) π2 : V1 ∪f̃ V2 → X1 ∪f X2

is itself a diffeological vector pseudo-bundle.

Notation The total and the base space of the new pseudo-bundle are both results of a diffeological
gluing, so everything we have said about this operation applies to each of them. In particular, there are
the two pairs of standard inductions, which are denoted, as before, by i1, i2 for the base space X1 ∪f X2

and by j1, j2 for the total space V1 ∪f̃ V2, that is, j1 : (V1 \ π−1
1 (Y )) ↪→ (V1 t V2) → V1 ∪f̃ V2 and

j2 : V2 ↪→ (V1 t V2)→ V1 ∪f̃ V2.

2Otherwise it can be any map, but we will often have to assume that f is a diffeomorphism with its image, although its
domain of definition could be any type of set.
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Why gluing? Although we will not be able to really consider this in the present paper, we briefly
mention how the gluing procedure provides a natural context for notions such as δ-functions. What
we mean by this is the following. Let X1 ⊂ R2 be the x-axis, let X2 = {(0, 1)}, and let the gluing
map f : Y = {(0, 0)} → {(0, 1)} be the obvious map. Let p : R → X1 ∪f X2 be the map defined by
p(x) = i1(x, 0) for x 6= 0 and p(0) = i2(0, 1). By definition of the gluing diffeology, this is a plot of
X1∪fX2 (and so an instance of a smooth function into it). We now can observe that p can be seen as the
δ-function R → R, by projecting both X1 and X2 onto the y-axis of their ambient R2. More precisely,
let pry : R2 → R be the projection of R2 onto the y-axis, that is, pry(x, y) = y, and let h : X1 ∪f X2 → R
be given by

h(x̃) =

{
pry(i−1

1 (x̃)) if x̃ ∈ i1(X1 \ Y ),

pry(i−1
2 (x̃)) if x̃ ∈ i2(X2).

As follows from the definitions of i1 and i2, this defines h on the entire X1 ∪f X2. Observe finally that
the composition h ◦ p is indeed the usual δ-function, i.e., the function δ given by δ(x) = 0 if x 6= 0 and
δ(0) = 1.

1.3.3 Gluing of pseudo-bundles and the vector bundles operations

The gluing is usually well-behaved with respect to the usual operations on vector pseudo-bundles (see
[9], [10]), with the one exception being the operation of taking the dual pseudo-bundle.

The dual pseudo-bundles Given a gluing along a pair (f̃ , f), with a smoothly invertible f , of two
pseudo-bundles π1 : V1 → X1 and π2 : V2 → X2, we can obtain the following two pseudo-bundles:

(π1 ∪(f̃ ,f) π2)∗ : (V1 ∪f̃ V2)∗ → X1 ∪f X2 and π∗2 ∪(f̃∗,f) π
∗
1 : V ∗2 ∪f̃∗ V

∗
1 → X2 ∪f−1 X1.

In general, they are not diffeomorphic (see the above two references); on the other hand, they are so if
f̃∗ (but maybe not f̃ itself) is a diffeomorphism (see [11]).

Direct sum If we are given two diffeological vector pseudo-bundles, π1 : V1 → X1 and π2 : V2 → X2,
and a gluing of them along (f̃ , f), as well as two other pseudo-bundles π′1 : V ′1 → X1 and π′2 : V ′2 → X2,
with the gluing along (f̃ ′, f), we can obtain(

π1 ∪(f̃ ,f) π2

)
⊕
(
π′1 ∪(f̃ ′,f) π

′
2

)
:
(
V1 ∪f̃ V2

)
⊕
(
V ′1 ∪f̃ ′ V

′
2

)
→ X1 ∪f X2

and
(π1 ⊕ π′1) ∪f̃⊕f̃ ′ (π2 ⊕ π′2) : (V1 ⊕ V ′1) ∪f̃⊕f̃ ′ (V2 ⊕ V ′2)→ X1 ∪f X2.

It is easy (although tedious) to check that they are diffeomorphic via a diffeomorphism covering the
identity map on the bases ([9], [10]).

Tensor product Likewise, there are two pseudo-bundles that constructed using the operation of the
tensor product:

(π1 ∪(f̃ ,f) π2)⊗ (π′1 ∪(f̃ ′,f) π
′
2) : (V1 ∪f̃ V2)⊗ (V ′1 ∪f̃ ′ V

′
2)→ X1 ∪f X2

and
(π1 ⊗ π′1) ∪(f̃⊗f̃ ′,f) (π2 ⊗ π′2) : (V1 ⊗ V ′1) ∪(f̃⊗f̃ ′,f) (V2 ⊗ V ′2)→ X1 ∪f X2.

These are diffeomorphic as well.

1.4 Diffeological counterparts of Riemannian metrics

A pseudo-metric on a diffeological vector pseudo-bundle π : V → X is a smooth section of the pseudo-
bundle π∗ ⊗ π∗ : V ∗ ⊗ V ∗ → X, i.e., a smooth map g : X → V ∗ ⊗ V ∗ such that for all x ∈ X the value
g(x) is a symmetric form of rank dim((π−1(x))∗), with all the eigenvalues non-negative; in other words, it
is a pseudo-metric on the diffeological vector space π−1(x). Such a pseudo-metric obviously exists on any
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trivial diffeological pseudo-bundle; the gluing construction for pseudo-metrics, that we briefly summarize
below, allows to put them on a number of more complicated pseudo-bundles.

Let π1 : V1 → X1 and π2 : V2 → X2 be two diffeological vector pseudo-bundles, and let (f̃ , f) be a
gluing of the former to the latter such that f is a diffeomorphism. Suppose that each of V1, V2 admits a
pseudo-metric; let gi be a chosen pseudo-metric on Vi for i = 1, 2. We say that g1 and g2 are compatible
(with the gluing along (f̃ , f)) if for every y ∈ Y and for all v1, v2 ∈ π−1

1 (y) we have

g1(y)(v1, v2) = g2(f(y))(f̃(v1), f̃(v2)).

Assuming now that g1 and g2 are compatible, we define a map g̃ : X1 ∪f X2 → (V1 ∪f̃ V2)∗ ⊗ (V1 ∪f̃ V2)∗

by setting:

g̃(x)(·, ·) =

{
g1(i−1

1 (x))(j−1
1 (·), j−1

1 (·)) for x ∈ i1(X1 \ Y )
g2(i−1

2 (x))(j−1
2 (·), j−1

2 (·)) for x ∈ i2(X2).

This turns out to be a pseudo-metric on V1 ∪f̃ V2 (see [10] for more details).
Finally, if π : V → X is a pseudo-bundle endowed with a pseudo-metric g then V ∗ can sometimes

be endowed with the dual pseudo-metric g∗, which is defined as follows. Let Φg : V → V ∗ be the
usual pairing map, i.e., one defined by Φg(v)(·) = g(π(v))(v, ·). This map is always smooth but in
general is not invertible, unless we consider it as defined on a specific smaller sub-bundle of V (called its
characteristic sub-bundle); even in this latter case, it is not clear whether its inverse is always smooth.
The map g∗ : X → V ∗∗ ⊗ V ∗∗ is given by the identity

g∗(x)(Φg(v1),Φg(v2)) = g(x)(v1, v2);

since the map Φg is surjective and its kernel is contained in the collection of the isotropic subspaces of the
fibres, g∗ is always well-defined. However, by the above remark on Φg not necessarily having a smooth
(right) inverse, we cannot be certain that g∗ is always smooth; when necessary, we impose this as an
assumption.

1.5 Diffeological 1-forms

For diffeological spaces, there exists a rather well-developed theory of differential k-forms on them (see
[7], Chapter 6, for a detailed exposition); we recall the main notions for the case k = 1.

1.5.1 Differential 1-forms and differentials of functions

Here are the basic definitions.

A diffeological 1-form A differential 1-form on a diffeological space X is defined by assigning to each
plot p : Rk ⊃ U → X a (usual) differential 1-form ω(p)(u) = f1(u)du1 + . . . + fk(u)duk ∈ Λ1(U) such
that this assignment satisfies the following compatibility condition. If q : U ′ → X is another plot of X
such that there exists a usual smooth map F : U ′ → U with q = p ◦F then ω(q)(u′) = F ∗ (ω(p)(u)). The
definition of a diffeological k-form is actually the same, except that the differential forms assigned to the
domains of plots are (obviously) k-forms.

The differential of a function Let X be a diffeological space, and let f : X → R be a diffeologically
smooth function on it; recall that this means that for every plot p : U → X the composition f ◦p : U → R
is smooth in the usual sense, therefore d(f ◦ p) is a differential form on U . It is quite easy to see that the
assignment p 7→ d(f ◦p) =: ω(p) is a differential 1-form on X; indeed, let g : V → U be a smooth function.
The smooth compatibility condition ω(p ◦ g) = g∗(ω(p)) is then equivalent to d((f ◦ p) ◦ g) = g∗(d(f ◦ p)),
i.e., to a standard property of usual differential forms.

1.5.2 The space Ω1(X) of 1-forms

The set of all differential 1-forms on X is denoted by Ω1(X); it carries a natural functional diffeology
with respect to which it becomes a diffeological vector space. The addition and the scalar multiplication
operations, that make Ω1(X) into a vector space, are given pointwise (at points in the domains of plots).
The functional diffeology on Ω1(X) is characterized by the following condition:
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• a map q : U ′ → Ω1(X) is a plot of Ω1(X) if and only if for every plot p : U → X the map
U ′ × U → Λ1(Rn) given by (u′, u) 7→ (q(u′)(p))(u) is smooth, where U ⊂ Rn.

The expression q(u′)(p) stands for the 1-form on the domain of definition of p, i.e., the domain U , that
the differential 1-form q(u′) on X assigns to the plot p of X.

1.5.3 The pseudo-bundle of k-forms Λk(X)

There is a natural quotienting of Ωk(X), which gives, at every point x ∈ X, the set of all distinct values,
at x, of differential k-forms on X; this set is denoted by Λkx(X). The collection of all Λkx(X), for each
x ∈ X, yields the pseudo-bundle Λk(X) (we describe it for a generic k > 1, since the description is exactly
the same for all k).

The fibre Λkx(X) Let X be a diffeological space, and let x be a point of it. A plot p : U → X is centered
at x if U 3 0 and p(0) = x. Let ∼x be the following equivalence relation: two k-forms α, β ∈ Ωk(X) are
equivalent, α ∼x β, if and only if, for every plot p centered at x, we have α(p)(0) = β(p)(0). The class of
α for the equivalence relation ∼x is called the value of α at the point x and is denoted by αx. The
set of all the values at the point x, for all k-forms on X, is denoted by Λkx(X):

Λkx(X) = Ωk(X)/ ∼x= {αx |α ∈ Ωk(X)}.

Any element α ∈ Λkx(X) is said to be a k-form of X at the point x (and x is said to be the basepoint
of α). The space Λkx(X) is then called the space of k-forms of X at the point x.

The space Λkx(X) as a quotient of Ωk(X) Two k-forms α and β have the same value at the point x
if and only if their difference vanishes at this point: (α− β)x = 0. The set {α ∈ Ωk(X) |αx = 0x} of the
k-forms of X vanishing at the point x is a vector subspace of Ωk(X); furthermore,

Λkx(X) = Ωk(X)/{α ∈ Ωk(X) |αx = 0x}.

In particular, as a quotient of a diffeological vector space by a vector subspace, each space Λkx(X) is
naturally a diffeological vector space; the addition and the scalar multiplication on Λkx(X) are well-defined
for any choice of representatives.

The pseudo-bundle Λk(X) k-forms The pseudo-bundle of k-forms over X, denoted by Λk(X),
is the union of all spaces Λkx(X), that is,

Λk(X) =
⋃
x∈X

Λkx(X) = {(x, α) |α ∈ Λkx(X)}.

It has an obvious structure of a pseudo-bundle over X and is endowed with the diffeology that is the
pushforward of the product diffeology on X × Ωk(X) by the projection

πΩ,Λ : X × Ωk(X)→ Λk(X)

acting by πΩ,Λ(x, α) = (x, αx). Note that for this diffeology the natural projection

πΛ : Λk(X)→ X

is a local subduction. Moreover, each subspace (πΛ)−1(x) is smoothly isomorphic to Λkx(X).

The plots of the pseudo-bundle Λk(X) A map p : U 3 u 7→ (p1(u), p2(u)) ∈ Λk(X) defined on some
domain U in some Rm is a plot of Λk(X) if and only if the following two conditions are fulfilled:

1. The map p1 is a plot of X;

2. For all u ∈ U there exists an open neighborhood U ′ of u and a plot q : U ′ → Ωk(X) such that for
all u′ ∈ U ′ we have p2(u′) = q(u′)(p1)(u′).

In other words, a plot of Λk(X) is locally represented by a pair, consisting of a plot of X and a plot of
Ωk(X) (with the same domain of definition).
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1.6 Diffeological forms and diffeological gluing

Here we recall the main facts regarding the behavior of diffeological forms under gluing; these are estab-
lished in [12]).

1.6.1 The space of forms Ω1(X1 ∪f X2)

Let X1 and X2 be two diffeological spaces, and let f : X1 ⊇ Y → X2 be a smooth map. Let

π : X1 tX2 → X1 ∪f X2

be the quotient projection. We recall first the image of the pullback map (see 6.38 in [7])

π∗ : Ω1(X1 ∪f X2)→ Ω1(X1 tX2) ∼= Ω1(X1)× Ω1(X2).

Note that π∗ is injective but typically not surjective.
Denote by Ω1

f (X1) the subset of the so-called f -invariant forms, where a form ω1 ∈ Ω1(X1) is called
f-invariant if for any f -equivalent plots p′ and p′′ we have ω1(p′) = ω1(p′′); two plots p′ and p′′ are f-
equivalent if they have the same domain of definition U and for any u ∈ U the inequality p′(u) 6= p′′(u)
implies that p′(u), p′′(u) ∈ Y and f(p′(u)) = f(p′′(u)); thus, by definition,

Ω1
f (X1) = {ω1 ∈ Ω1(X1) |ω1(p′) = ω1(p′′) whenever p′, p′′ are f − equivalent}.

The set Ω1
f (X1) is a vector subspace of Ω1(X1); if f is injective then Ω1

f (X1) = Ω1(X1). If now ω1 ∈
Ω1(X1) and ω2 ∈ Ω1(X2) then ω1 and ω2 are called compatible if for every plot p1 of the subset
diffeology on Y we have that ω1(p1) = ω2(f ◦ p1); the first term ω1 of any compatible pair is always
f -invariant.

Theorem 1.2. ([12]) The space Ω1(X1∪fX2) is diffeomorphic to the space Ω1
f (X1)×compΩ1(X2), where

Ω1
f (X1)×comp Ω1(X2) := {(ω1, ω2) |ω1 ∈ Ω1

f (X1), ω2 ∈ Ω1(X2), ω1 and ω2 are compatible}

is considered with the subset diffeology relative to its inclusion into Ω1(X1) × Ω1(X2) endowed with the
product diffeology.

If Ω1(X1)×Ω1(X2) is considered with the algebraic structure of the direct sum Ω1(X1)⊕Ω1(X2) (that
it naturally carries via its identification with Ω1(X1∪fX2); the direct sum structure on Ω1(X1)×Ω1(X2)
corresponds to the vector space structure on Ω1(X1 ∪f X2)) then Ω1

f (X1) ×comp Ω1(X2) is a vector
subspace, and the diffeomorphism whose existence is claimed in Theorem 1.2 is an isomorphism. This
diffeomorphism can be explicitly described as follows.

Let ω1 ∈ Ω1
f (X1) be an f -invariant form on X1, and let ω2 ∈ Ω1(X2) be a form on X2 compatible

with ω1. Then there is a natural induced form on X1 ∪f X2, that is denoted by ω1 ∪f ω2 and that is
defined as follows. Let p be a plot of X1 ∪f X2 with a connected domain of definition, and let pi be its
lift to a plot of Xi for i = 1 or i = 2. Then we set

(ω1 ∪f ω2)(p) =

{
ω1(p1) if p = π ◦ p1,
ω2(p2) if p = π ◦ p2.

The form ω1 ∪f ω2 is well-defined, because every plot of X1 ∪f X2 with a connected domain of definition
lifts either to a plot of X1 or one of X2, and there can be at most one lift to a plot of X2, while all lifts to
X1 of the same plot are f -equivalent (recall that ω1 is required to be f -invariant). We have the following
statement (it is a direct consequence of [12], Theorem 3.9 and Theorem 3.1).

Theorem 1.3. The assignment (ω1, ω2) 7→ ω1 ∪f ω2 yields a vector space diffeomorphism

Ω1
f (X1)×comp Ω1(X2) ∼= Ω1(X1 ∪f X2).

The inverse of this diffeomorphism filters through the pullback map π∗ : Ω1(X1 ∪f X2)→ Ω1(X1 tX2).

Finally, a further observation can be made on the structure of the space Ω1
f (X1) ×comp Ω1(X2) (see

[12]).

Theorem 1.4. The projection Ω1
f (X1) ×comp Ω1(X2) → Ω1(X2) is always a surjective map. If f is a

subduction onto f(Y ) then the projection Ω1
f (X1)×comp Ω1(X2)→ Ω1

f (X1) is also surjective.
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1.6.2 The fibrewise structure of the pseudo-bundle Λ1(X1 ∪f X2)

We now consider the pseudo-bundle Λ1(X1∪f X2). We almost always assume that f is a diffeomorphism,
although something can be said regarding the case when it is not (see [12]).

Compatibility of elements of Λ1(X1) and Λ1(X2) To give the desired description, we need a certain
compatibility notion for elements of Λ1(X1) and Λ1(X2). This compatibility is relative to the map f and
applies to elements of fibres over the domain of gluing. We define the subset Λ1

x1
(X1)×comp Λ1

x2
(X2) as

the following quotient:

Λ1
x1

(X1)×comp Λ1
x2

(X2) :=
(
Ω1(X1)×comp Ω1(X2)

)
/
(
(Ω1(X1)×comp Ω1(X2)) ∩ (Ω1

x1
(X1)× Ω1

x2
(X2))

)
.

This implies the following notion of compatibility for two individual elements of Λ1
y(X1) and Λ1

f(y)(X2)
is then immediately obvious.

Definition 1.5. Let y ∈ Y . Two cosets ω1 + Ω1
y(X1) and ω2 + Ω1

f(y)(X2) are said to be compatible if

for any ω′1 ∈ Ω1
y(X1) and for any ω′2 ∈ Ω1

f(y)(X2) the forms ω1 + ω′1 and ω2 + ω′2 are compatible.

