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We calculate the energy per particle of symmetric nuclear matter and pure neutron matter using the

many-body Brueckner-Hartree-Fock approach and employingthe Chiral Next-to-next-to-next-to

leading order (N3LO) nucleon-nucleon (NN) potential, supplemented with various parametriza-

tions of the Chiral Next-to-next-to leading order (N2LO) three-nucleon force. Such combination

is able to reproduce several observables of the physics of light nuclei for suitable choices of the

parameters entering in the three-nucleon interaction. We find that some of these parametrizations,

provide also reasonable values for the observables of nuclear matter at the saturation point.
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1. Introduction

The advent of interactions derived in the framework of chiral perturbation theory (see e.g. [1]
and references therein quoted) opened a new and systematic way to investigate low and high energy
processes in nuclear physics. The big advantage of using such method lies in the fact that two-body
as well as many-body forces can be calculated order by order according to a well defined scheme.
This systematic procedure is particularly useful for nucleonic systems where the importance of the
three-nucleon force (TNF) is a well established feature. Itis indeed well known that high precision
nucleon-nucleon (NN) potentials, fitting NN scattering data up to energy of 350 MeV, with aχ2 per
datum next to 1, underestimate the experimental binding energies of3H, 3He by about 1 MeV and
that of4He by about 4 MeV [2]. This missing binding energy can be accounted for by introducing
a TNF into the nuclear Hamiltonian [2].

In a previous paper [3], we have investigated whether using the same interactions at two- and
three-body level, it was possible to concurrently reproduce properties of finite light nuclei and
nuclear matter. Fixing the parameters of the TNF to simultaneously describe the3H, 3He and4He
binding energies and the neutron-deuteron (n-d) doublet scattering length [4], we found that none
of the considered interactions was able to reproduce a good saturation point of symmetric nuclear
matter. In [3] we used the Argonne18 NN potential [5] supplemented with two different TNFs. In
the first case we employed various parametrizations of the Tucson-Melbourne TNF [6], while in the
second case, we used the local version of the chiral N2LO [7] TNF (hereafter N2LOL) [8]. In the
present work, we consider an interaction fully based on chiral perturbation theory both for the two-
and three- nucleon sectors. We use indeed the chiral N3LO [9]NN potential in conjunction with
the N2LOL three-nucleon interaction. We note that while theNN potential is calculated at order
N3LO of chiral perturbation expansion, the three-nucleon one is calculated at order N2LO. Chiral
TNFs have also been calculated at order N3LO [10]. However itseems that their contribution is
negligible [11]. Moreover no additional low energy constant appears at this order. Subleading
contributions to the TNF come out at order N4LO [12]; their contribution seems to be potentially
important. In this work we limit our study considering TNFs calculated at order N2LO.

The paper is organized as follows: in the first section we review the parameters of the N2LOL
three-nucleon force and the determination of the low energyconstants; in the second section we
briefly discuss how to include a TNF in the Brueckner-Hartree-Fock (BHF) approach; finally the
third section is devoted to show the results of our calculations and to outline the main conclusions
of the present study.

2. The N2LOL three nucleon force

Following Ref. [8], for the N2LOL potential we have adopted acut off of the formFΛ = e−
q2n

Λ2n

beingq the exchanged momentum. We employn= 2 andΛ = 500 MeV. We have then considered
five parametrizations of the N2LOL three-nucleon force (hereafter N2LOL1, N2LOL2, N2LOL3,
N2LOL4, N2LOL5). For all the five parametrizations, we have kept the values of the parameters
c1, c3 andc4 as the original ones determined in Ref. [9]. These values arereported in the caption of
Tab. 1. The values of the low energy constantscE andcD are reported in Tab. 1. The parametrization
N2LOL1, is the original one proposed in Ref. [8], wherecE andcD were fitted to reproduce the
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binding energies of3H and 4He in a no-core shell model calculation. In Ref. [13], fixing the
range ofcD between−3 and 3, the parametercE was determined fitting the binding energies of3H
and3He. In this way the authors of Ref. [13] obtained two curvescE(cD) fulfilling the previous
constraints. As the two curves turned out to be very close, the authors of Ref. [13] performed an
average between them. Finally, for each set of parameters(cE,cD), the Gamow-Teller (GT) matrix
element of Tritiumβ -decay was calculated and, using the corresponding experimental value and
its error-bars, the minima and a maxima values forcD and cE satisfying this requirement were
determined. In the parametrizations N2LOL2 and N2LOL3, we have adopted the minima and
the maxima values allowed forcD and cE according to the construction described above. The
parametrization N2LOL4, taken from Ref. [14], was obtainedin the same way as the N2LOL2
and N2LOL3 ones but allowing that the GT matrix element to be reproduced with a slight larger
uncertainty (however less than 1%). The last parametrization that we have considered, namely the
N2LOL5, has been obtained fixing the couple (cD, cE) on the trajectory reproducing the binding
energies of3H and3He and requiring to get the best saturation density of symmetric nuclear matter.

