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Abstract. We prove that the density of the law of any �nite dimensional
projection of solutions of the Navier�Stokes equations with noise in dimension
3 is Hölder continuous in time with values in the natural space L1. When
considered with values in Besov spaces, Hölder continuity still holds. The Hölder
exponents correspond, up to arbitrarily small corrections, to the expected, at
least with the known regularity, di�usive scaling.

1. Introduction

When dealing with a stochastic evolution PDE, the solution depends not only
on the time and space independent variables, but also on the �chance� variable,
that plays a completely di�erent role. Existence of a density for the distribution
of the solution is thus a form of regularity with respect to the new variable. In
in�nite dimension there is no canonical reference measure, therefore often existence
of densities is expected for �nite dimensional functionals of the solution.
This paper is a continuation of [DR14] and its aim is to give an additional

understanding of the law of solutions of the Navier�Stokes equations driven by
noise in dimension three. More precisely, consider the Navier�Stokes equations
either on a smooth bounded domain with zero Dirichlet boundary condition or on
the 3D torus with periodic boundary conditions and zero spatial mean,

(1.1)

{
u̇+ (u · ∇)u+∇p = ν∆u+ η̇,

div u = 0,

where u is the velocity, p the pressure and ν > 0 the viscosity of an incompressible
�uid, and η̇ is Gaussian noise, white in time and coloured in space (see [Fla08] for
a survey). Existence of a density for �nite dimensional projections of the solution
of (1.1) and its regularity in terms of Besov spaces was proved in [DR14]. In this
paper we prove that those densities are almost 1

2
�Hölder continuous in time with

values in L1, as well as with values in suitable Besov spaces de�ned on the �nite
dimensional target space.
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In a way, the results we obtain in this paper are not surprising. After all we are
dealing with a di�usion process and we already know from [DR14] that the density
has (in terms of Besov regularity) almost one derivative. It is then expected that
the time regularity is of the order of (almost) half a derivative. Likewise, if we look
at the regularity of the derivative of order α, with α ∈ (0, 1), a fair expectation is
that its time regularity is of order (almost) α

2
. On the other hand, space regularity

has been obtained in a non�standard way by means of the method introduced in
[DR14]. As we will see time regularity requires as well a non�trivial proof that
mixes the method of [DR14] with arguments based on the Girsanov transformation.
We believe that this adds value to the paper.
In a way, the problem at hand here can be considered as part of a general

attempt on proving existence and regularity of densities of problems where, in
principle, Malliavin calculus is not immediately applicable. Here the loss of reg-
ularity emerges due to in�nite dimension. To quickly understand that Malliavin
calculus is not directly applicable here, one can realize that the equation that the
Malliavin derivative of the solution of (1.1) should satisfy is essentially the lin-
earization (around 0) of (1.1). No good estimates on the linearization of (1.1) are
available so far, as they could be used for uniqueness as well.
The method we use has been developed in [DR14], starting from an idea of

[FP10] (see also [Rom13] for a slightly more detailed account). Later the same idea
has been used in [DF13, Fou12]. An improvement of [FP10] in a di�erent direction
has been given in [BC12]. Other attempts to handle non�smooth problems are
[DM11], and [KHT12, HKHY13b, HKHY13a]. Finally, see [San08] for related
results on time regularity of the density of solutions of stochastic PDEs.

2. Main results

2.1. Notations. If K is an Hilbert space, we denote by πF : K → K the orthogo-
nal projection of K onto a subspace F ⊂ K, and by span[x1, . . . , xn] the subspace
of K generated by its elements x1, . . . , xn. Given a linear operator Q : K → K ′,
we denote by Q? its adjoint.

2.1.1. Function spaces. We recall the de�nition of Besov spaces. The general def-
inition is based on the Littlewood�Paley decomposition, but it is not the best
suited for our purposes. We shall use an alternative equivalent de�nition (see
[Tri83, Tri92]) in terms of di�erences. Given f : Rd → R, de�ne

(∆1
hf)(x) = f(x+ h)− f(x),

(∆n
hf)(x) = ∆1

h(∆
n−1
h f)(x) =

n∑
j=0

(−1)n−j
(
n

j

)
f(x+ jh),
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and, for s > 0, 1 ≤ p ≤ ∞, 1 ≤ q <∞,

[f ]Bsp,q =
(∫
{|h|≤1}

‖∆n
hf‖

q
Lp

|h|sq
dh

|h|d
) 1
q
,

and for q =∞,

[f ]Bsp,∞ = sup
|h|≤1

‖∆n
hf‖Lp
|h|s

,

where n is any integer strictly larger than s (the above semi�norm are independent
of the choice of n, as long as n > s). Given s > 0, 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞,
de�ne

Bs
p,q(R

d) = {f : ‖f‖Lp + [f ]Bsp,q <∞}.
This is a Banach space when endowed with the norm ‖f‖Bsp,q := ‖f‖Lp + [f ]Bsp,q .