This is also equivalent to(
ω1 + Ω1

y(X1)
)
×comp

(
ω′2 + Ω1

f(y)(X2)
)

=
(
ω1 + Ω1

y(X1)
)
×
(
ω′2 + Ω1

f(y)(X2)
)
.

The individual fibres of Λ1(X1∪fX2) Assuming that f is a diffeomorphism, the fibres of Λ1(X1∪fX2)
can be fully described. It turns out that any of them is diffeomorphic to either a fibre of one of the factors
or to the direct sum of such. This distinction depends on whether the fibre is at a point of the domain
of gluing or outside of it.

Theorem 1.6. ([12]) Let X1 and X2 be two diffeological spaces, and let f : X1 ⊇ Y → X2 be a
diffeomorphism of its domain with its image. Then

1. For any x1 ∈ i1(X1 \ Y ) there is a diffeomorphism

Λ1
x1

(X1 ∪f X2) ∼= Λ1
i−1
1 (x1)

(X1).

2. For any x2 ∈ i2(X2 \ f(Y )) there is a diffeomorphism

Λ1
x2

(X1 ∪f X2) ∼= Λ1
i−1
2 (x2)

(X2).

3. For any y ∈ Y there is a diffeomorphism

Λ1
i2(f(y))(X1 ∪f X2) ∼= Λ1

y(X1)⊕comp Λ1
f(y)(X2).

Example 1.7. Let X1 and X2 be two diffeological spaces, and let xi ∈ Xi be a point, for i = 1, 2; let
f : {x1} → {x2} be the obvious map. Then X1 ∪f X2 is the usual wedge X1 ∨X2 of X1 and X2. Since
any diffeological form assigns the zero value to any constant plot, any two forms on, respectively, X1 and
X2, are automatically compatible. Therefore

Ω1(X1 ∪f X2) = Ω1(X1 ∨X2) ∼= Ω1(X1)× Ω1(X2).

On the other hand, the fibre of Λ1(X1 ∨X2) at any point x′i ∈ Xi ⊂ X1 ∨X2 is Λ1
x′i

(Xi), except for the

wedge point x = [x1] = [x2], where it is the direct product Λ1
x1

(X1)× Λ1
x2

(X2).
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The corresponding decomposition of Λ1(X1 ∪f X2) We still assume that f is a diffeomorphism.
For practical purposes, the following description of Λ1(X1 ∪f X2) is quite useful.

Theorem 1.8. Let X1 and X2 be two diffeological spaces, and let f : X1 ⊇ Y → X2 be a diffeomorphism
of its domain with its image. Let πΛ : Λ1(X1∪fX2)→ X1∪fX2, πΛ

1 : Λ1(X1)→ X1, and πΛ
2 : Λ1(X2)→

X2 be the pseudo-bundle projections. Then

Λ1(X1 ∪f X2) ∼= ∪x1∈X1\Y Λ1
x1

(X1)
⋃
∪y∈Y

(
Λ1
y(X1)⊕comp Λ1

f(y)(X2)
) ⋃

∪x2∈X2\f(Y )Λ
1
x2

(X2),

where ∼= has the following meaning:

• the set ∪x1∈X1\Y Λ1
x1

(X1) ⊂ Λ1(X) is identified with (πΛ)−1(i1(X1 \ Y )) and with (πΛ
1 )−1(X1 \ Y ).

This identification is a diffeomorphism for the subset diffeologies relative to the inclusions

(πΛ)−1(i1(X1 \ Y )) ⊂ Λ1(X1 ∪f X2) and (πΛ
1 )−1(X1 \ Y ) ⊂ Λ1(X1);

• likewise, the set ∪x2∈X2\f(Y )Λ
1
x2

(X2) is identified with (πΛ)−1(i2(X2 \f(Y ))) and with (πΛ
2 )−1(X2 \

f(Y )), with the identification being again a diffeomorphism for the subset diffeologies relative to the
inclusions

(πΛ)−1(i2(X2 \ f(Y ))) ⊂ Λ1(X1 ∪f X2) and (πΛ
2 )−1(X2 \ f(Y ));

• finally, the set ∪y∈Y
(

Λ1
y(X1)⊕comp Λ1

f(y)(X2)
)

is given the direct sum diffeology as the appropriate

(determined by compatibility) subset of the result of the direct of the following two restricted pseudo-
bundles:

πΛ
1 |(πΛ

1 )−1(Y ) : (πΛ
1 )−1(Y )→ Y and f−1 ◦ πΛ

2 |(πΛ
2 )−1(f(Y )) : (πΛ

2 )−1(f(Y ))→ Y.

This direct sum subset can also be identified with (πΛ)−1(i2(f(Y ))) and given the subset diffeology
relative to the inclusion

(πΛ)−1(i2(f(Y ))) ⊂ Λ1(X1 ∪f X2);

once again, this identification is a diffeomorphism for the above direct sum diffeology and the just-
mentioned subset diffeology.

We should note that the three diffeologies indicated in the theorem do not fully describe the diffeology
of Λ1(X1 ∪f X2) (for the obvious reason, if they did then Λ1(X1 ∪f X2) would be disconnected in the
underlying D-topology, which in general it does not have to be). In the next section we consider other
types of plots of Λ1(X1 ∪f X2).

1.6.3 The diffeology of Λ1(X1 ∪f X2), and the maps ρ̃Λ
1 and ρ̃Λ

2

It is ultimately a consequence of the properties of the gluing diffeology (even if Λ1(X1 ∪f X2) is not
obtained by any kind of gluing between Λ1(X1) and Λ1(X2)) that every plot p : U → Λ1(X1 ∪f X2)
locally can be represented in the form

p(u) = pΩ
1 (u) ∪f pΩ

2 (u) + Ω1
πΛ(p(u))(X1 ∪f X2),

where pΩ
1 : U → Ω1(X1) and pΩ

2 : U → Ω1(X2) are plots of Ω1(X1) and Ω1(X2) respectively, such that
for any u ∈ U the forms pΩ

1 (u) and pΩ
2 (u) are compatible. Furthermore, the composition πΛ ◦ p with the

pseudo-bundle projection πΛ : Λ1(X1 ∪f X2)→ X1 ∪f X2 lifts to either a plot of X1 or one of X2.

The definition of ρ̃Λ
1 and ρ̃Λ

2 Consider Λ1(X1 ∪f X2) as a diffeological quotient of

(X1 tX2)×
(
Ω1(X1)×comp Ω1(X2)

) ∼=
∼=
(
X1 ×

(
Ω1(X1)×comp Ω1(X2)

))
t
(
X2 ×

(
Ω1(X1)×comp Ω1(X2)

))
,
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therefore (πΛ)−1(i1(X1) ∪ f(i2(Y ))) is the quotient of X1 ×
(
Ω1(X1)×comp Ω1(X2)

)
by⋃

x∈X1\Y

{x} ×
(
Ω1
x(X1)×comp Ω1(X2)

)
∪
⋃
y∈Y
{y} ×

(
Ω1
y(X1)×comp Ω1

f(y)(X2)
)
.

Likewise, (πΛ)−1(i2(X2)) is the quotient of X2 ×
(
Ω1(X1)×comp Ω1(X2)

)
by⋃

y′∈f(Y )

{y′} ×
(

Ω1
f−1(y′)(X1)×comp Ω1

y′(X2)
)
∪

⋃
x∈X2\f(Y )

{x} ×
(
Ω1(X1)×comp Ω1

x(X2)
)
.

Let now

ρ1 : X1 ×
(
Ω1(X1)×comp Ω1(X2)

)
→ X1 × Ω1(X1) and

ρ2 : X2 ×
(
Ω1(X1)×comp Ω1(X2)

)
→ X2 × Ω1(X2)

be the maps each of which acts on Xi by identity and on Ω1(X1) ×comp Ω1(X2) by the projection onto
the first and the second factor respectively. These maps obviously preserve the corresponding spaces
of vanishing 1-forms, therefore their pushforwards to the appropriate subsets of Λ1(X1 ∪f X2) are well-
defined. Thus, they induce well-defined and smooth maps

ρ̃Λ
1 : Λ1(X1 ∪f X2) ⊃ (πΛ)−1(i1(X1) ∪ f(i2(Y )))→ Λ1(X1) and

ρ̃Λ
2 : Λ1(X1 ∪f X2) ⊃ (πΛ)−1(i2(X2))→ Λ1(X2).

These maps allow for the following characterization of the diffeology of Λ1(X1 ∪f X2).

Theorem 1.9. ([12]) The diffeology of Λ1(X1 ∪f X2) is the coarsest one such that both ρ̃Λ
i are smooth.

Compatibility and ρ̃Λ
i being subductions Let i : Y ↪→ X1 and j : f(Y ) ↪→ X2 be the natural

inclusions, and consider the pullback maps i∗ : Ω1(X1)→ Ω1(Y ) and f∗ ◦ j∗ : Ω1(X2)→ Ω1(Y ). Denote
by DΩ

1 and DΩ
2 , respectively, the pushforward of the diffeology of Ω1(X1) by i∗ and the pushforward of

the diffeology of Ω1(X2) by f∗ ◦ j∗.

Lemma 1.10. Let pΩ
1 : U → Ω1(X1) be a plot of Ω1(X1). Up to replacing U with its smaller sub-domain,

there exists a plot pΩ
2 : U → Ω1(X2) such that pΩ

1 (u) and pΩ
2 (u) are compatible for all u ∈ U if and only

if i∗ ◦ pΩ
1 ∈ DΩ

2 .

The analogous statement for an arbitrary plot pΩ
2 of Ω1(X2) is also true. From the two put together,

the following can be easily obtained.

Theorem 1.11. ([12]) The maps ρ̃Λ
1 and ρ̃Λ

2 are subductions if and only if DΩ
1 = DΩ

2 .

1.6.4 Putting a pseudo-metric on Λ1(X1 ∪f X2)

Assume that both Λ1(X1) and Λ1(X2) admit pseudo-metrics; this, in particular, implies that they both
have finite-dimensional fibres. Therefore by Theorem 1.8 Λ1(X1 ∪f X2) has finite-dimensional fibres as
well. It turns out that in some cases there is an induced pseudo-metric on Λ1(X1 ∪f X2).

The compatibility of pseudo-metrics on Λ1(X1) and Λ1(X2) In the case of Λ1(X1) and Λ1(X2)
the notion of compatibility is essentially one of the invariance with respect to ρ̃Λ

1 and ρ̃Λ
2 .

Definition 1.12. Let gΛ
1 and gΛ

2 be pseudo-metrics on Λ1(X1) and Λ1(X2) respectively. They are said
to be compatible, if for all y ∈ Y and for all ω, µ ∈ (πΛ)−1(i2(f(y))) we have

gΛ
1 (y)

(
ρ̃Λ

1 (ω), ρ̃Λ
1 (µ)

)
= gΛ

2 (f(y))
(
ρ̃Λ

2 (ω), ρ̃Λ
2 (µ)

)
.

Remark 1.13. The compatibility condition for pseudo-metrics can be equivalently stated as, for any
y ∈ Y and for any two compatible pairs (ω′, ω′′) and (µ′, µ′′), where ω′, µ′ ∈ (πΛ

1 )−1(y) and ω′′, µ′′ ∈
(πΛ

2 )−1(f(y)), we have
gΛ

1 (y)(ω′, µ′) = gΛ
2 (f(y))(ω′′, µ′′).

13



The induced pseudo-metric on Λ1(X1 ∪f X2) Let gΛ
1 and gΛ

2 be two compatible, in the sense of
Definition 1.12, pseudo-metrics on Λ1(X1) and Λ1(X2) respectively. We can then obtain a pseudo-metric
gΛ on Λ1(X1 ∪f X2), which is defined by setting:

gΛ(x)(·, ·) =


gΛ

1 (i−1
1 (x))(ρ̃Λ

1 (·), ρ̃Λ
1 (·)) if x ∈ i1(X1 \ Y )

gΛ
2 (i−1

2 (x))(ρ̃Λ
2 (·), ρ̃Λ

2 (·)) if x ∈ i2(X2 \ f(Y ))
1
2

(
gΛ

1 (f−1(i−1
2 (x)))(ρ̃Λ

1 (·), ρ̃Λ
1 (·)) + gΛ

2 (i−1
2 (x))(ρ̃Λ

2 (·), ρ̃Λ
2 (·))

)
if x ∈ i2(f(Y ))

That this is indeed a pseudo-metric follows from the compatibility of gΛ
1 and gΛ

2 . Indeed, this condition
ensures that the evaluation of gΛ on any triple of plots with connected domains of definition coincides
with the evaluation of either gΛ

1 or gΛ
2 on another specific triple of plots. Thus, it is automatically smooth,

and other properties of a pseudo-metric easily follow.

2 Sections of diffeological pseudo-bundles

In this section we consider the space C∞(X,V ) of smooth sections of a given finite-dimensional diffeologi-
cal vector pseudo-bundle. For non-standard diffeologies on one or both of X and V , this space may easily
be of infinite dimension; immediately below we provide an example of this. On the other hand, when
it is the spaces themselves that are non-standard (say, they are not topological manifolds), the space of
sections might be finite-dimensional, as we illustrate via the study of the behavior of the space of sections
under gluing of pseudo-bundles, where most of the effort has to be spent on the case when the gluing is
performed along a non-diffeomorphism f . In this regard, we obtain the answer in the most general case,
showing that the space of sections of the result of gluing is always a smooth surjective imageof a subspace
of the direct product of the spaces of sections of the factors (in particular, the finiteness of the dimension
is preserved, i.e., the existence of local bases, meaning that if the spaces of sections of the factors are
finite-dimensional then so is the space of sections of the result of gluing).

Observe that we discuss in fact only the case of global sections, because this is not really different from
restricting ourselves to the local case. Indeed, in the natural topology underlying a diffeological structure,
the so-called D-topology (introduced in [6]), the open sets can be of any form. What this implies at the
moment is that there is no fixed local shape for diffeological pseudo-bundle, or, said differently, any
diffeological vector pseudo-bundle can appear as the restriction of a larger pseudo-bundle to a D-open
(open in D-topology) neighborhood of a fibre.

The final conclusion of this section is that there is a natural smooth surjective map (a subduction, in
fact)

S : C∞
(f,f̃)

(X1, V1)×comp C∞(X2, V2)→ C∞(X1 ∪f X2, V1 ∪f̃ V2),

where C∞
(f,f̃)

(X1, V1) 6 C∞(X1, V1) is the subspace of the so-called (f, f̃)-invariant sections (these are

sections s such that having f(y) = f(y′) implies that f̃(s(y)) = f̃(s(y′))), and C∞
(f,f̃)

(X1, V1) ×comp
C∞(X2, V2) is the subset of the direct product C∞

(f,f̃)
(X1, V1)×C∞(X2, V2) that consists of all compatible

pairs (a pair (s1, s2) is compatible if f̃ ◦ s1 = s2 ◦ f wherever defined). The map S is an instance of a
more general procedure of gluing compatible maps concurrently with gluing of their domains and their
ranges (see [10] for the general case; the map S is described in detail below). Notice also that

C∞
(f,f̃)

(X1, V1)×comp C∞(X2, V2) = C∞(X1, V1)×comp C∞(X2, V2),

that is, if (s1, s2) is a compatible pair then s1 is necessarily (f, f̃)-invariant. Also, S is a diffeomorphism
if f and f̃ are so.

2.1 The space C∞(X, V ) over C∞(X,R)

In the case of diffeological pseudo-bundles, the space of all smooth sections C∞(X,V ) may have infinite
dimension over C∞(X,R) when normally we would not expect it. To begin our consideration of the
subject, we provide a simple example of this.
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Example 2.1. Let π : V → X be the projection of V = R3 onto its first coordinate; thus, X is R, which
we endow with the standard diffeology. Endow V with the pseudo-bundle diffeology generated by the plot
R2 3 (u, v) 7→ (u, 0, |v|); this diffeology is a product diffeology for the decomposition R3 = R × R2 into
the direct product of the standard R with R2 carrying the vector space diffeology generated by the plot
v 7→ (0, |v|). In this case the space C∞(X,V ) of smooth sections of the pseudo-bundle π has infinite
dimension over C∞(X,R) = C∞(R,R); let us explain why.

Proof. Since the diffeology of X is standard, the ring C∞(X,R) includes the usual smooth functions R→
R only. The diffeology of V is actually a vector space diffeology generated by the plot (u, v) 7→ (u, 0, |v|);
an arbitrary plot of it has therefore the form

Rl+m+n ⊇ U 3 (x, y, z) 7→ (f1(x), f2(y), g0(z) + g1(z)|h1(z)|+ . . .+ gk(z)|hk(z)|),

where U is a domain, and f1 : Rl ⊆ Ux → R, f2 : Rm ⊇ Uy → R and g0, g1, . . . , gk, h1, . . . , hk : Rn ⊇
Uz → R are some ordinary smooth functions. Hence any smooth section s ∈ C∞(X,V ) has (at least
locally) form

s(x) = (x, f(x), g0(x) + g1(x)|h1(x)|+ . . .+ gk(x)|hk(x)|)
for some ordinary smooth functions f, g0, g1, . . . , gk, h1, . . . , hk : R ⊇ U → R; and vice versa every
such expression corresponds locally to a smooth section X → V (and can be extended, by a standard
partition-of-unity argument, to a section in C∞(X,V )). Since gi and hi are any smooth functions at all,
and they can be in any finite number, for any finite arbitrarily long collection x1, . . . , xk ∈ R there is a
diffeologically smooth section s that, seen as a usual map R → R3, is non-differentiable precisely at the
points x1, . . . , xk (and smooth outside of them). Thus, it is impossible that all such sections be linear
combinations over C∞(R,R) of the same finite set of (at least continuous) functions R→ R3.

Our main interest thus is when the space of sections turns out to be finite-dimensional. We thus
concentrate, in the sections that follow, on the behavior of this space under the operation of gluing.

2.2 The space C∞(X1 ∪f X2, V1 ∪f̃ V2) relative to C∞
(f,f̃)

(X1, V1) and C∞(X2, V2)

Let π1 : V1 → X1 and π2 : V2 → X2 be two finite-dimensional diffeological vector pseudo-bundles, let
(f̃ , f) be a pair of smooth maps that defines a gluing between them, and let Y ⊂ X1 be the domain of
definition of f . Consider the three corresponding spaces of smooth sections, i.e., the spaces C∞(X1, V1),
C∞(X2, V2), and C∞(X1 ∪f X2, V1 ∪f̃ V2). The latter space can be reconstructed from the former two
by using the notion of gluing of compatible smooth maps, as it appears in [10].

