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Local chiral potentials with �-intermediate states and the structure of light nuclei
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We present fully local versions of the minimally nonlocal nucleon-nucleon potentials constructed in a previous
paper [Piarulli et al., Phys. Rev. C 91, 024003 (2015)], and use them in hypersperical harmonics and quantum
Monte Carlo calculations of ground and excited states of 3H, 3He, 4He, 6He, and 6Li nuclei. The long-range part
of these local potentials includes one- and two-pion exchange contributions without and with � isobars in the
intermediate states up to order Q3 (Q denotes generically the low momentum scale) in the chiral expansion, while
the short-range part consists of contact interactions up to order Q4. The low-energy constants multiplying these
contact interactions are fitted to the 2013 Granada database in two different ranges of laboratory energies, either
0–125 MeV or 0–200 MeV, and to the deuteron binding energy and nn singlet scattering length. Fits to these data
are performed for three models characterized by long- and short-range cutoffs, RL and RS, respectively, ranging
from (RL,RS) = (1.2,0.8) fm down to (0.8,0.6) fm. The long-range (short-range) cutoff regularizes the one- and
two-pion exchange (contact) part of the potential.
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I. INTRODUCTION

The understanding of the structure and reactions of nuclei
and nuclear matter has been a long-standing goal of nuclear
physics. In this respect, few- and many-body systems provide
a laboratory for studying nuclear forces with a variety of
numerical and computational techniques. In recent years, rapid
advances in ab initio few- and many-body methods, such
as no-core shell model (NCSM) [1,2], coupled cluster (CC)
[3,4] and hyperspherical harmonics (HH) [5–8] expansions,
similarity renormalization group (SRG) approaches [9,10],
self-consistent Green’s function techniques [11,12], and quan-
tum Monte Carlo (QMC) methods [13], in combination with
the rapid increase in computational resources, have made it
possible to test conventional theories and new ones, such as
chiral effective field theory (χEFT), in calculations of nuclear
structure and reactions.

During the past quarter century, χEFT, originally proposed
by Weinberg in the early 1990s [14], has been widely used for
the derivation of nuclear forces and electroweak currents. Such
a theory provides the most general scheme accommodating all
possible interactions among nucleons, � isobars, and pions
compatible with the relevant symmetries—in particular chiral
symmetry—of low-energy quantum chromodynamics (QCD),
the underlying theory of strong interactions. By its own nature,
χEFT is organized within a given power counting scheme and
the resulting chiral potentials (and currents) are systematically
expanded in powers of Q/�χ with Q � �χ , where Q denotes
generically a low momentum and �χ ∼ 1 GeV specifies the
chiral-symmetry breaking scale (see Refs. [15,16] for recent
review articles).

The power counting of χEFT indicates that nuclear forces
are dominated by nucleon-nucleon (NN) interactions, a feature
which was already known before χEFT was introduced but
could be justified more formally with the advent of such
a theory [14]. Many-body forces are suppressed by powers
of Q; however, the inclusion of three-nucleon forces (3N )
is mandatory at the level of accuracy now reached by few-
and many-body calculations (see Refs. [17,18] and references
therein for a comprehensive review on this topic). Being the
dominant contribution of the nuclear forces, a great deal of
attention has been devoted to the derivation and optimization
of NN interactions.

About a decade ago, NN interactions up to next-to-next-to-
next-to-leading order (N3LO or Q4) in the chiral expansion
were derived [19–28] and quantitative NN potentials were
developed [29,30] at that order. These N3LO NN interactions
are separated into pion-exchange contributions and contact
terms. Pion-exchange contributions represent the long-range
part of the NN interactions and include at leading order
(LO or Q0) the well-known static one-pion-exchange (OPE)
potential and at higher orders, namely next-to-leading (NLO
or Q2), next-to-next-to-leading (N2LO or Q3), and N3LO,
the two-pion-exchange (TPE) potential due to leading and
subleading πN couplings. These subleading chiral constants
can consistently be obtained from low-energy πN scattering
data [28,31–33]. Also three-pion exchange (3π ) shows up for
the first time at N3LO; in Refs. [21,22], it was demonstrated
that the 3π contributions at this order are negligible. More
recently two- and three-pion-exchange contributions that occur
at N4LO (Q5) [34,35] and N5LO (Q6) [36] have been
investigated.
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Contact terms encode the short-range physics, and their
strength is specified by unknown low-energy constants
(LECs). In order to fix these LECs, NN chiral potentials have
been confronted with the pp and np scattering databases up
to laboratory energy of 300 MeV. These databases have been
provided by the Nijmegen group [37,38], the VPI/GWU group
[39], and more recently the Granada group [40]. In the standard
optimization procedure the potentials are first constrained by
fitting np and pp phase shifts, and then the fit is refined by
minimizing the total χ2 obtained from a direct comparison
with the NN scattering data. Entem and Machleidt [29] used
their N3LO chiral potential to fit pp and np scattering data in
the Nijmegen database up to laboratory energy of 290 MeV
with a total χ2/datum of 1.28. Other available chiral potentials
[30] have not been fitted to scattering data directly but rather
to phase shifts obtained in the Nijmegen analysis. (The recent
upgrade [35] of Ref. [30] relies on this procedure, while in
Refs. [34,36] a study of peripheral phase shifts is carried out
with two- and three-pion exchange contributions up to order
Q5 and Q6, respectively.)

Recently, a different optimization strategy has been intro-
duced by Ekstrom et al. [41]. This approach is based on a
simultaneous fit of the NN and 3N forces to low-energy NN
data, deuteron binding energy, and binding energies and charge
radii of hydrogen, helium, carbon, and oxygen isotopes. These
authors considered the NN + 3N interaction at N2LO, namely
N2LOsat, where the NN sector is constrained by pp and np
scattering observables from the SM99 [39] database up to 35
MeV scattering energy in the laboratory system with a total
χ2/datum ≈ 4.3.

The family of NN chiral interactions mentioned above
are formulated in momentum space and have the feature
of being strongly nonlocal in coordinate space, making
them not well suited for certain numerical algorithms, for
example, QMC. Up to until recently, QMC methods, such
as variational Monte Carlo (VMC), Green’s function Monte
Carlo (GFMC), and auxiliary field diffusion Monte Carlo
(AFDMC), have been used to compute the properties of light
nuclei with mass number A � 12, closed-shell nuclei 16O
and 40Ca, and nucleon matter by using phenomenological
nuclear Hamiltonians based on the Argonne v18 (AV18)
two-nucleon potential [42] and the Urbana/Illinois (U/IL)
series of three-nucleon potentials [43–46]. While QMC has
had great success in predicting many nuclear properties,
such as spectra, electromagnetic form factors, electroweak
transitions, low-energy scattering, and response, nevertheless
it has been limited to realistic Hamiltonians based on the
AV18 and U/IL models and other simpler local interactions.
The reason is that local coordinate-space interactions are
particularly convenient for QMC techniques, and the AV18
and U/IL models fall into this category, while many of the
available NN chiral interactions have strong nonlocalities.
These nonlocalities come about because of (i) the specific
choice made to regularize the momentum space potential and
(ii) contact interactions that depend not only on the momentum
transfer k = p′ − p but also on K = (p′ + p)/2 (p and p′ are
the initial and final relative momenta of the two nucleons).