When in particular p = q = ∞ and s ∈ (0, 1), the Besov space Bs
∞,∞(Rd)

coincides with the Hölder space Cs
b (R

d), and in that case we will denote by ‖ · ‖Csb
and [·]Csb the corresponding norm and semi�norm.

2.1.2. Navier Stokes framework. Let H be the standard space of square summable
divergence free vector �elds, de�ned as the closure of divergence free smooth vector
�elds satisfying the boundary condition (either zero Dirichlet or periodic, with zero
spatial mean in the latter case), with inner product 〈·, ·〉H and norm ‖ · ‖H . De�ne
likewise V as the closure of the same space of functions with respect to the H1

norm.
Let ΠL be the Leray projector, A = −ΠL∆ the Stokes operator, and denote by

(λk)k≥1 and (ek)k≥1 the eigenvalues and the corresponding orthonormal basis of
eigenvectors of A. De�ne the bi�linear operator B : V × V → V ′ as B(u, v) =
ΠL (u · ∇v), u, v ∈ V , and recall that 〈u1, B(u2, u3)〉 = −〈u3, B(u2, u1)〉. We will
use the shorthand B(u) for B(u, u). We refer to Temam [Tem95] for a detailed
account of all the above de�nitions.
The noise η̇ = SẆ in (1.1) is coloured in space by a covariance operator S?S ∈

L (H), where W is a cylindrical Wiener process (see [DPZ92] for further details).
We assume that S?S is trace�class and we denote by σ2 = Tr(S?S) its trace.
Finally, consider the sequence (σ2

k)k≥1 of eigenvalues of S?S, and let (qk)k≥1 be the
orthonormal basis in H of eigenvectors of S?S.

2.2. Galerkin approximations. With the above notations, we can recast prob-
lem (1.1) as an abstract stochastic equation,

(2.1) du+ (νAu+B(u)) dt = S dW,

with initial condition u(0) = x ∈ H. It is well�known [Fla08] that for every
x ∈ H there exist a martingale solution of this equation, that is a �ltered prob-

ability space (Ω̃, F̃ , P̃, {F̃t}t≥0), a cylindrical Wiener process W̃ and a process u
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with trajectories in C([0,∞);D(A)′)∩L∞
loc

([0,∞), H)∩L2
loc

([0,∞);V ) adapted to

(F̃t)t≥0 such that the above equation is satis�ed with W̃ replacing W .
We will consider in particular solutions of (1.1) obtained as limits of Galerkin

approximations. Given an integer N ≥ 1, denote by HN the sub�space HN =
span[e1, . . . , eN ] and denote by πN = πHN the projection onto HN . It is standard
(see for instance [Fla08]) to verify that the problem

(2.2) duN +
(
νAuN +BN(uN)) dt = πNS dW,

where BN(·) = πNB(πN ·), admits a unique strong solution uN for every initial
condition xN ∈ HN , and

(2.3) E
[

sup
t∈[0,T ]

‖uN(t)‖pH
]
≤ c1(1 + ‖xN‖pH),

for every p ≥ 1 and T > 0, where c1 > 0 depends only on p, T and the trace
of SS?. Indeed these conclusions are due to the fact that in �nite dimension all
norms are equivalent, thus given a �nite dimensional sub�space F of H, there is
c2 > 0 such that

‖πFAx‖H ≤ c2‖x‖H , ‖πFB(x1, x2)‖H ≤ c2‖x1‖H‖x2‖H .
If x ∈ H, xN = πNx and PNx is the distribution of the solution of the problem

above with initial condition xN , then any limit point of (PNx )N≥1 is a solution of
the martingale problem associated to (1.1) with initial condition x.

Remark 2.1. In general, there is nothing special with the basis provided by the
eigenvectors of the Stokes operator and our results would work when applied to
Galerkin approximations generated by any (smooth enough) orthonormal basis of
H. The crucial assumption is that the solution is a limit point of �nite dimensional
approximations. Some of the results concerning densities (but not those in this
paper) can be generalized to any martingale weak solution of (2.1), see [Rom14].