2.2.1 Compatible sections

Consider a pair ϕ1 : X1 → Z1 and ϕ2 : X2 → Z2 of smooth maps between some diffeological spaces that
are, in turn, endowed with fixed smooth maps f : X1 ⊃ Y → X2 and g : ϕ1(Y ) → Z2. We say that ϕ1

and ϕ2 are (f, g)-compatible if g ◦ ϕ1 = ϕ2 ◦ f wherever defined. This allows to define an obvious map

ϕ1 ∪(f,g) ϕ2 : X1 ∪f X2 → Z1 ∪g Z2,

which is smooth for the gluing diffeologies on X1 ∪f X2 and Z1 ∪g Z2 (see [10], Proposition 4.4). A pair
of sections s1, s2 of two diffeological pseudo-bundles is then a particular instance of maps ϕi, with Zi
being Vi, with the role of g being played by f̃ . Two such sections are compatible if f̃ ◦ s1 = s2 ◦ f on
the whole domain of definition.

2.2.2 Compatibility and (f, f̃)-invariant sections

Let s1 ∈ C∞(X1, V1) be such that there exists a section s2 ∈ C∞(X2, V2) compatible with it, that is, for
all y ∈ Y we have f̃(s1(y)) = s2(f(y)); let y′ ∈ Y be a point such that f(y) = f(y′). The compatibility
condition implies then that

f̃(s1(y)) = s2(f(y)) = s2(f(y′)) = f̃(s1(y′));

thus, although s1(y) and s1(y′) do not have to coincide, their images under f̃ necessarily do. This justifies
the following definition, and an easy lemma that follows it.
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Definition 2.2. Let π1 : V1 → X1 be a diffeological vector pseudo-bundle, let W and Z be any two
diffeological spaces, let f : Y → Z be a smooth map defined on a subset Y of X1, and let f̃ : π−1

1 (Y )→W
be a lift of f to V1. A section s1 ∈ C∞(X1, V1) of this pseudo-bundle is called (f, f̃)-invariant if for
any y, y′ ∈ Y such that f(y) = f(y′) (in Z) we have that f̃(s1(y)) = f̃(s1(y′)) (in W ). A function
h ∈ C∞(X1,R) is called f-invariant if h(y) = h(y′) for all y, y′ ∈ Y such that f(y) = f(y′).

The lemma below follows immediately from what has been said prior to the definition.

Lemma 2.3. Let π1 : V1 → X1 and π2 : V2 → X2 be two diffeological vector pseudo-bundles, let (f̃ , f)
be a gluing between them, and let s1 ∈ C∞(X1, V1) be such that there exists s2 ∈ C∞(X2, V2) compatible
with s1. Then s1 is (f, f̃)-invariant.

Thus, we only need to take into consideration (f, f̃)-invariant sections X1 → V1. The set of all of
them is denoted by

C∞
(f,f̃)

(X1, V1) = {s ∈ C∞(X1, V1) | s is (f, f̃)− invariant}.

Let us now consider some properties of this set.

Proposition 2.4. The set C∞
(f,f̃)

(X1, V1) is closed with respect to the summation and multiplication by

f -invariant functions.

Proof. Given two (f, f̃)-invariant sections s1, s2 ∈ C∞(X1, V1) and an f -invariant function h ∈ C∞(X1,R),
we need to show that s1 + s2 and hs1 are again (f, f̃)-invariant. Let y, y′ ∈ Y be such that f(y) = f(y′).
Then it follows from the linearity of f̃ on each fibre in its domain of definition that f̃((hs)(y)) =
f̃(h(y)s(y)) = h(y)f̃(s(y)) = h(y′)f̃(s(y′)) = f̃((hs)(y′)), as wanted. Furthermore, by assumption
f̃(s1(y)) = f̃(s1(y′)) and f̃(s2(y)) = f̃(s2(y′)). Since the restriction of f̃ on any fibre is linear, we
have

f̃((s1 + s2)(y)) = f̃(s1(y) + s2(y)) = f̃(s1(y)) + f̃(s2(y)) = f̃(s1(y′)) + f̃(s2(y′)) = f̃((s1 + s2)(y′)),

which completes the proof.

2.2.3 The map S : C∞
(f,f̃)

(X1, V1)×comp C∞(X2, V2)→ C∞(X1 ∪f X2, V1 ∪f̃ V2)

The notion of compatibility of sections allows us to define the (partial) operation of gluing for smooth
sections of the pseudo-bundles π1 and π2, through which we define the map announced in the title of the
section.

The section s1∪(f,f̃) s2 of π1∪(f̃ ,f) π2 Let s1 and s2 be two compatible smooth sections of the pseudo-
bundles π1 and π2 respectively. We define a section s1∪(f,f̃)s2 : X1∪fX2 → V1∪f̃ V2 of the pseudo-bundle
π1 ∪(f̃ ,f) π2 by imposing

(s1 ∪(f,f̃) s2)(x) =

{
s1(i−1

1 (x)) for x ∈ i1(X1 \ Y ), and
s2(i−1

2 (x)) for x ∈ i2(X2).

This turns out to be a smooth section of π1 ∪(f̃ ,f) π2, as follows from Proposition 4.4 in [10].

The induced map S into C∞(X1 ∪f X2, V1 ∪f̃ V2) Consider the direct product C∞(X1, V1) ×
C∞(X2, V2); let

C∞(X1, V1)×comp C∞(X2, V2) = {(s1, s2) | si ∈ C∞(Xi, Vi), s1, s2 are (f, f̃)− compatible}.

The latter set is endowed with the subset diffeology relative to its inclusion into C∞(X1, V1)×C∞(X2, V2)
(which in turn has the product diffeology coming from the functional diffeologies on each C∞(Xi, Vi)).
Notice that by Lemma 2.3

C∞(X1, V1)× C∞(X2, V2) = C∞
(f,f̃)

(X1, V1)×comp C∞(X2, V2).
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The map
S : C∞

(f,f̃)
(X1, V1)×comp C∞(X2, V2)→ C∞(X1 ∪f X2, V1 ∪f̃ V2)

is defined by
S(s1, s2) = s1 ∪(f,f̃) s2;

it has the following property.

Theorem 2.5. ([10]) The map S is smooth, for the subset diffeology on C∞
(f,f̃)

(X1, V1)×compC∞(X2, V2)

and the functional diffeology on C∞(X1 ∪f X2, V1 ∪f̃ V2).

2.2.4 Pseudo-bundles operations and the map S

Let π1 : V1 → X1 and π2 : V2 → X2 be two finite-dimensional diffeological vector pseudo-bundles, with
(f̃ , f) being a gluing between them, and let π′1 : V ′1 → X1 and π′2 : V ′2 → X2 be two other pseudo-bundles,
with the same base spaces, with (f̃ ′, f) also a gluing between them.

• ([10], Proposition 4.7) Let si ∈ C∞(Xi, Vi) for i = 1, 2 be (f, f̃)-compatible sections, and let
hi ∈ C∞(Xi,R) be such that h2(f(y)) = h1(y) for all y ∈ Y . Then

(h1 ∪f h2)
(
s1 ∪(f,f̃) s2

)
= (h1s1) ∪(f,f̃) (h2s2).

• ([10], Proposition 4.8) Let si ∈ C∞(Xi, Vi) and s′i ∈ C∞(Xi, V
′
i ) be such that s1, s2 are (f, f̃)-

compatible, while s′1, s
′
2 are (f, f̃ ′)-compatible. Then(

s1 ∪(f,f̃) s2

)
⊗
(
s′1 ∪(f,f̃ ′) s

′
2

)
= (s1 ⊗ s′1) ∪(f,f̃⊗f̃ ′) (s2 ⊗ s′2).

In addition to these, we now prove that S is additive with respect to the direct sum structure on
C∞(X1, V1)× C∞(X2, V2), of which C∞(X1, V1)×comp C∞(X2, V2) is then a subspace.

Lemma 2.6. If s1, t1 ∈ C∞(X1, V1) and s2, t2 ∈ C∞(X2, V2) are such that both (s1, s2) and (t1, t2) are
(f, f̃)-compatible pairs, then also (s1 + t1, s2 + t2) is a (f, f̃)-compatible pair, and

(s1 + t1) ∪(f,f̃) (s2 + t2) = s1 ∪(f,f̃) s2 + t1 ∪(f,f̃) t2.

Proof. Let y ∈ Y ; then

f̃(s1(y) + t1(y)) = f̃(s1(y)) + f̃(t1(y)) = s2(f(y)) + t2(f(y)),

so s1 + t1 and s2 + t2 are (f, f̃)-compatible. Now, by definition(
(s1 + t1) ∪(f,f̃) (s2 + t2)

)
(x) =

{
(s1 + t1)(i−1

1 (x))
(s2 + t2)(i−1

2 (x))
=

{
s1(i−1

1 (x)) + t1(i−1
1 (x))

s2(i−1
2 (x)) + t2(i−1

2 (x))
=

=

{
s1(i−1

1 (x))
s2(i−1

2 (x))
+

{
t1(i−1

1 (x))
t2(i−1

2 (x))
= (s1 ∪(f,f̃) s2)(x) + (t1 ∪(f,f̃) t2)(x),

where in each two-part formula the first line applies to x ∈ i1(X1 \Y ) and the second line, to x ∈ i2(X2).
The final equality that we obtain is precisely the first item in the statement of the lemma, so we are
done.

2.3 The map S is a subduction

In this section we show that S is a subduction of the space C∞
(f,f̃)

(X1, V1) ×comp C∞(X2, V2) onto the

space C∞(X1 ∪f X2, V1 ∪f̃ V2).
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2.3.1 Gluing along diffeomorphisms

Clearly in this case C∞(X1, V1) = C∞
(f,f̃)

(X1, V1). Furthermore, it is rather easy to show that S is actually

a diffeomorphism; we need a preliminary statement first.

Lemma 2.7. The maps ĩ1 : X1 → X1 ∪f X2 and j̃1 : V1 → V1 ∪f̃ V2 defined as the compositions
of the natural inclusions into X1 t X2 and V1 t V2 with the corresponding quotient projections, are
diffeomorphisms with their images.

Proof. That ĩ1 and j̃1 are bijections with their respective images is immediately obvious. Furthermore,
they are always smooth, since they are compositions of two smooth maps. Finally, their inverses are
smooth by the definition of the gluing diffeology as a pushforward one (the assumption that f and f̃ are
diffeomorphisms is only needed for the existence of these inverses).

We are now ready to prove the following.

Proposition 2.8. If both f̃ and f are diffeomorphisms of their domains with their images, the map S
is a diffeomorphism

C∞(X1, V1)×comp C∞(X2, V2)→ C∞(X1 ∪f X2, V1 ∪f̃ V2).

Proof. The inverse of S is obtained by assigning to each section s ∈ C∞(X1 ∪f X2, V1 ∪f̃ V2) the pair

(j̃−1
1 ◦ s|̃i1(X1) ◦ ĩ1, j−1

2 ◦ s|i2(X2) ◦ i2),

where ĩ1 : X1 → X1 ∪f X2 and j̃1 : V1 → V1 ∪f̃ V2 are the just-mentioned inclusions of X1 and V1 into

X1 ∪f X2 and V1 ∪f̃ V2 respectively. It follows that j̃−1
1 ◦ s|̃i1(X1) ◦ ĩ1 =: s1 ∈ C∞(X1, V1), whereas

j−1
2 ◦ s|i2(X2) ◦ i2 =: s2 ∈ C∞(X2, V2) holds even without extra assumptions.

Let us formally check that s1 and s2 are compatible. Let y ∈ Y ; then f̃(s1(y)) = f̃(j̃−1
1 (s(̃i1(y)))), and

s2(f(y)) = j2(s(i2(f(y)))). Since ĩ1(y) = i2(f(y)) by construction, we have f̃(s1(y)) = f̃(j̃−1
1 (s(i2(f(y))))),

and it suffices to note that f̃ ◦ j̃−1
1 = j2 on the entire π−1

2 (i2(f(Y ))).

2.3.2 The pseudo-bundle π
(f̃ ,f)
1 : V f̃1 → Xf

1 of (f̃ , f)-equivalence classes

In the case when f and f̃ are not diffeomorphisms, we need an auxiliary construction, that of the pseudo-
bundle mentioned in the title of the section. Its base space and its total space are obtained from X1 and
V1 respectively by natural quotientings, given by f and f̃ , and the pseudo-bundle projection is induced
by π1.

The spaces Xf
1 and V f̃1 The base space Xf

1 is defined as the diffeological quotient X1/∼f , where the
equivalence relation ∼f is given by

y1 ∼f y2 ⇔ f(y1) = f(y2).

Likewise, the space V f̃1 is the quotient of V1 by the equivalence relation ∼f̃ that is analogous to ∼f and
is given by

v1 ∼f̃ v2 ⇔ f̃(v1) = f̃(v2).

The two quotient projections are denoted respectively by χf1 : X1 → Xf
1 and by χf̃1 : V1 → V f̃1 . The space

Xf
1 is endowed with the map f∼ : χf1 (Y )→ X2, and the space V f̃1 , with the map f̃∼ : χf̃1 (π−1

1 (Y ))→ V2.

These are the pushforwards of, respectively, f and f̃ by the quotient projections χf1 and χf̃1 . If either of
f , f̃ is a subduction then the corresponding induced map f∼ or f̃∼ is a diffeomorphism with its image.
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The map π
(f̃ ,f)
1 We now show that the induced pseudo-bundle projection V f̃1 → Xf

1 is indeed a
pseudo-bundle.

Lemma 2.9. There is a well-defined smooth map π
(f̃ ,f)
1 : V f̃1 → Xf

1 such that

χf1 ◦ π1 = π
(f̃ ,f)
1 ◦ χf̃1 .

Furthermore, for any x ∈ Xf
1 the pre-image (π

(f̃ ,f)
1 )−1(x) ⊂ V f̃1 inherits from V1 the structure of a

diffeological vector space, with respect to which the corresponding restriction of f̃∼, when it is defined, is
a linear map.

Proof. That π
(f̃ ,f)
1 is uniquely defined by the condition given, follows from χf̃1 being surjective, and that

it is well-defined follows from ∼f̃ being a fibrewise equivalence relation. That the pre-image, in V f̃1 , of

any point x ∈ Xf
1 under the map π

(f̃ ,f)
1 inherits from V1 a (smooth) vector space structure is obvious

from the following considerations: over a point not in χf1 (Y ), it coincides with the corresponding fibre of

V1 itself, while over x ∈ χf1 (Y ) it coincides with the quotient of π−1
1 (x) ⊂ V1 over the kernel of f̃ |π−1

1 (x).

For the same reason, the induced map f̃∼ is linear on each fibre where it is defined, i.e., on (π
(f̃ ,f)
1 )−1(x)

with x ∈ χf1 (Y ).

The following is then an immediate consequence.

Corollary 2.10. The map π
(f̃ ,f)
1 : V f̃1 → Xf

1 is a diffeological vector pseudo-bundle, and the pair (f̃∼, f∼)
defines a gluing of it to the pseudo-bundle π2 : V2 → X2. Furthermore, the pseudo-bundle

π
(f̃ ,f)
1 ∪(f̃∼,f∼) π2 : V f̃1 ∪f̃∼ V2 → Xf

1 ∪f∼ X2

is diffeomorphic to the pseudo-bundle

π1 ∪(f̃ ,f) π2 : V1 ∪f̃ V2 → X1 ∪f X2.

In particular, there is a diffeomorphism

C∞(X1 ∪f X2, V1 ∪f̃ V2) ∼= C∞(Xf
1 ∪f∼ X2, V

f̃
1 ∪f̃∼ V2).

Proof. It is evident from the definition of diffeological gluing that Xf
1 ∪f∼ X2

∼= X1 ∪f X2; it remains to

notice that the same kind of diffeomorphism between V f̃1 ∪f̃∼ V2 and V1 ∪f̃ V2 is fibre-to-fibre relative to,

respectively, the projections π
(f̃ ,f)
1 ∪(f̃∼,f∼) π2 and π1 ∪(f̃ ,f) π2.

The space of sections C∞(Xf
1 ∪f∼X2, V

f̃
1 ∪f̃∼V2) By the general definition, sections sf1 ∈ C∞(Xf

1 , V
f̃
1 )

and s2 ∈ C∞(X2, V2) are compatible if

f̃∼(sf1 (y)) = s2(f∼(y)) for all y ∈ πf1 (Y ).

The advantage of considering the reduced pair (Xf
1 , V

f̃
1 ) lies in the presentation, resulting from Corollary

2.10, of the pseudo-bundle π1 ∪(f̃ ,f) π2 : V1 ∪f̃ V2 → X1 ∪f X2 as one obtained by gluing along a pair

of diffeomorphisms (thus always possible, as long as we assume that both f and f̃ are subductions onto
their respective images). The following is a consequence of Proposition2.8 and the above corollary.

Proposition 2.11. Assume that f and f̃ are subductions. Then

C∞(X1 ∪f X2, V1 ∪f̃ V2) ∼= C∞(Xf
1 , V

f̃
1 )×comp C∞(X2, V2),

where the compatibility is with respect to the maps (f∼, f̃∼).
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2.3.3 The map S1 : C(f,f̃)(X1, V1)→ C∞
(f∼,f̃∼)

(Xf
1 , V

f̃
1 ) and its properties

To make use of Proposition 2.11, we need to relate the space C∞(Xf
1 , V

f̃
1 ) to the initial space C∞

(f,f̃)
(X1, V1).

To do so, we consider the map

S1 : C∞
(f,f̃)

(X1, V1)→ C∞(Xf
1 , V

f̃
1 )

acting by

S1 : C∞
(f,f̃)

(X1, V1) 3 s1 7→ sf1 ∈ C∞(Xf
1 , V

f̃
1 ) such that sf1 ◦ χ

f
1 = χf̃1 ◦ s1.

The map S1 is well-defined The definition of S1 that we have given above is an indirect one, so we
must check that it is well given.

Lemma 2.12. For every s1 ∈ C∞
(f,f̃)

(X1, V1) there exists and is unique sf1 ∈ C∞(Xf
1 , V

f̃
1 ) such that

sf1 ◦ χ
f
1 = χf̃1 ◦ s1.