Local chiral interactions were developed up to N2LO (or
Q3) [47,48] only recently. These interactions are regularized

in coordinate space by a cutoff depending only on the relative
distance between the two nucleons, and use Fierz identities to
remove completely the dependence on the relative momentum
−i ∇ (or equivalently K), by selecting appropriate combina-
tions of contact operators. The LECs multiplying these contact
terms have been fixed by performing χ2 fits to the np phase
shifts from the Nijmegen partial-wave analysis (PWA) up to
150 MeV laboratory energy. The resulting chiral potentials
have been used in GFMC calculations for A � 5 nuclei
and AFDMC calculations of neutron matter [48–50]. While
this Fierz rearrangement is effective in completely removing
nonlocalities at N2LO, it cannot do so at N3LO. As shown
in Ref. [51], operator structures depending quadratically on
−i ∇ are unavoidable, and therefore the potentials constructed
in Ref. [51] belong to the class of minimally nonlocal chiral
potentials at N(3)LO, where, hereafter, the notation N(3)LO
implies that these interactions include the short-range part up
to N3LO and the long-range part up to N2LO (see discussion
in Sec. II).

In the present work we construct fully local versions of
these minimally nonlocal NN potentials [51] by dropping
the terms proportional to ∇2, and use them in HH, VMC,
and GFMC calculations of ground and excited states of 3H,
3He, 4He, 6He, and 6Li nuclei. The paper is organized as
follows. In the next section we summarize the main points
of Ref. [51], and then proceed to discuss the modifications
adopted in this work in order to construct the new class of local
potentials. In Sec. III we provide the χ2 values obtained by
performing different types of fits to data, show the calculated
phase shifts for the lower partial waves (S, P, and D waves),
and compare these phase shifts to those from recent PWA’s.
There we also provide tables of the pp, np, and nn effective
range parameters and deuteron properties. In Sec. IV the
HH, VMC, and GFMC methods are briefly described and
results for the binding energies of A= 3, 4, and 6 nuclei are
discussed. Clearly, the N(3)LO calculations reported here with
only two-body forces are incomplete, since three-body forces
start to come in at N2LO. Nevertheless, they provide the basis
for the calculations of light nuclei structure based on chiral
two- and three-body forces (including �-isobar degrees of
freedom in the intermediate states), which will follow.

II. LOCAL CHIRAL NN POTENTIALS

Following Ref. [51], the local NN potential constructed in
the present work is written as a sum of an electromagnetic-
interaction component, vEM

12 , and a strong-interaction compo-
nent, v12. The vEM

12 interaction is the same as that used in
the AV18 potential [42], while the v12 one is obtained in
χEFT and is conveniently separated into long- and short-
range parts, respectively vL

12 and vS
12. The vL

12 part includes
the one-pion-exchange (OPE) and two-pion-exchange (TPE)
contributions up to N2LO (or Q3) in the chiral expansion.
The TPE component also contains diagrams involving �
isobars in intermediate states [51]. It should be noted that
strict adherence to power counting would require inclusion of
additional one-loop as well as two-loop TPE and three-pion
exchange contributions at order Q4. These contributions have
been neglected, since they are known to be small (see, for
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example, Ref. [16]). Furthermore, it is the LECs at Q4

(denoted as Di in the tables below) that are critical for a good
reproduction of phase shifts in lower partial waves, particularly
D waves, and a good fit to the NN database [16] in the 0- to
200-MeV range of energies considered in the present study.

The strength of this long-range part is fully determined by
the nucleon and nucleon-to-� axial coupling constants gA and
hA, the pion decay amplitude Fπ , and the subleading N2LO
LECs c1, c2, c3, c4, and b3 + b8, constrained by reproducing
πN scattering data [28]. Note that the LEC (b3 + b8) is
explicitly retained in our fitting procedure, even though it has
been shown to be redundant at this order [52]. Here and in
what follows, we adopt the same values for pion and nucleon
masses, Fπ , gA, and hA and the subleading N2LO LECs as
listed in Tables I and II of Ref. [51].

The potential vL
12 can be written in coordinate space as a

sum of eight operators,

vL
12 =

[
6∑

l=1

vl
L(r) Ol

12

]
+ vσT

L (r) OσT
12 + vtT

L (r) OtT
12 , (1)

where

O
l=1,...,6
12 = [1 , σ 1 · σ 2 , S12] ⊗ [1 , τ 1 · τ 2], (2)

OσT
12 = σ 1 · σ 2 T12, and OtT

12 = S12 T12, and T12 = 3 τ1zτ2z −
τ 1 · τ 2 is the isotensor operator. The first six terms (the
so-called v6 operator structure) in Eq. (1) are the charge-
independent (CI) central, spin, and tensor components without
and with the isospin dependence τ 1 · τ 2, while the last
two terms (proportional to T12) are the charge-independence
breaking (CIB) central and tensor components induced by the
difference between the neutral and charged pion masses in
the OPE. The radial functions vl

L(r), vσT
L (r), and vtT

L (r) are
explicitly given in Appendix A of Ref. [51]. The singularities
at the origin are regularized by cutoff functions of the form

CRL (r) = 1 − 1

(r/RL)6 e(r−RL)/aL + 1
, (3)

where three values for the radius RL are considered, RL =
(0.8,1.0,1.2) fm with the diffuseness aL fixed at aL = RL/2 in
each case.

The main difference between the potentials constructed in
Ref. [51] and those in the current work lies in the operator
structure of their short-range components, which we now take
to have the form

vS
12 =

16∑
l=1

vl
S(r) Ol

12, (4)

where O
l=1,...,6
12 have been defined above,

O
l=7,...,11
12 = L · S , L · S τ 1 · τ 2 , (L · S)2 , L2 , L2 σ 1 · σ 2 ,

(5)

and

O
l=12,...,16
12 = T12 ,

(
τ z

1 + τ z
2

)
, σ 1 · σ 2 T12, S12 T12 , L · S T12.