2.3. Assumptions on the covariance. Given a �nite dimensional subspace F
of H, we assume the following non�degeneracy condition on the covariance,

(2.4) Sx = f has a solution for every f ∈ F,
The condition above is stronger than the condition

(2.5) πFSS?πF is a non�singular matrix,

used in [DR14] to prove bounds on the Besov norm of the density. It is not clear
if our results here may be true under the weaker assumption (2.5).
Indeed, to work with the Galerkin approximation framework we have outlined

above it is convenient to assume a slightly stronger version of (2.4), namely that

(2.6) SπNx = f has a solution for every f ∈ F,
for N large enough (but see Remark 2.1 to see that there is no real loss of gener-
ality).



TIME REGULARITY OF THE DENSITIES 5

2.4. Continuity in time of the density. Our �rst main result is that densities of
�nite dimensional projections of solutions of (2.1) are continuous (actually Hölder
with exponent almost 1

2
) with respect to time with values in the natural space L1

of densities.

Theorem 2.2. Fix a �nite dimensional subspace F of D(A) generated by a �nite
set of eigenvectors of the Stokes operator, and assume (2.6).
For every α ∈ (0, 1), there is c3 > 0 such that if u is a weak solution of (2.1),

with initial condition x ∈ H, which is a limit point of Galerkin approximations,
then

‖fF (t)− fF (s)‖L1(F ) ≤ c3
(1 + s ∨ t) 1

2

1 ∧ t ∧ s
(1 + ‖x‖2H)3|t− s|

α
2 ,

for every s, t > 0. Here fF (t) is, for every t > 0, the density with respect to the
Lebesgue measure on F of the random variable πFu(t).

The theorem above follows immediately from Proposition 3.1 and Lemma 4.2.
By trading time�continuity with space�time continuity, we can obtain an estimate
similar to the one given in the above theorem for the Besov norm of the density.

Theorem 2.3. Fix a �nite dimensional subspace F of D(A) generated by a �nite
set of eigenvectors of the Stokes operator, and assume (2.6).
For every α, β ∈ (0, 1) with α + β < 1, there is c4 > 0 such that if u is a weak

solution of (2.1), with initial condition x ∈ H, which is a limit point of Galerkin
approximations, then

‖fF (t)− fF (s)‖Bα1,∞ ≤ c4
(1 + s ∨ t) 1

2

1 ∧ s ∧ t
(1 + ‖x‖2H)3|t− s|

β
2 ,

for every s, t > 0. Here fF (t) is, for every t > 0, the density with respect to the
Lebesgue measure on F of the random variable πFu(t).

The proof of this theorem is given by means of Proposition 4.3. A crucial
tool in the proof of both theorems is Girsanov's transformation. This explains
why we need the slightly stronger assumption (2.4) rather than the assumption
(2.5) used in [DR14]. Girsanov's change of measure is used to perform a sort of
fractional integration by parts and move the tiny regularity from space to time
(see Lemma 3.6).

3. The estimate in L1

This section is devoted to the proof of the Hölder estimate of the density with
values in L1. A classical way is to derive �rst some space regularity and then use
it to prove the time regularity. In a way, this is also the bulk of our method,
although due to the low regularity we have at hand (see Lemma 4.2), this can be
done only after a suitable simpli�cation. The main tool we use here is the Girsanov
transformation and the logarithmic moments of the Girsanov density. The version
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of the Girsanov theorem we use follows from [LS01, Chapter 7]. The main result
of this section is as follows.

Proposition 3.1. Fix a �nite dimensional subspace F of D(A) generated by a
�nite set of eigenvectors of the Stokes operator, and assume (2.6).
For every α ∈ (0, 1) there is c5 > 0 such that if x ∈ H, N is large enough (that

F ⊂ HN) and u
N is a solution of (2.2) with initial condition πNx, then

‖fNF (t)− fNF (s)‖L1(F ) ≤ c5(1 + s ∨ t)
1−α
2 ‖fNF (s ∧ t)‖Bα1,∞(1 + ‖x‖2H)2|t− s|

α
2 ,

for every s, t > 0. Here fNF (t) is, for every t > 0, the density with respect to the
Lebesgue measure on F of πFu

N(t).

In the rest of the section we will drop, for simplicity and to make the notation
less cumbersome, the index N . It is granted though that we work with solutions
of the Galerkin system (2.2).

3.1. The Girsanov equivalence. Let us assume now (2.6) and consider the fol-
lowing two stochastic equations in HN

du+ (νAu+ πNB(u)) dt = πNS dW,
dv + (πN − πF )(νAv +B(v)) dt = πNS dW.

It is easy to see that both equations have a unique strong solution for every initial
condition inHN . In view of the application of the Girsanov transformation, assume
u(0) = v(0) ∈ HN .