Proof. The definition of sf1 is as follows: for any given point x ∈ Xf
1 , let x′ ∈ Xf

1 be any point (existing

by surjectivity of χf1 ) such that χf1 (x′) = x; define sf1 (x) to be sf1 (x) = χf̃1 (s1(x′)). Let us show that

the definition is well-posed; let x′′ ∈ X1 be another point such that χf1 (x′′) = x. We need to show that

χf̃1 (s1(x′)) = χf̃1 (s1(x′′)). Since χf1 (x′′) = x = χf1 (x′) is equivalent to f(x′) = f(x′′), by (f, f̃)-invariance

of s1we obtain that f̃(s1(x′)) = f̃(s1(x′′)). This in turn is equivalent to χf̃1 (s1(x′)) = χf̃1 (s1(x′′)), therefore

sf1 is well-defined (and is obviously a map that goes Xf
1 → V f̃1 ).

The smoothness of sf1 follows from the expression that defines it. Specifically, if pf : U → Xf
1 is a plot

then, assuming that U is small enough, there exists a plot p : U → X1 such that pf = χf1 ◦ p. Therefore

sf1 ◦ pf = χf̃1 ◦ s1 ◦ p. The latter is a plot of V f̃1 , since s1 is smooth as a map X1 → V1, and χf̃1 is smooth,

because the diffeology of V f̃1 is the pushforward of that of V1 by it.

We thus obtain the following statement.

Corollary 2.13. The map S1 is well-defined as a map C∞
(f,f̃)

(X1, V1)→ C∞(Xf
1 , V

f̃
1 ).

The map S1 is linear Recall that C∞
(f,f̃)

(X1, V1) has the structure of a module over the ring of f -

invariant functions; likewise, C∞
(f∼,f̃∼)

(Xf
1 , V

f̃
1 ) has the structure of a module over the ring of f∼-invariant

functions. The map S1 respects these two structures, as the next statement shows.

Theorem 2.14. The map S1 is additive, that is, for any two sections s1, s
′
1 ∈ C∞(f,f̃)

(X1, V1) we have

S1(s1 + s′1) = S1(s1) + S1(s′1).

Furthermore, if h : X1 → R is an f -invariant function and hf : Xf
1 → R is defined by h = hf ◦ χf1 then

S1(hs1) = hfS1(s1).

Proof. Let s1, s
′
1 ∈ C∞(f,f̃)

(X1, V1) be two sections. The images S1(s1), S1(s′1), and S1(s1 +s′1) are defined

by the following identities:

S1(s1) ◦ χf1 = χf̃1 ◦ s1, S1(s′1) ◦ χf1 = χf̃1 ◦ s′1, S1(s1 + s′1) ◦ χf1 = χf̃1 ◦ (s1 + s′1).

We obviously have

S1(s1 + s′1) ◦ χf1 = χf̃1 ◦ (s1 + s′1) = χf̃1 ◦ s1 + χf̃1 ◦ s′1 =

= S1(s1) ◦ χf1 + S1(s′1) ◦ χf1 = (S1(s1) + S1(s′1)) ◦ χf1 ,
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that is,
S1(s1 + s′1) ◦ χf1 = (S1(s1) + S1(s′1)) ◦ χf1 .

Since χf1 is surjective, we have S1(s1 + s′1) = S1(s1) + S1(s′1), as wanted. As for the second statement of

the theorem, using again S1(s1) ◦ χf1 = χf̃1 ◦ s1, and the linearity of f̃ , we obtain

S1(hs1) ◦ χf1 = χf̃1 ◦ (hs1) = h(χf̃1 ◦ s1) = (hf ◦ χf1 )(χf̃1 ◦ s1) = (hf ◦ χf1 )(S1(s1) ◦ χf1 ) = (hfS1(s1)) ◦ χf1 .

Again by surjectivity of χf1 , we obtain that S1(hs1) = hfS1(s1), which completes the proof.

The map S1 is smooth We finally show that the map S1 is smooth for the functional diffeologies on

C∞
(f,f̃)

(X1, V1) and C∞(Xf
1 , V

f̃
1 ).

Theorem 2.15. The map S1 is a smooth map C∞
(f,f̃)

(X1, V1)→ C∞(Xf
1 , V

f̃
1 ).

Proof. Observe that the functional diffeology on C∞
(f,f̃)

(X1, V1) is the subset diffeology with respect to its

inclusion into C∞(X1, V1). Let q : U → C∞
(f,f̃)

(X1, V1) be a plot; recall that this means that for any plot

p : U ′ → X1 the map (u, u′) 7→ q(u)(p(u′)) is smooth as a map from U × U ′ to V1 (that is, it is a plot of

V1). Let us consider the composition S1 ◦ q; we need to show that it is a plot of C∞(Xf
1 , V

f̃
1 ), and so it

should satisfy the analogous condition.
Let pf : U ′ → Xf

1 be a plot of Xf
1 ; by the definition of the diffeology of the latter, there is a plot p of

X1 such that pf = χf1 ◦ p. Thus, we have

(u, u′) 7→ (S1 ◦ q)(u)(p(u′)) = (S1(q(u)) ◦ χf1 )(p(u′) = (χf̃1 ◦ q(u))(p(u′)) = χf̃1 (q(u)(p(u′))),

and since (u, u′) 7→ q(u)(p(u′)) is a plot of V1 by assumption, the resulting map (u, u′) 7→ χf̃1 (q(u)(p(u′)))

is a plot of V f̃1 by the definition of its diffeology, whence the claim.

In what follows we will show that, while S1 may not be injective, it is always surjective, which allows

the space of sections C∞(Xf
1 , V

f̃
1 ) to act as a substitute for the space C∞

(f,f̃)
(X1, V1).

2.3.4 The quotient pseudo-bundle π
V1/Ker(f̃)
1 : V1(f̃)→ X1

This auxiliary pseudo-bundle allows to consider the surjectivity of S1; this reasoning is straightforward.
Let Ker(f̃) be the sub-bundle of V1 formed by the union of the following subspaces in π−1

1 (x): the subspace
ker(f̃ |π−1

1 (x)) if x ∈ Y , and the zero subspace otherwise. It is endowed with the subset diffeology relative

to the inclusion Ker(f̃) ⊆ V1 and with the restriction π1|Ker(f̃) =: πker1 of π1; with respect to these it is

a diffeological vector pseudo-bundle (see [9]). The sub-bundle thus obtained is called the kernel of f̃ .
Consider the corresponding quotient pseudo-bundle with the total space V1/Ker(f̃) =: V1(f̃), the base

space X1, and the induced pseudo-bundle projection denoted by π
V1/Ker(f̃)
1 : V1(f̃) → X1. The usual

quotient projection V1 → V1/Ker(f̃) = V1(f̃) will be denoted by χ
V1(f̃)
1 . This quotient projection covers

the identity map on X1, that is,

π1 = π
V1/Ker(f̃)
1 ◦ χV1(f̃)

1 .

Lemma 2.16. There is a smooth surjective pseudo-bundle map χ0
1 : V1(f̃) → V f̃1 covering the map

χf1 : X1 → Xf
1 .

Proof. This follows from the construction of V1(f̃) and that of V f̃1 . Indeed, V f̃1 is the quotient of V1(f̃)
by the following equivalence relation. Let f̃0 be the pushforward of f̃ to the quotient V1(f̃). The space

(V1(f̃))f̃0 , defined as the quotient of V1(f̃) by the equivalence relation v1 ∼0 v2 ⇔ f̃0(v1) = f̃0(v2), is

then precisely the space V f̃1 .
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Remark 2.17. The pseudo-bundle map (χf̃1 , χ
f
1 ) filters through the pseudo-bundle map (χ

V1(f̃)
1 , IdX1),

that is, we have

χf̃1 = χ0
1 ◦ χ

V1(f̃)
1 .

Furthermore, there is an induced gluing of π
V1/Ker(f̃)
1 : V1(f̃) → X1 to π2 : V2 → X2 along the maps

(f̃0, f) that yields the pseudo-bundle

π
V1/Ker(f̃)
1 ∪(f̃0,f) π2 : V1(f̃) ∪f̃0

V2 → X1 ∪f X2.

2.3.5 S1 may not be injective

We now indicate the reason why S1 may not be injective, although for reasons of brevity we do not
provide a complete treatment of any specific example (which is easy to find anyway).

Observation 2.18. Let s1 and s′1 be two sections in C∞(X1, V1) such that χf̃1 ◦ s1 = χf̃1 ◦ s′1; suppose

that there exists x ∈ X1 such that s1(x) 6= s′1(x). Since by assumption χf̃1 (s1(x)) = χf̃1 (s′1(x)), and χf̃1 is
injective outside of π−1

1 (Y ), we conclude that x ∈ Y , and that s1(x) − s′1(x) belongs to the fibre at x of
Ker(f̃). This is easily seen to be a vice versa.

A concrete example could be obtained by assuming that Ker(f̃) splits off as a smooth direct summand
in the pseudo-bundle V1 and is such that there exists a smooth non-zero section s0 : X → Ker(f̃). These
assumptions suffice for S1 to be non-injective. More precisely, for any section s1 ∈ C∞(f,f̃)

(X1, V1) we have

that s1 + s0 ∈ C∞(f,f̃)
(X1, V1).

Indeed, if y, y′ ∈ Y ⊂ X1 are such that f(y) = f(y′), then by assumption and by linearity of f̃

f̃(s1(f(y))) = f̃(s1(f(y′)))⇒ f̃(s1(f(y)) + s0(f(y))) = f̃(s1(f(y))).

Similarly,

f̃(s1(f(y′)) + s0(f(y′))) = f̃(s1(f(y′)))⇔ f̃((s1 + s0)(f(y))) = f̃((s1 + s0)(f(y′)));

in particular, S1(s1 + s0) is well-defined. It remains to observe that by Theorem 2.14

S1(s1 + s0) = S1(s1) + S1(s0),

and since S1(s0) is the zero section, this is equal to S1(s1). Since s1 + s0 6= s1 by the choice of s0, we see
that S1 is not injective.

2.3.6 Surjectivity of S1: the case of the trivial Ker(f̃)

We treat the case of the trivial Ker(f̃) separately, since for obvious reasons it is possible to obtain stronger
statements in this case. Indeed, the assumption that Ker(f̃) is trivial implies that V1(f̃) = V1, and allows

to define, for any given section s ∈ C∞(Xf
1 , V

f̃
1 ), its pullback via the mapS1 to a well-defined and unique

section X1 → V1. This pullback, denoted by S−1
1 (s), is given by the following formula:

S−1
1 (s)(x) =

{
(χf̃1 )−1(s(χf1 (x))) for x ∈ X1 \ Y
(χf̃1 |χ−1

1 (x))
−1(s(χf1 (x))) for x ∈ Y.

Since under the present assumption the restriction of f̃ on each individual fibre in its domain is injective,

the restriction of χf̃1 on any fibre in V1 is injective as well. It is also obvious that the map S−1
1 (s) thus

obtained is (f, f̃)-invariant. We need to verify is that it is smooth as a map X1 → V1.

Lemma 2.19. The map S−1
1 (s) : X1 → V1 is smooth for every s ∈ C∞(Xf

1 , V
f̃
1 ).
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Proof. Let p : U → X1 be a plot of X1; we need to show that u 7→ S−1
1 (s)(p(u)) is a plot of V1. By

definition of a pushforward diffeology, this is equivalent, for U small enough, to u 7→ χf̃1 (S−1
1 (s)(p(u)))

being a plot of V f̃1 . By an easy calculation we obtain

χf̃1 (S−1
1 (s)(p(u))) = s(χf1 (p(u))).

Since χf1 is smooth by construction, χf1 ◦p is a plot of Xf
1 , and since s is smooth by assumption, s◦χf1 ◦p

is a plot of V f̃1 , whence the claim.

Lemma 2.19 yields a well-defined inverse map

S−1
1 : C∞(Xf

1 , V
f̃
1 )→ C∞

(f,f̃)
(X1, V1).

Moreover, we have the following statement.

Theorem 2.20. Let π1 : V1 → X1 and π2 : V2 → X2 be two diffeological vector pseudo-bundles, and let
(f̃ , f) be a gluing between them such that f̃ is injective on each fibre in its domain of definition. Then

S−1
1 is smooth as a map C∞(Xf

1 , V
f̃
1 )→ C∞

(f,f̃)
(X1, V1).

Proof. Let q : U → C∞(Xf
1 , V

f̃
1 ) be a plot of C∞(Xf

1 , V
f̃
1 ); recall that, as for any functional diffeology,

this means that for any plot pf : U ′ → Xf
1 of Xf

1 the corresponding evaluation map (u, u′) 7→ q(u)(pf (u′))

is a plot of V f̃1 . Let us show that the evaluation map corresponding to S−1
1 ◦ q is a plot of V1.

Let p : U ′ → X1 be a plot of X1. As in the previous proof, up to restricting U and U ′ as necessary, it

would be sufficient to prove that (u, u′) 7→ χf̃1 ((S−1
1 ◦ q)(u)(p(u′))) is a plot of V f̃1 . By definition of S−1

1

we have
χf̃1 ((S−1

1 ◦ q)(u)(p(u′))) = q(u)(χf1 (p(u′))).

Since χf1 ◦ p is a plot of Xf
1 by construction, the resulting map is a plot of V f̃1 by the assumption on q,

whence the claim.

The following is now an obvious conclusion.

Corollary 2.21. Under the assumptions of Theorem 2.20, the spaces of sections C∞
(f,f̃)

(X1, V1) and

C∞(Xf
1 , V

f̃
1 ) are diffeomorphic.

2.3.7 Surjectivity of S1 in the case when Ker(f̃) is non-trivial

We first assume for simplicity that f is injective, so Xf
1 = X1 and V1(f̃) = V f̃1 . Notice also that under

this assumption S1 is determined by the simpler condition S1(s′) = χf̃1 ◦ s′.

Proposition 2.22. Let (f̃ , f) be such that f is injective. Then for every smooth section s : X1 → V1(f̃)
there exists a smooth (f, f̃)-invariant section s′ : X1 → V1 such that S1(s′) = s.

Proof. Since by assumption V1 has finite-dimensional fibres only, we can choose an arbitrary direct sum
decomposition V1 = V 0

1 ⊕ Ker(f̃). The direct sum complement V 0
1 thus chosen is also a sub-bundle,

but if the decomposition is not smooth then the diffeology of V1 is coarser than the respective direct
sum diffeology. Also, having fixed such a decomposition, for every section s : X1 → V1(f̃) there is a
well-defined pullback of it to a (non-smooth a priori) section X1 → V1.

Since V1(f̃) = V1/Ker(f̃), we can write its elements as cosets v+ Ker(f̃). The map χf̃1 then has form

χf̃1 (v) = v+Ker(f̃), and every plot of V1(f̃) has form χf̃1 ◦p for some plot p of V1. Now, if s : X1 → V1(f̃)
is a smooth section, then for any given x ∈ X1 we can denote by t(s)(x) the unique element of V 0

1

contained in the coset s(x). The map t(s) thus defined is a section X1 → V1.
To show that t(s) is smooth as a map X1 → V1, let q : U → X1 be a plot of X1. We need to show

that u 7→ t(s)(q(u)) is a plot of V1. This is equivalent to showing that there exists a sub-domain U ′ of
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U such that on this sub-domain u 7→ χf̃1 (t(s)(q(u))) is a plot of V1(f̃). But we have by construction that

χf̃1 (t(s)(q(u))) = s(q(u)) on the whole U . Since by assumption s is smooth as a map X1 → V1(f̃), we
have that u 7→ s(q(u)) is a plot of V1(f̃). The map t(s) is thus the section s′ we were looking for; in
particular, it is clearly (f, f̃)-invariant.

Example 2.23. Let V1 = R × R2, with the first factor carrying the standard diffeology and the second,
the vector space diffeology generated by u 7→ |u|(ey + ez); let X1 be the standard R identified with the first

factor, so the second factor is the fibre. Let f̃ be defined over the whole X1 (so on the entire V1), and let
it act by (x, y, z) 7→ (x, 0, z); we may assume it to take values in some V2 = R×R, where the first factor
is the standard R identified with the corresponding base space and the second is R with the vector space
diffeology generated by u 7→ |u|ez. Thus, f̃ is smooth, and V1(f̃) can actually be identified with V2. It is
convenient to represent both of them by the subset {(x, 0, z)} of R3.

Observe that every section X1 → V1(f̃) is a linear combination with coefficients that are usual smooth
functions in x of sections of form x 7→ (x, 0, |g(x)|) (where again g is a usual smooth function). It is then
obvious that every such map lifts to the section X1 → V1 that is given by x 7→ (x, |g(x)|, |g(x)|).

Corollary 2.21 and Proposition 2.22 allow to show that S1 is always surjective.

Theorem 2.24. Let π1 : V1 → X1 and π2 : V2 → X2 be two diffeological vector pseudo-bundles, and
let (f̃ , f) be a gluing of the former to the latter such that f and f̃ are subductions onto their respective

images. Then the map S1 is surjective as a map C∞
(f,f̃)

(X1, V1)→ C∞(Xf
1 , V

f̃
1 ).

Proof. Recall that the pseudo-bundle map (χf̃1 : V1 → V f̃1 , χ
f
1 : X1 → Xf

1 ) filters through the pseudo-

bundle maps (χ
V1(f̃)
1 : V1 → V1(f̃), IdX1 : X1 → X1) and (χ0

1 : V1(f̃)→ V f̃1 , χ
f
1 : X1 → Xf

1 ). Accordingly,
S1 decomposes into the following composition of maps.

Let SV1(f̃)
1 : C∞

(f,f̃)
(X1, V1)→ C∞(X1, V1(f̃)) be the map defined by

SV1(f̃)
1 (s) = χ

V1(f̃)
1 ◦ s

(it coincides with S1 if f and f̃ are such that V1(f̃) = V f̃1 ). Let S0
1 : C∞

(f,f̃0)
(X1, V1(f̃)) → C∞(Xf

1 , V
f̃
1 )

be the map defined by
S0

1 (s) ◦ χf1 = χ0
1 ◦ s.

We claim, first of all, that

S1 = S0
1 ◦ S

V1(f̃)
1 .