3. Inclusion of three-nucleon forces in the Brueckner-Hartree-Fock approach

As widely discuss in literature [15, 16, 17, 18], three-nucleon forces cannot be included in
the BHF formalism [19, 20] in their original form. This task would require the solution of a
three-body Bethe-Faddeev equation in the nuclear medium and currently this procedure cannot
be accomplished. To overcome this problem, an effective density dependent two-body force is
built starting from the original three-body one by averaging over the coordinates (spatial, spin and
isospin) of one of the nucleons. The effective NN force due tothe general three-nucleon force
W(1,2,3) can be written as [15, 21]:

W(1,2) =
1
3

∫

dx3 ∑
cyc

W(1,2,3) n(1,2,3)(1−P13−P23) , (3.1)

where we have defined
∫

dx3 = Tr(τττ3,σσσ3)

∫

dr3. In the previous expressionn(1,2,3) is the density
distribution of the nucleon 3 in relation to the nucleon 1 atr1 and nucleon 2 atr2. The function
n(1,2,3) represents the effect of the NN correlations and will suppress the contributions from
the short-range part ofW(1,2,3). As in Ref. [3] we assume that this density distribution can be
factorized as

n(1,2,3) = ρ g2(1,3) g2(2,3) , (3.2)

whereρ is the nucleon density,g(1,3) andg(2,3) are the correlation functions between the nu-
cleons(1,3) and(2,3) respectively. The latter quantities can be written asg(1,3) = 1−η(1,3),
whereη(1,3) is the so-called defect function (and similarly forg(2,3) ). To simplify the numerical
calculations and following [15, 3], in the present work we use central correlation functionsg(i, j)
independent on spin and isospin. Moreover, it has been shown[15, 16, 17] that this central correla-
tion functions, in which are included the main contributions of the1S0 and3S1 channels, are weakly
dependent on the density, and can be approximated by a Heaviside step functionθ(r i j − rc), with
rc = 0.6 fm in all the considered density range. FinallyPi j are the spin, isospin and space exchange
operators between nucleoni and j.
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cD cE

N2LOL1 1.00 -0.029
N2LOL2 -0.20 -0.208
N2LOL3 -0.04 -0.184
N2LOL4 0.00 -0.18
N2LOL5 0.25 -0.135

Table 1: Five different parametrizations of the N2LOL three-body force with Λ = 500 MeV. The values
c1 = −0.00081 MeV−1, c3 = −0.0032 MeV−1, c4 = −0.0054 MeV−1 have been kept fix in all the five
cases. See text for details.

ρ0 (fm−3) E/A (MeV) Esym (MeV) L (MeV)

N2LOL1 0.185 -15.48 35.5 58.5
N2LOL2 0.15 -11.23 29.0 44.1
N2LOL3 0.15 -11.96 29.3 45.0
N2LOL4 0.15 -12.16 29.4 45.2
N2LOL5 0.16 -13.04 31.3 48.7
N3LO 0.41 -24.25 55.0 108.2

Table 2: Properties of nuclear matter at saturation point forΛ = 500 MeV. In the five columns are shown:
parametrization of the N2LOL three-body force, saturationdensity, corresponding value of energy per par-
ticle E/A, symmetry energyEsym and slopeL of the symmetry energy. Last line refer to the calculation in
which just the N3LO NN force has been used. See text for more details.

A different average procedure, with respect to the one discussed above, has been performed in
Ref. [22], where an in medium effective NN potential was derived from the N2LO three-nucleon
force. In [22] just the on-shell contributions have been determined while the off-shell counterparts
have been obtained by extrapolation.

We want to stress that the presence of the exchange operatorsin the average, neglected in our
previous work [3], play a very important role. In this way we obtain a fully density dependent
antisymmetric two-nucleon force and we take into account ofall internal and external permutation
of the TNF. In addition, through this procedure, all operators involved in the TNF contribute to the
effective density dependent potential. The resulting effective density dependent potential contains
in particular some purely repulsive contributions that aremissing when neglecting thePi j exchange
operators. Such repulsion is needed to contrast the strong attraction provided at two-body level by
the N3LO potential as we will show in next section.

4. Results and discussions

We now present the results of our calculations of the energy per particle of symmetric nu-
clear matter and pure neutron matter using N3LO NN potentialsupplemented with the N2LOL
three-body force. In Fig. 1 we show the energy per particle ofpure neutron matter (left panel) and
symmetric nuclear matter (right panel) using the cutoffΛ= 500 MeV. The dotted lines in both plots
refer to the calculation performed employing the N3LO potential without any TNF. First we note
the huge contribution provided by the TNF to the energy per particle of both symmetric nuclear
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Figure 1: Pure neutron matter (left panel) and symmetric nuclear matter (right panel) versus nucleonic
density for the five parametrizations of the N2LOL model. Seetext for details.