3.1.1. The Moore�Penrose pseudo�inverse. Given a linear bounded operator S :
H → H and a �nite dimensional subspace F ⊂ H such that Sx = f has at least
one solution for every f ∈ F , de�ne

S+f = arg min{‖x‖H : x ∈ H and Sx = f}.

It is elementary to check that the pseudo�inverse S+ : F → H is well de�ned
and is a linear bounded operator, since given f the minima x are characterized by
〈x, y − x〉H ≥ 0 for every y ∈ H such that Sy = f . In particular SS+f = f .
If assumption (2.6) holds, we can likewise de�ne S+

N : HN → F as

S+
Nf = arg min{‖x‖H : x ∈ HN and Sx = f}.

By de�nition the sequence ‖S+
Nf‖H is non�increasing, hence supN≥1 ‖S+

Nf‖H <∞
for every f ∈ F , and by the Banach�Steinhaus uniform boundedness theorem it
follows that supN ‖S+

N‖L(F,H) <∞.
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3.1.2. Reduction by the Girsanov transformation. Fix for the rest of the section
T > 0. If w ∈ C([0, T ];HN), set

τn(w) = inf
{
t ≤ T :

∫ t

0

‖S+
NπF

(
νAw +B(w)

)
‖2H ds ≥ n

}
,

and τn(w) = T if the above set is empty, and χnt (w) = 1{τn(w)≥t}. By (2.3)
τn(u) <∞ almost surely. Similar computations yield that also τn(v) <∞ almost
surely.
Let vn be the solution of

vn(t) = v(t ∧ τn(v))−
∫ t

0

(1− χns (v))πN(νAvn +B(vn)) ds+

+

∫ t

0

(1− χns (v))πNS dWs,

then vn(t) = v(t) on {τn(v) ≥ t}, τn(v) = τn(vn), and vn(t) → v(t) almost surely.
More precisely, vn(t) = v(t) for n large enough (ω�wise), therefore φ(vn(t)) →
φ(v(t)) almost surely for any bounded measurable φ.
Moreover, since

v(t ∧ τn(v)) = v(0)−
∫ t

0

χns (v)(πN − πF )(νAv +B(v)) ds+

∫ t

0

χns (v)πNS dWs,

it follows that

vn(t) = v(0)−
∫ t

0

(νAvn + πNB(vn)) ds+

+

∫ t

0

πNS dW +

∫ t

0

χns (vn)πF (νAvn +B(vn)) ds.

By the Girsanov theorem the process

Gn
t = exp

(∫ t

0

χns (vn)S+
NπF (νAvn +B(vn)) dWs +

− 1

2

∫ t

0

χns (vn)‖S+
NπF (νAvn +B(vn))‖2H ds

)
is a martingale and the law of u on [0, T ] with respect to the original probability
measure P is equal to the law of vn on [0, T ] with respect to the new probability
measure Gn

TP.

3.2. Increments of the Girsanov density. In this section we estimate the time
increments of the Girsanov density. This provides half of the proof of Proposi-
tion 3.1.

Lemma 3.2. There is c6 > 0 such that for every 0 ≤ s ≤ t ≤ T and every n ≥ 1,

E
[
Gn
t

∣∣∣ log
Gn
t

Gn
s

∣∣∣] ≤ c6(t− s)
1
2 (1 + ‖u(0)‖2H)2.
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Proof. By changing back the probability measure, since on the interval [0, t] u
under P has the same law as vn under Gn

t P,

E
[
Gn
t

∣∣∣log
Gn
t

Gn
s

∣∣∣] = E
[∣∣∣log

Gn
t (u)

Gn
s (u)

∣∣∣]
≤ E

[
2
∣∣∣ ∫ t

s

χnr (u)S+
NπF (νAu+B(u)) dWr

∣∣∣]
+ E

[∫ t

s

χnr (u)‖S+
NπF (νAu+B(u))‖2H dr

]
≤ c6(t− s)

1
2 (1 + ‖u(0)‖2H)2,

where we have used the Burkholder-Davis-Gundy inequality and (2.3). �

Lemma 3.3. There is c7 > 0 such that for every 0 ≤ s ≤ t ≤ T and n ≥ 1,

E[|Gn
t −Gn

s |] ≤ c7(1 + ‖u(0)‖2H)2(t− s)
1
2 ,

Proof. Fix 0 ≤ s ≤ t ≤ T and notice that, sinceGn
t is a martingale, E[Gn

t −Gn
s ] = 0,

whence
E[|Gn

t −Gn
s |] = 2E[(Gn

s −Gn
t )+],

where for x ∈ R, x+ = max(x, 0). Thus, by using the elementary inequality
(x− y)+ ≤ x| log x

y
|, x, y > 0,

E[|Gn
t −Gn

s |] = 2E[(Gn
s −Gn

t )+] ≤ 2E
[
Gn
t

∣∣∣log
Gn
t

Gn
s

∣∣∣],
and the conclusion of the lemma follows by Lemma 3.2. �

3.3. Proof of Proposition 3.1. We recall an elementary inequality, its proof is
straightforward calculus: for every x, y ≥ 0 and ε > 0,

(3.1) xy ≤ ε e
y
ε +εx log x.