Indeed, (
S0

1 ◦ S
V1(f̃)
1

)
(s) = S0

1

(
χ
V1(f̃)
1 ◦ s

)
,

and the latter satisfies the identity

S0
1

(
χ
V1(f̃)
1 ◦ s

)
◦ χf1 = χ0

1 ◦ χ
V1(f̃)
1 ◦ s = χf̃1 ◦ s

by Lemma 4.22. Since χf̃1 ◦ s = S1(s) ◦ χf1 , we get that S1(s) = (S0
1 ◦ S

V1(f̃)
1 )(s) for any (f, f̃)-invariant

section s : X1 → V1.

Now, by Corollary 2.21 the map S0
1 is a diffeomorphism between C(f,f̃0)(X1, V1(f̃)) and C∞(Xf

1 , V
f̃
1 ).

It thus suffices to show that SV1(f̃)
1 maps C∞

(f,f̃)
(X1, V1) onto C∞

(f,f̃0)
(X1, V1(f̃)). This is obtained by first

applying Proposition 2.22 where instead of f we consider IdX1
and instead of f̃ , the quotient map χ

V1(f̃)
1 .

The proposition then guarantees that every section X1 → V1(f̃) pulls back to a (IdX1
, χ

V1(f̃)
1 )-invariant

section X1 → V1. We thus need to check that any (f, f̃0)-invariant section admits a pullback that is

(f, f̃)-invariant; and this easily follows from f̃ = f̃0 ◦ χV1(f̃)
1 , i.e., from the very definition of f̃0. Thus, as

a map C∞
(f,f̃)

(X1, V1)→ C∞
(f,f̃0)

(X1, V1(f̃)), the map SV1(f̃)
1 is onto, which completes the proof.

24



2.3.8 S1 is a subduction

We have just seen (Theorem 2.24) that if f̃ and f are subductions then S1 is surjective. We now show
that a stronger statement is true: under the same assumption, S1 is a subduction itself.

Theorem 2.25. Let π1 : V1 → X1 and π2 : V2 → X2 be two diffeological vector pseudo-bundles, and let
(f̃ , f) be a gluing of the former to that latter such that both f̃ and f are subsections onto their images.

Then the map S1 is a subduction of C∞
(f,f̃)

(X1, V1) onto C∞
(f∼,f̃∼)

(Xf
1 , V

f̃
1 ).

Proof. We need to show that every plot qf,f̃ of C∞
(f∼,f̃∼)

(Xf
1 , V

f̃
1 ) locally has form S1 ◦q for some plot q of

C∞
(f,f̃)

(X1, V1). Thus, let qf,f̃ : U → C∞
(f∼,f̃∼)

(Xf
1 , V

f̃
1 ) (we will assume that U is small enough, as needed);

this means that for any plot pf : U ′ → Xf
1 of Xf

1 the usual evaluation map (u, u′) 7→ qf,f̃ (u)(pf (u′)) is a

plot of V f̃1 . Now we also assume that U ′ is small enough so that pf = χf1 ◦ p for some plot p of X1.
As shown in the proof of Proposition 2.22, the map S1 admits a right inverse, depending on the choice

of a decomposition of V into a direct sum with Ker(f̃). Let (S1)−1 be any fixed choice of a right inverse;

define a map q : U → C∞
(f,f̃)

(X1, V1) by setting q = (S1)−1 ◦ qf,f̃ ◦ χf1 . By the usual definition, this is a

plot if, up to further restricting U , we have that, for any given plot p : U ′ → X1 of X1, the following is a
plot of V1:

(u, u′) 7→ (S1)−1(qf,f̃ (u))(p(u′)).

Now, if we assume U and U ′ to be small enough, this is a plot of V1 if and only if the following is a plot

of V f̃1 :

(u, u′) 7→ χf̃1 ((S1)−1(qf,f̃ (u))(p(u′))).

Recalling now the definition of (S1)−1, we get that

χf̃1 ((S1)−1(qf,f̃ (u))(p(u′))) = qf,f̃ (u)(χf1 (p(u′))),

which is the value of the evaluation of qf,f̃ (u) on the plot χf1 ◦ p of Xf
1 . Therefore it is a plot of V f̃1 , due

to qf,f̃ being a plot of C∞
(f∼,f̃∼)

(Xf
1 , V

f̃
1 ), so we conclude that q is indeed a plot of C∞

(f,f̃)
(X1, V1). Since

qf,f̃ = S1 ◦ q by construction, and it was arbitrarily chosen, we obtain the claim.

2.3.9 S1 preserves compatibility

The only item that is still lacking for relating the pseudo-bundle π1∪(f̃ ,f) π2 : V1∪f̃ V2 → X1∪f X2 to its

reduced version π
(f̃ ,f)
1 ∪(f̃∼,f∼) π2 : V f̃1 ∪f̃∼ V2 → X1 ∪f∼ X2 is a description of the interaction of the map

S1 with the two compatibility conditions (one relative to (f̃ , f) and the other to (f̃∼, f∼)). We provide
it in this section.

Proposition 2.26. For a given gluing (f̃ , f) of a pseudo-bundle π1 : V1 → X2 to another pseudo-bundle
π2 : V2 → X2, assume that both f̃ and f are subductions, and let si ∈ C∞(Xi, Vi) for i = 1, 2. If s1 and
s2 are (f, f̃)-compatible then S1(s1) and s2 are (f∼, f̃∼)-compatible.

Recall that s1 being (f, f̃)-compatible with some s2 implies it being (f, f̃)-invariant, so the expression
S1(s1) makes sense.

Proof. The (f, f̃)-compatibility of s1 and s2 means precisely that for all y ∈ Y we have f̃(s1(y)) =

s2(f(y)); we need to show that f̃∼(S1(s1)(χf1 (y))) = s2(f∼(χf1 (y))). By definition f∼(χf1 (y)) = f(y) and

S1(s1) ◦ χf1 = χf̃1 ◦ s1, so the desired condition is equivalent to f̃∼(χf̃1 (s1(y))) = s2(f(y)). It remains to

notice that f̃∼(χf̃1 (s1(y))) = f̃(s1(y)) by definition of f̃∼, so the (f∼, f̃∼)-compatibility does follow from
the (f, f̃)-compatibility of s1 and s2.

The inverse of Proposition 2.26 is true as well.
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Proposition 2.27. Let s1 ∈ C∞(f,f̃)
(X1, V1) and s2 ∈ C∞(X2, V2) be two sections such that S1(s1) and

s2 are (f∼, f̃∼)-compatible. Then s1 and s2 are (f, f̃)-compatible.

Proof. The proof is the same as the previous one, just going in the opposite direction. Let χf1 (y) be a
point in the domain of f∼; the assumption of (f∼, f̃∼)-compatibility means precisely that

f̃∼(S1(s1)(χf1 (y))) = s2(f∼(χf1 (y))).

Recall that f∼ ◦ χf1 = f by definition, so the right-hand side coincides with s2(f(y)). Since S1 is defined

by the identity S1(s1) ◦ χf1 = χf̃1 ◦ s1, the left-hand side becomes f̃∼(χf̃1 (s1(y))). Since furthermore

f̃∼ ◦ χf̃1 = f̃ (by the definition of the map f̃∼), the left-hand side is then equal to f̃∼(s1(y)). We thus
have

f̃∼(s1(y)) = f̃∼(S1(s1)(χf1 (y))) = s2(f∼(χf1 (y))) = s2(f(y)),

i.e., that s1 and s2 are (f, f̃)-compatible.

Putting the two propositions together, we obtain the following result.

Corollary 2.28. Suppose that both f̃ and f are subductions. Then (S1, IdC∞(X2,V2)) is well-defined and

surjective as a map C∞
(f,f̃)

(X1, V1)×comp C∞(X2, V2)→ C∞
(f∼,f̃∼)

(Xf
1 , V

f̃
1 )×comp C∞(X2, V2).

2.3.10 The space C∞(X1 ∪f X2, V1 ∪f̃ V2) is a smooth surjective image of C∞
(f,f̃)

(X1, V1)×comp
C∞(X2, V2) ⊆ C∞(X1, V1)× C∞(X2, V2)

We now collect the results of the current section into the final statement, which is as follows.

Theorem 2.29. Let π1 : V1 → X1 and π2 : V2 → X2 be two diffeological vector pseudo-bundles, and let
(f̃ , f) be a gluing of the former pseudo-bundle to the latter, such that both f̃ and f are subductions onto
their respective images. The map S is a subduction of C∞

(f,f̃)
(X1, V1)×comp C∞(X2, V2) onto C∞(X1 ∪f

X2, V1 ∪f̃ V2).

Proof. It suffices to recall the diffeomorphism C∞(Xf
1 ∪f∼ X2, V

f̃
1 ∪f̃∼ V2) ∼= C∞(X1 ∪f X2, V1 ∪f̃ V2) of

Proposition 2.11, which for the moment we denote by F̃ . By Theorem 2.5 we have two versions of the
map S, one for the original pseudo-bundle, and one for its restricted version:

S : C∞
(f,f̃)

(X1, V1)×comp C∞(X2, V2)→ C∞(X1 ∪f X2, V1 ∪f̃ V2) and

S(f,f̃) : C∞(Xf
1 , V

f̃
1 )×comp C∞(X2, V2)→ C∞(Xf

1 ∪f∼ X2, V
f̃
1 ∪f̃∼ V2),

that by the same theorem are smooth. By Corollary 2.28 there is a well-defined and factor-to-factor map

(S1, IdC∞(X2,V2)) : C∞
(f,f̃)

(X1, V1)×comp C∞(X2, V2)→ C∞(Xf
1 , V

f̃
1 )×comp C∞(X2, V2),

i.e., one that acts as S1 on the first factor and as the identity map on the second factor. Observing now
that

S = F̃ ◦ S(f,f̃) ◦ (S1, IdC∞(X2,V2)),

it follows from Propostion 2.8, implying that S(f,f̃) is a diffeomorphism, and Theorem 2.25 that S is a
subduction, which completes the proof.
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3 Diffeological connections: the verbatim extension

One can define a diffeological connection by the minimal possible extension of the standard definition of
a Riemannian connection. The resulting notion is then as follows.

Definition 3.1. Let π : V → X be a finite-dimensional diffeological vector pseudo-bundle, and let
C∞(X,V ) be the space of its smooth sections. A connection on this pseudo-bundle is a smooth linear
operator

∇ : C∞(X,V )→ C∞(X,Λ1(X)⊗ V ),

which satisfies the Leibnitz rule, that is, for every function f ∈ C∞(X,R) and for every section s ∈
C∞(X,V ) we have

∇(fs) = df ⊗ s+ f∇s.

We need to explain first of all why this definition is well-posed. The meaning of the question is as
follows. Although, as already mentioned, the differentials of functions are well-defined in the diffeological
context, they are elements of Ω1(X), while for the statement of the Leibnitz rule we need them to be
sections of Λ1(X). For this reason the meaning of df is one of the section given by

df : x 7→ πΩ,Λ(x, df)

(we keep the same symbol for both df an element of Ω1(X) and df a section of Λ1(X)). Having specified
this, the definition is well-posed.

3.1 An example for a nonstandard pseudo-bundle

Let us describe first of all an example of a diffeological connection that is not a standard connection on
a smooth manifold.

The pseudo-bundle and its gluing presentation We consider the pseudo-bundle π : V → X, where
X and V are the following subsets of R3:

X = {xy = 0, z = 0}, V = {xy = 0},

and π is the restriction to V of the standard projection of R3 onto xy-coordinate plane. Each fibre
π−1(x, y, 0) of V is endowed with the vector space structure of the usual R relative to the third coordinate
(keeping the first two fixed):

(x, y, z1) + (x, y, z2) = (x, y, z1 + z2), λ(x, y, z) = (x, y, λz) for λ ∈ R.

The diffeologies on V and X are gluing diffeologies coming from their presentations as

X = X1∪fX2, X1 = {y = z = 0}, X2 = {x = z = 0} and V = V1∪f̃V2, V1 = {y = 0}, V2 = {x = 0},

where the gluing maps f and f̃ are the restrictions of the identity map R3 → R3 to their domains of
definition; these domains of definition are, the origin {(0, 0, 0)} for f , and the z-axis {(0, 0, z)} for f̃ . The
four spaces X1, X2, V1, V2 carry the subset diffeology relative to their inclusions into R3, and the gluing
diffeologies on X and V correspond to those; notice that these gluing diffeologies are strictly weaker than
their subset diffeologies relative to R3 (see [18]). We denote the restrictions of π to V1 and to V2 by π1

and π2 respectively.

Pseudo-metrics on π : V → X We obtain a pseudo-metric on π : V → X by gluing two compatible
pseudo-metrics on π1 : V1 → X1 and π2 : V2 → X2 respectively. We denote them by g1 and g2 respectively
and define them to be g1(x, 0, 0) = h1(x)dz2 and g2(0, y, 0) = h2(y)dz2, where h1, h2 : R → R are usual
smooth functions; they obviously need to be everywhere positive. The compatibility condition for them
takes form h1(0) = h2(0). Assuming this, we obtain a pseudo-metric g̃ on V defined by

g̃(x, y, 0) =

{
h1(x)dz2, if y = 0,
h2(y)dz2, if x = 0.
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The standard connections on the factors The two factors π1 : V1 → X1 and π2 : V2 → X2 are
both diffeomorphic to the standard trivial bundle R2 → R, and so can be seen as the usual tangent
bundles TX1

∼= TR ∼= TX2. Thus, g1 and g2 are Riemannian metrics on them, and we can consider the

usual Levi-Civita connections ∇1 and ∇2 on them. Their Christoffel symbols are Γ1
11(g1) =

h′1(x)
2h1(x) and

Γ1
11(g2) =

h′2(y)
2h2(y) . The formulae for ∇1 and ∇2 therefore are

∇1(x, 0, 1) =
h′1(x)

2h1(x)
dx⊗ (x, 0, 1) and ∇2(0, y, 1) =

h′2(y)

2h2(y)
dy ⊗ (0, y, 1)

and in full form

∇1(x, 0, s1(x)) =
h′1(x)(s′1(x) + s1(x))

2h1(x)
dx⊗ (x, 0, 1), ∇2(0, y, s2(y)) =

h′2(y)(s′2(y) + s2(y))

2h2(y)
dy⊗ (0, y, 1).

The resulting connection In this specific case it is actually quite straightforward to assemble a
connection on V out of ∇1 and ∇2. The explicit formula is as follows:

∇(x, y, s(x, y)) =


h′1(x)( ∂s

∂x (x,0)+s(x,0))

2h1(x) dx⊗ (x, 0, 1) if y = 0,
h′2(y)( ∂s

∂y (0,y)+s(0,y))

2h2(y) dy ⊗ (0, y, 1) if x = 0,(
h′1(0)( ∂s

∂x (0,0)+s(0,0))

2h1(0) dx+
h′2(0)( ∂s

∂y (0,0)+s(0,0))

2h2(0) dy

)
⊗ (0, 0, 1) if x = y = 0.

Here s can be, in particular, any smooth two-variable function; however, more generally it is a formal
pair of functions s1 (in variable x) and s2 (in variable y) such that s1(0) = s2(0).

Observations on the example The example just made give a rough idea of how one can obtain a
connection on V1 ∪f̃ V2 out of two given connections on V1 and V2. On the other hand, it does not give a
complete picture; indeed, the simplicity of the domain of gluing on the base spaces ensures that we do not
have to impose any conditions on ∇1 and ∇2, although later on we will see that a certain compatibility
condition is needed.

3.2 Covariant derivatives

The usual notion of the covariant derivative of a section s ∈ C∞(M,E) along a smooth vector field
X ∈ C∞(M,TM) extends easily to smooth sections s ∈ C∞(X,V ) of a diffeological vector pseudo-
bundle. It suffices to specify that such derivatives are with respect to smooth sections of the pseudo-bundle
(Λ1(X))∗.

Definition 3.2. Let π : V → X be a finite-dimensional diffeological vector pseudo-bundle, let ∇ :
C∞(X,V ) → C∞(X,Λ1(X) ⊗ V ) be a diffeological connection on it, and let t ∈ C∞(X, (Λ1(X))∗) be a
smooth section of the dual pseudo-bundle (Λ1(X))∗. Let s ∈ C∞(X,V ); the covariant derivative of s
along t is the section ∇s(t) = ∇ts.

Lemma 3.3. For any t ∈ C∞(X, (Λ1(X))∗) and for any s ∈ C∞(X,V ) we have ∇ts ∈ C∞(X,V ).

Proof. This is obvious, since the diffeology on (Λ1(X))∗, as on any dual pseudo-bundle, is defined so that
the evaluation functions x 7→ t(x)(αi(x)) be smooth.

We thus conclude that if ∇ and t are as above, ∇t is well-defined as an operator C∞(X,V ) →
C∞(X,V ). We furthermore have the following.

Theorem 3.4. For any t ∈ C∞(X, (Λ1(X))∗) the map ∇t : C∞(X,V ) → C∞(X,V ) given by s 7→ ∇ts
is smooth for the functional diffeology on C∞(X,V ).
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Proof. Let p : U → C∞(X,V ) be a plot of C∞(X,V ). By the properties of a functional diffeology, the
map U ×X → V given by (u, x) 7→ p(u)(x) is smooth, which also implies that for any plot q : U ′ → X
the map U × U ′ → V acting by (u, u′) 7→ p(u)(q(u′)) is a plot of V .

In order to prove that ∇t is smooth, we need to show that u 7→ ∇tp(u) is a plot of C∞(X,V ).
Since ∇ is smooth as a map C∞(X,V )→ C∞(X,Λ1(X)⊗ V ), its composition with any given plot p of
C∞(X,V ) is a plot of C∞(X,Λ1(X)⊗ V ). This composition has form u 7→ ∇p(u). It remains to notice
that u 7→ ∇t(p(u)) is the evaluation of it on the constant plot of (Λ1(X))∗ with value t, which implies
that it is a plot of C∞(X,V ), as wanted.

There are also the expected linearity properties, stated below.

Theorem 3.5. The operator t 7→ ∇t is C∞(X,R)-linear, that is, ∇t1+t2 = ∇t1 +∇t2 and ∇f ·t = f∇t
for any smooth function f : X → R.

Proof. This is a direct consequence of the definitions.

3.3 Compatibility with a pseudo-metric

The usual notion of compatibility of a connection with a Riemannian metric extends trivially to the
diffeological context. Let X be a diffeological space such that Λ1(X) has only finite-dimensional fibres and
admits a pseudo-metric. Assume furthermore that there is a choice of a pseudo-metric gΛ on Λ1(X) such
that the induced bilinear form gΛ∗ on (Λ1(X))∗ is also a pseudo-metric. Finally, let ∇ be a diffeological
connection on (Λ1(X))∗.