(6)

The parametrization above differs in two ways from that of the
minimally nonlocal potential of Ref. [51]. The first difference
concerns the p2 terms{
v

p
S (r)+v

pσ
S (r) σ 1 · σ 2+v

pt
S (r) S12+v

ptτ
S (r) S12 τ 1 · τ 2 , p2

}
,

which are now absent in Eq. (4); i.e., the LECs mutliplying
these contact terms are enforced to vanish in the fits to follow.
The second difference has to do with the charge-symmetry
breaking (CSB) piece of vS

12, which, in contrast to Ref. [51],
includes only the LO term proportional to (τ z

1 + τ z
2 ) needed to

reproduce the singlet nn scattering length.
The radial functions vl

S(r) are the same as those listed in
Appendix B of Ref. [51] and involve a local regulator (to
replace the δ functions) taken as

CRS (r) = 1

π3/2R3
S

e−(r/RS)2
, (7)

where we consider, in combination with RL =
(0.8,1.0,1.2) fm, RS = (0.6,0.7,0.8) fm, corresponding
to typical momentum-space cutoffs �S = 2/RS ranging from
about 660 MeV down to 500 MeV. Hereafter we will denote
the potential with cutoffs (RL,RS) = (1.2,0.8) fm as model
a, that with (1.0,0.7) fm as model b, and that with (0.8,0.6)
fm as model c. These radial functions contain 26 LECs. Of
these, 20 are in the charge-independent part of vS

12: 2 at LO
(Q0), 7 at NLO (Q2), and 11 at N(3)LO (Q4). The remaining
6 are in its charge-dependent part: 2 at LO (one each from
CIB and CSB), and 4 at NLO from CIB. The optimization
procedure to fix these 26 LECs is the same as that adopted in
Ref. [51] and is discussed in the next section. It uses pp and
np scattering data (including normalizations), as assembled
in the Granada database [40], the nn scattering length, and the
deuteron binding energy. The minimization of the objective
function χ2 with respect to the LECs is carried out with the
Practical Optimization Using No Derivatives (for Squares),
POUNDerS [53].

III. TOTAL χ 2 AND PHASE SHIFTS

We report results for the local potentials v12 + vEM
12 de-

scribed in the previous section and corresponding to three
different choices of cutoffs (RL,RS): model a with (1.2,0.8)
fm, model b with (1.0,0.7) fm, and model c with (0.8,0.6) fm.
Models a, b, and c are fitted to the Granada database of pp and
np observables in two different ranges of laboratory energies,
either 0–125 or 0–200 MeV, to the deuteron binding energy and
nn singlet scattering length. For convenience potential models
a, b, and c fitted up to 200-MeV laboratory energy are labeled
as ã, b̃ and c̃, respectively. We list the total number of pp and
np data (including normalizations) and corresponding total χ2

per datum for all the potentials in Table I. The total number of
data points, Npp+np, changes slightly for each of the various
models because of fluctuations in the number of normalizations
(see Ref. [51] for more details on the fit procedure). For model
b we performed fits of the Granada database up to 125 MeV
order by order in the chiral expansion. The total χ2/datum are
59.88, 2.18, 2.32, and 1.07 at LO, NLO, N2LO, and N(3)LO,
respectively. There is a strong reduction in the total χ2 going
from LO and NLO and from N2LO and N(3)LO. However,
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TABLE I. Total χ 2/datum for model a (ã) with (RL,RS) =
(1.2,0.8) fm, model b (b̃) with (1.0,0.7) fm, and model c (c̃) with
(0.8,0.6) fm fitted up to 125 (200) MeV laboratory energy. For model
b, results of the fits up to 125 MeV order by order in the chiral
expansion are also given; Npp+np denotes the total number of pp

and np data, including observables and normalizations. The last three
rows list the χ 2/datum obtained (without refitting) with models a, b,
and c over the energy range 0–200 MeV.

Model Order ELab (MeV) Npp+np χ 2/datum

b LO 0–125 2558 59.88
b NLO 0–125 2648 2.18
b N2LO 0–125 2641 2.32
b N(3)LO 0–125 2665 1.07

a N(3)LO 0–125 2668 1.05
c N(3)LO 0–125 2666 1.11

ã N(3)LO 0–200 3698 1.37
b̃ N(3)LO 0–200 3695 1.37
c̃ N(3)LO 0–200 3693 1.40

a N(3)LO 0–200 3690 2.41
b N(3)LO 0–200 3679 3.76
c N(3)LO 0–200 3679 4.52

the quality of the fit worsens slightly in going from NLO to
N2LO. At N2LO we fixed the chiral LECs, namely c1, c2, c3,
c4, and b3 + b8, from the πN scattering analysis of Ref. [28].
In the range 0- to 125-MeV, the total χ2/datum at N(3)LO are
1.05, 1.07, and 1.11 for models a, b, and c, respectively; while
in the range 0- to 200-MeV the total χ2/datum at N(3)LO
are 1.37, 1.37, and 1.40. The total χ2/datum at N(3)LO for
models a, b, and c when compared (without refitting) to the 0-
to 200-MeV database are 2.41, 3.76, and 4.52, respectively. In
both energy ranges, the quality of the fits deteriorates slightly
as the (RL,RS) cutoffs are reduced from the values (1.2,0.8)
fm of model a down to (0.8,0.6) fm of model c.

The fitted values of the LECs corresponding to models a,
b, c and ã, b̃, c̃ are listed in Tables II and III, respectively. The
values for the πN LECs in the OPE and TPE terms of these
models are given in Table I of Ref. [51].

The np and pp S-wave, P-wave, and D-wave phase shifts
for potential models fitted up to 125 and 200 MeV laboratory
energy are displayed in Figs. 1 and 2, respectively. The top
two panels of these figures show the phase shifts for np in
T = 1 and T = 0 channels, respectively, while the remaining
bottom panels show the pp phase shifts (in T = 1 channel). The
width of the shaded band represents the cutoff sensitivity of
the phases obtained with the full models a, b, and c, including
strong and electromagnetic interactions. The calculated phases
are compared to those obtained in PWA’s by the Nijmegen
[37], Granada [40], and Gross-Stadler [54] groups. The recent
Gross-Stadler PWA is limited to np data only.

In Fig. 3, the np (top panels) and pp (lower panel)
S-wave, P-wave, and D-wave phase shifts are displayed for
model b up to 125 MeV laboratory energy order by order
in the chiral expansion. Dashed (blue), dash-dotted (green),
double-dash-dotted (magenta), and solid (red) lines represent
the results at LO, NLO, N2LO, and N(3)LO, respectively.

TABLE II. Values of the LECs corresponding to potential models
a, b, and c (fitted up to 125 MeV laboratory energy). The notation
(± n) means ×10±n.