Lemma 3.4. For every ε > 0, every s, t ∈ [0, T ], every n ≥ 1 and every bounded
measurable φ : F → R,

|E[Gn
s

(
φ(πFv

n(t))− φ(πFv(t))
)
]| ≤ ε‖φ‖∞

(
c6
√
T (1 + ‖u(0)‖2H)2 + e

2
ε P[τn(v) < t]

)
.

Proof. Fix ε > 0 and assume without loss of generality that ‖φ‖∞ ≤ 1. We know
that vn(t) = v(t) on τn(v) ≥ t, hence

E[Gn
s

(
φ(πFv

n(t))− φ(πFv(t))
)
] = E[Gn

s

(
φ(πFv

n(t))− φ(πFv(t))
)
1{τn(v)<t}].

By the inequality (3.1) above (with x = Gn
s and y = |φ(πFv

n(t))− φ(πFv(t))|),
E[Gn

s

(
φ(πFv

n(t))− φ(πFv(t))
)
1{τn(v)<t}] ≤

≤ εE[Gn
s logGn

s ] + εE[e
1
ε
|φ(πF vn(t))−φ(πF v(t))| 1{τn(v)<t}] ≤

≤ εE[Gn
s logGn

s ] + ε e
2
ε P[τn(v) < t].

The statement of the lemma now follows by Lemma 3.2. �
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Let Uφ be the solution of the heat equation

(3.2) ∂tUφ =
1

2
Tr(πFS(πFS)?D2Uφ),

with initial condition φ. This is well de�ned, smooth and a linear transformation
of the standard heat equation due again to assumption (2.5).

Lemma 3.5. For every 0 ≤ s ≤ t ≤ T , n ≥ 1 and φ : F → R bounded measurable,

E[Gn
sφ(πFv(t))] = E[Gn

sUφ(t− s, πFv(s))].

Proof. Set β(t) = πFv(t), then by assumption (2.5) and by πFπN = πF , since F is

a sub�space of HN , it follows that β(t) = πFu(0) +
∫ t
0
πFS dWs is a d�dimensional

Brownian motion started at πFu(0). By the Markov property,

E[Gn
sφ(πFv(t))] = E

[
Gn
sE[φ(β(t))|Fs]

]
= E[Gn

sUφ(t− s, βs)]. �

Lemma 3.6. There is c8 > 0 such that for every 0 ≤ s ≤ t ≤ T , every n ≥ 1,
every bounded measurable φ : F → R, and every α ∈ (0, 1),

E[Gn
s

(
φ(πFv

n(t))− φ(πFv
n(s))

)
] ≤ c8‖φ‖∞

(
[f(s)]Bα1,∞(t− s)

α
2

+ ε
√
T (1 + ‖u(0)‖2H)2 + ε e

2
ε P[τn(v) < t]

)
.

Proof. Let s, t, n, φ as in the statement of the lemma and assume for simplicity
‖φ‖∞ ≤ 1. We have

E[Gn
s

(
φ(πFv

n(t))− φ(πFv
n(s))

)
] = E[Gn

s

(
φ(πFv

n(t))− Uφ(t− s, πFvn(s))
)
]︸ ︷︷ ︸

a

+ E[Gn
s

(
Uφ(t− s, πFvn(s))− φ(πFv

n(s))
)
]︸ ︷︷ ︸

b

.

For the �rst term we use Lemma 3.5, Lemma 3.4 twice, and ‖Uφ‖∞ ≤ ‖φ‖∞,

a = E[Gn
s

(
φ(πFv

n(t))− φ(πFv(t))
)
] + E[Gn

s

(
φ(πFv(t))− Uφ(t− s, πFv(s))

)
]

+ E[Gn
s

(
Uφ(t− s, πFv(s))− Uφ(t− s, πFvn(s))

)
]

≤ 2ε
(
c6
√
T (1 + ‖u(0)‖2H)2 + e

2
ε P[τn(v) < t]

)
.