Definition 3.6. The connection ∇ is said to be compatible with the pseudo-metric gΛ∗ if for every
two smooth sections s, t of the pseudo-bundle (πΛ)∗ : (Λ1(X))∗ → X we have that

d(gΛ∗(s, t)) = gΛ∗(∇s, t) + gΛ∗(s,∇t),

where for every 1-form ω ∈ Λ1(X) we set by definition gΛ∗(ω ⊗ s, t) = gΛ∗(s, ω ⊗ t) = ω · gΛ∗(s, t).

4 Pseudo-bundle operations and diffeological connections

The usual connections are well-behaved with respect to the standard operations, such those of direct
sum, tensor product, or taking dual, on smooth vector bundles. In this section we show that the same
is true of diffeological connections in the case of direct sums and tensor products, while the situation is
more complicated for dual pseudo-bundles.

4.1 Direct sum

Let π1 : V1 → X and π2 : V2 → X be two diffeological vector pseudo-bundles over the same base space
X. Suppose that each of them can be endowed with a connection; let

∇1 : C∞(X,V1)→ C∞(X,Λ1(X)⊗ V1) and ∇2 : C∞(X,V2)→ C∞(X,Λ1(X)⊗ V2).

Consider the direct sum pseudo-bundle π1 ⊕ π2 : V1 ⊕ V2 → X; let

prV1
: V1 ⊕ V2 → V1 and prV2

: V1 ⊕ V2 → V2

be the standard direct sum projections, and let

InclV1
: V1
∼= V1 ⊕ {0} ↪→ V1 ⊕ V2 and InclV2

: V2
∼= {0} ⊕ V2 ↪→ V1 ⊕ V2

be the obvious inclusions. These maps are smooth by the definition of the diffeology on a direct sum of
pseudo-bundles (see [17]).
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Definition 4.1. The direct sum of the connections ∇1 and ∇2 is the operator

∇1 ⊕∇2 : C∞(X,V1 ⊕ V2)→ C∞(X,Λ1(X)⊗ (V1 ⊕ V2))

defined as follows. Let s ∈ C∞(X,V1 ⊕ V2) be an arbitrary section; denote by s1 := prV1
◦ s and

s2 := prV2
◦ s. We define

(∇1 ⊕∇2)s = (IdΛ1(X) ⊗ InclV1
) ◦ (∇1s1) + (IdΛ1(X) ⊗ InclV2

) ◦ (∇2s2).

The final sum is of course taken in Λ1(X)⊗ (V1 ⊕ V2). The following then is an easy analogue of the
standard fact.

Proposition 4.2. Let X be a diffeological space, let π1 : V1 → X and π2 : V2 → X be two diffeological
vector pseudo-bundles over it, and let ∇1 and ∇2 be connections on V1 and V2 respectively. Then ∇1⊕∇2

is well-defined and is a connection on V1 ⊕ V2.

Proof. The linearity property and the Leibnitz rule are established exactly as in the standard case, so
we do not spell that out. What we really need to prove is that ∇1 ⊕ ∇2 is well-defined as a map into
C∞(X,Λ1(X)⊗ (V1⊕V2)), and that it is smooth as a map C∞(X,V1⊕V2)→ C∞(X,Λ1(X)⊗ (V1⊕V2))
for the respective functional diffeologies. Now, the former amounts to showing that for every section
s ∈ C∞(X,V1 ⊕ V2) we have that (∇1 ⊕∇2)s is a smooth map X → Λ1(X)⊗ (V1 ⊕ V2).

Let p : U → X be a plot of X; then s ◦ p is a plot of V1 ⊕ V2. We can assume that U is small enough
so that s ◦ p = q1 ⊕ q2 for qi : U → Vi a plot of Vi. Observe also that si = prVi

◦ s ∈ C∞(X,Vi) and
that by construction s ◦ p = q1 ⊕ q2 = (s1 ◦ p)⊕ (s2 ◦ p). This allows us to obtain the following form for
(∇1 ⊕∇2)s ◦ p:

(∇1 ⊕∇2)s ◦ p = (IdΛ1(X) ⊗ InclV1
) ◦ (∇1s1)p+ (IdΛ1(X) ⊗ InclV2

) ◦ (∇2s2)p.

Now, (∇1s1)p is a plot of Λ1(X)⊗V1 and (∇2s2)p is a plot of Λ1(X)⊗V2, hence (∇1⊕∇2)s ◦ p is a plot
of Λ1(X)⊗ (V1 ⊕ V2), and since p is (a restriction of) any plot, this means that (∇1 ⊕∇2)s is smooth.

We now need to show that ∇1 ⊕∇2 : C∞(X,V1 ⊕ V2) → C∞(X,Λ1(X)⊗ (V1 ⊕ V2)) is smooth. Let
q : U → C∞(X,V1 ⊕ V2) be a plot for the functional diffeology on C∞(X,V1 ⊕ V2). Observe that each
u 7→ prVi

◦ q(u) is a plot of C∞(X,Vi) for i = 1, 2; write qi for prVi
◦ q. We then have by construction

that
(∇1 ⊕∇2)q(u) = (IdΛ1(X) ⊗ InclV1) ◦ (∇1q1(u)) + (IdΛ1(X) ⊗ InclV2) ◦ (∇2q2(u)).

It remains to notice that each u 7→ ∇iqi(u) is by assumption plots of C∞(X,Λ1(X) ⊗ Vi), and that
the post-composition with the fixed map IdΛ1(X) ⊗ InclVi induces a smooth map C∞(X,Λ1(X)⊗ Vi)→
C∞(X,Λ1(X)⊗ (V1 ⊕ V2)), to conclude that u 7→ (∇1 ⊕∇2)q(u) is a plot of the latter, which yields the
final claim.

4.2 Tensor product

The case of the tensor product is analogous. Let again X be a diffeological space, and let π1 : V1 → X
and π2 : V2 → X be two diffeological vector pseudo-bundles over it. Consider the corresponding tensor
product pseudo-bundle π1 ⊗ π2 : V1 ⊗ V2 → X. Let also ∇1 and ∇2 be connections on V1 and V2

respectively.

Definition 4.3. The tensor product of the connections ∇1 and ∇2 is the operator

∇⊗ : C∞(X,V1 ⊗ V2)→ C∞(X,Λ1(X)⊗ V1 ⊗ V2)

given by
∇⊗ := ∇1 ⊗ IdC∞(X,V2) + IdC∞(X,V1) ⊗∇2.

The following then is a complete analogue of both the standard statement and of Proposition 4.2, so
we omit the proof.

Proposition 4.4. Let X be a diffeological space, let π1 : V1 → X and π2 : V2 → X be two diffeological
vector pseudo-bundles over it, and let ∇1 and ∇2 be connections on V1 and V2 respectively. Then ∇⊗ is
well-defined and is a connection on V1 ⊗ V2.
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4.3 Connections by duality

Regarding the case of the pseudo-bundle dual to one equipped with a connection, we only give some
preliminary indications of potential problems, essentially leaving the question in the open. Recall first
the standard notion. Let E → M be a usual smooth vector bundle of finite rank, and let ∇ be a
connection on E. The dual connection ∇∗ on E∗ is then determined, by setting for an arbitrary local
basis {ei} of E and the corresponding dual basis {ei}, that

0 = d(ei, ej) = (∇∗ei, ej) + (ei,∇ej).

Consider now the differences in the diffeological case. There seem to be two main items involved in the
existence of these differences: one is the potential absence of local triviality, the other is the fact that
pseudo-metrics are not Riemannian metrics, that is, they do not in general endow fibres with scalar
products. The implication of the latter point is that the dual (obtained as usual via the corresponding
pairing map) of a local basis in general is not a basis; furthermore, it is not immediately clear whether
one can always be extracted from it. Below we elaborate on these two points.

4.3.1 The local triviality issues

The best possible counterpart, in the case of pseudo-bundles, for the notion of locality is the range of a
plot. Indeed, there is not a standard local model for diffeological spaces (and therefore neither there is
for pseudo-bundles), akin to, in the case of usual smooth vector bundles, the trivial bundle over an open
disc: an open neighborhood (more precisely, a D-open one) can be of any shape.

In the finite-dimensional case, a pseudo-bundle π : V → X being locally trivial along a given plot
p : U → X is equivalent precisely to the existence of sections s1, . . . , sn such that for every smooth local
section s ∈ C∞(p(U), π−1(p(U))) there exist f1, . . . , fn ∈ C∞(p(U),R) such that for all u ∈ U we have
s(p(u)) = f1(p(u))s1(p(u)) + . . . + fn(p(u))sn(p(u)). The true (potential) difference with respect to the
standard case is that in the diffeological case, the number of sections needed to form a basis over a single
p(U) may vary.

4.3.2 Taking into account the a priori degeneracy of pseudo-metrics

Here is a naive explanation of the possible problem. Let π : V → X be a diffeological vector pseudo-
bundle, and let g be a pseudo-metric on it. As already mentioned, it is sufficient to assume that it admits
a global basis; let {si : X → V }ni=1 be one. The standard construction of the dual basis yields

V ∗ 3 si(x), si(x)(·) = g(x)(si(x), ·) for all x ∈ X.

What a priori may happen is that for a specific element si of the initial basis the corresponding si(x)
will be non-zero for some x, and that it will be the zero function for other x.

Lemma 4.5. Let π : V → X be a finite-dimensional diffeological vector pseudo-bundle that admits a
pseudo-metric and a global basis {si} of smooth sections. Then the following two conditions are equivalent:

1. There exists a smooth basis {si} of C∞(X,V ) such that the collection {si} of the duals of all si’s
contains a global basis of smooth sections of π∗ : V ∗ → X, and

2. The characteristic sub-bundle V0 of V splits off as a smooth direct summand in V .

Proof. Assume 1. Let g be a pseudo-metric on V , and suppose that the ordering of {si} is such that
s1, . . . , sm with m 6 n form a basis of V ∗. Since g(x) is a pseudo-metric in the sense of diffeological
vector spaces, there is a smooth direct sum decomposition of the fibre Vx of V at x as Vx = (V0)x⊕ (V1)x,
where (V0)x 6 Vx is the characteristic subspace, and (V1)x is its smooth direct complement. By definition⋃
x∈X(V0)x is the characteristic sub-bundle V0 of V ; since each (V1)x is a vector subspace in the fibre,

the union V1 :=
⋃
x∈X(V1)x of all of them, endowed with the subset diffeology, is a sub-bundle of V .

Finally, V0 ⊕ V1 has the same underlying space as V , however a priori its diffeology could be strictly
weaker than that of V ; what we wish to show now is that these two diffeologies actually coincide (that
is, that V = V0 ⊕ V1 is a smooth decomposition).
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Let pri : V → Vi for i = 0, 1 be the two projections associated to this direct sum decomposition.
Consider s′1 = pr0 ◦ s1, . . . , s

′
m = pr0 ◦ sm; these are sections of V0. Moreover, their being smooth sections

is equivalent to what we wish to establish, V0 splitting off as a smooth direct summand.
Observe that Φg(s

′
i) = si for all i = 1, . . . ,m. Since the restriction of Φg onto V0 is bijective onto V ∗,

we have that s′i = Φ−1
g (si), so our desired claim is equivalent to Φ−1

g being smooth, and this is equivalent
to g∗ being a pseudo-metric. This last is quite evident from the assumption in 1.

Assume now 2. Let V = V0 ⊕ V1 be the smooth decomposition that exists by this assumption;
recall that each fibre of the sub-bundle V1 is an isotropic subspace of the relevant g(x). It now suffices to
choose any smooth basis {s1, . . . , sm} for C∞(X,V0) and any smooth basis {sm+1, . . . , sn} for C∞(X,V1);
putting the two together, we obtain a smooth basis {s1, . . . , sn} satisfying the desired property. Indeed,
by construction sm+1, . . . , sn are all zero functions; furthermore, s1, . . . , sm form a basis of V ∗ due to
Φg|V0

being a bijection with V ∗.

What may happen if 2 is not satisfied is this. Let {si}ni=1 be any smooth basis of C∞(X,V ), and
suppose for simplicity that all fibres of V ∗ have dimension n−1. It might then happen that all si = Φg ◦si
are non-zero as maps X → V , but for every x ∈ X there is an index i(x) ∈ {1, . . . , n} such that
{s1(x), . . . , sn(x)}\{si(x)(x)} is a basis of the vector space (π∗)−1(x) ⊂ V ∗, and the functionX 3 x 7→ i(x)
is a non-constant one. It is not quite clear whether this really represents an obstacle to constructing the
dual connection via the standard procedure; for the moment we limit ourselves to the description of the
situation as just given, leaving the rest for future work.

5 Diffeological gluing and connections

Let π1 : V1 → X1 and π2 : V2 → X2 be two diffeological vector pseudo-bundles, and let (f̃ , f) be a gluing
between them. Suppose furthermore that each of them can be endowed with a diffeological connection;
let ∇1 and ∇2 be connections on V1 and V2 respectively. In this section we consider how, under specific
assumptions on these connections, we can obtain a connection on V1 ∪f̃ V2; the assumptions necessary
take form, once again, of an appropriate compatibility notion.

5.1 The pullback map f ∗ between the sub-bundles of Λ1(X2) and Λ1(X1)

Any connection on V1∪f̃V2 has the form of an operator C∞(X1∪fX2, V1∪f̃V2)→ C∞(X1∪fX2,Λ
1(X1∪f

X2)⊗ (V1∪f̃ V2)). In order to describe such an operator in terms of two operators of form C∞(X1, V1)→
C∞(X1,Λ

1(X1) ⊗ V1) and C∞(X2, V2) → C∞(X2,Λ
1(X2) ⊗ V2), we are going to need an appropriate

notion of a pullback map between certain subsets of Λ1(X2) and Λ1(X1).

5.1.1 f∗ : Λ1(X2)→ Λ1(X1) for a smooth map f : X1 → X2

The case when f is defined on the entire X1 is the simpler one; we consider it first. Recall that we already
have the notion of a pullback map f∗ : Ω1(X2) → Ω1(X1). together with f−1 it gives a pseudo-bundle
map between the trivial bundles X2 × Ω1(X2) and X1 × Ω1(X1), which acts (in an obvious manner) by

(f−1, f∗)(x2, ω2) = (f−1(x1), f∗ω2).

Proposition 5.1. Let X1 and X2 be two diffeological spaces, and let f : X1 → X2 be a diffeomorphism.
Then f∗ : Ω1(X2)→ Ω1(X1) induces a well-defined pullback map Λ1(X2)→ Λ1(X1).

Proof. Let x2 ∈ X2, and let ω2 ∈ Ω1(X2) be a form vanishing at x2. We wish to know whether f∗ω2

vanishes at f−1(x2). Consider a plot p of X1 centered at this point; then trivially f ◦ p is a plot of X2

centered at x2. Furthermore, we have

f∗ω2(p)(f−1(x2)) = ω2(f ◦ p)(x2) = 0.

Since p and x2 are arbitrary, we conclude that f∗(Ω1
x2

(X2)) ⊆ Ω1
f−1(x2)(X1). In fact, since f is a

diffeomorphism, we can apply the analogous reasoning to f−1, obtaining

f∗(Ω1
x2

(X2)) = Ω1
f−1(x2)(X1).
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It follows from what has been established in the previous paragraph it is obvious that f∗ yields
a pseudo-bundle map between the two sub-bundles (of X2 × Ω1(X2) and X1 × Ω1(X1) respectively)
consisting of vanishing forms:

X2 × Ω1(X2) ⊇

( ⋃
x2∈X2

{x2} × Ω1
x2

(X2)

)
→

( ⋃
x1∈X1

{x1} × Ω1
x1

(X1)

)
⊆ X1 × Ω1(X1);

this pseudo-bundle map covers f−1. Therefore f∗ descends to a well-defined map on the quotient pseudo-
bundles

(X2 × Ω1(X2))/

( ⋃
x2∈X2

{x2} × Ω1
x2

(X2)

)
→ (X1 × Ω1(X1))/

( ⋃
x1∈X1

{x1} × Ω1
x1

(X1)

)
.

It remains to recall our prior observation that these quotients are precisely the corresponding Λ1-bundles,
that is,

(X2×Ω1(X2))/

( ⋃
x2∈X2

{x2} × Ω1
x2

(X2)

)
∼= Λ1(X2), (X1×Ω1(X1))/

( ⋃
x1∈X1

{x1} × Ω1
x1

(X1)

)
∼= Λ1(X1),

whence the claim.

The final conclusion is that the pullback map f∗ is well-defined as a map f∗ : Λ1(X2) → Λ1(X1);
we do not introduce a separate notation for it, since it will always be clear from the context whether we
mean the pullback map defined between the Ω1(Xi)’s or the Λ1(Xi)’s.

5.1.2 The map f∗ for f : X1 ⊃ Y → f(Y ) ⊆ X2

Let us now consider the general case. Suppose that f is defined on a proper subset of X1, and that its
image is an a priori proper subset of X2. There is of course again a well-defined pullback map f∗ but it
is not defined on the whole Λ1(X2). We shall relate the domain and the range of f∗ to certain subsets of
Λ1(X2) and Λ1(X1), and use it for an alternative description of the compatibility of elements of Λ1(Xi),
in a form suitable for defining subsequently the compatibility of connections on pseudo-bundles over X1

and X2.

The properties of the pullback map f∗ : Λ1(f(Y ))→ Λ1(Y ) Considering Y and f(Y ) as diffeolog-
ical spaces for their natural subset diffeologies, it follows from Proposition 5.1 that there is the pullback
map

f∗ : Λ1(f(Y ))→ Λ1(Y );

its precursor is the pullback map f∗ : Ω1(f(Y )) → Ω1(Y ). There is a natural commutativity between
these two versions of f∗ expressed by

πΩ,Λ
Y ◦ (f−1, f∗) = f∗ ◦ πΩ,Λ

f(Y ),

where the f∗ on the left is the Ω1-version of the pullback map, while f∗ on the right is the Λ1-version,
and where

• πΩ,Λ
Y : Y × Ω1(Y )→ Λ1(Y ) is the defining projection of Λ1(Y ), and

• πΩ,Λ
f(Y ) : f(Y )× Ω1(f(Y ))→ Λ1(f(Y )) is the defining projection of Λ1(f(Y )).