LECs Model a Model b Model c

CS (fm2) 0.2726141(+1) 0.8038124(+1) 0.1858356(+2)
CT (fm2) −0.5228448 −0.1203741(+1) −0.6118406(+1)

C1 (fm4) −0.6992838(−1) −0.2280422 −0.5624246
C2 (fm4) −0.1496013 −0.2249889 −0.3529711
C3 (fm4) −0.2502401(−1) −0.4007665(−1) −0.2225345
C4 (fm4) −0.2728396(−1) 0.1243960(−1) 0.3381613(−1)
C5 (fm4) −0.6530008(−2) −0.1870727(−1) −0.2881762(−1)
C6 (fm4) −0.7554924(−1) −0.7406609(−1) −0.6535759(−1)
C7 (fm4) −0.1017206(+1) −0.1197452(+1) −0.1464748(+1)

D1 (fm6) −0.4251199(−1) −0.3820959(−1) −0.2163208(−1)
D2 (fm6) −0.5567938(−2) −0.5343034(−2) 0.2866318(−2)
D3 (fm6) −0.1666607(−1) −0.1601394(−1) −0.1472287(−1)
D4 (fm6) 0.1054347(−2) 0.4219347(−2) 0.1052796(−2)
D5 (fm6) 0.5383828(−2) 0.8971752(−2) 0.7477159(−2)
D6 (fm6) −0.8012050(−2) −0.5986245(−2) −0.2247046(−2)
D7 (fm6) −0.2309392(−1) −0.6180197(−2) 0.3616700(−1)
D8 (fm6) 0.1383136(−1) 0.1782567(−1) 0.2903320(−1)
D9 (fm6) 0.4797012(−1) 0.3094851(−1) 0.9175910(-1)
D10 (fm6) −0.1156876 −0.8073891(−1) −0.1229688
D11 (fm6) −0.1453295(−1) −0.1162060(−1) −0.2671576(−1)

CIV
0 (fm2) 0.9325477(−2) 0.1018989(−1) 0.1357818(−1)

CIT
0 (fm2) 0.1578240(−1) 0.2416591(−1) 0.2195881(−1)

CIT
1 (fm4) −0.2179452(−2) −0.3707396(−2) −0.2698274(−2)

CIT
2 (fm4) −0.6288540(−2) −0.3601899(−2) −0.1288174(−2)

CIT
3 (fm4) −0.5799803(−2) −0.4559006(−2) −0.3126089(−3)

CIT
4 (fm4) 0.2250167(−1) 0.1859997(−1) 0.8987538(−2)

Of course, the description of the phase shifts improves
substantially, as one progresses from LO to N(3)LO. The
low-energy scattering parameters are listed in Table IV, where
they are compared to experimental results [55–59]. The singlet
and triplet np, and singlet pp and nn, scattering lengths are
calculated with the inclusion of electromagnetic interactions.
Without the latter, the effective range function is simply given
by F (k2) = k cot δ = −1/a + r k2/2 up to terms linear in
k2. In the presence of electromagnetic interactions, a more
complicated effective range function must be used; it is
reported in Appendix D of Ref. [51], along with the relevant
references.

The static deuteron properties are shown in Table V
and compared to experimental values [60–63]. The binding
energy Ed is fitted exactly and includes the contributions
(about 20 keV) of electromagnetic interactions, among which
the largest is that due to the magnetic moment term. The
asymptotic S-state normalization, AS, deviates less than 1%
from the experimental data, and the D/S ratio, η, is ∼2
standard deviations from experiment for all models considered.
The deuteron (matter) radius, rd , is underpredicted by about
0.2–1.0%. It should be noted that this observable has negligible
contributions due to two-body electromagnetic operators [64].
The magnetic moment, μd , and quadrupole moment, Qd ,
experimental values are underestimated by all models, but
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TABLE III. Same as Table II but for potential models ã, b̃, and c̃

(fitted up to 200 MeV laboratory energy).

LECs Model ã Model b̃ Model c̃

CS (fm2) 0.2936041(+1) 0.8398499(+1) 0.1858331(+2)
CT (fm2) −0.4933897 −0.1207696(+1) −0.6116424(+1)

C1 (fm4) −0.1013462 −0.2324413 −0.5565484
C2 (fm4) −0.1444844 −0.2108143 −0.3574422
C3 (fm4) −0.3647634(−1) −0.3461629(−1) −0.2266117
C4 (fm4) −0.1630825(−1) 0.8748772(−2) 0.3921168(−1)
C5 (fm4) −0.6658100(−2) −0.3614304(−1) −0.2661419(−1)
C6 (fm4) −0.6176835(−1) −0.5542581(−1) −0.6532432(−1)
C7 (fm4) −0.9578191 −0.1019849(+1) −0.1465875(+1)

D1 (fm6) −0.3102824(−1) −0.1193597(−1) −0.2144023(−1)
D2 (fm6) −0.4438695(−2) −0.4450346(−2) 0.1386494(−2)
D3 (fm6) −0.1351171(−1) −0.9542801(−2) −0.1620926(−1)
D4 (fm6) −0.7084459(−3) 0.3976205(−2) 0.2071219(−2)
D5 (fm6) 0.1110108(−1) 0.7809205(−2) 0.7238077(−2)
D6 (fm6) −0.8598857(−2) −0.7362895(−2) −0.2323562(−2)
D7 (fm6) −0.5367908(−1) −0.4158494(−2) 0.3065351(−1)
D8 (fm6) 0.3119241(−1) 0.1090986(−1) 0.2957488(−1)
D9 (fm6) 0.3281636(−1) 0.6095858(−3) 0.9135194(−1)
D10 (fm6) −0.8647128(−1) −0.5432144(−1) −0.1196465
D11 (fm6) −0.1167788(−1) −0.5186422(−2) −0.3065569(−1)

CIV
0 (fm2) 0.9575695(−2) 0.1077541(−1) 0.1312712(−1)

CIT
0 (fm2) 0.2194758(−1) 0.2102140(−1) 0.1394723(−1)

CIT
1 (fm4) −0.1550501(−2) 0.1152693(−3) −0.8965197(−2)

CIT
2 (fm4) −0.8354679(−2) −0.1391786(−2) −0.3079018(−2)

CIT
3 (fm4) −0.6682746(−2) −0.3194459(−3) 0.3905867(−4)

CIT
4 (fm4) 0.1276971(−1) 0.2879873(−2) 0.8844043(−3)

these observables are known to have significant corrections
from (isoscalar) two-body terms in nuclear electromagnetic
charge and current operators [64]. Their inclusion would bring
the calculated values considerably closer to experiment.

Finally, we observe that inclusion of the p2-dependent terms
would have improved only marginally the fits to the database
in the energy range 0–200 MeV. For example, in the case
of the b̃ model the value of the χ2/datum would have been
reduced from the current 1.37 to 1.34. The present fits in the
range 0–125 MeV already have χ2/datum close to 1 (in fact
less than 1.1 for models a and b) and are therefore to be
considered statistically satisfactory. However, apart from the
small improvement that the p2-dependent terms would bring
to the total χ2 in the fit to the NN scattering data, the effect of
these terms on nuclear observables has not been studied.

IV. HH AND QMC CALCULATIONS FOR LIGHT NUCLEI

The study of light nuclei is especially interesting since it
provides the opportunity to test, in essentially exact numerical
calculations, models of two- and three-nucleon forces. In this
section, we briefly discuss the HH and QMC methods adopted
here for the accurate or exact solution of the few-nucleon
Schrödinger equation, H 
 = E 
, where 
 is a nuclear wave
function with specific spin, parity, and isospin. We then present
results for the binding energies and rms radii of the A= 2–

FIG. 1. S-wave, P-wave, and D-wave phase shifts for np in T = 0
and 1 states (top two panels) and pp (lower panel), obtained in the
Nijmegen [37,38], Gross and Stadler [54], and Granada [40] PWA’s,
are compared to those of models a, b, and c, indicated by the band.