10 M. ROMITO

For the second term, we change back the probability measure, since on the interval
[0, s] u under P has the same law as vn under Gn

sP,

b = E[
(
Uφ(t− s, πFu(s))− φ(πFu(s))

)
]

=

∫
Rd

(Uφ(t− s, y)− φ(y))fF (s, y) dy

=

∫
Rd

(Ê[φ(y + B̂t−s)]− φ(y))fF (s, y) dy

= Ê
[∫

Rd

φ(y)(fF (s, y − B̂t−s)− fF (s, y)) dy
]

≤ Ê[‖fF (s, · − B̂t−s)− fF (s, ·)‖L1 ]

≤ [fF (s)]Bα1,∞Ê[|B̂t−s|α]

≤ c9[fF (s)]Bα1,∞(t− s)
α
2 ,

where α ∈ (0, 1), fF (t, ·) (or more precisely fNF (t, ·), but again we drop the super-

script for simplicity) is the density of πFu(t), and where (B̂t)t≥0 is an auxiliary
F�valued Brownian motion with (spatial) covariance πFS(πFS)? introduced to
represent the solutions of (3.2). �

We �nally have all the ingredients to complete the proof of Proposition 3.1.

Proof of Proposition 3.1. Let 0 ≤ s ≤ t. By duality, it su�cient to estimate the
following quantity for each bounded measurable φ : F → R with ‖φ‖∞ ≤ 1. For
every n ≥ 1, by the Girsanov transformation detailed in Section 3.1,∫

F

φ(y)(fF (t, y)− fF (s, y)) dy = E[φ(πFu(t))− φ(πFu(s))]

= E[Gn
t

(
φ(πFv

n(t))− φ(πFv
n(s))

)
]

= E[Gn
t φ(πFv

n(t))−Gn
sφ(πFv

n(s))]

= E[(Gn
t −Gn

s )φ(πFv
n(t))]︸ ︷︷ ︸

1

+ E[Gn
s

(
φ(πFv

n(t))− φ(πFv
n(s))

)
]︸ ︷︷ ︸

2

.

The �rst term is estimated through Lemma 3.3,

1 ≤ c7(1 + ‖x‖2H)2(t− s)
1
2 ,

the second term through Lemma 3.6, for every ε > 0,

2 ≤ c8
(
[fF (s)]Bα1,∞(t− s)

α
2 + ε

√
t(1 + ‖x‖2H)2 + ε e

2
ε P[τn(v) < t]

)
,
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so that in conclusion∣∣∣∫
F

φ(y)(fF (t, y)− fF (s, y)) dy
∣∣∣ ≤ c7(1 + ‖x‖2H)2(t− s)

1
2 +

+ c8
(
[fF (s)]Bα1,∞(t− s)

α
2 + ε

√
t(1 + ‖x‖2H)2 + ε e

2
ε P[τn(v) < t]

)
,

and by taking �rst the limit as n ↑ ∞, so that P[τn(v) < t] ↓ 0, and then as ε ↓ 0,
the statement of the proposition follows. �

4. The estimate in the Besov seminorm

In this section we prove Theorem 2.3. To this end we use together the machinery
on Girsanov's theorem introduced in the previous section and the technique based
on Besov spaces introduced in [DR14].

4.1. A smoothing lemma. The technique introduced in [DR14] is based on a
duality estimate that provides a quantitative integration by parts. Since we are
dealing with regularity properties of low order, we will use Besov spaces to measure
it. The following lemma is implicitly given in [DR14], we state it here explicitly
and give a complete proof.

Lemma 4.1 (smoothing lemma). If µ is a �nite measure on Rd and there are an
integer m ≥ 1, two real numbers s > 0, γ ∈ (0, 1), with γ < s < m, and a constant
K > 0 such that for every φ ∈ Cγ

b (Rd) and h ∈ Rd,∣∣∣∫
Rd

∆m
h φ(x)µ(dx)

∣∣∣ ≤ K|h|s‖φ‖Cγb ,

then µ has a density fµ with respect to the Lebesgue measure on Rd. Moreover,
for every r < s− γ there exists c10 > 0 such that

(4.1) ‖fµ‖Br1,∞ ≤ c10(µ(Rd) +K).

Proof. Fix a smooth function φ. Let (ϕε)ε>0 be a smoothing kernel, namely ϕε =
ε−dϕ(x/ε), with ϕ ∈ C∞c (Rd), 0 ≤ ϕ ≤ 1, and

∫
Rd ϕ(x) dx = 1. Let fε = ϕε ? µ,

then easy computations show that fε ≥ 0,
∫
Rd fε(x) dx = µ(Rd) and that∣∣∣∫

Rd

∆m
h φ(x)fε(x) dx

∣∣∣ =
∣∣∣∫ ϕε(x)

(∫
Rd

∆m
h φ(x− y)µ(dy)

)
dx
∣∣∣ ≤ K|h|s‖φ‖Cγb .