matter and pure neutron matter. In the case of symmetric nuclear matter the saturation point moves
indeed from 0.41 fm−3 to values between 0.16 fm−3 and 0.185 fm−3, depending on the specific
model used for the TNF (see Tab. 1). More specifically, the parametrization N2LOL1 predicts a rea-
sonable saturation point for symmetric nuclear matter at a density of 0.185 fm−3 and an energy per
nucleon equal to−15.48 MeV. Referring again to the N2LOL1 model, the shift introduced by the
TNF to the energy per nucleon at the empirical saturation point ρ0 = 0.16 fm−3 is ∆E = 2.73 MeV
for symmetric nuclear matter and∆E = 4.84 MeV for pure neutron matter. On the other hand the
parametrizations N2LOL2, N2LOL3 and N2LOL4, all produce a good saturation density of 0.15
fm−3, but the corresponding energy per nucleon is underestimated ranging between−11.23 MeV
and−12.16 MeV (see Tab. 1). The curves for the energy per nucleon of pure neutron matter are
very similar in all the density range considered. We note that the parametrization N2LOL5 is con-
structed to reproduce the3H and3He binding energies and the best saturation density of symmetric
nuclear matter. However, we want again to remark that in thiscase the GT matrix element is not re-
produced. It is apparent that none of the present interactions can fulfill the requirement to reproduce
simultaneously the3H, 3He and4He binding energies, the GT matrix element and the saturation
point of symmetric nuclear matter. However the parametrization N2LOL1, which has the important
property to reproduce3H and3He binding energies, provides also a reasonable saturationpoint for
nuclear matter. Such achievements represent a big improvement of our previous calculations [3].

In the case of asymmetric nuclear matter with neutron density ρn, proton densityρp, total
nucleon densityρ = ρn+ ρp and asymmetry parameterβ = (ρn− ρp)/ρ the energy per nucleon
can be accurately reproduced using the so called parabolic approximation [23]

E
A
(ρ ,β ) =

E
A
(ρ ,0)+Esym(ρ)β 2 . (4.1)
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Figure 2: Symmetry energy versus nucleonic density for the five parametrizations of the N2LOL one con-
sidered. See text for details.

whereEsym(ρ) is the nuclear symmetry energy. Thus the symmetry energy canbe calculated as the
difference between the energy per particle of pure neutron matter (β = 1) and symmetric nuclear
matter (β = 0). The nuclear symmetry calculated with this prescriptionfor various parametrizations
of the N2LOL three-nucleon force is plotted in Fig. 2.

To compare our results with the value of the symmetry energy extracted from various nu-
clear experimental data [24, 25], we report in Tab. 2 the symmetry energy and the so called slope
parameter

L = 3ρ0
∂Esym(ρ)

∂ρ

∣

∣

∣

ρ0

. (4.2)

at the calculated saturation density (second column in Tab.2) for the different TNF models con-
sidered in this work. As we can see (Tab. 2) our calculatedEsymandL are in very good agreement
with the values extracted from experimental data [24]:Esym(ρ0) = 29.0 – 32.7 MeV, andL= 40.5 –
61.9 MeV. This agreement is lost when the TNF is not included in the calculations (see the last row
in Tab. 2). Notice that the value of incompressibilityK0 of symmetric nuclear matter, at the calcu-
lated saturation density, is generally quite low. It rangesbetweenK0 = 150–170 MeV, depending
on the TNF model.

Let us now confront our results with those of similar calculations present in literature based on
chiral nuclear interactions. The authors of Ref. [14] performed nuclear matter calculations using
the BHF approach adopting the effective density dependent NN force derived in Ref. [22]. These
authors found results in good agreement with ours both for nuclear matter and pure neutron matter.
Several nuclear matter calculations based on chiral interactions have been performed using other
many-body techniques. In Ref. [26], using theVlowk-approach and the similarity renormalization
group (SRG), it was shown that for a suitable choice of the cutoff ΛVlowk it was possible to repro-
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duce a good saturation point of symmetric nuclear matter keeping for the parameters of the TNF
the values fixed in few-body calculations. In Ref. [27], using the self-consistent Green’s functions
method, it has been found that the saturation point of symmetric nuclear matter is strongly im-
proved with the help of the N2LOL three-nucleon force although, also in this case, the saturation
curve results underestimated.

5. Conclusions

We have performed several BHF calculations of symmetric nuclear matter and pure neutron
matter considering the N3LO NN potential plus the N2LOL three nucleon interaction. The last one
has been reduced to an effective density dependent two-bodyforce averaging over the coordinates
of one of the nucleons. We want to stress that the parameters of the TNF fitted in calculations of
light nuclei have been kept fixed in our nuclear matter calculations. We found that although it was
not possible to reproduce the binding energy of3H, 3He, the GT matrix element and the saturation
point of symmetric nuclear matter simultaneously, one parametrization of the N2LOL three nucleon
force, namely the N2LOL1, shows a reasonable saturation point of symmetric nuclear matter as
well as values ofEsym andL in good agreement with the experimental ones. These encouraging
results spur us towards new combined investigations in few-and many-body nuclear physics using
interactions derived in the framework of chiral perturbation theory.
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