6 nuclei with a Hamiltonian H including the nonrelativistic
kinetic energy in combination with the two-body potentials
v12 of Sec. II. In particular for our calculations we use nuclear
wave functions corresponding to models a, ã and b, b̃, whose
LECs are specified in Tables II and III.

The HH method is used to calculate the ground-state
energies of 3H and 4He and these results provide a benchmark
for the corresponding QMC calculations. The QMC methods
are then applied to compute binding energies and rms radii
of the 3He ground state and of the 6Li and 6He ground and
excited states.

A. The hyperspherical harmonics method

The HH method uses hyperspherical harmonics functions
as a suitable expansion basis for the wave function of an
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FIG. 2. Same as Fig. 1 but for models ã, b̃, and c̃ fitted to 200 MeV
laboratory energy.

A-body system. In the specific case of A= 3 and 4 nuclei, the
corresponding ground-state wave functions 
Jπ

A (Jπ being
the total angular momentum and parity) can be expanded
in the following way:



1/2+
3 =

∑
[K3]

u[K3](ρ3)B[K3](�3) (8)

and


0+
4 =

∑
[K4]

u[K4](ρ4)B[K4](�4) . (9)

Here B[K3](�3) and B[K4](�4) are fully antisymmetrized
HH-spin-isospin functions for three and four
nucleons characterized by the set of quantum
numbers [K3] ≡ [n1,l1,l2,L,s,S,t,T ] and [K4] ≡
[n1,n2,l1,l2,l3,l

′,L,s,s ′,S,t,t ′,T ] respectively. The quantum
numbers ni,li and l′ enter in the construction of the HH

FIG. 3. Chiral expansion of the np (top two panels) and pp

(bottom panel) S-wave, P-wave, and D-wave phase shifts up to
125 MeV for model b in comparison with the Nijmegen [37,38],
Gross and Stadler [54], and Granada [40] PWA’s. Dashed (blue),
dash-dotted (green), double-dash-dotted (magenta), and solid (red)
lines show the results at LO, NLO, N2LO and N(3)LO, respectively.

vector and are such that the grand angular momenta are
K3 = 2n1 + l1 + l2 and K4 = 2n1 + 2n2 + l1 + l2 + l3. The
orbital angular momenta li (and l′ for A = 4) are coupled
to give the total orbital angular momentum L. The total
spin and isospin of the vector are indicated with S and
T , respectively, and s,s ′,t,t ′ are intermediate couplings.
A detailed description of the HH method with the explicit
expression of the HH-spin-isospin functions can be found in
Refs. [65–68].

The hyperspherical coordinates (ρA,�A) in Eqs. (8) and
(9) are given by the hyper-radius, ρ2

A = ∑A−1
i=1 x2

i expressed
in terms of the A–1 Jacobi vectors xi of the systems, and
the hyperangles �A = (x̂1 . . . x̂A−1,α2 . . . αA−1), with x̂i being
the unit Jacobi vectors and αi the hyperangular variables. For
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TABLE IV. The singlet and triplet np, and singlet pp and nn, scattering lengths and effective ranges corresponding to the potential models
a, b, and c (fitted up to 125 MeV laboratory energy), and ã, b̃, and c̃ (fitted up to 200 MeV laboratory energy). Experimental values are from
Refs. [55–59].

Experiment Model a Model b Model c Model ã Model b̃ Model c̃

1app −7.8063(26) −7.776 −7.774 −7.769 −7.775 −7.770 −7.769
−7.8016(29)

1rpp 2.794(14) 2.780 2.771 2.754 2.774 2.760 2.753
2.773(14)

1ann −18.90(40) −18.896 −18.921 −18.966 −18.904 −19.009 −18.919
1rnn 2.75(11) 2.825 2.815 2.795 2.819 2.801 2.794
1anp −23.740(20) −23.722 −23.739 −23.741 −23.758 −23.754 −23.740
1rnp 2.77(5) 2.666 2.686 2.684 2.642 2.682 2.683
3anp 5.419(7) 5.424 5.424 5.423 5.399 5.394 5.424
3rnp 1.753(8) 1.761 1.760 1.770 1.727 1.720 1.773

A = 3, cos α2 = x2/ρ3, and for A = 4, cos α2 = x2/
√

x2
1 + x2

2
and cos α3 = x3/ρ4 [68].

In the present application of the HH method, the hyper-
radial functions are in turn expanded in terms of generalized
Laguerre polynomials multiplied by an exponential function

uμ(ρA) =
∑
m

Cm,μ L(3A−4)
m (z) e−z/2 , (10)

with z = βρA, β being a nonlinear parameter, and μ ≡ [KA].
Introducing the above expansion in Eqs. (8) and (9), we can
rewrite 
Jπ

A in the compact form


Jπ

A =
∑
m,μ

Cm,μ �m,μ(ρA,�A) , (11)

where the (normalized) complete antisymmetric vectors are

�m,μ(ρA,�A) = L(3A−4)
m (z)e−z/2B[KA](�A). (12)

The ground-state energy E is obtained by applying the
Rayleigh-Ritz variational principle, which leads to the follow-
ing eigenvalue-eigenstate problem:∑

m′,μ′
(Hmμ,m′μ′ − EImμ,m′μ′) = 0, (13)

where Hmμ,m′μ′ are the Hamiltonian matrix elements
〈mμ|H |m′μ′〉 and Imμ,m′μ′ indicates the matrix elements
of the identity matrix. The convergence of the energy E
in terms of the size of the basis is studied as follows.
The HH functions are collected in channels having specific
combinations of the HH-spin-isospin quantum numbers. For

the three-nucleon system the basis includes all possible
combinations of HH functions up to l1 + l2 = 6 corresponding
to 23 angular-spin-isospin channels with isospin components
T = 1/2,3/2. For each channel the hyperangular quantum
number n1 and hyper-radial quantum number m are increased
until convergence is reached at a level of accuracy of the order
of a few keV on the sought energy eigenvalue. In the case
of A= 4 all possible combinations of HH functions up to
l1 + l2 + l3 = 6 having T = 0 are included, while for the wave
function components having T > 0 HH-spin-isospin states up
to l1 + l2 + l3 = 2 are considered. This selection corresponds
to about 234 angular-spin-isospin channels. For each channel
the hyperangular quantum numbers n1,n2 and hyper-radial
quantum number m are increased until convergence is reached
at a satisfactory level of accuracy. Detailed studies of the
convergence have been done in Ref. [67], showing that with
this kind of expansion an accuracy of about 20 keV can be
obtained for the 4He ground-state energy.

B. Quantum Monte Carlo methods

Over the past three decades, QMC methods have been
successfully used to study the structure and reactions of light
nuclei and nucleonic matter starting from phenomenological
interactions. The extensive use of these ab initio methods for
computing many of the important properties of light nuclei,
such as spectra, form factors, radiative and weak transitions,
low-energy scattering, and electroweak response, has led to a
rather large number of references, where detailed descriptions
of QMC algorithms, as well as tests of their accuracy, have been
described in detail and discussed at length (see, for example,

TABLE V. Same as in Table IV but for the deuteron static properties; experimental values are from Refs. [60–63].