On the other hand, by a discrete integration by parts,

(4.2)

∫
Rd

∆m
h φ(x)fε(x) dx =

∫
Rd

∆m
−hfε(x)φ(x) dx.

Set gε = (I − ∆d)
−β/2fε, and ψ = (I − ∆d)

β/2φ, where ∆d is the d�dimensional
Laplace operator and β > γ. We have by [AS61, Theorem 10.1] that ‖gε‖L1 ≤
c11‖fε‖L1 . Moreover, by [Tri83, Theorem 2.5.7,Remark 2.2.2/3]), we know that
Cγ
b (Rd) = Bγ

∞,∞(Rd), and by [Tri83, Theorem 2.3.8] we know that (I − ∆d)
−β/2
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is a continuous operator from Bγ−β
∞,∞(Rd) to Bγ

∞,∞(Rd). Hence, by (4.2) it follows
that∫

Rd

∆m
h gε(x)ψ(x) dx =

∫
Rd

∆m
h fε(x)φ(x) dx ≤ K|h|s‖φ‖Cγb ≤ c12K|h|s‖ψ‖Bγ−β∞,∞

Notice that by [Tri83, Theorem 2.11.2], Bγ−β
∞,∞(Rd) is the dual of Bβ−γ

1,1 (Rd), more-

over Bβ−γ
1,1 (Rd) ↪→ L1(Rd) by de�nition, since β > γ, therefore L∞(Rd) ↪→ Bγ−β

∞,∞.

By duality, ‖∆m
h gε‖L1 ≤ c12K|h|s, hence ‖gε‖Bs1,∞ ≤ c13(K + µ(Rd)). Again since

(I − ∆d)
β/2 maps continuously Bs

∞,∞(Rd) into Bs−β
∞,∞(Rd), it �nally follows that

‖fε‖Bs−β1,∞
≤ c14‖gε‖Bs1,∞ for every β > γ.

By Sobolev's embeddings and [Tri83, formula 2.2.2/(18)], we have for every
r < s−β and 1 ≤ p ≤ d/(d−r) that Bs−β

1,∞ (Rd) ↪→ Br
1,1(R

d) = W r,1(Rd) ⊂ Lp(Rd).

In particular, (fε)ε>0 is uniformly integrable in L1(Rd), therefore there is fµ such
that µ = fµ dx and (fε)ε>0 converges weakly in L1(Rd) to fµ. By semi�continuity,
(4.1) holds for every r < s− γ. �

4.2. The Besov estimate. Let x ∈ H and consider a solution u of (2.1) that is
a limit point of Galerkin approximations. All our estimates will pass to the limit
and so it is not restrictive to work on the solution uN of (2.2) with initial condition
uN(0) = πNx.
Given t > 0 and ε ∈ (0, t), let χt,ε = 1[0,t−ε] be the indicator function of the

interval [0, t− ε], and let uNε be the solution of

duNε + (πN − πF )
(
νAuNε +B(uNε )

)
dt+ χt,επF (νAuNε +B(uNε )) dt = πNS dW,

that is uNε = uN up to time t− ε, and ũ = πFu
N
ε satis�es for r ∈ [t− ε, t],

ũ(r) = πFu
N(t− ε) + πFS(Wr −Wt−ε).

Due to assumption (2.5), ũ(r) is a d-dimensional Brownian motion (where d is the
dimension of F ) with spatial covariance matrix πFSS?πF . The following lemma
summarizes the result of [DR14], adding the explicit dependence of the Besov norm
of the density in terms of time, which is needed for the evaluation of the inequality
in the previous proposition.

Lemma 4.2. Let F be a �nite dimensional subspace of D(A) generated by a �nite
set of eigenvectors of the Stokes operator, and assume (2.5). For every t > 0
and x ∈ H, the projection πFu(t) has a density fF (t) with respect to the Lebesgue
measure on F , where u is any solution of (2.1), with initial condition x, which is
a limit point of the spectral Galerkin approximations.
Moreover, for every α ∈ (0, 1), fF (t) ∈ Bα

1,∞(F ) and for every (small) ε > 0,
there exists c15 = c15(α, ε) > 0 such that

‖fF (t)‖Bα1,∞ ≤
c15

(1 ∧ t)α+ε
(1 + ‖x‖2H)α+ε.
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Proof. Given a �nite dimensional space F as in the statement, �x t > 0, and let
γ ∈ (0, 1), φ ∈ Cγ

b , and h ∈ F , with |h| ≤ 1. For n ≥ 1, consider two cases. If
|h|2n/(2γ+n) < t, then we use the same estimate in [DR14] to get∣∣E[∆n

hφ(πFu(t))]
∣∣ ≤ c16(1 + ‖x‖2H)γ‖φ‖Cγb |h|

2nγ
2γ+n .