The two compositions are defined on f(Y )× Ω1(f(Y )).
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The pullback map f∗ and the compatibility of elements of Λ1(X1) and Λ1(X2) Consider
now the natural inclusions i : Y ↪→ X1 and j : f(Y ) ↪→ X2; these give rise to the pullback maps
i∗ : Ω1(X1)→ Ω1(Y ) and j∗ : Ω1(X2)→ Ω1(f(Y )) (note that in general they may not be surjective).

Lemma 5.2. The map (i−1, i∗) : i(Y ) × Ω1(X1) → Y × Ω1(Y ) descends to a well-defined map i∗Λ :
Λ1(X1) ⊃ (πΛ

1 )−1(Y )→ Λ1(Y ); in particular,

πΩ,Λ
Y ◦ (i−1, i∗) = i∗Λ ◦ π

Ω,Λ
1 |i(Y )×Ω1(X1).

Proof. It suffices to show that i∗ preserves the vanishing of 1-forms. Let y ∈ Y and let ω1 ∈ Ω1
y(X1). We

need to show that i∗ω1 vanishes at y, so let p : U → Y be a plot centered at y, p(0) = y. Let us calculate
(i∗ω1)(p)(0) = ω1(i ◦ p)(0) = 0, because by assumption ω1 vanishes at y/i(y) and i ◦ p is obviously a plot
of X1 centered at y. Thus, i∗(Ω1

y(X1)) ⊆ Ω1
y(Y ), whence the claim.

A completely analogous statement is also true for the other factor.

Lemma 5.3. The map (j−1, j∗) : j(f(Y ))×Ω1(X2)→ f(Y )×Ω1(f(Y )) descends to a well-defined map
j∗Λ : Λ1(X2) ⊃ (πΛ

2 )−1(f(Y ))→ Λ1(f(Y )) such that

πΩ,Λ
f(Y ) ◦ (j−1, j∗) = j∗Λ ◦ π

Ω,Λ
2 |j(f(Y ))×Ω1(X2).

Recall now ([12]) that ω1 and ω2 are compatible if and only if

i∗ω1 = f∗(j∗ω2),

where f∗ is the Ω1-version of the pullback map, f∗ : Ω1(f(Y )) → Ω1(Y ). Let y ∈ Y be arbitrary, and
let α1 = ω1 + Ω1

y(X1) ∈ Λ1
y(X1) and α2 = ω2 + Ω1

f(y)(X2) ∈ Λ1
f(y)(X2) be two compatible elements of

Λ1(X1) and Λ1(X2). The compatibility condition for such elements means that any pair (ω′1, ω
′
2), where

ω′1 ∈ α1 and ω′2 ∈ α2, is a compatible one, that is, by the aforementioned criterion

i∗(ω′1) = f∗(j∗(ω′2)) for all ω′1 ∈ α1 and ω′2 ∈ α2.

Proposition 5.4. Two elements α1 ∈ Λ1
y(X1) and α2 ∈ Λ1

f(y)(X2) are compatible if and only if the
following is true:

i∗Λα1 = f∗(j∗Λα2).

Proof. This follows from Lemmas 5.2 and 5.2. Indeed, by construction there exist ω1 ∈ Ω1(X1) and

ω2 ∈ Ω1(X2) such that α1 = πΩ,Λ
1 (y, ω1) and α2 = πΩ,Λ

2 (f(y), ω2); furthermore, α1 and α2 are compatible
if and only if any two such ω1 and ω2 are compatible. By Lemma 5.2, Lemma 5.2, and the construction
of the pullback map f∗ : Ω1(f(Y ))→ Ω1(Y ) we then have

i∗Λα1 = πΩ,Λ
Y (y, i∗ω1) and f∗(j∗Λα2) = f∗(πΩ,Λ

f(Y )(f(y), j∗ω2)) = πΩ,Λ
Y (y, f∗(j∗ω2)).

These expressions are equal for all choices of ωi ∈ αi if and only if α∗1 and α∗2 are compatible, by
the definition of compatibility of elements of Λ1(X1) and Λ1(X2), and the aforementioned criterion of
compatibility of elements of Ω1(X1) and Ω1(X2); this completes the proof.

Proposition 5.4 provides our main criterion for compatibility of elements in Λ1(X1) and Λ1(X2), in
the form suitable for defining compatible connections (which is one of our main goals); we do this in the
section immediately below.

5.2 The induced connection on V1 ∪f̃ V2

Let π1 : V1 → X1 and π2 : V2 → X2 be two diffeological vector pseudo-bundles, and let (f̃ , f) be a gluing
between them such that both f̃ and f are diffeomorphisms of their domains with their images. Given
a connection ∇1 on V1 and a connection ∇2 on V2, we might be able to obtain out of them an induced
connection on V1 ∪f̃ V2; for this to be feasible, the two connections must be subject to some restrictions,
which are expressed by the appropriate compatibility notion. After describing this notion, we provide
the construction of the induced connection, proving that it is indeed a connection.
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5.2.1 The definition of compatible connections

The idea behind the compatibility notion for connections ∇1 and ∇2 on V1 and V2 is as follows. Let
s1 ∈ C∞(X1, V1) and s2 ∈ C∞(X2, V2); let y ∈ Y . Then (∇1s1)(y) =

∑
αi ⊗ vi for some αi ∈ Λ1

y(X1)

and vi ∈ V1; likewise, (∇2s2)(f(y)) =
∑
j β

j ⊗ wj for βj ∈ Λ1
f(y)(X2) and wj ∈ V2. Now, (∇1s1)(y) and

(∇2s2)(f(y)) can be easily identified with certain elements of(
Λ1
y(X1)⊕ Λ1

f(y)(X2)
)
⊗
(
V1 ∪f̃ V2

)
i2(f(y))

;

this direct sum contains the corresponding fibre of Λ1(X1 ∪f X2) ⊗ (V1 ∪f̃ V2) as a (generally proper)
subspace.

Definition 5.5. Let π1 : V1 → X1 and π2 : V2 → X2 be two diffeological vector pseudo-bundles, let f and
f̃ be maps defining a gluing of the former to the latter, each of which is a diffeomorphism of its domain
with its image, and let Y be the domain of definition of f . Let ∇1 be a connection on V1, and let ∇2

be a connection on V2. We say that ∇1 and ∇2 are compatible if for any pair s1 ∈ C∞(X1, V1) and
s2 ∈ C∞(X2, V2) of compatible sections, and for any y ∈ Y , we have(

(i∗Λ ⊗ f̃) ◦ (∇1s1)
)

(y) =
(
((f∗j∗Λ)⊗ IdV2

) ◦ (∇2s2)
)

(f(y)).

We can now better formulate our reason for defining the compatibility of connections in the way we
just, by stating the following.

Proposition 5.6. Let ∇1 and ∇2 be compatible connections on V1 and V2 respectively. Then for any
compatible sections s1 ∈ C∞(X1, V1) and s2 ∈ C∞(X2, V2) and for any y ∈ Y we have(

(IdΛ1
y(X1) ⊗ f̃) ◦ (∇1s1)

)
(y)⊕ (∇2s2)(f(y)) ∈

(
Λ1
y(X1)⊕comp Λ1

f(y)(X2)
)
⊗ V2.

Proof. The statement of the proposition expresses the fact that two elements α1 ∈ Λ1
y(X1) and α2 ∈

Λ1
f(y)(X2) are compatible if and only if i∗Λα1 = f∗(j∗Λα2), and this is the content of Proposition 5.4.

5.2.2 The induced connection ∇∪

Let the two pseudo-bundles V1 and V2 be endowed with connections ∇1 and ∇2, and assume that these
connections are compatible in the sense of Definition 5.5. We shall first describe the connection on V1∪f̃ V2

induced by them and then prove that it is, indeed, a connection. Recall that all throughout we assume
that all bluings are along diffeomorphisms.

The definition of ∇∪ Let x ∈ i2(f(Y )), and let InclΛ1

f−1(i
−1
2 (x))

(X1) and InclΛ1

i
−1
2 (x)

(X2) stand for the

two standard inclusions

InclΛ1

f−1(i
−1
2 (x))

(X1) : Λ1
f−1(i−1

2 (x))
(X1) ∼= Λ1

f−1(i−1
2 (x))

(X1)⊕ {0} ↪→ Λ1
f−1(i−1

2 (x))
(X1)⊕ Λ1

i−1
2 (x)

(X2),

InclΛ1

i
−1
2 (x)

(X2) : Λ1
i−1
2 (x)

(X2) ∼= {0} ⊕ Λ1
i−1
2 (x)

(X2) ↪→ Λ1
f−1(i−1

2 (x))
(X1)⊕ Λ1

i−1
2 (x)

(X2).

The connection ∇∪ is then defined as follows.

Definition 5.7. Let π1 : V1 → X1 and π2 : V2 → X2 be two diffeological vector pseudo-bundles, let (f̃ , f)
be a gluing between them, and let ∇1 and ∇2 be compatible connections on V1 and V2 respectively. The
induced connection ∇∪ on V1∪f̃ V2 is the operator defined as follows. Let s ∈ C∞(X1∪f X2, V1∪f̃ V2)

be a section. Since f and f̃ are diffeomorphisms, it has a unique presentation of form s = s1 ∪(f,f̃) s2 for

s1 ∈ C∞(X1, V1) and s2 ∈ C∞(X2, V2). Then

(∇∪s)(x) =



(
(ρ̃Λ

1 )−1 ⊗ j1
) (

(∇1s1)(i−1
1 (x))

)
for x ∈ i1(X1 \ Y ),(

(ρ̃Λ
2 )−1 ⊗ j2

) (
(∇2s2)(i−1

2 (x))
)

for x ∈ i2(X2 \ f(Y )),(
InclΛ1

f−1(i
−1
2 (x))

(X1) ⊗ (j2 ◦ f̃)

)(
(∇1s1)(f−1(i−1

2 (x)))
)
⊕

⊕
(

InclΛ1

i
−1
2 (x)

(X2) ⊗ j2
)(

(∇2s2)(i−1
2 (x))

)
for x ∈ i2(f(Y )).
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Proof that ∇∪ is a connection Two items need to be checked: one, that ∇∪ is well-defined as a map

C∞(X1 ∪f X2, V1 ∪f̃ V2)→ C∞(X1 ∪f X2,Λ
1(X1 ∪f X2)⊗ (V1 ∪f̃ V2)),

and two, that it is smooth for the functional diffeologies on these two spaces.

Lemma 5.8. For every section s ∈ C∞(X1 ∪f X2, V1 ∪f̃ V2) and for every x ∈ X1 ∪f X2 we have

(∇∪s)(x) ∈ Λ1(X1 ∪f X2)⊗ (V1 ∪f̃ V2).

Proof. We shall consider separately the cases when x ∈ i1(X1 \ Y ), x ∈ i2(X2 \ f(Y )), and x ∈ i2(f(Y ));
the former two are actually analogous, so it suffices to treat just one of them. Let x ∈ i1(X1 \ Y ). Then
by construction

(∇∪s)(x) =
(
(ρ̃Λ

1 )−1 ⊗ j1
) (

(∇1s1)(i−1
1 (x))

)
.

Since ∇1 is a connection on V1, we have that (∇1s1)(i−1
1 (x)) ∈ Λ1(X1) ⊗ V1. Its image under the map

(ρ̃Λ
1 )−1 ⊗ j1 belongs to Λ1(X1 ∪f X2)⊗ (V1 ∪f̃ V2) by the definition of this map. As just mentioned, the

case of x ∈ i2(X2 \ f(Y )) is completely analogous.
Let x ∈ i2(f(Y )). To abbreviate the lengthy expression for (∇∪s)(x), let us write y := f−1(i−1

2 (x))
and y′ = i−1

2 (x). Since the expression for (∇∪s)(x) involves both ∇1s1 and ∇2s2, and s1 and s2 are
compatible, we can draw the desired conclusion from Proposition 5.6.

Thus, ∇∪s is always well-defined as a map X1 ∪f X2 → Λ1(X1 ∪f X2) ⊗ (V1 ∪f̃ V2). Next, we need
to show that it is actually smooth.

Lemma 5.9. For every section s ∈ C∞(X1 ∪f X2, V1 ∪f̃ V2) the section ∇∪s : X1 ∪f X2 → Λ1(X1 ∪f
X2)⊗ (V1 ∪f̃ V2) is smooth, that is, ∇∪s ∈ C∞(X1 ∪f X2,Λ

1(X1 ∪f X2)⊗ (V1 ∪f̃ V2)).

Proof. Showing that ∇∪s is smooth amounts to showing that for any arbitrary plot p : U → X1 ∪f X2

of X1 ∪f X2 the composition (∇∪s) ◦ p is a plot of Λ1(X1 ∪f X2)⊗ (V1 ∪f̃ V2). As usual, we can assume
that U is connected, so that p lifts to either a plot p1 of X1 or to a plot p2 of X2; accordingly, for any
u ∈ U either

p(u) =

{
i1(p1(u)) if p1(u) ∈ X1 \ Y,
i2(f(p1(u))) if p1(u) ∈ Y or p(u) = i2(p2(u)).

Assume first that p lifts to p1. Then

(∇∪s)(p(u)) =



(
(ρ̃Λ

1 )−1 ⊗ j1
) (

(∇1s1)(p1(u))
)

if p1(u) ∈ X1 \ Y,(
InclΛ1

f−1(i
−1
2 (x))

(X1) ⊗ (j2 ◦ f̃)

)(
(∇1s1)(p1(u))

)
⊕

⊕
(

InclΛ1

i
−1
2 (x)

(X2) ⊗ j2
)(

(∇2s2)(f(p1(u)))
)

if p1(u) ∈ Y.

By Theorem 1.9 and the definition of the tensor product of diffeological vector pseudo-bundles, to check
that this is a plot of Λ1(X1∪fX2)⊗(V1∪f̃ V2), it suffices to check that its composition with ρ̃Λ

1 ⊗IdV1∪f̃V2

is a plot of Λ1(X1)⊗ (V1 ∪f̃ V2) and that the composition with ρ̃Λ
2 ⊗ IdV1∪f̃V2 , where defined, is smooth

as a map into Λ1(X2)⊗ (V1 ∪f̃ V2), for the subset diffeology on p−1
1 (Y ) ⊆ U .

The composition of (∇∪s) ◦ p with ρ̃Λ
1 ⊗ IdV1∪f̃V2

has form (IdΛ1(X1) ⊗ j1) ◦ (∇1s1) ◦ p1 at points of

p−1
1 (X1 \Y ). Since over i2(f(Y )) the map ρ̃Λ

1 acts by the projection of the direct sum Λ1
y(X1)⊕Λ1

f(y)(X2)

onto its first factor, for u ∈ p−1
1 (Y ) this composition has form(

ρ̃Λ
1 ⊗ IdV1∪f̃V2

)
◦ (∇∪s) ◦ p =

=
(
ρ̃Λ

1 ⊗ IdV1∪f̃V2

)
◦
(

InclΛ1

f−1(i
−1
2 (x))

(X1) ⊗ (j2 ◦ f̃)

)
◦ (∇1s1) ◦ p1 = (IdΛ1(X1) ⊗ (j2 ◦ f̃)) ◦ (∇1s1) ◦ p1.
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Thus, the complete form of the composition under consideration is(
ρ̃Λ

1 ⊗ IdV1∪f̃V2

)
◦ (∇∪s) ◦ p =

{
(IdΛ1(X1) ⊗ j1) ◦ (∇1s1) ◦ p1 for u such that p1(u) ∈ X1 \ Y,
(IdΛ1(X1) ⊗ (j2 ◦ f̃)) ◦ (∇1s1) ◦ p1 for u such that p1(u) ∈ Y.

Since (∇1s1) ◦ p1 is a plot of Λ1(X1)⊗ V1 by assumption, it suffices to recall that

{
j1
j2 ◦ f̃

is a smooth

inclusion of V1 into V1 ∪f̃ V2.

Let us now consider the composition (ρ̃Λ
2 ⊗ IdV1∪f̃V2

) ◦ (∇∪s) ◦ p. This is defined only for u such that

p1(u) ∈ Y ; using the defintiion of ρ̃Λ
2 , the restriction of this composition to p−1

1 (Y ) ⊆ U has form(
(ρ̃Λ

2 ⊗ IdV1∪f̃V2
) ◦ (∇∪s) ◦ p

)
|p−1

1 (Y ) = (ρ̃Λ
2 ⊗ IdV1∪f̃V2

) ◦ (InclΛ1

i
−1
2 (x)

(X2) ⊗ j2) ◦ (∇2s2) ◦ (f ◦ p1).

We need to show that this is a plot relative to the subset diffeology on p−1
1 (Y ), that is, if p′1 : U ′ → U is

a usual smooth map whose range is contained in p−1
1 (Y ) then (ρ̃Λ

2 ⊗ IdV1∪f̃V2) ◦ (∇∪s) ◦ (p ◦ p′1) must be

a plot of Λ1(X2)⊗ (V1 ∪f̃ V2). We then have

(ρ̃Λ
2 ⊗ IdV1∪f̃V2

) ◦ (∇∪s) ◦ (p ◦ p′1) = (ρ̃Λ
2 ⊗ IdV1∪f̃V2

) ◦ (InclΛ1

i
−1
2 (x)

(X2) ⊗ j2) ◦ (∇2s2) ◦ (f ◦ p1 ◦ p′1),

and it suffices to observe that f ◦ p1 ◦ p′1 is a plot of X2, since by assumption f is smooth, p1 ◦ p′1 is a plot
of X1 by the axioms of diffeology, and its range is contained in Y by construction. Thus, it follows from
the assumption on ∇2 that (ρ̃Λ

2 ⊗ IdV1∪f̃V2
) ◦ (∇∪s) ◦ (p ◦ p′1) is indeed a plot of Λ1(X2)⊗ (V1 ∪f̃ V2), as

wanted, which completes the treatment of the case when p lifts to a plot of X1.
If p lifts to a plot p2 of X2, the proof is completely analogous, so we avoid spelling it out, ending the

proof with this remark.

We shall check next the standard linearity properties of ∇∪.

Lemma 5.10. The operator ∇∪ is linear and satisfies the Leibnitz rule.

Proof. All maps, as well as operations, involved in the construction of ∇∪ are fibrewise additive, so the
additivity of ∇∪ is obvious. Let us check that ∇∪ satisfies the Leibnitz rule. Let h ∈ C∞(X1 ∪f X2,R),
and let s ∈ C∞(X1 ∪f X2, V1 ∪f̃ V2). Define h1 ∈ C∞(X1,R) and h2 ∈ C∞(X2,R) by

h1(x1) =

{
h(i1(x1)) if x1 ∈ X1 \ Y,
h(i2(f(x1))) if x1 ∈ Y

, and h2(x2) = h(i2(x2)) for all x2 ∈ X2.