Experiment Model a Model b Model c Model ã Model b̃ Model c̃

Ed (MeV) 2.224575(9) 2.224574 2.224573 2.224576 2.224574 2.224568 2.224570
AS(fm−1/2) 0.8846(9) 0.8862 0.8861 0.8874 0.8811 0.8799 0.8877
η 0.0256(4) 0.0249 0.0248 0.0250 0.0247 0.0245 0.0250
rd (fm) 1.97535(85) 1.968 1.968 1.971 1.956 1.955 1.971
μd (μ0) 0.857406(1) 0.850 0.849 0.850 0.850 0.850 0.849
Qd (fm2) 0.2859(3) 0.268 0.267 0.269 0.263 0.256 0.269
Pd (%) 5.24 5.49 5.32 5.22 5.21 5.35
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the review article [13] and references therein for a complete
overview of the topic). In this section we briefly outline those
features of QMC techniques relevant for the implementation of
these methods with the present chiral (and local) NN potentials
at N(3)LO.

The QMC calculations proceed in two steps. The first step is
the variational Monte Carlo (VMC) calculation, in which trial
wave functions are optimized by minimizing the Hamiltonian.
The second consists of the Green’s function Monte Carlo
(GFMC) calculation, in which the exact wave functions of
the nuclear Hamiltonian are projected out of these optimized
trial wave functions by evolving them in imaginary time.

In VMC calculations, one assumes a suitably parametrized
form for the antisymmetric wave function 
T of a given spin,
parity, and isospin and optimizes the variational parameters by
minimizing the energy expectation value, ET ,

ET = 〈
T |H |
T 〉
〈
T |
T 〉 � E0, (14)

which is evaluated by Metropolis Monte Carlo integration [69].
The lowest value for ET is then taken as the approximate
ground-state energy. Upper bounds to energies of excited states
can also be obtained, either from standard VMC calculations
if they have different quantum numbers from the ground state,
or from small-basis diagonalizations if they have the same
quantum numbers.

The best variational wave functions 
T for the nuclei
studied in the present work have the form [70]

|
T 〉 = S

A∏
i<j

(1 + Uij ) |
J 〉, (15)

where S is the symmetrization operator. The Jastrow wave
function 
J is fully antisymmetric and has the (Jπ ; T )
quantum numbers of the state of interest, while Uij are
the two-body correlation operators. The correlation functions
in Uij are obtained by solving two-body Euler-Lagrange
equations projected in pair spin S and isospin T channels,
and for finite nuclei are required to satisfy suitable boundary
conditions [70]. Since the calculations carried out here are with
only two-body interactions, three-body correlations induced
by three-body interactions are not explicitly accounted for in

T .

In order to find the optimum 
T , the minimization of the
energy expectation value and its associated variance are carried
out with respect to the variational parameters. In the case of
A= 6 nuclei, the optimization of the energies is subject to
the constraint that the rms radii are close to the GFMC ones
obtained with the AV18. This is because the best variational
wave functions we have do not make p-shell nuclei stable
against breakup into subclusters.

Given the best set of variational parameters, the trial wave
function 
T can then be used as the starting point of a
GFMC [71,72] calculation which projects out of it the exact
lowest energy state 
0 with the same quantum numbers. The
projection of 
0 is carried out by evolving for long imaginary
time τ = −i t

|
0〉 ∝ lim
τ→∞ |
(τ )〉 = lim

τ→∞ e−(H−E0) τ |
T 〉, (16)

with the obvious initial condition |
(τ=0)〉 = |
T 〉. In prac-
tice the imaginary-time evolution operator exp[−(H − E0) τ ]
is computed for small time steps �τ with τ = n�τ , and is
carried out with a simplified version H ′ of the full Hamiltonian
H . In the presence of only NN interactions the Hamiltonian
H ′ contains a charge-independent eight-operator projection,
[1 , σ 1 · σ 2 , S12 ,L · S] ⊗ [1 , τ 1 · τ 2], of the full two-body
potential, constructed to preserve the potential in all S and
P waves as well as the 3D1 and its coupling to the 3S1.

The desired expectation values of ground-state and low-
lying excited-state observables are then computed approxi-
mately by stochastic integration of mixed matrix elements
[73]

〈O(τ )〉M = 〈
(τ )|O|
T 〉
〈
(τ )|
T 〉 , (17)

where O is the observable of interest to be evaluated. By
writing 
(τ ) = 
T + δ
(τ ) and neglecting terms of order
[δ
(τ )]2, one obtains an approximate expression for

〈O(τ )〉≡ 〈
(τ )|O|
(τ )〉
〈
(τ )|
(τ )〉 ≈ 〈O(τ )〉M + [〈O(τ )〉M − 〈O〉V],

(18)

where 〈O〉V is the variational expectation value.
In the case of the Hamiltonian, since the propagator

commutes with it, the mixed estimate 〈H (τ )〉M of Eq. (17)
is itself an upper bound to the the ground-state energy E0 and
can be expressed as [73]

E(τ ) = 〈H (τ )〉M = 〈
(τ/2)|H |
(τ/2〉
〈
(τ/2)|
(τ/2)〉 . (19)

Because the simpler H ′ is used to generate the GFMC
propagator the total energy is then computed by the mixed
estimate of H ′ plus the difference 〈H − H ′〉M evaluated by
Eq. (18).

Apart from the use of mixed estimates and H ′ in the
propagation, another source of systematic errors that affects
GFMC calculations is the well-known fermion sign prob-
lem. In essence this results from the fact that during the
imaginary-time propagation bosonic noise gets mixed into
the propagated wave function. This bosonic component has
a much lower energy than the fermion component and thus
is exponentially amplified in subsequent iterations of the
short-time propagators. The desired fermionic component is
projected out by the antisymmetric 
T when Eq. (17) is
evaluated; however, the presence of large statistical errors
which increase with τ effectively limits the maximum τ that
can be used in the calculations. Since the number of pairs to be
exchanged grows with the mass number A, the sign problem
also grows exponentially with increasing A.

For spin- and isospin-dependent wave functions, the
fermion sign problem can be controlled by a suitable
constrained path approximation, which basically limits the
propagation to regions where the propagated |
(τ )〉 and trial
|
T 〉 wave functions have a positive overlap and discards those
configurations that instead have a negative or vanishing overlap
(see Ref. [74] for details on this topic). To address the possible
bias that the constrained path technique can introduce in the
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TABLE VI. The 3H ground-state energies E0 (MeV) and rms proton radii rp (fm) with models a, ã, b, and b̃. Statistical errors on the energy
evaluations are indicated in parentheses for the VMC and GFMC calculations.