If on the other hand t ≤ |h|2n/(2γ+n), we introduce the process uε as above, but
with ε = t. As in [DR14],

E[∆n
hφ(πFu(t))] = E[∆n

hφ(πFuε(t))] + E[∆n
hφ(πFu(t))−∆n

hφ(πFuε(t))]

and ∣∣E[∆n
hφ(πFu(t))−∆n

hφ(πFuε(t))]
∣∣ ≤ c17(1 + ‖x‖2H)γ‖φ‖Cγb t

γ.

For the probabilistic error we use the fact that uε(t) is Gaussian, hence∣∣E[∆n
hφ(πFuε(t))]

∣∣ ≤ c18‖φ‖∞
( |h|√

t

) 2nγ
2γ+n

In conclusion, from both cases we �nally have∣∣E[∆n
hφ(πFu(t))]

∣∣ ≤ c19(1 + ‖x‖2H)γ‖φ‖Cγb |h|
2nγ
2γ+n (1 ∧ t)−

nγ
2γ+n .

Given α, suitable choices of n and γ yield the �nal result. �

Clearly the same estimate given in the above lemma holds also for the spectral
Galerkin approximations of the solution.

Proposition 4.3. Let F be a �nite dimensional subspace of D(A) generated by a
�nite set of eigenvectors of the Stokes operator, and assume (2.6).
Given α, β ∈ (0, 1) with α+β < 1, and ε > 0, there is c20 > 0 such that if x ∈ H,

if N is large enough (that F ⊂ HN) and u
N is a weak solution of (2.2) with initial

condition πNx, if f
N
F (·) is the density with respect to the Lebesgue measure on F

of the random variable πFu
N(·), then

[fNF (t)− fNF (s)]Bα1,∞ ≤ c20(1 + ‖x‖2H)α+β+ε+
2β
α+β

(1 + s ∨ t)
β(1−α−β)
2(α+β)

(1 ∧ s ∧ t)α+β+ε
|t− s|

β
2 ,

for every s, t > 0.

If ε < 1− α− β, the above estimate reads in the simpler form

[fNF (t)− fNF (s)]Bα1,∞ ≤ c20(1 + ‖x‖2H)3
(1 + s ∨ t) 1

2

(1 ∧ s ∧ t)
|t− s|

β
2 .

Proof. Fix α, β, ε as in the statement. Let s, t > 0 and h ∈ F with |h| ≤ 1. On
the one hand, using Proposition 3.1 and Lemma 4.2 we get

‖fF (t)− fF (s)‖L1 ≤ c21(1 + ‖x‖2H)2+α+β+ε
(1 + s ∨ t) 1

2
(1−α−β)

(1 ∧ s ∧ t)α+β+ε
|t− s|

1
2
(α+β),
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therefore

(4.3)

‖∆hfF (t)−∆hfF (s)‖L1 ≤ 2‖fF (t)− fF (s)‖L1 ≤

≤ 2c21(1 + ‖x‖2H)2+α+β+ε
(1 + s ∨ t) 1

2
(1−α−β)

(1 ∧ s ∧ t)α+β+ε
|t− s|

1
2
(α+β).

On the other hand, by Lemma 4.2,

(4.4)

‖∆hfF (t)−∆hfF (s)‖L1 ≤ ‖fF (t)− fF (s)‖Bα+β1,∞
|h|α+β ≤

≤ (‖fF (t)‖Bα+β1,∞
+ ‖fF (s)‖Bα+β1,∞

)|h|α+β ≤ 2c15
(1 + ‖x‖2H)α+β+ε

(1 ∧ s ∧ t)α+β+ε
|h|α+β,

Set κ = α
α+β

, then

‖∆hfF (t)−∆hfF (s)‖L1 = ‖∆hfF (t)−∆hfF (s)‖κL1‖∆hfF (t)−∆hfF (s)‖1−κL1 ,

and use (4.4) to bound the term with the κ power, and (4.3) to bound the term
with the 1− κ power, to obtain

‖∆hfF (t)−∆hfF (s)‖L1 ≤ c20(1+‖x‖2H)α+β+ε+
2β
α+β

(1 + s ∨ t)
β(1−α−β)
2(α+β)

(1 ∧ s ∧ t)α+β+ε
|t−s|

β
2 |h|α+β,

and hence the conclusion of the proposition. �
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