Notice that this corresponds to the presentation of h as h = h1∪f h2, already mentioned in Section 2.2.4.
Recall also that by Theorem 2.29 s admits a presentation as s = s1 ∪(f,f̃) s2 for some s1 ∈ C∞(X1, V1)

and s2 ∈ C∞(X2, V2), that in our present case (of gluing along two diffeomorphisms) are also uniquely
defined. Finally, recall from Section 2.2.4 that

hs = (h1 ∪f h2)(s1 ∪(f,f̃) s2) = (h1s1) ∪(f,f̃) (h2s2).

By assumption ∇1 is a connection, so we have that ∇1(h1s1) = dh1⊗ s1 +h1(∇1s1), and likewise, ∇2

being a connection as well, we have that ∇2(h2s2) = dh2⊗ s2 + h2(∇2s2). Thus, it suffices to check that

(ρ̃Λ
1 )−1(dh1(x)) = dh(i1(x)) for all x ∈ X1 \ Y and (ρ̃Λ

2 )−1(dh2(x)) = dh(i2(x))

to obtain the desired equality ∇∪(hs) = dh⊗ s+ h(∇∪s). Let us consider the first of these equalities, in
its equivalent form ρ̃Λ

1 (dh(i1(x))) = dh1(x).
Recall that, as a section of Λ1(X1 ∪f X2), the differential dh is defined by dh(x) = πΩ,Λ(x, dh) for all

x ∈ X1 ∪f X2, where dh on the right stands for the element of Ω1(X1 ∪f X2) given by dh(p) = d(h ◦ p)
for any plot p of X1 ∪f X2. Thus, we can also write dh(x) = dh + Ω1

x(X1 ∪f X2). Likewise, dh1,

as a section of Λ1(X1), is given by dh1(x1) = πΩ,Λ
1 (x1, dh1), with, on the right, dh1 ∈ Ω1(X1) being
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given by dh1(p1) = d(h1 ◦ p1) for any plot p1 of X1, and equivalently, dh1 : X1 → Λ1(X1) is given
by dh1(x1) = dh1 + Ω1

x1
(X1). Recalling now the standard induction i1 : X1 \ Y ↪→ X1 ∪f X2, and

its extension ĩ1 : X1 ↪→ X1 ∪f X2 that exists by the assumption on f , we have the pullback map
ĩ∗1 : Ω1(X1 ∪f X2)→ Ω1(X1).

We now claim that ĩ∗1 is a lift of ρ̃Λ
1 , i.e., that the following is true:

ρ̃Λ
1 ◦ πΩ,Λ = πΩ,Λ

1 ◦ (̃i−1
1 , ĩ∗1)

wherever this expression makes sense, that is, on the direct productX1×Ω1(X1∪fX2). Putting everything
together, we obtain

ρ̃Λ
1 (dh(̃i1(x))) = ρ̃Λ

1 (πΩ,Λ(̃i1(x), dh)) = πΩ,Λ
1 (x, ĩ∗1(dh)) = πΩ,Λ

1 (x, dh1) = dh1(x),

where we only need to check the equality (̃i∗1(dh)) = dh1, where dh ∈ Ω1(X1 ∪f X2) and dh1 ∈ Ω1(X1).
Indeed, let p1 be a plot of X1; then (̃i∗1(dh))(p1) = dh(̃i1 ◦ p1) = d(h ◦ ĩ1 ◦ p1) by definition. Since
dh1(p1) = d(h1 ◦ p1) and h ◦ ĩ1 = h1, we immediately obtain the desired conclusion. We have in fact
obtained slightly more, namely, that the equalities stated hold on the entire domain of definition of ρ̃Λ

1 ,
that is, we have

ρ̃Λ
1 (dh(̃i1(x))) = dh1(x) for all x ∈ X1.

Observe furthermore that the case of i2(x) for x ∈ X2 is treated in exactly the same manner, so we have
that

ρ̃Λ
2 (dh(i2(x))) = dh2(x) for all x ∈ X2.

Let us now confront the two sides of the equality in the Leibnitz rule, considering

∇∪(hs) = ∇∪
(

(h1 ∪f h2)(s1 ∪(f,f̃) s2)
)
.

Let x ∈ X1 ∪f X2; between the cases x ∈ i1(X1 \ Y ) and x ∈ i2(X2 \ f(Y )) it suffices to consider one, as
they are symmetric. Let us consider x ∈ i1(X1 \ Y ):

(∇∪(hs))(x) =
(
(ρ̃Λ

1 )−1 ⊗ j1
) (

(∇1(h1s1))(i−1
1 (x))

)
=
(
(ρ̃Λ

1 )−1 ⊗ j1
) (

(dh1 ⊗ s1 + h1∇1s1)(i−1
1 (x))

)
=

=
(
(ρ̃Λ

1 )−1(dh1)⊗ s
)

(x) +
(
(ρ̃Λ

1 )−1 ⊗ j1
) (

(h1∇1s1)(i−1
1 (x))

)
= (dh⊗ s)(x) + (h∇∪s)(x),

as wanted. It thus remains to consider a point in i2(f(Y )).
Let x ∈ i2(f(Y )). Consider

(∇∪(hs))(x) =

=

(
InclΛ1

f−1(i
−1
2 (x))

(X1) ⊗ (j2 ◦ f̃)

)(
(∇1(h1s1))(f−1(i−1

2 (x)))
)
⊕

⊕
(

InclΛ1

i
−1
2 (x)

(X2) ⊗ j2
)(

(∇2(h2s2))(i−1
2 (x))

)
=

=

(
InclΛ1

f−1(i
−1
2 (x))

(X1) ⊗ (j2 ◦ f̃)

)(
(dh1 ⊗ s1 + h1∇1s1)(f−1(i−1

2 (x)))
)
⊕

⊕
(

InclΛ1

i
−1
2 (x)

(X2) ⊗ j2
)(

(dh2 ⊗ s2 + h2∇2s2)(i−1
2 (x))

)
=

=

((
InclΛ1

f−1(i
−1
2 (x))

(X1) + InclΛ1

i
−1
2 (x)

(X2)

)
(dh1 + dh2)

)
(x)⊗ s(x) + (h∇∪s)(x).

It thus remains to check that for any x ∈ i2(f(Y )) we have

dh(x) =

(
(InclΛ1

f−1(i
−1
2 (x))

(X1) + InclΛ1

i
−1
2 (x)

(X2))(dh1 + dh2)

)
(x).

This is equivalent to

ρ̃Λ
1 (dh(x)) = dh1(f−1(i−1

2 (x))) and ρ̃Λ
2 (dh(x)) = dh2(i−1

2 (x)),

and this has already been established above, which completes the proof.
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From the proof just finished, we can extract the following description of the differential of a function
h ∈ C∞(X1 ∪f X2,R) in terms of the differentials of its factors.

Corollary 5.11. The following is true:

(d(h1 ∪f h2))(x) =

=


(ρ̃Λ

1 )−1(dh1(i−1
1 (x))) if x ∈ i1(X1 \ Y ),

(InclΛ1

f−1(i
−1
2 (x))

(X1) ⊕ InclΛ1

i
−1
2 (x)

(X2))(dh1(f−1(i−1
2 (x)))⊕ dh2(i−1

2 (x))) if x ∈ i2(f(Y )),

(ρ̃Λ
2 )−1(dh2(i−1

2 (x))) if x ∈ i2(X2 \ f(Y )).

Proposition 5.12. The operator ∇∪ is smooth as a map

∇∪ : C∞(X1 ∪f X2, V1 ∪f̃ V2)→ C∞(X1 ∪f X2,Λ
1(X1 ∪f X2)⊗ (V1 ∪f̃ V2))

for the usual functional diffeologies on the two spaces.

Proof. Let p : U → C∞(X1 ∪f X2, V1 ∪f̃ V2) be a plot of C∞(X1 ∪f X2, V1 ∪f̃ V2); we need to check that

u 7→ ∇∪(p(u)) is a plot of C∞(X1 ∪f X2,Λ
1(X1 ∪f X2) ⊗ (V1 ∪f̃ V2)). Since the latter has functional

diffeology, we need to check that for any plot q : U ′ → X1∪fX2 of the base space X1∪fX2, the evaluation
map

εp,q : (u, u′) 7→ (∇∪(p(u))) (q(u′))

is a plot of Λ1(X1 ∪f X2)⊗ (V1 ∪f̃ V2). As usual, it suffices to assume that both U and U ′ are connected.
This in particular implies that q lifts to either a plot q1 of X1 or a plot q2 of X2.

Assume first that q lifts to q1 and consider εp,q(u, u
′) for an arbitrary point (u, u′) ∈ U ×U ′. Recall as

a preliminary consideration that, since by assumption p is a plot of C∞(X1∪fX2, V1∪f̃ V2), the following
map (the corresponding version of the evaluation map) is smooth:

(u, u′) 7→ (p(u))(̃i−1
1 (q(u′))) = (p(u))(q1(u′)).

Since for each u ∈ U the image p(u) is a smooth section of V1 ∪f̃ V2, it decomposes as p(u) = p(u)1 ∪(f,f̃)

p(u)2, where p(u)1 = j̃−1
1 ◦ p(u) ◦ ĩ1 ∈ C∞(X1, V1) and p(u)2 = j−1

2 ◦ p(u) ◦ i2 ∈ C∞(X2, V2).
We have by construction

εp,q(u, u
′) =



(
(ρ̃Λ

1 )−1 ⊗ j1
) (

(∇1p(u)1)(q1(u′))
)

if q1(u′) ∈ X1 \ Y,(
InclΛ1

f−1(i
−1
2 (x))

(X1) ⊗ (j2 ◦ f̃)

)(
(∇1p(u)1)(q1(u′))

)
⊕

⊕
(

InclΛ1

i
−1
2 (x)

(X2) ⊗ j2
)(

(∇2p(u)2)(f(q1(u′)))
)

if q1(u′) ∈ Y.

Recall that by Theorem 2.29 the two assignments u 7→ p(u)1 and u 7→ p(u)2 defined shortly above are
plots of C∞(X1, V1) and C∞(X2, V2) respectively. In particular, by assumption we have that (u, u′) 7→
(∇1p(u)1)(q1(u′)) is smooth as a map into Λ1(X1) ⊗ V1 onto the set of all pairs (u, u′) such that the
expression (∇1p(u)1)(q1(u′)) makes sense.

On the other hand, we cannot immediately make a similar claim regarding (∇2p(u)2)(f(q1(u′)));
indeed, f is smooth for the subset diffeology on Y , to which q1|q−1

1 (Y ) might not belong. To draw the

desired conclusion nonetheless, consider a plot h : U ′′ → Domain(εp,q) ⊂ U×U ′, which is just an ordinary
smooth function. We need to show that εp,q ◦ h is a plot of Λ1(X1 ∪f X2)⊗ (V1 ∪f̃ V2).

To do so, present h as a pair of smooth functions (hU , hU ′), where hU is the composition of h with
the projection of its range on U and likewise hU ′ is its composition with the projection on U ′. The
composition εp,q ◦h is then the evaluation of p ◦hU on q ◦hU ′ . It then remains to notice that q ◦hU ′ also
lifts to a plot (q ◦ hU ′)1 of X1, and this lift is a plot for the subset diffeology on Y . Thus,

(εp,q ◦ h)(u′′) =

(
InclΛ1

f−1(i
−1
2 (x))

(X1) ⊗ (j2 ◦ f̃)

)(
(∇1p(hU (u′′))1)((q1 ◦ hU ′)(u′′)))

)
⊕
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⊕
(

InclΛ1

i
−1
2 (x)

(X2) ⊗ j2
)(

(∇2p(hU (u′′))2)(f((q1 ◦ hU ′)(u′′)))
)
,

and in particular u′′ 7→ (∇2p(hU (u′′))2)(f((q1 ◦ hU ′)(u′′))) is now smooth by assumption on ∇2. We can
therefore conclude that εp,q ◦ h is indeed smooth, which completes the consideration of the case when q
lifts to a plot of X1.

The treatment of the case when q lifts to a plot q2 of X2 is completely analogous, so we omit it.

This sequence of statements now trivially yields the following.

Corollary 5.13. The operator ∇∪ is a connection on V1 ∪f̃ V2.

Proof. This is a consequence of Lemmas 5.8, 5.9, 5.10, and of Proposition 5.12.

Theorem 5.14. Let π1 : V1 → X1 and π2 : V2 → X2 be two diffeological vector pseudo-bundles, let (f̃ , f)
be a gluing between them such that both f̃ and f are differmorphisms of their domains with their images,
and let ∇1 and ∇2 be compatible connections on V1 and V2 respectively. Then V1 ∪f̃ V2 can be endowed

with a connection, that over i1(X1 \ Y ) is naturally equivalent to ∇1 and over i2(X2 \ f(Y )), to ∇2.

Proof. This is the content of Corollary 5.13; the operator ∇∪ corresponding to ∇1 and ∇2 is a connection
and satisfies the claim of the theorem.

5.3 Compatibility of the induced connection ∇∪ with the induced pseudo-
metric g̃

Assume now that the two pseudo-bundles π1 : V1 → X1 and π2 : V2 → X2 are endowed with pseudo-
metrics g1 and g2 respectively, and that these pseudo-metrics are compatible with the gluing along (f̃ , f):

g1(y)(·, ·) = g2(f(y))(f̃(·), f̃(·)) for all y ∈ Y.

Let ∇1 be a connection on V1 compatible with g1, and let ∇2 be a connection on V2 compatible with g2.
We can then consider the pseudo-metric g̃ on V1 ∪f̃ V2 obtained by gluing together g1 and g2, and the
connection ∇∪ on it. We wish to show that ∇∪ is compatible with g̃.

Recall first that g̃ is defined by

g̃(x)(·, ·) =

{
g1(i−1

1 (x))(j−1
1 (·), j−1

1 (·)) if x ∈ i1(X1 \ Y )
g2(i−1

2 (x))(j−1
2 (·), j−1

2 (·)) if x ∈ i2(X2).

Thus, at least over i1(X1 \ Y ) and i2(X2 \ f(Y )) the compatibility would follow from the assumption on
∇1 and ∇2 respectively.

Theorem 5.15. Let π1 : V1 → X1 and π2 : V2 → X2 be two diffeological vector pseudo-bundles, let (f̃ , f)
be a gluing between them such that both f̃ and f are differmorphisms of their domains with their images,
and let ∇1 and ∇2 be compatible connections on V1 and V2 respectively. Suppose furthermore that V1 and
V2 are endowed with pseudo-metrics g1 and g2 that are compatible with the gluing along f and f̃ . Assume
finally that ∇1 is compatible with g1, and ∇2 is compatible with g2. Then the induced connection ∇∪ on
V1 ∪f̃ V2 is compatible with the induced pseudo-metric g̃.

Proof. Let s, t ∈ C∞(X1 ∪f X2, V1 ∪f̃ V2) be two sections. We need to prove the following:

d(g̃(s, t)) = g̃(∇∪s, t) + g̃(s,∇∪t).

Consider the usual splittings of s and t as s = s1 ∪(f,f̃) s2 and t = t1 ∪(f,f̃) t2, where s1, t1 ∈ C∞(X1, V1)

and s2, t2 ∈ C∞(X2, V2). For these splittings, we have by assumption

d(g1(s1, t1)) = g1(∇1s1, t1) + g1(s1,∇1t1) and d(g2(s2, t2)) = g2(∇2s2, t2) + g2(s2,∇2t2).
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Since the differential is involved, and by Corollary 5.11, we need to consider three cases, those of a point
in i1(X1 \ Y ), a point in i2(f(Y )), and one in i2(X2 \ f(Y )), although the definition of g̃ only has two
parts. We also express the function

hg̃,s,t : X1 ∪f X2 3 x 7→ g̃(x)(s(x), t(x)) ∈ R

as the result of gluing of the following two functions:

hg1,s1,t1 : X1 3 x1 7→ g1(x1)(s1(x1), t1(x1)) and hg2,s2,t2 : X2 3 x2 7→ g2(x2)(s2(x2), t2(x2)).

It is then trivial to check that the gluing of these two functions along f is well-defined (that is, that they
are compatible with f , which in turn follows from the compatibility of g1 with g2), and that

hg̃,s,t = hg1,s1,t1 ∪f hg2,s2,t2 .

Consider now the first case, x ∈ i1(X1 \ Y ). Then by Corollary 5.11 and the observation just made

d(g̃(s, t))(x) = (ρ̃Λ
1 )−1(d(g1(s1, t1)(i−1

1 (x)))) = (ρ̃Λ
1 )−1((g1(∇1s1, t1) + g1(s1,∇1t1))(i−1

1 (x))).

It is thus sufficient to show that at a point x ∈ i1(X1 \ Y ) we have

(ρ̃Λ
1 )−1((g1(∇1s1, t1)(i−1

1 (x))) = g̃(∇∪s, t)(x),

and this is a direct consequence of the construction of ∇∪. The completely analogous reasoning holds
also in the case of x ∈ i2(X2 \ f(Y )).

It thus remains to consider the case of x ∈ i2(f(Y )). For such an x we have, first of all,

d(g̃(s, t))(x) = (InclΛ1

f−1(i
−1
2 (x))

(X1) ⊕ InclΛ1

i
−1
2 (x)

(X2))((dhg1,s1,t1)(f−1(i−1
2 (x))) + (dhg2,s2,t2)(i−1

2 (x))).

As follows from the assumptions on ∇i, and the linearity properties, what we now need to check is that
for any x ∈ i2(f(Y )) we have

(InclΛ1

f−1(i
−1
2 (x))

(X1) ⊕ InclΛ1

i
−1
2 (x)

(X2))(g1(∇1s1, t1)(f−1(i−1
2 (x))) + g2(∇2s2, t2)(i−1

2 (x))) = g̃(∇∪s, t).

This is also explicit from the construction of ∇∪, which completes the proof.

Remark 5.16. One might also consider the potential interplay between the two compatibility notions,
one for connections and the other for pseudo-metrics, along the lines of whether one would imply the
other (likely, the former, the latter). The proof just given indeed strongly suggests this possibility, at least
as long as there are local bases. However, since in general diffeological pseudo-bundles do not have to
have them, we do not follow through on this issue.
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