Method Model a Model ã Model b Model b̃

E0

√〈
r2
p

〉
E0

√〈
r2
p

〉
E0

√〈
r2
p

〉
E0

√〈
r2
p

〉
VMC –7.592(6) 1.65 –7.691(6) 1.62 –7.317(7) 1.68 –7.643(5) 1.63
GFMC –7.818(8) 1.62 –7.917(10) 1.60 –7.627(17) 1.65 –7.863(8) 1.57
HH –7.818 –7.949 –7.599 –7.866

calculations, all the configurations, including those that are
being rejected, for the previous nuc (typical 10 − 20) time
steps are used when evaluating expectation values. In general
the number nuc is chosen to be as large as possible within a
reasonable statistical error.

For phenomenological nuclear Hamiltonians (such those
based on the AV18 potential) the constrained-path approxi-
mation was not necessary for calculations of A � 4 systems,
since the sign problem was quite mild for these light nuclei.
On the other hand, it is essential for GFMC calculations with
the N(3)LO NN chiral interactions of Sec. II, since the sign
problem is far more severe for this category of potentials.

C. Results for binding energies

In this section we present results for ground and excited
states of 3H, 3He, 4He, 6He, and 6Li nuclei using a subset of
the local chiral potentials discussed in Sec. II. In particular,
in order to solve the 3H and 4He ground states, we use VMC,
GFMC, and HH methods with N(3)LO NN models a, ã, b, and
b̃, while for 3He, 6He, and 6Li ground and excited states we
present VMC and GFMC calculations performed with model
b̃ only.

The variational wave functions used for the VMC results
include only spatial and spin-isospin two-body correlations
denoted by Uij as in Refs. [70,73]; the Jastrow wave functions
for the s-shell (A= 3 and 4) and p-shell (A= 6) nuclei are also
given explicitly in those references. For these calculations, the
search in parameter space is made using COBYLA (Constrained
Optimization BY Linear Approximations) algorithm available
in the NLopt [75] library. The optimal parameters are
found typically using runs of 100 000 configurations for the
evaluation of matrix elements in Eq. (14). When the optimal
trial wave function is found, a long run with 1 000 000,
500 000, and 200 000 configurations is made in A= 3, 4,
and 6 nuclei, respectively, which then is used as input for the
GFMC calculations. The GFMC results are obtained using
the constrained path technique with nuc = 20 unconstrained

time steps. The imaginary-time evolution for the a and b̃
models (̃a and b ones) is computed with small time step
�τ = 0.0005 (0.0001) MeV−1 up to total time τ = 0.2 MeV−1.

The results for the 3H and 4He ground states are shown
in Tables VI and VII, respectively. The VMC calculations
give energies that are 3–4% above the corresponding HH or
GFMC predictions; the latter are in good agreement with each
other. The errors quoted for the VMC and GFMC results are
the Monte Carlo statistical errors. We see that increasing the
laboratory energy range, in which the LECs are fitted, from 125
to 200 MeV (as discussed in Sec. III), leads to more binding
for these systems.

In Table VIII we present the GFMC calculations for the
3H and 4He ground-state energies and rms proton radii at LO,
NLO, N2LO, and N(3)LO in the chiral expansion for potential
model b. At LO we find that the nuclei are significantly
overbound by as much as 5 MeV (for 3H) and 27 MeV
(for 4He) over their corresponding experimental values, E0 =
−8.482 MeV (for 3H) and E0 = −28.30 MeV (for 4He). The
NLO contribution is an important correction to the LO results.
At this order the 3H and 4He become, respectively, ∼1 and ∼5
MeV underbound compared to their experimental values. At
N2LO and N(3)LO the nuclei are still underbound, but getting
closer to experimental results. The N2LO contributions are
small relative to the NLO ones and the N(3)LO corrections to
the N2LO results are almost negligible within the statistical
errors.

In Table IX we report VMC and GFMC calculations for
3H, 3He, 4He, 6He, and 6Li ground and excited states obtained
using model b̃, which has, among the N(3)LO local potentials
presented in Sec. II, the best behavior in terms of sign
problem. In that table we also report the corresponding GFMC
calculation obtained with the AV18. We note that for A = 3,
4 and 6 the binding energies obtained using model b̃ differ by
about 0.2 – 0.3, 1.07, and 1.3 – 0.5 MeV, respectively, from
the corresponding ones obtained using AV18.

The optimization of the 3He ground state has been per-
formed using as starting point the variational parameters for

TABLE VII. Same as in Table VI but for the 4He ground state.

Method Model a Model ã Model b Model b̃

E0

√〈
r2
p

〉
E0

√〈
r2
p

〉
E0

√〈
r2
p

〉
E0

√〈
r2
p

〉
VMC –24.38(1) 1.51 –25.03(1) 1.49 –22.89(2) 1.54 –24.46(2) 1.49
GFMC –25.13(5) 1.49 –25.71(3) 1.50 –23.88(5) 1.53 –25.21(4) 1.45
HH –25.15 –25.80 –23.96 –25.28
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TABLE VIII. GFMC calculations order by order in the chiral
expansion for 3H and 4He ground-state energies E0 (MeV) and rms
proton radii rp (fm) obtained using model b. Statistical errors on the
energy evaluations are indicated in parentheses. The experimental
binding energy and rms proton radius are E0 = −8.482 MeV and√

〈r2
p〉 = 1.58 fm for 3H [13] and E0 = −28.30 MeV and

√
〈r2

p〉 =
1.462 fm for 4He [13].

Model Order 3H 4He

E0

√
〈r2

p〉 E0

√
〈r2

p〉

b LO –13.407(9) 1.23 –55.53(1) 0.90
b NLO –7.379(4) 1.69 –23.04(2) 1.55
b N2LO –7.574(9) 1.65 –23.95(3) 1.52
b N(3)LO –7.627(17) 1.65 –23.88(5) 1.53

3H, but varying only the separation energies and tensor/central
ratios—these parameters characterize the asymptotic bound-
ary conditions imposed on the pair-correlation functions [70].
The calculated VMC energy, as shown in Table IX, is ∼0.2
MeV above the GFMC one.

The ground state of 6He, not bound with respect to the
4He threshold with model b̃ or AV18, is a (Jπ ,T ) = (0+; 1)
state which has predominantly a 2S+1L[n] = 1S[42] character
(we use spectroscopic notation to denote the orbital angular
momentum L, the spin S, and the Young diagram spatial
symmetry [n] of the state). The (2+; 1) first excited state,
mostly a 1D[42] state, is above the threshold for decay to
α + 2n with a width of ≈100 keV and we treat it as a stable
state. For both states we allow a possible 3P [411] admixture in
the total wave function, and then use generalized eigenvalue
routines to diagonalize the resulting 2 × 2 matrix for each of
them and extract the corresponding contributions, 1S[42] and
3P [411] for the (0+; 1) ground state, and 1D[42] and 3P [411]
for the (2+; 1) excited state. We do not report the calculated
energies for the three 3P [411] states with (Jπ ,T ) = (2+; 1),
(1+; 1), and (0+; 1) since they have yet to be identified
experimentally.

The p-shell spectrum for 6Li consists of a (1+; 0) ground
state, which is mostly a 3S[42] state, a triplet of 3D[42] excited

states with (3+; 0), (2+; 0), and (1+; 0) components, and a
singlet of 1P [411] excited state with a (1+; 0) component, the
latter not yet identified experimentally. The 6Li ground state is
stable while the excited states are above the α + d threshold,
but we treat them as bound states here. In addition there are
(0+; 1) and (2+; 1) excited states that are the isobaric analogs
of the 6He states, but they will not be discussed here. For
the (1+; 0) ground and excited states we allow admixtures
of 3S[42], 3D[42], and 1P [411] components in the total wave
function and then diagonalize a 3 × 3 matrix to extract the
corresponding contributions. This diagonalization procedure
is not necessary for the (3+; 0) and (2+; 0) excited states since
both of them are pure 3D[42] states. The energies of the 3D[42]
triplet give a measure of the effective one-body spin-orbit
splitting. The J -averaged centroids for both model b̃ and AV18
are 3.6 MeV above their respective ground states; however, the
spread between lowest and highest triplet members is 1.5 MeV
for model b̃ and 2.1 MeV for AV18.

The minimization of the energy for the 6Li ground state
has been carried out by requiring the resulting proton rms
radius, rp, to be close to the GFMC one obtained with the
AV18. For the excited states, we minimize their energies by
requiring that these excited states have radii only slightly larger
than the ground state. A similar optimization strategy has been
adopted for the 6He ground and excited states, except that we
use as starting point the 6Li variational parameters and vary
only those parameters associated with the single-particle radial
functions, φp, in the Jastrow part of the trial wave function [73].

V. SUMMARY AND CONCLUSIONS

In the present work we have constructed two classes of chi-
ral potentials at N(3)LO, which are fully local in configuration
space, for use (primarily) with HH and QMC methods. The
two classes only differ in the range of laboratory energies over
which the LECs in the contact interactions have been fitted to
the NN database (as assembled by the Granada group), either
0- to 125-MeV (models a, b, and c) with χ2/datum � 1.1 for
a total of about 2700 data points or 0- to 200-MeV (models
ã, b̃, and c̃ ) with χ2/datum � 1.4 for about 3700 data points
(representing an increase of roughly 40% in the size of the
fitted database relative to the 0- to 125-MeV case). Within a

TABLE IX. The 3H, 3He, 4He, 6He, and 6Li ground- and excited-state energies in MeV and proton rms radii rp in fm with model b̃ compared
with the corresponding GFMC results obtained with the AV18. Statistical errors on the energy evaluations are indicated in parentheses.

AZ(J π ; T ) VMC GFMC GFMC(AV18)

E0

√
〈r2

p〉 E0

√
〈r2

p〉 E0

√
〈r2

p〉
3H( 1

2

+
; 1

2 ) –7.643(5) 1.63 –7.863(8) 1.57 –7.610(5) 1.66
3He( 1

2

+
; 1

2 ) –6.907(5) 1.84 –7.115(9) 1.84 –6.880(5) 1.85
4He(0+; 0) –24.46(2) 1.49 –25.21(4) 1.45 –24.14(1) 1.49
6He(0+; 1) –22.58(3) 2.05 –24.53(6) 2.07(1) –23.76(9) 2.06(1)
6He(2+; 1) –20.94(2) 2.06 –22.87(6) 2.18(2) –21.85(9) 2.11(1)
6Li(1+; 0) –25.86(3) 2.58 –27.71(8) 2.62(1) –26.87(9) 2.58(1)
6Li(3+; 0) –22.73(3) 2.59 –24.56(8) 2.59(1) –24.11(7) 2.87(1)
6Li(2+; 0) –21.42(3) 2.61 –24.04(9) 2.79(2) –22.75(11) 2.63(1)
6Li(1+

2 ; 0) –20.42(3) 2.58 –23.09(11) 2.89(2) –21.99(12) 2.85(3)
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given class, models a, b, and c (or ã, b̃, and c̃ ) have different
short-range and long-range cutoff radii, respectively RL and
RS: (RL,RS) = (1.2,0.8) fm for models a and ã, (1.0,0.7) fm
for models b and b̃, and (0.8,0.6) fm for models c and c̃.
The cutoff radius RL regularizes the long-range part of the
potential, which includes OPE and TPE terms without and
with excitation of intermediate � isobars as illustrated in Fig. 1
of Ref. [51]. The cutoff radius RS provides a range to the δ
functions and their derivatives, which characterize the contact
interactions in the short-range part of the potential. These
contact interactions require a total of 26 independent LECs, 20
of which occur in the charge-independent (CI) component and
6 in the charge-dependent (CD) one (5 for central, tensor, and
spin-orbit CIB terms, and 1 for a central CSB term). These 26
LECs are then constrained by the fits above (their values are
listed in Tables II and III).

A subset of the potentials—a, ã, b, and b̃—have been used
in HH, VMC, and GFMC calculations of binding energies
and proton rms radii of nuclei with A= 2–6. The GFMC
calculations are rather challenging owing to the serious
fermion-sign problem associated with these potentials, even
for s-shell nuclei (3H, 3He, and 4He); this problem becomes
especially severe for models c and c̃, and they have not been
used in the present work. However, implementation of the
constrained-path algorithm in the course of the imaginary-time
propagation substantially reduces the statistical fluctuations in
the energy evaluation, and leads to 3H and 3He ground-state
energies in excellent agreement with those obtained in
the HH calculations. All present models, especially c and
c̃ , have rather strong spin-orbit, quadratic orbital angular
momentum (L2), and quadratic spin-orbit components,
particularly in the (S,T ) = (1,0) channel: For internucleon
separation close to zero, they have values of ∼2800 MeV,
∼200 MeV, and ∼460 MeV respectively, in this channel.
While these components vanish for nucleon pairs in relative
S wave, they do so, in the course of a GFMC imaginary-time
propagation, only by averaging large values of opposite signs,
thus producing large fluctuations.

The models ã and b̃ produce more binding in A= 3 and
4 nuclei than a and b; the extra binding of model b̃ relative
to b amounts to 5% in 4He. It appears that model b̃ leads to
ground- and excited-state energies of A= 3–6 nuclei, which
are close to those calculated with AV18. Clearly, the next stage
in the program of studies of light nuclei structure with chiral
interactions we envision is the inclusion of a three-nucleon
potential. A chiral version of it at leading order, including �-
isobar intermediate states, has been developed, and is currently
being constrained by reproducing observables in the A= 3
systems.

We conclude by observing that a number of different groups
[76–78] have developed procedures which allow us to assess,
in a systematic way, the theoretical uncertainties inherent to the
use of chiral potentials. In the present work these uncertainties
have been estimated by investigating (i) how the χ2/datum
and 3H and 4He binding energies change as the long- and
short-range cutoffs are varied, (ii) how these χ2/datum and
binding energy values change as the range of laboratory energy
used in constraining the fits is extended from 125 to 200 MeV,
and (iii) how for a fixed set of cutoffs (those of model b) the
quality of the fit and the 3H and 4He ground-state energies
improves with increasing order in the chiral expansion.
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